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A B S T R A C T   

In the past several decades, most of the research methods are designed to solve the static flexible job shop 
scheduling problem. However, in real production environments, some inevitable dynamic events such as new 
jobs arrival and machine breakdown may occur frequently. In this paper, we study a dynamic flexible job shop 
scheduling problem (DFJSP) considering four dynamic events, which are new jobs arrival, machine breakdown, 
jobs cancellation and change in the processing time of operations. A rescheduling method based on Monte Carlo 
Tree Search algorithm (MCTS) is designed to solve the proposed DFJSP with the objective of minimizing the 
makespan. Several optimization techniques such as Rapid Action Value Estimates heuristic and prior knowledge 
are adopted to enhance the performance of the MCTS-based rescheduling method. The response time to dynamic 
events is critical in DFJSP but has not been solved very well. To greatly reduce the response time to dynamic 
events, when dynamic events occur, multiple continuous specified time windows are designed for the proposed 
method, according to which the corresponding subsequent partial schedule for the remaining unprocessed op
erations is progressively generated. Some experiments have been conducted to compare the proposed method 
with the commonly used completely reactive scheduling methods and the GA-based rescheduling method. The 
experiment results indicate that the proposed method is an efficient and promising method for dynamic 
scheduling both on solution quality and computation efficiency.   

1. Introduction 

The Job shop scheduling problem (JSP) is a well-known strong NP- 
hard combinational optimization problem (Garey, Johnson, & Sethi, 
1976), which mainly determines a schedule for a set of jobs with pre- 
specified operation sequences on the corresponding predefined ma
chine to achieve some specific objectives. In practice, the widespread 
use of multipurpose machines allows the operation can be processed by 
multiple optional machines, which is a generalization of JSP and also 
known as the flexible job shop scheduling problem (FJSP). Hence, FJSP 
increases the flexibility of scheduling and is also considered to be 
strongly NP-hard. 

Most of the literature on scheduling focuses on static scheduling 
problems and does not give much consideration to dynamic factors. 
However, in the actual manufacturing systems, the shop environment 
often changes dynamically due to some unpredictable dynamic real-time 
events, such as sudden machine breakdown or random new jobs arrival. 

In this case, the previously generated scheduling scheme may become 
less effective or even become infeasible. As stated in Ouelhadj and 
Petrovic (2009), dynamic scheduling is of great significance for the 
successful implementation of real manufacturing systems. Obviously, 
scheduling problems are dynamic in nature and more complicated than 
the static scheduling problems due to various random and uncertain 
events in reality. The FJSP turns into a new kind of problem which is 
called dynamic flexible job shop scheduling problem (DFJSP) when 
dynamic real-time events occur. 

To solve the dynamic scheduling problem of manufacturing systems, 
there are mainly three categories of technologies, which are the 
completely reactive scheduling, the predictive-reactive scheduling and 
the robust pro-active scheduling (Ouelhadj & Petrovic, 2009). Among 
them, the predictive-reactive scheduling is the most commonly used 
method. This method has a scheduling or rescheduling process in which 
the previous scheduling is modified to accommodate the new shop 
environment caused by dynamic events. Most of the existing studies 
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generated a new schedule by minimizing the impact of disruptions on 
shop production efficiency such as makespan (Adibi, Zandieh, & Amiri, 
2010; Chryssolouris & Subramaniam, 2001; Liu, Fan, & Liu, 2015). In 
this case, it may obtain a new schedule that is completely different from 
the previous one, which is also called rescheduling. 

Dispatching rules are often widely applied to solve dynamic sched
uling problems in actual production systems due to their polynomial 
time complexity. Although dispatching rules can quickly respond to 
dynamic events, the solution quality is often not high enough to meet the 
requirements of efficient production. Therefore, many researchers have 
gradually used gene expression programming method to extract dis
patching rules to solve the DFJSP under different specific constraints 
(Nie, Gao, Li, & Li, 2013; Nie, Gao, Li, & Shao, 2013; Ozturk, Bahadir, & 
Teymourifar, 2019; Teymourifar et al., 2020; Xu et al., 2020; Zhang, 
Mei, & Zhang, 2019). However, the development process of this method 
is still complicated, and the effectiveness of the extracted dispatching 
rules depends on the design of specialized genetic operators (Su et al., 
2013). 

Furthermore, against the shortcomings of dispatching rules, some 
meta-heuristic algorithms are widely used to solve the DFJSP. Rajabi
nasab and Mansour (2011) developed a multi-agent scheduling 
approach for a DFJSP considering dynamic events such as random jobs 
arrival, uncertain processing time and unexpected machine breakdown, 
and they compared their approach with five dispatching rules from 
literature. Gholami and Zandieh (2009) proposed an approach that in
tegrates simulation into genetic algorithm to solve a DFJSP with random 
machine breakdowns. Reddy et al. (2018) studied a DFJSP that con
siders machine breakdown as a real-time event and proposed an effec
tive hybrid evolutionary algorithm. Cao et al. (2019) proposed an 
adaptive scheduling algorithm inspired by the heterogeneous earliest 
finish time algorithm to address the makespan minimization in a DFJSP 
with new job arrival. Zadeh, Katebi, and Doniavi (2019) proposed a 
heuristic model inspired from artificial bee colony algorithm to address 
a DFJSP that minimizes makespan considering variable processing time 
of operations. Wang, Luo, and Cai (2017) developed an improved ge
netic algorithm based on variable interval rescheduling strategy to solve 
a DFJSP for minimizing makespan, which takes machine breakdown, 
urgent job arrival and job damage as disruptions into consideration. 
Zhang, Wang, and Liu (2017) proposed a two-layer scheduling method 
based on dynamic game theory, which was used as a real-time sched
uling method to address a multi-objective DFJSP considering four kinds 
of dynamic events, and the objectives are to minimize makespan, total 
workload of machines and energy consumption. Shen and Yao (2015) 
studied a multi-objective DFJSP considering random new jobs arrival 
and machine breakdowns, and adopted a critical event-driven mode. 
They proposed a rescheduling method based on multi-objective evolu
tionary algorithm to regenerate new schedules. 

Although there exist some research papers which study the DFJSP 
with several dynamic events such as machine breakdowns and new jobs 
arrival, there is still a great need to develop more efficient and effective 
methods. As pointed out by Kundakci and Kulak (2016), an obvious 
disadvantage of the traditional GA-based algorithm is that the compu
tation time will increase rapidly with the increase of the total number of 
operations, because it contributes to the number of genes in chromo
somes and reduces the efficiency of the GA operators. With the emer
gence of dynamic events, the previous schedule may become inefficient 
or even infeasible. Therefore, at this point, it needs to be repaired or a 
new rescheduling scheme needs to be generated. In the real 
manufacturing, the scale of the DFJSP is usually large and involves lots 
of operations to be assigned to an optional machine, which may lead to a 
significant deterioration in the computational efficiency of these meta- 
heuristic algorithms. In other words, it is a time-consuming process to 
generate a rescheduling scheme by meta-heuristic algorithms such as 
GA, especially when the scale of the problem is relatively large. How
ever, most of the existing studies rarely take the computation time at 
each rescheduling point into account. In the actual production 

environment, too much computation time will lead to the delay of shop 
production and bring economic losses. Therefore, to meet the re
quirements for the practical production, it is necessary to develop a 
method that can quickly respond to dynamic events and generate a 
feasible and effective rescheduling scheme in an acceptable time. 

Monte Carlo Tree Search (MCTS) is a best-first search algorithm, 
which finds optimal decisions in a given domain by taking random 
samples in the decision space and building a search tree according to the 
results (Browne et al., 2012). It has been widely and successfully used in 
the area of game playing, especially computer Go (Silver et al., 2016; 
Silver et al., 2017). It is especially useful in stochastic problems with 
very large or infinite state spaces. Some researchers have successfully 
applied MCTS algorithm in the field of scheduling (Asta et al., 2016; 
Furuoka & Matsumoto, 2017; Waledzik & Mandziuk, 2018). Wu, Wu, 
and Liang (2013) and Chou et al. (2015) have demonstrated the po
tential of using MCTS to solve the static FJSP. In the existing literature, 
MCTS has not yet been applied to solve scheduling problems under 
dynamic environments. As a complex combinational optimization 
problem, DFJSP has a huge state search space and it is a natural 
candidate problem for MCTS. Therefore, applying MCTS to solve DFJSP 
is a new idea and worth exploring in depth. 

This paper studies a DFJSP considering four dynamic events, which 
are new jobs arrival, machine breakdown, jobs cancellation and change 
in the processing time of operations. In order to obtain an efficient so
lution in terms of solution quality and computational efficiency, we 
designed a MCTS-based rescheduling method. An event-driven mode is 
adopted, which means that rescheduling will be triggered once a dy
namic event occurs, and the proposed method is executed immediately 
to generate a new rescheduling scheme. In order to improve the effi
ciency of MCTS, several optimization techniques are used in MCTS. 
Some well-known dispatching rules are employed to obtain the initial 
prior knowledge for MCTS. Considering that some traditional resched
uling methods require a large amount of time to generate a complete 
rescheduling scheme for all remaining unprocessed operations at each 
rescheduling point, and the MCTS can stop the tree generation at any 
time, multiple continuous specified time windows are designed for the 
MCTS-based rescheduling method. In this way, the MCTS-based 
rescheduling method can generate a partial rescheduling scheme cor
responding to the subsequent specified time window at each resched
uling point. The proposed method can greatly reduce the response time 
to dynamic events since the number of operations in the partial schedule 
is relatively small. In addition, eighteen benchmarks of DFJSP are con
structed based on some basic criteria to evaluate the performance of the 
proposed rescheduling method. 

The main contribution of this paper can be summarized as follows: 
(1) A well-designed MCTS-based rescheduling method is proposed for 
the DFJSP. (2) Multiple continuous specified time windows are designed 
for the MCTS-based rescheduling method to progressively generate the 
partial schedule corresponding to the subsequent time window, which 
can effectively reduce the response time at each rescheduling point. (3) 
Eighteen benchmarks of DFJSP are constructed and the effectiveness of 
the proposed method is verified. 

The remainder of this paper is organized as follows. In Section 2, the 
formal description of the DFJSP under consideration is outlined. In 
Section 3, A MCTS-based algorithm to achieve rescheduling is presented. 
In Section 4, the framework of the MCTS-based rescheduling method to 
solve DFJSP is given. The experimental design and results are discussed 
in Section 5. Finally, some conclusions and future works are given in 
Section 6. 

2. Problem description 

The DFJSP studied in this paper considers that n jobs are processed 
on m machines at the beginning of the schedule. During the actual 
production process, some dynamic events such as new job arrival and 
machine breakdown will inevitably occur. The DFJSP subjects to some 
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common assumptions in the following because of the high complexity.  

(1) All machines are available at the beginning of the schedule.  
(2) An operation of a job can be processed by only one machine at a 

time.  
(3) Each machine can process at most one operation at a time.  
(4) Once an operation has been processed on a machine, it must not 

be interrupted except for the machine breakdown. If an operation 
is interrupted by the machine breakdown, it must be processed 
from scratch on an optional available machine.  

(5) An operation of a job cannot be processed until its previous 
operation is completed and there is no travel time between 
machines.  

(6) The setup time of an operation is included in the processing time.  
(7) Operations can wait to be processed in an unlimited buffer of a 

machine. 

This study considers four common dynamic real-time events, which 
are change in the processing time of operations, new jobs arrival, ma
chine breakdown and job cancellation. The details of dynamic events 
and their effects are discussed as follows.  

(1) Change in the processing time of operations. Before the execution 
of the pre-scheduling scheme, the processing time of some op
erations may change due to the change of process technology. In 
this case, the scheduling scheme needs to be rebuilt with the new 
processing time of these operations. Therefore, the rescheduling 
is triggered when the processing time of operation is change.  

(2) New jobs arrive dynamically over time. In real manufacturing 
system, new jobs may arrive continuously during the production 
process. In our DFJSP, the arrival time of new jobs is assumed to 
follow the Poisson distribution. Therefore, the time interval be
tween job arrivals follows an Exponential distribution (Rangsar
itratsamee, Ferrell, & Kurz, 2004; Sha & Liu, 2005; Vinod & 
Sridharan, 2008). The rescheduling is triggered when new jobs 
arrive, and according to the state of operations, the existing op
erations can be divided into four sets: the completed operations 
set, the operations set being processed, the unprocessed opera
tions set and the new operations set. Obviously, all operations of 
new jobs are divided into the new operations set.  

(3) Machine breakdown and repair. When a machine breaks down, 
the ongoing operation is interrupted and machine repair is car
ried out immediately. If the previous schedule is maintained, the 
start time and completion time of the unprocessed operations 
assigned to this machine will scheduled depending on the fin
ishing time of the machine maintenance, and the makespan will 
increase when the maintenance time is long. So, the rescheduling 
is triggered when machine breakdown occurs. In our DFJSP, for 
each machine, the time interval between two consecutive ma
chine breakdowns and the repair time for each maintenance are 
assumed to follow an Exponential distribution (Zandieh & Adibi, 
2010).  

(4) Job cancellation. In the production process, some customers may 
ask to cancel their orders. After jobs in these orders are cancelled, 
the remaining unprocessed operations of these jobs are removed 
from the unprocessed operations set and the rescheduling is 
triggered. In our DFJSP, the time of job cancellation is assumed to 
follow the Poisson distribution too. Therefore, the time interval 
between two adjacent job cancellations follows an Exponential 
distribution. 

To evaluate the efficiency of the proposed rescheduling method, the 
makespan (i.e., the completion time of the last finished operation) is 
taken as the optimization objective, which is the most common criterion. 

3. A MCTS-based algorithm to achieve rescheduling 

3.1. Monte Carlo tree search 

The MCTS has been the focus of much artificial intelligence research 
since it was first described. It has received considerable attention 
because of its great success and prolific achievements in the difficult 
problem of computer Go, and has proved beneficial in many other do
mains as well. 

The MCTS is a best-first search algorithm, which finds the most 
promising moves in a given domain by selecting samples randomly in 
the search space and incrementally building a search tree in memory 
based on the results. The MCTS emphasizes the balance of exploration 
and exploitation, and it is an iterative method that performs the 
following four steps until reaching some predefined computational 
limitations such as time or iteration constraint. Here, we follow the 
constraint that executes a certain number of iterations.  

(1) Selection: Starting from the root node, a child node selection 
policy is iteratively applied to descend through the tree until a 
nonterminal leaf node which has unexpanded child nodes is 
reached. This selection policy controls the tradeoff between 
exploitation and exploration. A widely used selection policy, the 
UCT (Upper Confidence bounds applied to Trees) (Kocsis & Sze
pesvari, 2006), is employed in this paper. This child node selec
tion policy is to select the child node with the maximum UCT 
value. The specific formula is as follows. 

UCT = Xj +C ×

̅̅̅̅̅̅̅̅̅̅
logN

√

Nj
(1)  

where Xj is the average value of the j-th child node, N is the visit count of 
the current (parent) node, Nj is the visit count of the j-th child node, and 
C greater than 0 is a constant which controls the tradeoff between 
exploitation and exploration.  

(2) Expansion: When a leaf node is reached, one (or more) child 
nodes should be expanded from the leaf node and added to the 
tree.  

(3) Simulation: Execute the simulation policy from the newly 
expanded node until a solution to the problem is generated, and 
an evaluation value of the final state is returned. In general, 
moves descending through the tree are selected either randomly 
or heuristically based on the selected simulation policy.  

(4) Backpropagation: The evaluation value in the simulation is 
propagated through the path selected in the tree up to the root, 
and the node statistic information of these nodes are updated for 
later expansions. 

An execution of these four phases is called an iteration. Details of our 
implementation for the MCTS-based algorithm to solve DFJSP will be 
discussed below. 

3.2. Problem representations 

When dynamic events occur, the job-shop status information is 
updated accordingly, and the previous scheduling scheme may become 
unavailable. After that, the DFJSP can be transformed into a static FJSP. 
Then, the proposed MCTS-based algorithm is used to generate a new 
rescheduling scheme. The scheduling contains two sub-problems: 
assigning operations to the corresponding available machines and 
sequencing the operations in each machine. The following describes 
how to map a FJSP to a tree topology structure. 

Assume that a tree topology structure with a root node R represents 
the initial state, and each node extended to this tree is corresponded to a 
candidate operation-machine pair information. Each node except the 

K. Li et al.                                                                                                                                                                                                                                        



Computers & Industrial Engineering 155 (2021) 107211

4

root node R has a unique parent node and each non-leaf node has some 
legal child nodes. So, the location information of the nodes in the tree 
represents the sequence information of the operations. 

For the purposes of discussion, we use the following notations. Let 
Nop denote the total number of operations. Let [i, j, k] denote the 
operation-machine pair information which is matched with the node in 
the tree, and it denotes the jth operation of job i is processed on machine 
k. Note that [i, j, k] is called a move in this study. 

For a detailed description of this mapping transformation, a 2 × 4 
FJSP example is listed in Table 1. The construction of tree topology 
structure corresponding to this example is shown in Fig. 1. The infor
mation on each child node in the figure is legal operation-machine pairs 
for the operations waiting to be processed. 

The mapping construction process is described as follows: 

Step 1: Set the node R as the root node and initialize an empty 
schedule S. 
Step 2: Repeat the four steps of MCTS for a certain number of times 
which is denoted as Ns. 
Step 3: After the previous step is completed, select the most visited 
child node of the root node and add the move matched with it to the 
schedule S. Meantime, set this selected child node as the new root 
node. For example, when the current root node is R, after Ns MCTS 
iterations, the node associated with the move [1, 1, 3] is selected. 

Then this move is added to the schedule S, and the node is set to the 
new root node. 
Step 4: Repeat Step 2–3 Nop times, and all operations are scheduled. 
Then, a complete schedule is obtained. Take Fig. 1 for example, the 
initial root node R and all selected nodes are marked with gray 
shadow. Starting from the initial root node R, the corresponding 
moves of these nodes form a complete schedule. 

3.3. Decoding 

A schedule solution can be decoded into semi-active, active, non- 
delay and hybrid schedules. The active schedule is suitable to be 
adopted because the makespan is a regular criterion (Li & Gao, 2016). 
Therefore, this decoding method is adopted in this paper. That is, an 
operation is inserted into the first available idle time interval of its 
assigned machine as early as possible. 

3.4. Some optimization techniques used to improve MCTS 

Since the search space of FJSP is too large, in order to improve the 
efficiency of MCTS, we decided to adopt the following optimization 
techniques. 

3.4.1. Subtree keeping policy 
After a certain number of MCTS iterations, the best child node of the 

root node is selected as the new root node. Instead of building the 
subtree of the selected node from scratch, the existing subtree of this 
new root node in the previous tree is retained for the subsequent itera
tions. In this way, the information obtained from all previous iterations 
of each node in the retained subtree, including the evaluation value and 
the number of visits, will be reused. This policy can obtain a more ac
curate evaluation value of each node in the retained subtree and expand 
the search depth and width of MCTS. 

3.4.2. Rapid action value estimation 
Rapid Action Value Estimation (RAVE) is a popular enhancement of 

the All-Moves-As-First (AMAF) heuristic. Gelly and Silver (2007) first 
attempted to combine AMAF with UCT in the field of computer Go, and 
based on this they proposed the RAVE heuristic in Gelly and Silver 
(2011) later. 

The RAVE uses the AMAF to estimate the value of each move from 
each node in the search tree. The RAVE provides an easy way to share 
knowledge of relevant nodes in the search tree to quickly get a biased 
estimate value of the move. This biased estimate is often used to 
determine the best move after only a few iterations, which can signifi
cantly improve the performance of the MCTS algorithm. Therefore, we 
consider adding RAVE to MCTS when doing selection. The final evalu
ation value is a weighted sum of the UCT value and the RAVE value, and 
the formula is as follows. 

Valuej = (1 − β) × UCTj + β × RAVEj (2)  

where β is a weight parameter used to balance the UCT value and RAVE 
value. 

Similar to the UCT algorithm, an exploration reward is added to 
maintain the balance between exploration and exploitation, and the 
final formula is as follows. 

Value*
j = Valuej +C ×

̅̅̅̅̅̅̅̅̅̅
logN

Nj

√

(3)  

3.4.3. Prior knowledge 
When expanding a node, if we do not initially get some useful in

formation (i.e., prior knowledge) about the next move, we can only set 
the same initial value for each newly expanded node. In order to make 
full use of the results of previous iterations, we record these results into a 

R

[1,1,1] [1,1,2] [1,1,3] [1,1,4] [2,1,1] [2,1,3]

[1,2,2] [1,2,4] [2,1,1] [2,1,3]

[1,2,2] [1,2,4] [2,2,1] [2,2,2] [2,2,3]

[1,2,2] [1,2,4] [2,3,2] [2,3,4]

[2,3,2] [2,3,4]

Fig. 1. The construction of tree topology structure for the 2 × 4 FJSP example.  

Table 1 
A FJSP example with 2 jobs and 4 machines.  

Jobs Operations Optional Machines and corresponding processing time 

Job1 O11 M1 (2) M2 (6) M3 (5) M4 (3)  
O12 — M2 (8) — M4 (4)  
O21 M1 (3) — M3 (6) — 

Job2 O22 M1 (4) M2 (6) M3 (5) —  
O23 — M2 (7) — M4 (5)  
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global array Kprior. The size of Kprior is Nop × m × Nop, which is indexed by 
the modified move ([i, j], k, seq). It represents that the jth operation of 
job i is assigned on the seqth position of machine k. The array Kprior re
cords the average estimated value and the visit count of moves obtained 
so far, and they will be updated after each iteration. Then, find the next 
move with the maximum estimated value in Kprior, and the child node 
associated with it will be expanded in the current expansion phase of 
MCTS. 

The array Kprior is built at the beginning of the algorithm, and both 
the initial value and the visit count of all possible moves are set to 0. 
Once a complete schedule S and its evaluation value v are obtained 
during the simulation phase of each MCTS iteration, the estimated value 
and the visit count of all moves included in this schedule are updated to 
the array Kprior with the following steps. 

Step 1: Let d be the first move in schedule S. 
Step 2: Update the estimated value and the visit count of Kprior(d), 
respectively.  
(1) Update the estimated value. 

value =
value × visit + v

visit + 1
(4)    

(2) Update the visit count. 

visit = visit + 1 (5)   

Step 3: If there is no operation in S, stop; else, let d be the next move 
in S and go to Step 2. 

Through the above steps, we can get the initial value of the newly 
expanded node based on the array Kprior. 

3.4.4. Initialized prior knowledge 
Initialized prior knowledge can provide useful information about 

whether each legal move is good or bad during the expansion phase of 
MCTS. Based on Section 3.4.3, in order to reduce the initialization time 
as much as possible, some commonly used completely reactive sched
uling methods are adopted to initialize the initial value and the visit 
count of the array Kprior. The completely reactive scheduling methods 
assign operations to their optional machines according to a specific 
machine assignment rule, and once a machine becomes idle, select the 
operation with the highest priority based on a heuristic priority dis
patching rule when there are operations in the waiting queue (Shen & 
Yao, 2015). 

Three machine assignment rules (MARs) for all operations are 
employed in this paper. The first rule is to assign each operation to its 
available machine with the shortest processing time. The second rule is 
to find the available machine with the minimum workload currently for 
each operation waiting to be processed, then assign the operation to that 
machine and updates the workload of that machine. The third rule is to 
assign each operation to its available machine at random. In brief, this 
paper refers to them as MAR1, MAR2 and MAR3, respectively. In 
addition, three common priority dispatching rules (PDRs) are used in 
this section, which includes Shortest Processing Time First (SPT), First In 
First Out (FIFO) and Last In First Out (LIFO). The details of Initialized 
Prior Knowledge are as follows. 

Firstly, a population with one thousand chromosomes is initialized, 
90% of which are generated with a 10% mixture of nine combination 
methods of three MARs and three PDRs mentioned above, then the rest is 
randomly generated. Secondly, each chromosome is decoded to get a 
complete schedule and obtain its estimated value. Thirdly, the estimated 
value and the visit count of all moves included in this schedule are 
updated to the array Kprior for initialization. 

3.5. Our modified MCTS 

In our modified MCTS, the final evaluation value Z can be calculated 
by the following evaluation function: 

Z = 2 −
Cmax

best(Cmax)
(6)  

where Cmax is the makespan of the current schedule, and best(Cmax) is the 
minimum makespan found so far. 

Based on the proposed optimization techniques, the four phases of 
MCTS are modified as follows:  

(1) Selection: Starting from the root node, select the child node with 
the maximum Value* recursively according to the formulas (2) 
and (3) until a nonterminal leaf node is reached. The values of 
parameter β and C are all set to 0.5 in this paper.  

(2) Expansion: When a leaf node is reached, a child node with the 
maximum prior value will be expanded from the leaf node and 
added to the tree.  

(3) Simulation: Perform the simulation policy recursively from the 
newly expanded node until all operations are scheduled. The 
simulation policy can be random simulation or choose the move 
with the maximum prior value. In order to improve the simula
tion quality and increase the diversity, we decided to use a 
probabilistic selection strategy. That is, choose the move 
randomly with probability p, and choose the move with the 
maximum prior value with probability 1 – p. We set p to 0.4 in this 
paper.  

(4) Backpropagation: The evaluation value is calculated based on 
the simulation result, then the evaluation value and visit count of 
nodes are propagated and updated through the path selected in 
the tree up to the root. This backpropagation includes to update 
the evaluation value and visit count of RAVE of relevant nodes. 

4. Framework of the MCTS-based rescheduling method to solve 
DFJSP 

4.1. Rescheduling mode 

In the actual production, many dynamic uncertain events may occur 
frequently. When a dynamic event occurs, the previous scheduling 
scheme may become less effective and even unavailable. Rescheduling is 
required to adapt to the dynamic changes in the production 
environment. 

Dynamic scheduling can be divided into completely reactive sched
uling, predictive-reactive scheduling and robust pro-active scheduling 
(Mehta & Uzsoy, 1999; Vieira, Herrmann, & Lin, 2003). This paper 
studies the predictive-reactive scheduling method for the DFJSP. This 
method can be classified as either continuous rescheduling which 
reschedule the unprocessed operations each time a dynamic event such 
as machine breakdown occurs, or periodic rescheduling which 
rescheduling after a fixed time interval (Church & Uzsoy, 1992). In this 
paper, the continuous rescheduling method which is also referred to 
event-driven rescheduling is adopted, because it has a quick response to 
dynamic events and can achieve better scheduling performance. In other 
words, rescheduling is performed once a dynamic event occurs. The time 
at which the rescheduling method is triggered is called the rescheduling 
point. 

4.2. The flowchart of the modified MCTS-based method for DFJSP 

In most real manufacturing systems, the shop status information 
usually needs to be updated in real time. Rescheduling is required when 
dynamic events occur. During the execution of the schedule, at each 
rescheduling point, the MCTS-based rescheduling method is triggered to 
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generate a new schedule and the operation sequence on each machine is 
reassigned. The newly generated schedule is executed in the job shop 
until the next rescheduling point comes, at which time the rescheduling 
method is triggered again. 

To solve DFJSP, at each rescheduling point, some traditional 
methods generate a complete schedule for all remaining unprocessed 
operations and then execute this schedule in the job shop. Different from 
these methods, the MCTS-based algorithm can stop the tree generation 
at any time and get a partial schedule. This is an inspiration for us to 
reduce the calculated response time at each rescheduling point. To be 
specific, the MCTS-based algorithm can generate a partial schedule 
corresponding to the subsequent specified time window on the basis of 
global consideration of all remaining unprocessed operations, rather 
than a complete schedule for all unprocessed operations. This is equiv
alent to dividing all unprocessed operations according to a pre-fixed 
time window, and then scheduling these corresponding partial opera
tions. Therefore, we designed multiple continuous specified time win
dows for the MCTS-based algorithm to limit the scheduling horizon of 
the subsequent partial schedule for the remaining unprocessed opera
tions. The details of the entire scheduling process are as follows. 

In our proposed rescheduling method, a rolling horizon is consid
ered. While executing the partial schedule of the current time window in 
the job shop, a partial schedule of the next time window is generated 
simultaneously, and the same is true when executing the partial 
schedule of the next time window. For the sake of description, we call 
this step the normal step here. If a dynamic event occurs in the current 
time window, the partial schedule of the next time window that has been 
generated in advance will be abandoned and the rescheduling is trig
gered. In this case, there is a response time to the dynamic event. After 
generating a new partial rescheduling scheme, then repeat the normal 
step until another dynamic event occurs. But if no dynamic event occurs 
in the current time window, the partial schedule of the next time win
dow that has been generated in advance will be executed normally, and 
then repeat the normal step until another dynamic event occurs. 

To be specific, suppose that the length of the time window is fixed as 
w. The partial schedule within the time window [0, w] is generated by 
the MCTS-based algorithm at time 0. Following the normal step, during 
the execution of this schedule in [0, w], the partial schedule of the 
subsequent time window [w, 2w] is also generated by the MCTS-based 
algorithm in advance. Then the normal step is repeated until a dy
namic event occurs at time T1. Assume that kw < T1 ≤ (k + 1)w (k = 0, 1, 
…). Obviously, these partial schedules within the time window [0, kw] 
are executed one after another. The partial schedule within the time 
window [kw, T1] is executed, but the partial schedules within the time 
window [T1, (k + 1)w] and [(k + 1)w, (k + 2)w] will not be executed, 
because the rescheduling is triggered at time T1. Assume that the 
response time at each rescheduling point is ignored, the partial schedule 
S1 of the subsequent time window [T1, T1 + w] is generated by the 
MCTS-based algorithm at time T1. During the execution of schedule S1 in 
[T1, T1 + w], following the normal step, the partial schedule S2 of the 
subsequent time window [T1 + w, T1 + 2w] is also generated by the 
MCTS-based algorithm in advance. This continues until the next dy
namic event occurs and the rescheduling is triggered again. Then the 
above process is repeated until all operations are processed. 

The proposed MCTS-based rescheduling method for DFJSP can be 
summarized as follows: (1) During the execution of a partial schedule of 
the current time window, a partial schedule of the next time window has 
been generated by the modified MCTS algorithm in advance. (2) When 
the rescheduling is triggered, update the job-shop status information 
which includes the available time of machines, the finished operation 
set, the unprocessed operation set and so on. In this case, the subsequent 
partial schedule generated in the current time window will not be 
executed. (3) At the rescheduling point, perform the modified MCTS 
algorithm to generate a partial schedule of the subsequent time window. 
(4) Repeat the above three steps until all operations are processed. The 
flowchart of the modified MCTS-based method for DFJSP is summarized 

in Fig. 2. 

5. Experimental studies and discussion 

In this work, we conduct two sets of experiments. The first set of 
experiments is meant to investigate the effectiveness of the optimization 
techniques used to improve MCTS. The second set of experiments is 
implemented to evaluate the performance of the proposed MCTS-based 
method for DFJSP by comparing it with some existing rescheduling 
methods. The proposed MCTS-based method is coded by Python pro
gramming language and implemented on a PC configured with an Intel 
(R) Core (TM) i7-8750H CPU of 2.2 GHz and 8 GB RAM. 

5.1. Experiment 1 

This group of the experiments is carried out to examine the perfor
mance of the techniques used to improve MCTS which mentioned in 
Section 3.4. The performance is tested by the benchmark problem in
stances MK01-MK10 from Brandimarte (1993), which is well-known in 
the static flexible job shop scheduling problem. This problem set consists 
of 10 benchmark instances in which the total numbers of operations vary 
from 55 to 240. 

In this subsection, we compare five versions of MCTS-based algo
rithm by incrementally adding Subtree Keeping Policy, RAVE, Prior 
Knowledge and Initialized Prior Knowledge, which are named as MA1, 
MA2, MA3, MA4 and MA5, respectively. In other words, the next version 
has one more optimization technique than the previous one. To be 

Start

Consider the jobs and machines that exist at 
the start point in shop floor

Generate a partial schedule of the subsequent time window 
by the modified MCTS-based rescheduling method

Do one or more 
dynamic events occur?

No

Execute the partial schedule of the current time window in 
shop floor and then generate a partial schedule of the next 
time window by the modified MCTS-based rescheduling 

method in advance

Yes

Rescheduling is triggered and 
update the shop status information

Have all the 
operations finished?

Stop

Yes

No

Fig. 2. Flowchart of the modified MCTS-based method for DFJSP.  
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specific, MA1 does not include any optimization techniques, MA2 in
cludes Subtree Keeping Policy only, MA3 includes Subtree Keeping 
Policy and RAVE, and so on. 

For a given instance, we calculate the relative percent deviation 
(RPD) and the average RPD (ARPD) (Zhou et al., 2018), and they are 
expressed as follows. 

RPD =
Algi − Mini

Mini
× 100 (7)  

where Algi is the result obtained by a given algorithm in the ith run and 

Mini is the minimum result among all the results obtained by all algo
rithms in the ith run. 

ARPD =

∑l
i=1RPD

l
(8)  

where l is the number of runs for each instance. 
Every instance was run 5 times independently. For each instance, the 

ARPD is used to measure the results obtained by these five algorithms. 
Obviously, the smaller the ARPD value is, the better the performance of 
the corresponding algorithm is. 

The number of iterations for each MCTS-based algorithm is set to 
200. Table 2 shows the comparison results of the five algorithms. In this 
table, n × m means that this problem contains n jobs and m machines, the 
CPU represents the mean computational time (s) of five runs, and the 
best ARPD value for each instance is highlighted in bold. 

The ARPD value and the CPU time of the five algorithms for each 
instance are plotted in Figs. 3 and 4, respectively. Although we can see 
that the CPU time increases as the number of optimization techniques is 
added, the performance of corresponding MCTS-based algorithm has 
been improved significantly for each instance. Therefore, we decided to 
apply algorithm MA5, which combines all the proposed optimization 
techniques, to the subsequent experiment. 

5.2. Experiment 2 

It has been indicated that a job shop with more than six machines can 
illustrate the complexity and difficulty of the large dynamic job shop 
scheduling problem (Adibi, Zandieh, & Amiri, 2010; Chryssolouris & 
Subramaniam, 2001). In this paper, a flexible job shop with eight ma
chines (m = 8) is simulated to evaluate the performance of the proposed 
method. 

There is no benchmark instance for DFJSP so far. This paper designed 
dynamic flexible job shop problem instances based on a static flexible 
job shop benchmark problem instances MK04 from Brandimarte (1993). 
These instances consider four dynamic events which are new jobs 
arrival, machine breakdown, change in the processing time of opera
tions and job cancellation. 

The number of operations for each new job is uniformly distributed 
over the interval of [1, m + 2]. The number of optional machines for 
each new operation is selected at random from the set {1, 2, …, m}. The 
processing time of each new operation follows the uniform distribution 
on the interval of [1, 10]. The changed processing time of an operation 
also varies uniformly within [1, 10]. For each machine, the time interval 
between failures (TBF) and the time to repair (TTR) are assumed to 
follow an exponential distribution. To make the simulation more real
istic, the mean time between failures (MTBF) and the mean time to 
repair (MTTR) are different for each machine. The MTBF and MTTR are 
uniformly distributed over [50, 70] and [10, 20], respectively. These 
values are selected so that the average available time of a machine is 60 
units of time, and then the average time to repair a failure is 15 units of 
time. Thus, the availability of a machine is 80%. Eighteen different 

Table 2 
Comparisons of five versions of MCTS-based algorithms.  

Problem n × m MA1 MA2 MA3 MA4 MA5 

ARPD CPU ARPD CPU ARPD CPU ARPD CPU ARPD CPU 

MK01 10 × 6 5.40 12.7 4.40 12.6 2.95 18.2 1.98 18.0 0.00 19.8 
MK02 10 × 6 13.39 16.2 11.51 15.9 8.29 20.7 4.48 22.2 0.00 22.4 
MK03 15 × 8 0.59 107.8 0.29 112.5 0.00 151.3 0.00 162.7 0.00 164.7 
MK04 15 × 8 9.97 33.2 7.66 37.0 6.19 50.5 5.01 51.7 0.29 54.4 
MK05 15 × 4 4.45 50.7 3.80 53.8 2.17 81.4 1.30 87.5 0.11 87.7 
MK06 10 × 15 18.88 108.0 15.19 112.5 6.60 145.5 2.87 156.0 1.08 177.3 
MK07 20 × 5 12.77 49.6 10.48 51.5 6.52 70.5 4.48 74.9 0.00 83.4 
MK08 20 × 10 1.61 239.4 1.03 268.5 0.84 410.5 0.31 410.4 0.08 431.1 
MK09 20 × 10 7.49 280.0 6.56 310.6 2.73 466.9 1.10 471.7 0.00 492.9 
MK10 20 × 15 10.54 290.2 9.34 321.3 3.47 481.3 0.98 486.6 0.00 504.0  

Fig. 4. The CPU time of the five algorithms.  

Fig. 3. The ARPD value of the five algorithms.  
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number of new jobs arrival are set, which are 10, 20, 30, 40, 50, 60, 70, 
80, 90, 100, 120, 140, 160, 180, 200, 220, 240 and 260. Specifically, 
each number represents the total number of new jobs arrived for each 
DFJSP instance. The time interval between job arrivals (TBJA) and the 
time interval between job cancellations (TBJC) are assumed to follow an 
exponential distribution. The mean time between job arrivals (MTBJA) 
and the mean time between job cancellations (MTBJC) are set to 20 and 
60, respectively. The number of new jobs per arrival is assumed to be 5, 
and the number of jobs per cancellation is 1. 

All the designed DFJSP instances are based on a 15 × 8 static flexible 
job shop problem, where the initial number of jobs and machines are 15 
and 8, respectively. These DFJSP instances are generated based on the 
parameters described above, which are provided in Appendix A. Since 
there are 18 different total number of new jobs arrival, total of 18 in
stances named D01-D18 are conducted. Instances which have less than 
60 jobs (D01-D05) are categorized as small size instances. Instances 
which have 60 to 100 jobs (D06-D10) are categorized as medium size 
instances, and instances which have more than 100 jobs (D11-D18) are 
categorized as large size instances. For each instance, the simulation 
continues until all operations including all operations of new jobs are 
completed. All dynamic events that occur during the scheduling horizon 
are considered, and other parameters in the dynamic environment are 
the same in each experiment. 

In order to further verify the effectiveness and efficiency of the 
proposed MCTS-based rescheduling method considering some dynamic 
events in the real-time flexible job-shop environment, we compared it 
with the commonly used completely reactive scheduling methods. In 
addition, based on the event-driven rescheduling mode, we compared it 
with GA proposed in Li and Gao (2016), and the GA parameters we set 
are the same as it, which are shown in Table 3. Specifically, when 
rescheduling is triggered, the GA is executed to generate a new schedule, 
and we call it GA-based rescheduling method here. 

For the completely reactive scheduling methods, three machine 
assignment rules called MAR1, MAR2 and MAR3 are employed in this 
paper. Four common priority dispatching rules are adopted, which in
cludes SPT, FIFO, LIFO and Random. When rescheduling is triggered, 
these unprocessed operations need to be assigned to an available ma
chine. For example, the operations of these newly arrived jobs, the op
erations in the waiting queue of the broken machines and some 
operations that previously cannot be processed due to the breakdown of 
available machines become processable again because of the machine 
repairs. 

Based on the designed DFJSP instances, twelve Combination 
methods of three MARs and four PDRs, the MCTS-based rescheduling 
method and the GA-based rescheduling method were evaluated and 
compared in this paper. The number of iterations for MCTS algorithm is 
set to 200, and the length of the specified time window of the MCTS- 
based rescheduling method is set to 5. Each instance was run 10 times 
independently. 

5.2.1. The experimental results 
The makespan comparisons of these rescheduling methods in small 

and medium size instances and in large size instances are listed in 
Table 4 and Table 5, respectively. The ARPD value comparisons of these 
rescheduling methods in small and medium size instances and in large 
size instances are listed in Table 6 and Table 7, respectively. In addition, 

Table 4 
The average makespan comparisons of the MCTS-based method against the traditional rescheduling methods in small and medium size instances.  

Instances D01 D02 D03 D04 D05 D06 D07 D08 D09 D10 
Number of new jobs 10 20 30 40 50 60 70 80 90 100 
n × m 25 × 8 35 × 8 45 × 8 55 × 8 65 × 8 75 × 8 85 × 8 95 × 8 105 × 8 115 × 8 

MAR1 + SPT 236.0 279.0 298.0 324.2 379.3 422.8 441.9 483.4 492.0 513.2 
MAR1 + FIFO 226.4 281.8 301.3 328.2 346.2 416.7 433.0 473.2 479.3 502.8 
MAR1 + LIFO 230.4 281.1 298.7 328.8 359.9 417.8 432.9 472.6 479.1 503.6 
MAR2 + SPT 111.4 137.8 173.3 227.4 296.5 326.1 368.2 430.3 445.2 483.5 
MAR2 + FIFO 110.4 140.1 172.7 226.7 297.2 326.0 366.4 431.2 447.1 483.8 
MAR2 + LIFO 113.2 138.9 172.5 225.8 299.9 327.0 366.3 433.1 445.5 485.1 
MAR3 + SPT 129.1 184.5 216.2 277.2 325.0 375.1 426.1 503.5 527.9 558.2 
MAR3 + FIFO 130.3 186.8 222.6 281.2 331.9 378.4 428.8 515.1 534.5 563.2 
MAR3 + LIFO 128.3 184.8 222.2 282.1 327.1 376.2 434.4 513.6 534.8 567.1 
GA-based rescheduling method 85.2 125.1 153.4 197.2 279.0 306.7 336.8 409.5 416.6 458.0 
MCTS-based rescheduling method 87.2 125.8 159.3 202.5 279.5 312.3 341.9 415.4 425.9 465.3  

Table 5 
The average makespan comparisons of the MCTS-based method against the traditional rescheduling methods in large size instances.  

Instances D11 D12 D13 D14 D15 D16 D17 D18 
Number of new jobs 120 140 160 180 200 220 240 260 
n × m 135 × 8 155 × 8 175 × 8 195 × 8 215 × 8 235 × 8 255 × 8 275 × 8 

MAR1 + SPT 553.8 589.3 693.0 705.4 889.0 989.0 1094.1 1246.0 
MAR1 + FIFO 553.3 602.9 693.0 714.7 889.0 989.0 1102.4 1246.5 
MAR1 + LIFO 550.6 603.1 693.0 709.5 889.0 989.0 1103.1 1242.9 
MAR2 + SPT 550.0 604.7 683.0 739.4 869.1 938.9 1052.5 1224.2 
MAR2 + FIFO 546.9 608.4 684.4 737.8 868.4 945.6 1053.8 1233.0 
MAR2 + LIFO 551.2 609.9 685.5 739.6 869.2 945.1 1056.8 1222.9 
MAR3 + SPT 612.1 686.1 784.8 846.6 939.2 1063.9 1171.4 1311.4 
MAR3 + FIFO 629.9 704.9 814.3 875.6 972.2 1120.6 1223.3 1410.4 
MAR3 + LIFO 631.6 708.4 809.5 878.7 976.0 1125.0 1229.8 1406.9 
GA-based rescheduling method 495.8 553.3 619.6 676.6 801.2 870.8 985.1 1082.5 
MCTS-based rescheduling method 518.1 564.7 640.6 696.6 833.6 909.7 1012.5 1129.1  

Table 3 
The GA parameters.  

Parameters 

The size of the population, Popsize 400 
The total number of generations, maxGen 200 
The permitted maximum step size with no improving, maxStagnantStep 20 
Reproduction probability, Pr 0.005 
Crossover probability, Pc 0.8 
Mutation probability, Pm 0.1  
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the total computation time (s) (which called TCPU) of MCTS-based 
rescheduling method and the TCPU time of GA-based rescheduling 
method in each run are recorded, both of which represent the sum of the 
time they take each time a subsequent schedule is generated. Moreover, 
the computation time of generating a new rescheduling scheme at each 
rescheduling point is taken as the response time at that rescheduling 
point, and the total response time (s) of all rescheduling point (which 

called TR) of MCTS-based rescheduling method and the TR time of GA- 
based rescheduling method in each run are also recorded. The mean 
TCPU time and the mean TR time are taken as the final results, and the 
comparisons of these two rescheduling methods in small and medium 
size instances and in large size instances are listed in Table 8 and 
Table 9, respectively. In these tables, n × m means that this instance 
contains n jobs and m machines. 

Table 6 
The ARPD value comparisons of the MCTS-based method against the traditional rescheduling methods in small and medium size instances.  

Instances D01 D02 D03 D04 D05 D06 D07 D08 D09 D10 
Number of new jobs 10 20 30 40 50 60 70 80 90 100 
n × m 25 × 8 35 × 8 45 × 8 55 × 8 65 × 8 75 × 8 85 × 8 95 × 8 105 × 8 115 × 8 

MAR1 + SPT 177.65 124.28 94.45 64.42 35.95 37.91 31.40 18.06 18.09 12.19 
MAR1 + FIFO 166.35 126.54 96.60 66.44 24.09 35.90 28.76 15.57 15.05 9.92 
MAR1 + LIFO 171.06 125.97 94.93 66.75 29.00 36.28 28.73 15.43 15.00 10.10 
MAR2 + SPT 31.06 10.78 13.06 15.32 6.27 6.37 9.48 5.10 6.87 5.70 
MAR2 + FIFO 29.88 12.63 12.68 14.96 6.52 6.33 8.95 5.31 7.32 5.74 
MAR2 + LIFO 33.18 11.66 12.59 14.51 7.49 6.66 8.93 5.79 6.94 6.03 
MAR3 + SPT 51.88 48.30 41.03 40.56 16.49 22.35 26.70 22.97 26.72 22.04 
MAR3 + FIFO 53.29 50.17 45.20 42.62 18.96 23.43 27.51 25.82 28.30 23.12 
MAR3 + LIFO 50.94 48.56 44.98 43.05 17.24 22.70 29.18 25.44 28.38 24.00 
GA-based rescheduling method 0.24 0.56 0.00 0.00 0.00 0.03 0.15 0.00 0.00 0.09 
MCTS-based rescheduling method 2.59 1.13 3.93 2.69 0.18 1.86 1.67 1.46 2.23 1.72  

Table 7 
The ARPD value comparisons of the MCTS-based method against the traditional rescheduling methods in large size instances.  

Instances D11 D12 D13 D14 D15 D16 D17 D18 
Number of new jobs 120 140 160 180 200 220 240 260 
n × m 135 × 8 155 × 8 175 × 8 195 × 8 215 × 8 235 × 8 255 × 8 275 × 8 

MAR1 + SPT 11.70 6.51 11.86 4.25 11.01 13.59 11.72 15.11 
MAR1 + FIFO 11.60 8.98 11.86 5.64 11.01 13.59 12.56 15.16 
MAR1 + LIFO 11.06 9.01 11.86 4.87 11.01 13.59 12.65 14.82 
MAR2 + SPT 10.93 9.28 10.24 9.29 8.52 7.84 7.43 13.10 
MAR2 + FIFO 10.31 9.96 10.47 9.05 8.44 8.61 7.61 13.91 
MAR2 + LIFO 11.18 10.23 10.64 9.32 8.53 8.55 7.92 12.99 
MAR3 + SPT 23.45 24.00 26.66 25.13 17.27 22.19 19.60 21.16 
MAR3 + FIFO 27.05 27.41 31.42 29.42 21.40 28.68 24.92 30.30 
MAR3 + LIFO 27.39 28.03 30.68 29.88 21.88 29.20 25.59 29.97 
GA-based rescheduling method 0.00 0.00 0.00 0.00 0.00 0.00 0.49 0.00 
MCTS-based rescheduling method 4.50 2.06 3.40 2.96 4.09 4.48 3.37 4.31  

Table 8 
Comparisons of the mean TCPU time and the mean TR time of MCTS-based rescheduling method and GA-based rescheduling method in small and medium size 
instances.  

Instances D01 D02 D03 D04 D05 D06 D07 D08 D09 D10 
Number of new 
jobs 

10 20 30 40 50 60 70 80 90 100 

n × m 25 × 8 35 × 8 45 × 8 55 × 8 65 × 8 75 × 8 85 × 8 95 × 8 105 × 8 115 × 8 

GA-based 
method 

455.5 
(455.5) 

552.1 
(552.1) 

643.7 
(643.7) 

876.6 
(876.6) 

979.9 
(979.9) 

1146.3 
(1146.3) 

1395.8 
(1395.8) 

1973.6 
(1973.6) 

2438.8 
(2438.8) 

3388.6 
(3388.6) 

MCTS-based 
method 

184.5 
(103.4) 

272.8 
(167.6) 

339.4 
(201.2) 

579.3 
(355.9) 

772.2 
(470.8) 

927.9 
(537.8) 

1131.5 
(628.4) 

1616.4 
(937.2) 

1829.8 
(1043.8) 

2187.9 
(1310.7) 

The values x(y) in this table denote that the mean TCPU time and the mean TR time are x and y, respectively. 

Table 9 
Comparisons of the mean TCPU time and the mean TR time of MCTS-based rescheduling method and GA-based rescheduling method in large size instances.  

Instances D11 D12 D13 D14 D15 D16 D17 D18 
Number of new 
jobs 

120 140 160 180 200 220 240 260 

n × m 135 × 8 155 × 8 175 × 8 195 × 8 215 × 8 235 × 8 255 × 8 275 × 8 

GA-based method 5453.5 
(5453.5) 

7074.1 
(7074.1) 

8723.0 
(8723.0) 

11309.3 
(11309.3) 

14440.2 
(14440.2) 

18033.6 
(18033.6) 

24316.7 
(24316.7) 

36745.1 
(36745.1) 

MCTS-based 
method 

3071.4 
(1829.2) 

4009.1 
(2312.7) 

4915.4 
(2819.0) 

6480.0 (3629.8) 8491.3 (4538.6) 10446.7 
(5749.2) 

13502.4 
(7503.6) 

17463.9 
(10129.3) 

The values x(y) in this table denote that the mean TCPU time and the mean TR time are x and y, respectively. 
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It can be found that compared to the completely reactive scheduling 
methods, the GA-based rescheduling method and the proposed MCTS- 
based rescheduling method can finish all operations in a much shorter 
time. For each instance, although the result of the MCTS-based 
rescheduling method is slightly worse than the GA-based rescheduling 
method, the TCPU time and the total response time to all dynamic events 
of the former is much less than that of the latter, which is more suitable 
to be applied in practical production, especially for the large-scale 
scheduling problem with frequent dynamic events. 

5.2.2. Analysis of the response time 
It is worth pointing out that the response time to dynamic events 

plays a crucial role in solving dynamic scheduling problems in the real 
manufacturing. In this paper, the computation time to generate a new 
rescheduling scheme at each rescheduling point is taken as the response 
time. The mean response time comparison of MCTS-based method and 
GA-based method at each rescheduling point in the instance D18 is 
plotted in Fig. 5, which shows that the response time of MCTS-based 
method is much shorter than that of GA-based method at most of the 
rescheduling points. The difference is more obvious with the increase of 
the number of unprocessed operations. The slightly longer response time 
of MCTS-based method at the last few rescheduling points may be due to 
the greater number of remaining unprocessed operations. In addition, 
the proposed MCTS-based method has a more stable response time 
throughout all the rescheduling points, even in the case of a very large 
number of unprocessed operations. 

6. Conclusions and future work 

Most of the literature on production scheduling focuses on static 
scheduling problems, while dynamic factors are seldom considered due 
to their complexity and difficulty. This paper studied a dynamic flexible 
job shop scheduling problem which takes four dynamic events into ac
count, namely, new jobs arrival, machine breakdown, job cancellation 
and change in the processing time of operations. 

In dynamic scheduling problem, it is very important to respond to 
random dynamic events and generate an acceptable rescheduling 
scheme in a short time. However, some traditional intelligent optimi
zation algorithms often take a long time to generate a satisfactory 
schedule, especially for large-scale FJSPs, which makes them not 
directly applicable to actual production scheduling scenarios. In order to 

contribute to the literature, this paper introduced a new rescheduling 
method based on MCTS, which can quickly generate an effective 
schedule for the proposed DFJSP. In this way, by comparing with these 
traditional rescheduling methods, it can be realized that the proposed 
method provides an acceptable solution to the DFJSP in terms of solu
tion quality and computation time. 

The MCTS algorithm is firstly used to solve the DFJSP. Unlike the 
traditional rescheduling methods which generate complete rescheduling 
scheme at each rescheduling point, the MCTS-based rescheduling 
method is applied to generate a partial rescheduling scheme corre
sponding to the subsequent specified time window in a short time. This 
method can greatly reduce the real-time response time to dynamic 
events, so it can be better applied in the actual scheduling environments. 
Since the proposed method considers dynamic factors and is able to 
provide efficient and effective solution even in large scale problems with 
frequent dynamic events, it can be applied to practical manufacturing 
systems. 

We believe that the MCTS-based method can be considered as a new 
useful approach to obtain efficient and effective solution for different 
scheduling problems. In future research, it is worthwhile to study many 
other performance objectives or multi-objective for DFJSPs. There are 
some other optimization techniques to improve the performance of 
MCTS which deserve further study. Moreover, the proposed method can 
be considered to deal with other different production scheduling envi
ronments such as flow shop and parallel machines shop. 
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Appendix A 

A summary of the parameters used to design the DFJSP instances in 
our experiments is presented in Table A.1. The number of available 
machines is 8, and each machine is assigned a different mean time be
tween failure (MTBF) and mean time to repair (MTTR). The MTBF and 
MTTR of eight machines are given in Table A.2. 

Fig. 5. The mean response time comparison of MCTS-based method and GA- 
based method at each rescheduling point in the instance D18. 
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Machine breakdowns MTBF = U[50, 70]  

MTTR = U[10, 20] 
Distribution of TBF Exponential distribution with the 

MTBF 
Distribution of TTR Exponential distribution with the 

MTTR 
The number of operations for each new job U[1, m + 2] 
The number of optional machines for each new 

operation 
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m} 

The processing time of each new operation U[1, 10] 
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