
Computers & Industrial Engineering 155 (2021) 107211

Available online 3 March 2021
0360-8352/© 2021 Elsevier Ltd. All rights reserved.

An effective MCTS-based algorithm for minimizing makespan in dynamic
flexible job shop scheduling problem

Kexin Li a, Qianwang Deng a,*, Like Zhang a, Qing Fan a,b, Guiliang Gong a, Sun Ding a

a State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China
b State Key Laboratory of Construction Machinery, Zoomlion Heavy Industry Science and Technology Co., Ltd, Changsha 410013, China

A R T I C L E I N F O

Keywords:
Dynamic flexible job shop scheduling
Monte Carlo Tree Search
Rescheduling
Response time

A B S T R A C T

In the past several decades, most of the research methods are designed to solve the static flexible job shop
scheduling problem. However, in real production environments, some inevitable dynamic events such as new
jobs arrival and machine breakdown may occur frequently. In this paper, we study a dynamic flexible job shop
scheduling problem (DFJSP) considering four dynamic events, which are new jobs arrival, machine breakdown,
jobs cancellation and change in the processing time of operations. A rescheduling method based on Monte Carlo
Tree Search algorithm (MCTS) is designed to solve the proposed DFJSP with the objective of minimizing the
makespan. Several optimization techniques such as Rapid Action Value Estimates heuristic and prior knowledge
are adopted to enhance the performance of the MCTS-based rescheduling method. The response time to dynamic
events is critical in DFJSP but has not been solved very well. To greatly reduce the response time to dynamic
events, when dynamic events occur, multiple continuous specified time windows are designed for the proposed
method, according to which the corresponding subsequent partial schedule for the remaining unprocessed op
erations is progressively generated. Some experiments have been conducted to compare the proposed method
with the commonly used completely reactive scheduling methods and the GA-based rescheduling method. The
experiment results indicate that the proposed method is an efficient and promising method for dynamic
scheduling both on solution quality and computation efficiency.

1. Introduction

The Job shop scheduling problem (JSP) is a well-known strong NP-
hard combinational optimization problem (Garey, Johnson, & Sethi,
1976), which mainly determines a schedule for a set of jobs with pre-
specified operation sequences on the corresponding predefined ma
chine to achieve some specific objectives. In practice, the widespread
use of multipurpose machines allows the operation can be processed by
multiple optional machines, which is a generalization of JSP and also
known as the flexible job shop scheduling problem (FJSP). Hence, FJSP
increases the flexibility of scheduling and is also considered to be
strongly NP-hard.

Most of the literature on scheduling focuses on static scheduling
problems and does not give much consideration to dynamic factors.
However, in the actual manufacturing systems, the shop environment
often changes dynamically due to some unpredictable dynamic real-time
events, such as sudden machine breakdown or random new jobs arrival.

In this case, the previously generated scheduling scheme may become
less effective or even become infeasible. As stated in Ouelhadj and
Petrovic (2009), dynamic scheduling is of great significance for the
successful implementation of real manufacturing systems. Obviously,
scheduling problems are dynamic in nature and more complicated than
the static scheduling problems due to various random and uncertain
events in reality. The FJSP turns into a new kind of problem which is
called dynamic flexible job shop scheduling problem (DFJSP) when
dynamic real-time events occur.

To solve the dynamic scheduling problem of manufacturing systems,
there are mainly three categories of technologies, which are the
completely reactive scheduling, the predictive-reactive scheduling and
the robust pro-active scheduling (Ouelhadj & Petrovic, 2009). Among
them, the predictive-reactive scheduling is the most commonly used
method. This method has a scheduling or rescheduling process in which
the previous scheduling is modified to accommodate the new shop
environment caused by dynamic events. Most of the existing studies

* Corresponding author at: No. 2 South Lushan Road, Yuelu District Changsha, Hunan 410082, China.
E-mail addresses: lionelkx@hnu.edu.cn (K. Li), deng_arbeit@hnu.edu.cn (Q. Deng), likezhang@hnu.edu.cn (L. Zhang), gongguiliang@hnu.edu.cn (G. Gong),

dings353849@hnu.edu.cn (S. Ding).

Contents lists available at ScienceDirect

Computers & Industrial Engineering

journal homepage: www.elsevier.com/locate/caie

https://doi.org/10.1016/j.cie.2021.107211
Received 21 August 2020; Received in revised form 20 January 2021; Accepted 23 February 2021

mailto:lionelkx@hnu.edu.cn
mailto:deng_arbeit@hnu.edu.cn
mailto:likezhang@hnu.edu.cn
mailto:gongguiliang@hnu.edu.cn
mailto:dings353849@hnu.edu.cn
www.sciencedirect.com/science/journal/03608352
https://www.elsevier.com/locate/caie
https://doi.org/10.1016/j.cie.2021.107211
https://doi.org/10.1016/j.cie.2021.107211
https://doi.org/10.1016/j.cie.2021.107211
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cie.2021.107211&domain=pdf

Computers & Industrial Engineering 155 (2021) 107211

2

generated a new schedule by minimizing the impact of disruptions on
shop production efficiency such as makespan (Adibi, Zandieh, & Amiri,
2010; Chryssolouris & Subramaniam, 2001; Liu, Fan, & Liu, 2015). In
this case, it may obtain a new schedule that is completely different from
the previous one, which is also called rescheduling.

Dispatching rules are often widely applied to solve dynamic sched
uling problems in actual production systems due to their polynomial
time complexity. Although dispatching rules can quickly respond to
dynamic events, the solution quality is often not high enough to meet the
requirements of efficient production. Therefore, many researchers have
gradually used gene expression programming method to extract dis
patching rules to solve the DFJSP under different specific constraints
(Nie, Gao, Li, & Li, 2013; Nie, Gao, Li, & Shao, 2013; Ozturk, Bahadir, &
Teymourifar, 2019; Teymourifar et al., 2020; Xu et al., 2020; Zhang,
Mei, & Zhang, 2019). However, the development process of this method
is still complicated, and the effectiveness of the extracted dispatching
rules depends on the design of specialized genetic operators (Su et al.,
2013).

Furthermore, against the shortcomings of dispatching rules, some
meta-heuristic algorithms are widely used to solve the DFJSP. Rajabi
nasab and Mansour (2011) developed a multi-agent scheduling
approach for a DFJSP considering dynamic events such as random jobs
arrival, uncertain processing time and unexpected machine breakdown,
and they compared their approach with five dispatching rules from
literature. Gholami and Zandieh (2009) proposed an approach that in
tegrates simulation into genetic algorithm to solve a DFJSP with random
machine breakdowns. Reddy et al. (2018) studied a DFJSP that con
siders machine breakdown as a real-time event and proposed an effec
tive hybrid evolutionary algorithm. Cao et al. (2019) proposed an
adaptive scheduling algorithm inspired by the heterogeneous earliest
finish time algorithm to address the makespan minimization in a DFJSP
with new job arrival. Zadeh, Katebi, and Doniavi (2019) proposed a
heuristic model inspired from artificial bee colony algorithm to address
a DFJSP that minimizes makespan considering variable processing time
of operations. Wang, Luo, and Cai (2017) developed an improved ge
netic algorithm based on variable interval rescheduling strategy to solve
a DFJSP for minimizing makespan, which takes machine breakdown,
urgent job arrival and job damage as disruptions into consideration.
Zhang, Wang, and Liu (2017) proposed a two-layer scheduling method
based on dynamic game theory, which was used as a real-time sched
uling method to address a multi-objective DFJSP considering four kinds
of dynamic events, and the objectives are to minimize makespan, total
workload of machines and energy consumption. Shen and Yao (2015)
studied a multi-objective DFJSP considering random new jobs arrival
and machine breakdowns, and adopted a critical event-driven mode.
They proposed a rescheduling method based on multi-objective evolu
tionary algorithm to regenerate new schedules.

Although there exist some research papers which study the DFJSP
with several dynamic events such as machine breakdowns and new jobs
arrival, there is still a great need to develop more efficient and effective
methods. As pointed out by Kundakci and Kulak (2016), an obvious
disadvantage of the traditional GA-based algorithm is that the compu
tation time will increase rapidly with the increase of the total number of
operations, because it contributes to the number of genes in chromo
somes and reduces the efficiency of the GA operators. With the emer
gence of dynamic events, the previous schedule may become inefficient
or even infeasible. Therefore, at this point, it needs to be repaired or a
new rescheduling scheme needs to be generated. In the real
manufacturing, the scale of the DFJSP is usually large and involves lots
of operations to be assigned to an optional machine, which may lead to a
significant deterioration in the computational efficiency of these meta-
heuristic algorithms. In other words, it is a time-consuming process to
generate a rescheduling scheme by meta-heuristic algorithms such as
GA, especially when the scale of the problem is relatively large. How
ever, most of the existing studies rarely take the computation time at
each rescheduling point into account. In the actual production

environment, too much computation time will lead to the delay of shop
production and bring economic losses. Therefore, to meet the re
quirements for the practical production, it is necessary to develop a
method that can quickly respond to dynamic events and generate a
feasible and effective rescheduling scheme in an acceptable time.

Monte Carlo Tree Search (MCTS) is a best-first search algorithm,
which finds optimal decisions in a given domain by taking random
samples in the decision space and building a search tree according to the
results (Browne et al., 2012). It has been widely and successfully used in
the area of game playing, especially computer Go (Silver et al., 2016;
Silver et al., 2017). It is especially useful in stochastic problems with
very large or infinite state spaces. Some researchers have successfully
applied MCTS algorithm in the field of scheduling (Asta et al., 2016;
Furuoka & Matsumoto, 2017; Waledzik & Mandziuk, 2018). Wu, Wu,
and Liang (2013) and Chou et al. (2015) have demonstrated the po
tential of using MCTS to solve the static FJSP. In the existing literature,
MCTS has not yet been applied to solve scheduling problems under
dynamic environments. As a complex combinational optimization
problem, DFJSP has a huge state search space and it is a natural
candidate problem for MCTS. Therefore, applying MCTS to solve DFJSP
is a new idea and worth exploring in depth.

This paper studies a DFJSP considering four dynamic events, which
are new jobs arrival, machine breakdown, jobs cancellation and change
in the processing time of operations. In order to obtain an efficient so
lution in terms of solution quality and computational efficiency, we
designed a MCTS-based rescheduling method. An event-driven mode is
adopted, which means that rescheduling will be triggered once a dy
namic event occurs, and the proposed method is executed immediately
to generate a new rescheduling scheme. In order to improve the effi
ciency of MCTS, several optimization techniques are used in MCTS.
Some well-known dispatching rules are employed to obtain the initial
prior knowledge for MCTS. Considering that some traditional resched
uling methods require a large amount of time to generate a complete
rescheduling scheme for all remaining unprocessed operations at each
rescheduling point, and the MCTS can stop the tree generation at any
time, multiple continuous specified time windows are designed for the
MCTS-based rescheduling method. In this way, the MCTS-based
rescheduling method can generate a partial rescheduling scheme cor
responding to the subsequent specified time window at each resched
uling point. The proposed method can greatly reduce the response time
to dynamic events since the number of operations in the partial schedule
is relatively small. In addition, eighteen benchmarks of DFJSP are con
structed based on some basic criteria to evaluate the performance of the
proposed rescheduling method.

The main contribution of this paper can be summarized as follows:
(1) A well-designed MCTS-based rescheduling method is proposed for
the DFJSP. (2) Multiple continuous specified time windows are designed
for the MCTS-based rescheduling method to progressively generate the
partial schedule corresponding to the subsequent time window, which
can effectively reduce the response time at each rescheduling point. (3)
Eighteen benchmarks of DFJSP are constructed and the effectiveness of
the proposed method is verified.

The remainder of this paper is organized as follows. In Section 2, the
formal description of the DFJSP under consideration is outlined. In
Section 3, A MCTS-based algorithm to achieve rescheduling is presented.
In Section 4, the framework of the MCTS-based rescheduling method to
solve DFJSP is given. The experimental design and results are discussed
in Section 5. Finally, some conclusions and future works are given in
Section 6.

2. Problem description

The DFJSP studied in this paper considers that n jobs are processed
on m machines at the beginning of the schedule. During the actual
production process, some dynamic events such as new job arrival and
machine breakdown will inevitably occur. The DFJSP subjects to some

K. Li et al.

Computers & Industrial Engineering 155 (2021) 107211

3

common assumptions in the following because of the high complexity.

(1) All machines are available at the beginning of the schedule.
(2) An operation of a job can be processed by only one machine at a

time.
(3) Each machine can process at most one operation at a time.
(4) Once an operation has been processed on a machine, it must not

be interrupted except for the machine breakdown. If an operation
is interrupted by the machine breakdown, it must be processed
from scratch on an optional available machine.

(5) An operation of a job cannot be processed until its previous
operation is completed and there is no travel time between
machines.

(6) The setup time of an operation is included in the processing time.
(7) Operations can wait to be processed in an unlimited buffer of a

machine.

This study considers four common dynamic real-time events, which
are change in the processing time of operations, new jobs arrival, ma
chine breakdown and job cancellation. The details of dynamic events
and their effects are discussed as follows.

(1) Change in the processing time of operations. Before the execution
of the pre-scheduling scheme, the processing time of some op
erations may change due to the change of process technology. In
this case, the scheduling scheme needs to be rebuilt with the new
processing time of these operations. Therefore, the rescheduling
is triggered when the processing time of operation is change.

(2) New jobs arrive dynamically over time. In real manufacturing
system, new jobs may arrive continuously during the production
process. In our DFJSP, the arrival time of new jobs is assumed to
follow the Poisson distribution. Therefore, the time interval be
tween job arrivals follows an Exponential distribution (Rangsar
itratsamee, Ferrell, & Kurz, 2004; Sha & Liu, 2005; Vinod &
Sridharan, 2008). The rescheduling is triggered when new jobs
arrive, and according to the state of operations, the existing op
erations can be divided into four sets: the completed operations
set, the operations set being processed, the unprocessed opera
tions set and the new operations set. Obviously, all operations of
new jobs are divided into the new operations set.

(3) Machine breakdown and repair. When a machine breaks down,
the ongoing operation is interrupted and machine repair is car
ried out immediately. If the previous schedule is maintained, the
start time and completion time of the unprocessed operations
assigned to this machine will scheduled depending on the fin
ishing time of the machine maintenance, and the makespan will
increase when the maintenance time is long. So, the rescheduling
is triggered when machine breakdown occurs. In our DFJSP, for
each machine, the time interval between two consecutive ma
chine breakdowns and the repair time for each maintenance are
assumed to follow an Exponential distribution (Zandieh & Adibi,
2010).

(4) Job cancellation. In the production process, some customers may
ask to cancel their orders. After jobs in these orders are cancelled,
the remaining unprocessed operations of these jobs are removed
from the unprocessed operations set and the rescheduling is
triggered. In our DFJSP, the time of job cancellation is assumed to
follow the Poisson distribution too. Therefore, the time interval
between two adjacent job cancellations follows an Exponential
distribution.

To evaluate the efficiency of the proposed rescheduling method, the
makespan (i.e., the completion time of the last finished operation) is
taken as the optimization objective, which is the most common criterion.

3. A MCTS-based algorithm to achieve rescheduling

3.1. Monte Carlo tree search

The MCTS has been the focus of much artificial intelligence research
since it was first described. It has received considerable attention
because of its great success and prolific achievements in the difficult
problem of computer Go, and has proved beneficial in many other do
mains as well.

The MCTS is a best-first search algorithm, which finds the most
promising moves in a given domain by selecting samples randomly in
the search space and incrementally building a search tree in memory
based on the results. The MCTS emphasizes the balance of exploration
and exploitation, and it is an iterative method that performs the
following four steps until reaching some predefined computational
limitations such as time or iteration constraint. Here, we follow the
constraint that executes a certain number of iterations.

(1) Selection: Starting from the root node, a child node selection
policy is iteratively applied to descend through the tree until a
nonterminal leaf node which has unexpanded child nodes is
reached. This selection policy controls the tradeoff between
exploitation and exploration. A widely used selection policy, the
UCT (Upper Confidence bounds applied to Trees) (Kocsis & Sze
pesvari, 2006), is employed in this paper. This child node selec
tion policy is to select the child node with the maximum UCT
value. The specific formula is as follows.

UCT = Xj +C ×

̅̅̅̅̅̅̅̅̅̅
logN

√

Nj
(1)

where Xj is the average value of the j-th child node, N is the visit count of
the current (parent) node, Nj is the visit count of the j-th child node, and
C greater than 0 is a constant which controls the tradeoff between
exploitation and exploration.

(2) Expansion: When a leaf node is reached, one (or more) child
nodes should be expanded from the leaf node and added to the
tree.

(3) Simulation: Execute the simulation policy from the newly
expanded node until a solution to the problem is generated, and
an evaluation value of the final state is returned. In general,
moves descending through the tree are selected either randomly
or heuristically based on the selected simulation policy.

(4) Backpropagation: The evaluation value in the simulation is
propagated through the path selected in the tree up to the root,
and the node statistic information of these nodes are updated for
later expansions.

An execution of these four phases is called an iteration. Details of our
implementation for the MCTS-based algorithm to solve DFJSP will be
discussed below.

3.2. Problem representations

When dynamic events occur, the job-shop status information is
updated accordingly, and the previous scheduling scheme may become
unavailable. After that, the DFJSP can be transformed into a static FJSP.
Then, the proposed MCTS-based algorithm is used to generate a new
rescheduling scheme. The scheduling contains two sub-problems:
assigning operations to the corresponding available machines and
sequencing the operations in each machine. The following describes
how to map a FJSP to a tree topology structure.

Assume that a tree topology structure with a root node R represents
the initial state, and each node extended to this tree is corresponded to a
candidate operation-machine pair information. Each node except the

K. Li et al.

Computers & Industrial Engineering 155 (2021) 107211

4

root node R has a unique parent node and each non-leaf node has some
legal child nodes. So, the location information of the nodes in the tree
represents the sequence information of the operations.

For the purposes of discussion, we use the following notations. Let
Nop denote the total number of operations. Let [i, j, k] denote the
operation-machine pair information which is matched with the node in
the tree, and it denotes the jth operation of job i is processed on machine
k. Note that [i, j, k] is called a move in this study.

For a detailed description of this mapping transformation, a 2 × 4
FJSP example is listed in Table 1. The construction of tree topology
structure corresponding to this example is shown in Fig. 1. The infor
mation on each child node in the figure is legal operation-machine pairs
for the operations waiting to be processed.

The mapping construction process is described as follows:

Step 1: Set the node R as the root node and initialize an empty
schedule S.
Step 2: Repeat the four steps of MCTS for a certain number of times
which is denoted as Ns.
Step 3: After the previous step is completed, select the most visited
child node of the root node and add the move matched with it to the
schedule S. Meantime, set this selected child node as the new root
node. For example, when the current root node is R, after Ns MCTS
iterations, the node associated with the move [1, 1, 3] is selected.

Then this move is added to the schedule S, and the node is set to the
new root node.
Step 4: Repeat Step 2–3 Nop times, and all operations are scheduled.
Then, a complete schedule is obtained. Take Fig. 1 for example, the
initial root node R and all selected nodes are marked with gray
shadow. Starting from the initial root node R, the corresponding
moves of these nodes form a complete schedule.

3.3. Decoding

A schedule solution can be decoded into semi-active, active, non-
delay and hybrid schedules. The active schedule is suitable to be
adopted because the makespan is a regular criterion (Li & Gao, 2016).
Therefore, this decoding method is adopted in this paper. That is, an
operation is inserted into the first available idle time interval of its
assigned machine as early as possible.

3.4. Some optimization techniques used to improve MCTS

Since the search space of FJSP is too large, in order to improve the
efficiency of MCTS, we decided to adopt the following optimization
techniques.

3.4.1. Subtree keeping policy
After a certain number of MCTS iterations, the best child node of the

root node is selected as the new root node. Instead of building the
subtree of the selected node from scratch, the existing subtree of this
new root node in the previous tree is retained for the subsequent itera
tions. In this way, the information obtained from all previous iterations
of each node in the retained subtree, including the evaluation value and
the number of visits, will be reused. This policy can obtain a more ac
curate evaluation value of each node in the retained subtree and expand
the search depth and width of MCTS.

3.4.2. Rapid action value estimation
Rapid Action Value Estimation (RAVE) is a popular enhancement of

the All-Moves-As-First (AMAF) heuristic. Gelly and Silver (2007) first
attempted to combine AMAF with UCT in the field of computer Go, and
based on this they proposed the RAVE heuristic in Gelly and Silver
(2011) later.

The RAVE uses the AMAF to estimate the value of each move from
each node in the search tree. The RAVE provides an easy way to share
knowledge of relevant nodes in the search tree to quickly get a biased
estimate value of the move. This biased estimate is often used to
determine the best move after only a few iterations, which can signifi
cantly improve the performance of the MCTS algorithm. Therefore, we
consider adding RAVE to MCTS when doing selection. The final evalu
ation value is a weighted sum of the UCT value and the RAVE value, and
the formula is as follows.

Valuej = (1 − β) × UCTj + β × RAVEj (2)

where β is a weight parameter used to balance the UCT value and RAVE
value.

Similar to the UCT algorithm, an exploration reward is added to
maintain the balance between exploration and exploitation, and the
final formula is as follows.

Value*
j = Valuej +C ×

̅̅̅̅̅̅̅̅̅̅
logN

Nj

√

(3)

3.4.3. Prior knowledge
When expanding a node, if we do not initially get some useful in

formation (i.e., prior knowledge) about the next move, we can only set
the same initial value for each newly expanded node. In order to make
full use of the results of previous iterations, we record these results into a

R

[1,1,1] [1,1,2] [1,1,3] [1,1,4] [2,1,1] [2,1,3]

[1,2,2] [1,2,4] [2,1,1] [2,1,3]

[1,2,2] [1,2,4] [2,2,1] [2,2,2] [2,2,3]

[1,2,2] [1,2,4] [2,3,2] [2,3,4]

[2,3,2] [2,3,4]

Fig. 1. The construction of tree topology structure for the 2 × 4 FJSP example.

Table 1
A FJSP example with 2 jobs and 4 machines.

Jobs Operations Optional Machines and corresponding processing time

Job1 O11 M1 (2) M2 (6) M3 (5) M4 (3)
O12 — M2 (8) — M4 (4)
O21 M1 (3) — M3 (6) —

Job2 O22 M1 (4) M2 (6) M3 (5) —
O23 — M2 (7) — M4 (5)

K. Li et al.

Computers & Industrial Engineering 155 (2021) 107211

5

global array Kprior. The size of Kprior is Nop × m × Nop, which is indexed by
the modified move ([i, j], k, seq). It represents that the jth operation of
job i is assigned on the seqth position of machine k. The array Kprior re
cords the average estimated value and the visit count of moves obtained
so far, and they will be updated after each iteration. Then, find the next
move with the maximum estimated value in Kprior, and the child node
associated with it will be expanded in the current expansion phase of
MCTS.

The array Kprior is built at the beginning of the algorithm, and both
the initial value and the visit count of all possible moves are set to 0.
Once a complete schedule S and its evaluation value v are obtained
during the simulation phase of each MCTS iteration, the estimated value
and the visit count of all moves included in this schedule are updated to
the array Kprior with the following steps.

Step 1: Let d be the first move in schedule S.
Step 2: Update the estimated value and the visit count of Kprior(d),
respectively.
(1) Update the estimated value.

value =
value × visit + v

visit + 1
(4)

(2) Update the visit count.

visit = visit + 1 (5)

Step 3: If there is no operation in S, stop; else, let d be the next move
in S and go to Step 2.

Through the above steps, we can get the initial value of the newly
expanded node based on the array Kprior.

3.4.4. Initialized prior knowledge
Initialized prior knowledge can provide useful information about

whether each legal move is good or bad during the expansion phase of
MCTS. Based on Section 3.4.3, in order to reduce the initialization time
as much as possible, some commonly used completely reactive sched
uling methods are adopted to initialize the initial value and the visit
count of the array Kprior. The completely reactive scheduling methods
assign operations to their optional machines according to a specific
machine assignment rule, and once a machine becomes idle, select the
operation with the highest priority based on a heuristic priority dis
patching rule when there are operations in the waiting queue (Shen &
Yao, 2015).

Three machine assignment rules (MARs) for all operations are
employed in this paper. The first rule is to assign each operation to its
available machine with the shortest processing time. The second rule is
to find the available machine with the minimum workload currently for
each operation waiting to be processed, then assign the operation to that
machine and updates the workload of that machine. The third rule is to
assign each operation to its available machine at random. In brief, this
paper refers to them as MAR1, MAR2 and MAR3, respectively. In
addition, three common priority dispatching rules (PDRs) are used in
this section, which includes Shortest Processing Time First (SPT), First In
First Out (FIFO) and Last In First Out (LIFO). The details of Initialized
Prior Knowledge are as follows.

Firstly, a population with one thousand chromosomes is initialized,
90% of which are generated with a 10% mixture of nine combination
methods of three MARs and three PDRs mentioned above, then the rest is
randomly generated. Secondly, each chromosome is decoded to get a
complete schedule and obtain its estimated value. Thirdly, the estimated
value and the visit count of all moves included in this schedule are
updated to the array Kprior for initialization.

3.5. Our modified MCTS

In our modified MCTS, the final evaluation value Z can be calculated
by the following evaluation function:

Z = 2 −
Cmax

best(Cmax)
(6)

where Cmax is the makespan of the current schedule, and best(Cmax) is the
minimum makespan found so far.

Based on the proposed optimization techniques, the four phases of
MCTS are modified as follows:

(1) Selection: Starting from the root node, select the child node with
the maximum Value* recursively according to the formulas (2)
and (3) until a nonterminal leaf node is reached. The values of
parameter β and C are all set to 0.5 in this paper.

(2) Expansion: When a leaf node is reached, a child node with the
maximum prior value will be expanded from the leaf node and
added to the tree.

(3) Simulation: Perform the simulation policy recursively from the
newly expanded node until all operations are scheduled. The
simulation policy can be random simulation or choose the move
with the maximum prior value. In order to improve the simula
tion quality and increase the diversity, we decided to use a
probabilistic selection strategy. That is, choose the move
randomly with probability p, and choose the move with the
maximum prior value with probability 1 – p. We set p to 0.4 in this
paper.

(4) Backpropagation: The evaluation value is calculated based on
the simulation result, then the evaluation value and visit count of
nodes are propagated and updated through the path selected in
the tree up to the root. This backpropagation includes to update
the evaluation value and visit count of RAVE of relevant nodes.

4. Framework of the MCTS-based rescheduling method to solve
DFJSP

4.1. Rescheduling mode

In the actual production, many dynamic uncertain events may occur
frequently. When a dynamic event occurs, the previous scheduling
scheme may become less effective and even unavailable. Rescheduling is
required to adapt to the dynamic changes in the production
environment.

Dynamic scheduling can be divided into completely reactive sched
uling, predictive-reactive scheduling and robust pro-active scheduling
(Mehta & Uzsoy, 1999; Vieira, Herrmann, & Lin, 2003). This paper
studies the predictive-reactive scheduling method for the DFJSP. This
method can be classified as either continuous rescheduling which
reschedule the unprocessed operations each time a dynamic event such
as machine breakdown occurs, or periodic rescheduling which
rescheduling after a fixed time interval (Church & Uzsoy, 1992). In this
paper, the continuous rescheduling method which is also referred to
event-driven rescheduling is adopted, because it has a quick response to
dynamic events and can achieve better scheduling performance. In other
words, rescheduling is performed once a dynamic event occurs. The time
at which the rescheduling method is triggered is called the rescheduling
point.

4.2. The flowchart of the modified MCTS-based method for DFJSP

In most real manufacturing systems, the shop status information
usually needs to be updated in real time. Rescheduling is required when
dynamic events occur. During the execution of the schedule, at each
rescheduling point, the MCTS-based rescheduling method is triggered to

K. Li et al.

Computers & Industrial Engineering 155 (2021) 107211

6

generate a new schedule and the operation sequence on each machine is
reassigned. The newly generated schedule is executed in the job shop
until the next rescheduling point comes, at which time the rescheduling
method is triggered again.

To solve DFJSP, at each rescheduling point, some traditional
methods generate a complete schedule for all remaining unprocessed
operations and then execute this schedule in the job shop. Different from
these methods, the MCTS-based algorithm can stop the tree generation
at any time and get a partial schedule. This is an inspiration for us to
reduce the calculated response time at each rescheduling point. To be
specific, the MCTS-based algorithm can generate a partial schedule
corresponding to the subsequent specified time window on the basis of
global consideration of all remaining unprocessed operations, rather
than a complete schedule for all unprocessed operations. This is equiv
alent to dividing all unprocessed operations according to a pre-fixed
time window, and then scheduling these corresponding partial opera
tions. Therefore, we designed multiple continuous specified time win
dows for the MCTS-based algorithm to limit the scheduling horizon of
the subsequent partial schedule for the remaining unprocessed opera
tions. The details of the entire scheduling process are as follows.

In our proposed rescheduling method, a rolling horizon is consid
ered. While executing the partial schedule of the current time window in
the job shop, a partial schedule of the next time window is generated
simultaneously, and the same is true when executing the partial
schedule of the next time window. For the sake of description, we call
this step the normal step here. If a dynamic event occurs in the current
time window, the partial schedule of the next time window that has been
generated in advance will be abandoned and the rescheduling is trig
gered. In this case, there is a response time to the dynamic event. After
generating a new partial rescheduling scheme, then repeat the normal
step until another dynamic event occurs. But if no dynamic event occurs
in the current time window, the partial schedule of the next time win
dow that has been generated in advance will be executed normally, and
then repeat the normal step until another dynamic event occurs.

To be specific, suppose that the length of the time window is fixed as
w. The partial schedule within the time window [0, w] is generated by
the MCTS-based algorithm at time 0. Following the normal step, during
the execution of this schedule in [0, w], the partial schedule of the
subsequent time window [w, 2w] is also generated by the MCTS-based
algorithm in advance. Then the normal step is repeated until a dy
namic event occurs at time T1. Assume that kw < T1 ≤ (k + 1)w (k = 0, 1,
…). Obviously, these partial schedules within the time window [0, kw]
are executed one after another. The partial schedule within the time
window [kw, T1] is executed, but the partial schedules within the time
window [T1, (k + 1)w] and [(k + 1)w, (k + 2)w] will not be executed,
because the rescheduling is triggered at time T1. Assume that the
response time at each rescheduling point is ignored, the partial schedule
S1 of the subsequent time window [T1, T1 + w] is generated by the
MCTS-based algorithm at time T1. During the execution of schedule S1 in
[T1, T1 + w], following the normal step, the partial schedule S2 of the
subsequent time window [T1 + w, T1 + 2w] is also generated by the
MCTS-based algorithm in advance. This continues until the next dy
namic event occurs and the rescheduling is triggered again. Then the
above process is repeated until all operations are processed.

The proposed MCTS-based rescheduling method for DFJSP can be
summarized as follows: (1) During the execution of a partial schedule of
the current time window, a partial schedule of the next time window has
been generated by the modified MCTS algorithm in advance. (2) When
the rescheduling is triggered, update the job-shop status information
which includes the available time of machines, the finished operation
set, the unprocessed operation set and so on. In this case, the subsequent
partial schedule generated in the current time window will not be
executed. (3) At the rescheduling point, perform the modified MCTS
algorithm to generate a partial schedule of the subsequent time window.
(4) Repeat the above three steps until all operations are processed. The
flowchart of the modified MCTS-based method for DFJSP is summarized

in Fig. 2.

5. Experimental studies and discussion

In this work, we conduct two sets of experiments. The first set of
experiments is meant to investigate the effectiveness of the optimization
techniques used to improve MCTS. The second set of experiments is
implemented to evaluate the performance of the proposed MCTS-based
method for DFJSP by comparing it with some existing rescheduling
methods. The proposed MCTS-based method is coded by Python pro
gramming language and implemented on a PC configured with an Intel
(R) Core (TM) i7-8750H CPU of 2.2 GHz and 8 GB RAM.

5.1. Experiment 1

This group of the experiments is carried out to examine the perfor
mance of the techniques used to improve MCTS which mentioned in
Section 3.4. The performance is tested by the benchmark problem in
stances MK01-MK10 from Brandimarte (1993), which is well-known in
the static flexible job shop scheduling problem. This problem set consists
of 10 benchmark instances in which the total numbers of operations vary
from 55 to 240.

In this subsection, we compare five versions of MCTS-based algo
rithm by incrementally adding Subtree Keeping Policy, RAVE, Prior
Knowledge and Initialized Prior Knowledge, which are named as MA1,
MA2, MA3, MA4 and MA5, respectively. In other words, the next version
has one more optimization technique than the previous one. To be

Start

Consider the jobs and machines that exist at
the start point in shop floor

Generate a partial schedule of the subsequent time window
by the modified MCTS-based rescheduling method

Do one or more
dynamic events occur?

No

Execute the partial schedule of the current time window in
shop floor and then generate a partial schedule of the next
time window by the modified MCTS-based rescheduling

method in advance

Yes

Rescheduling is triggered and
update the shop status information

Have all the
operations finished?

Stop

Yes

No

Fig. 2. Flowchart of the modified MCTS-based method for DFJSP.

K. Li et al.

Computers & Industrial Engineering 155 (2021) 107211

7

specific, MA1 does not include any optimization techniques, MA2 in
cludes Subtree Keeping Policy only, MA3 includes Subtree Keeping
Policy and RAVE, and so on.

For a given instance, we calculate the relative percent deviation
(RPD) and the average RPD (ARPD) (Zhou et al., 2018), and they are
expressed as follows.

RPD =
Algi − Mini

Mini
× 100 (7)

where Algi is the result obtained by a given algorithm in the ith run and

Mini is the minimum result among all the results obtained by all algo
rithms in the ith run.

ARPD =

∑l
i=1RPD

l
(8)

where l is the number of runs for each instance.
Every instance was run 5 times independently. For each instance, the

ARPD is used to measure the results obtained by these five algorithms.
Obviously, the smaller the ARPD value is, the better the performance of
the corresponding algorithm is.

The number of iterations for each MCTS-based algorithm is set to
200. Table 2 shows the comparison results of the five algorithms. In this
table, n × m means that this problem contains n jobs and m machines, the
CPU represents the mean computational time (s) of five runs, and the
best ARPD value for each instance is highlighted in bold.

The ARPD value and the CPU time of the five algorithms for each
instance are plotted in Figs. 3 and 4, respectively. Although we can see
that the CPU time increases as the number of optimization techniques is
added, the performance of corresponding MCTS-based algorithm has
been improved significantly for each instance. Therefore, we decided to
apply algorithm MA5, which combines all the proposed optimization
techniques, to the subsequent experiment.

5.2. Experiment 2

It has been indicated that a job shop with more than six machines can
illustrate the complexity and difficulty of the large dynamic job shop
scheduling problem (Adibi, Zandieh, & Amiri, 2010; Chryssolouris &
Subramaniam, 2001). In this paper, a flexible job shop with eight ma
chines (m = 8) is simulated to evaluate the performance of the proposed
method.

There is no benchmark instance for DFJSP so far. This paper designed
dynamic flexible job shop problem instances based on a static flexible
job shop benchmark problem instances MK04 from Brandimarte (1993).
These instances consider four dynamic events which are new jobs
arrival, machine breakdown, change in the processing time of opera
tions and job cancellation.

The number of operations for each new job is uniformly distributed
over the interval of [1, m + 2]. The number of optional machines for
each new operation is selected at random from the set {1, 2, …, m}. The
processing time of each new operation follows the uniform distribution
on the interval of [1, 10]. The changed processing time of an operation
also varies uniformly within [1, 10]. For each machine, the time interval
between failures (TBF) and the time to repair (TTR) are assumed to
follow an exponential distribution. To make the simulation more real
istic, the mean time between failures (MTBF) and the mean time to
repair (MTTR) are different for each machine. The MTBF and MTTR are
uniformly distributed over [50, 70] and [10, 20], respectively. These
values are selected so that the average available time of a machine is 60
units of time, and then the average time to repair a failure is 15 units of
time. Thus, the availability of a machine is 80%. Eighteen different

Table 2
Comparisons of five versions of MCTS-based algorithms.

Problem n × m MA1 MA2 MA3 MA4 MA5

ARPD CPU ARPD CPU ARPD CPU ARPD CPU ARPD CPU

MK01 10 × 6 5.40 12.7 4.40 12.6 2.95 18.2 1.98 18.0 0.00 19.8
MK02 10 × 6 13.39 16.2 11.51 15.9 8.29 20.7 4.48 22.2 0.00 22.4
MK03 15 × 8 0.59 107.8 0.29 112.5 0.00 151.3 0.00 162.7 0.00 164.7
MK04 15 × 8 9.97 33.2 7.66 37.0 6.19 50.5 5.01 51.7 0.29 54.4
MK05 15 × 4 4.45 50.7 3.80 53.8 2.17 81.4 1.30 87.5 0.11 87.7
MK06 10 × 15 18.88 108.0 15.19 112.5 6.60 145.5 2.87 156.0 1.08 177.3
MK07 20 × 5 12.77 49.6 10.48 51.5 6.52 70.5 4.48 74.9 0.00 83.4
MK08 20 × 10 1.61 239.4 1.03 268.5 0.84 410.5 0.31 410.4 0.08 431.1
MK09 20 × 10 7.49 280.0 6.56 310.6 2.73 466.9 1.10 471.7 0.00 492.9
MK10 20 × 15 10.54 290.2 9.34 321.3 3.47 481.3 0.98 486.6 0.00 504.0

Fig. 4. The CPU time of the five algorithms.

Fig. 3. The ARPD value of the five algorithms.

K. Li et al.

Computers & Industrial Engineering 155 (2021) 107211

8

number of new jobs arrival are set, which are 10, 20, 30, 40, 50, 60, 70,
80, 90, 100, 120, 140, 160, 180, 200, 220, 240 and 260. Specifically,
each number represents the total number of new jobs arrived for each
DFJSP instance. The time interval between job arrivals (TBJA) and the
time interval between job cancellations (TBJC) are assumed to follow an
exponential distribution. The mean time between job arrivals (MTBJA)
and the mean time between job cancellations (MTBJC) are set to 20 and
60, respectively. The number of new jobs per arrival is assumed to be 5,
and the number of jobs per cancellation is 1.

All the designed DFJSP instances are based on a 15 × 8 static flexible
job shop problem, where the initial number of jobs and machines are 15
and 8, respectively. These DFJSP instances are generated based on the
parameters described above, which are provided in Appendix A. Since
there are 18 different total number of new jobs arrival, total of 18 in
stances named D01-D18 are conducted. Instances which have less than
60 jobs (D01-D05) are categorized as small size instances. Instances
which have 60 to 100 jobs (D06-D10) are categorized as medium size
instances, and instances which have more than 100 jobs (D11-D18) are
categorized as large size instances. For each instance, the simulation
continues until all operations including all operations of new jobs are
completed. All dynamic events that occur during the scheduling horizon
are considered, and other parameters in the dynamic environment are
the same in each experiment.

In order to further verify the effectiveness and efficiency of the
proposed MCTS-based rescheduling method considering some dynamic
events in the real-time flexible job-shop environment, we compared it
with the commonly used completely reactive scheduling methods. In
addition, based on the event-driven rescheduling mode, we compared it
with GA proposed in Li and Gao (2016), and the GA parameters we set
are the same as it, which are shown in Table 3. Specifically, when
rescheduling is triggered, the GA is executed to generate a new schedule,
and we call it GA-based rescheduling method here.

For the completely reactive scheduling methods, three machine
assignment rules called MAR1, MAR2 and MAR3 are employed in this
paper. Four common priority dispatching rules are adopted, which in
cludes SPT, FIFO, LIFO and Random. When rescheduling is triggered,
these unprocessed operations need to be assigned to an available ma
chine. For example, the operations of these newly arrived jobs, the op
erations in the waiting queue of the broken machines and some
operations that previously cannot be processed due to the breakdown of
available machines become processable again because of the machine
repairs.

Based on the designed DFJSP instances, twelve Combination
methods of three MARs and four PDRs, the MCTS-based rescheduling
method and the GA-based rescheduling method were evaluated and
compared in this paper. The number of iterations for MCTS algorithm is
set to 200, and the length of the specified time window of the MCTS-
based rescheduling method is set to 5. Each instance was run 10 times
independently.

5.2.1. The experimental results
The makespan comparisons of these rescheduling methods in small

and medium size instances and in large size instances are listed in
Table 4 and Table 5, respectively. The ARPD value comparisons of these
rescheduling methods in small and medium size instances and in large
size instances are listed in Table 6 and Table 7, respectively. In addition,

Table 4
The average makespan comparisons of the MCTS-based method against the traditional rescheduling methods in small and medium size instances.

Instances D01 D02 D03 D04 D05 D06 D07 D08 D09 D10
Number of new jobs 10 20 30 40 50 60 70 80 90 100
n × m 25 × 8 35 × 8 45 × 8 55 × 8 65 × 8 75 × 8 85 × 8 95 × 8 105 × 8 115 × 8

MAR1 + SPT 236.0 279.0 298.0 324.2 379.3 422.8 441.9 483.4 492.0 513.2
MAR1 + FIFO 226.4 281.8 301.3 328.2 346.2 416.7 433.0 473.2 479.3 502.8
MAR1 + LIFO 230.4 281.1 298.7 328.8 359.9 417.8 432.9 472.6 479.1 503.6
MAR2 + SPT 111.4 137.8 173.3 227.4 296.5 326.1 368.2 430.3 445.2 483.5
MAR2 + FIFO 110.4 140.1 172.7 226.7 297.2 326.0 366.4 431.2 447.1 483.8
MAR2 + LIFO 113.2 138.9 172.5 225.8 299.9 327.0 366.3 433.1 445.5 485.1
MAR3 + SPT 129.1 184.5 216.2 277.2 325.0 375.1 426.1 503.5 527.9 558.2
MAR3 + FIFO 130.3 186.8 222.6 281.2 331.9 378.4 428.8 515.1 534.5 563.2
MAR3 + LIFO 128.3 184.8 222.2 282.1 327.1 376.2 434.4 513.6 534.8 567.1
GA-based rescheduling method 85.2 125.1 153.4 197.2 279.0 306.7 336.8 409.5 416.6 458.0
MCTS-based rescheduling method 87.2 125.8 159.3 202.5 279.5 312.3 341.9 415.4 425.9 465.3

Table 5
The average makespan comparisons of the MCTS-based method against the traditional rescheduling methods in large size instances.

Instances D11 D12 D13 D14 D15 D16 D17 D18
Number of new jobs 120 140 160 180 200 220 240 260
n × m 135 × 8 155 × 8 175 × 8 195 × 8 215 × 8 235 × 8 255 × 8 275 × 8

MAR1 + SPT 553.8 589.3 693.0 705.4 889.0 989.0 1094.1 1246.0
MAR1 + FIFO 553.3 602.9 693.0 714.7 889.0 989.0 1102.4 1246.5
MAR1 + LIFO 550.6 603.1 693.0 709.5 889.0 989.0 1103.1 1242.9
MAR2 + SPT 550.0 604.7 683.0 739.4 869.1 938.9 1052.5 1224.2
MAR2 + FIFO 546.9 608.4 684.4 737.8 868.4 945.6 1053.8 1233.0
MAR2 + LIFO 551.2 609.9 685.5 739.6 869.2 945.1 1056.8 1222.9
MAR3 + SPT 612.1 686.1 784.8 846.6 939.2 1063.9 1171.4 1311.4
MAR3 + FIFO 629.9 704.9 814.3 875.6 972.2 1120.6 1223.3 1410.4
MAR3 + LIFO 631.6 708.4 809.5 878.7 976.0 1125.0 1229.8 1406.9
GA-based rescheduling method 495.8 553.3 619.6 676.6 801.2 870.8 985.1 1082.5
MCTS-based rescheduling method 518.1 564.7 640.6 696.6 833.6 909.7 1012.5 1129.1

Table 3
The GA parameters.

Parameters

The size of the population, Popsize 400
The total number of generations, maxGen 200
The permitted maximum step size with no improving, maxStagnantStep 20
Reproduction probability, Pr 0.005
Crossover probability, Pc 0.8
Mutation probability, Pm 0.1

K. Li et al.

Computers & Industrial Engineering 155 (2021) 107211

9

the total computation time (s) (which called TCPU) of MCTS-based
rescheduling method and the TCPU time of GA-based rescheduling
method in each run are recorded, both of which represent the sum of the
time they take each time a subsequent schedule is generated. Moreover,
the computation time of generating a new rescheduling scheme at each
rescheduling point is taken as the response time at that rescheduling
point, and the total response time (s) of all rescheduling point (which

called TR) of MCTS-based rescheduling method and the TR time of GA-
based rescheduling method in each run are also recorded. The mean
TCPU time and the mean TR time are taken as the final results, and the
comparisons of these two rescheduling methods in small and medium
size instances and in large size instances are listed in Table 8 and
Table 9, respectively. In these tables, n × m means that this instance
contains n jobs and m machines.

Table 6
The ARPD value comparisons of the MCTS-based method against the traditional rescheduling methods in small and medium size instances.

Instances D01 D02 D03 D04 D05 D06 D07 D08 D09 D10
Number of new jobs 10 20 30 40 50 60 70 80 90 100
n × m 25 × 8 35 × 8 45 × 8 55 × 8 65 × 8 75 × 8 85 × 8 95 × 8 105 × 8 115 × 8

MAR1 + SPT 177.65 124.28 94.45 64.42 35.95 37.91 31.40 18.06 18.09 12.19
MAR1 + FIFO 166.35 126.54 96.60 66.44 24.09 35.90 28.76 15.57 15.05 9.92
MAR1 + LIFO 171.06 125.97 94.93 66.75 29.00 36.28 28.73 15.43 15.00 10.10
MAR2 + SPT 31.06 10.78 13.06 15.32 6.27 6.37 9.48 5.10 6.87 5.70
MAR2 + FIFO 29.88 12.63 12.68 14.96 6.52 6.33 8.95 5.31 7.32 5.74
MAR2 + LIFO 33.18 11.66 12.59 14.51 7.49 6.66 8.93 5.79 6.94 6.03
MAR3 + SPT 51.88 48.30 41.03 40.56 16.49 22.35 26.70 22.97 26.72 22.04
MAR3 + FIFO 53.29 50.17 45.20 42.62 18.96 23.43 27.51 25.82 28.30 23.12
MAR3 + LIFO 50.94 48.56 44.98 43.05 17.24 22.70 29.18 25.44 28.38 24.00
GA-based rescheduling method 0.24 0.56 0.00 0.00 0.00 0.03 0.15 0.00 0.00 0.09
MCTS-based rescheduling method 2.59 1.13 3.93 2.69 0.18 1.86 1.67 1.46 2.23 1.72

Table 7
The ARPD value comparisons of the MCTS-based method against the traditional rescheduling methods in large size instances.

Instances D11 D12 D13 D14 D15 D16 D17 D18
Number of new jobs 120 140 160 180 200 220 240 260
n × m 135 × 8 155 × 8 175 × 8 195 × 8 215 × 8 235 × 8 255 × 8 275 × 8

MAR1 + SPT 11.70 6.51 11.86 4.25 11.01 13.59 11.72 15.11
MAR1 + FIFO 11.60 8.98 11.86 5.64 11.01 13.59 12.56 15.16
MAR1 + LIFO 11.06 9.01 11.86 4.87 11.01 13.59 12.65 14.82
MAR2 + SPT 10.93 9.28 10.24 9.29 8.52 7.84 7.43 13.10
MAR2 + FIFO 10.31 9.96 10.47 9.05 8.44 8.61 7.61 13.91
MAR2 + LIFO 11.18 10.23 10.64 9.32 8.53 8.55 7.92 12.99
MAR3 + SPT 23.45 24.00 26.66 25.13 17.27 22.19 19.60 21.16
MAR3 + FIFO 27.05 27.41 31.42 29.42 21.40 28.68 24.92 30.30
MAR3 + LIFO 27.39 28.03 30.68 29.88 21.88 29.20 25.59 29.97
GA-based rescheduling method 0.00 0.00 0.00 0.00 0.00 0.00 0.49 0.00
MCTS-based rescheduling method 4.50 2.06 3.40 2.96 4.09 4.48 3.37 4.31

Table 8
Comparisons of the mean TCPU time and the mean TR time of MCTS-based rescheduling method and GA-based rescheduling method in small and medium size
instances.

Instances D01 D02 D03 D04 D05 D06 D07 D08 D09 D10
Number of new
jobs

10 20 30 40 50 60 70 80 90 100

n × m 25 × 8 35 × 8 45 × 8 55 × 8 65 × 8 75 × 8 85 × 8 95 × 8 105 × 8 115 × 8

GA-based
method

455.5
(455.5)

552.1
(552.1)

643.7
(643.7)

876.6
(876.6)

979.9
(979.9)

1146.3
(1146.3)

1395.8
(1395.8)

1973.6
(1973.6)

2438.8
(2438.8)

3388.6
(3388.6)

MCTS-based
method

184.5
(103.4)

272.8
(167.6)

339.4
(201.2)

579.3
(355.9)

772.2
(470.8)

927.9
(537.8)

1131.5
(628.4)

1616.4
(937.2)

1829.8
(1043.8)

2187.9
(1310.7)

The values x(y) in this table denote that the mean TCPU time and the mean TR time are x and y, respectively.

Table 9
Comparisons of the mean TCPU time and the mean TR time of MCTS-based rescheduling method and GA-based rescheduling method in large size instances.

Instances D11 D12 D13 D14 D15 D16 D17 D18
Number of new
jobs

120 140 160 180 200 220 240 260

n × m 135 × 8 155 × 8 175 × 8 195 × 8 215 × 8 235 × 8 255 × 8 275 × 8

GA-based method 5453.5
(5453.5)

7074.1
(7074.1)

8723.0
(8723.0)

11309.3
(11309.3)

14440.2
(14440.2)

18033.6
(18033.6)

24316.7
(24316.7)

36745.1
(36745.1)

MCTS-based
method

3071.4
(1829.2)

4009.1
(2312.7)

4915.4
(2819.0)

6480.0 (3629.8) 8491.3 (4538.6) 10446.7
(5749.2)

13502.4
(7503.6)

17463.9
(10129.3)

The values x(y) in this table denote that the mean TCPU time and the mean TR time are x and y, respectively.

K. Li et al.

Computers & Industrial Engineering 155 (2021) 107211

10

It can be found that compared to the completely reactive scheduling
methods, the GA-based rescheduling method and the proposed MCTS-
based rescheduling method can finish all operations in a much shorter
time. For each instance, although the result of the MCTS-based
rescheduling method is slightly worse than the GA-based rescheduling
method, the TCPU time and the total response time to all dynamic events
of the former is much less than that of the latter, which is more suitable
to be applied in practical production, especially for the large-scale
scheduling problem with frequent dynamic events.

5.2.2. Analysis of the response time
It is worth pointing out that the response time to dynamic events

plays a crucial role in solving dynamic scheduling problems in the real
manufacturing. In this paper, the computation time to generate a new
rescheduling scheme at each rescheduling point is taken as the response
time. The mean response time comparison of MCTS-based method and
GA-based method at each rescheduling point in the instance D18 is
plotted in Fig. 5, which shows that the response time of MCTS-based
method is much shorter than that of GA-based method at most of the
rescheduling points. The difference is more obvious with the increase of
the number of unprocessed operations. The slightly longer response time
of MCTS-based method at the last few rescheduling points may be due to
the greater number of remaining unprocessed operations. In addition,
the proposed MCTS-based method has a more stable response time
throughout all the rescheduling points, even in the case of a very large
number of unprocessed operations.

6. Conclusions and future work

Most of the literature on production scheduling focuses on static
scheduling problems, while dynamic factors are seldom considered due
to their complexity and difficulty. This paper studied a dynamic flexible
job shop scheduling problem which takes four dynamic events into ac
count, namely, new jobs arrival, machine breakdown, job cancellation
and change in the processing time of operations.

In dynamic scheduling problem, it is very important to respond to
random dynamic events and generate an acceptable rescheduling
scheme in a short time. However, some traditional intelligent optimi
zation algorithms often take a long time to generate a satisfactory
schedule, especially for large-scale FJSPs, which makes them not
directly applicable to actual production scheduling scenarios. In order to

contribute to the literature, this paper introduced a new rescheduling
method based on MCTS, which can quickly generate an effective
schedule for the proposed DFJSP. In this way, by comparing with these
traditional rescheduling methods, it can be realized that the proposed
method provides an acceptable solution to the DFJSP in terms of solu
tion quality and computation time.

The MCTS algorithm is firstly used to solve the DFJSP. Unlike the
traditional rescheduling methods which generate complete rescheduling
scheme at each rescheduling point, the MCTS-based rescheduling
method is applied to generate a partial rescheduling scheme corre
sponding to the subsequent specified time window in a short time. This
method can greatly reduce the real-time response time to dynamic
events, so it can be better applied in the actual scheduling environments.
Since the proposed method considers dynamic factors and is able to
provide efficient and effective solution even in large scale problems with
frequent dynamic events, it can be applied to practical manufacturing
systems.

We believe that the MCTS-based method can be considered as a new
useful approach to obtain efficient and effective solution for different
scheduling problems. In future research, it is worthwhile to study many
other performance objectives or multi-objective for DFJSPs. There are
some other optimization techniques to improve the performance of
MCTS which deserve further study. Moreover, the proposed method can
be considered to deal with other different production scheduling envi
ronments such as flow shop and parallel machines shop.

CRediT authorship contribution statement

Kexin Li: Conceptualization, Methodology, Software, Formal anal
ysis, Writing - original draft. Qianwang Deng: Supervision, Funding
acquisition, Resources, Writing - review & editing. Like Zhang: Inves
tigation, Validation, Writing - review & editing. Qing Fan: Project
administration, Funding acquisition. Guiliang Gong: Project adminis
tration, Funding acquisition. Sun Ding: Software.

Acknowledgments

The authors would like to express heartfelt thanks to the editor and
anonymous reviewers for their valuable comments and suggestions.

This work was supported by the National Key R&D Program of China
[grant numbers 2020YFB1712100, 2018YFB1701400]; the National
Natural Science Foundation of China [grant numbers 61973108,
72001217]; the State Key Laboratory of Advanced Design and
Manufacturing for Vehicle Body, Hunan University [grant number
71775004]; the Nature Science Foundation of Changsha [grant number
kq2007033]; and the State Key Laboratory of Construction Machinery
[grant number SKLCM2019-03].

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Appendix A

A summary of the parameters used to design the DFJSP instances in
our experiments is presented in Table A.1. The number of available
machines is 8, and each machine is assigned a different mean time be
tween failure (MTBF) and mean time to repair (MTTR). The MTBF and
MTTR of eight machines are given in Table A.2.

Fig. 5. The mean response time comparison of MCTS-based method and GA-
based method at each rescheduling point in the instance D18.

K. Li et al.

Computers & Industrial Engineering 155 (2021) 107211

11

References

Adibi, M. A., Zandieh, M., & Amiri, M. (2010). Multi-objective scheduling of dynamic job
shop using variable neighborhood search. Expert Systems with Applications, 37(1),
282–287. https://doi.org/10.1016/j.eswa.2009.05.001

Asta, S., Karapetyan, D., Kheiri, A., Ozcan, E., & Parkes, A. J. (2016). Combining Monte-
Carlo and hyper-heuristic methods for the multi-mode resource-constrained multi-
project scheduling problem. Information Sciences, 373, 476–498. https://doi.org/
10.1016/j.ins.2016.09.010

Brandimarte, P. (1993). Routing and scheduling in a flexible job shop by tabu search.
Annals of Operations Research, 41(1–4), 157–183. https://doi.org/10.1007/
bf02023073

Browne, C. B., Powley, E., Whitehouse, D., Lucas, S. M., Cowling, P. I., Rohlfshagen, P.,
… Colton, S. (2012). A survey of Monte Carlo tree search methods. IEEE Transactions
on Computational Intelligence and Ai in Games, 4(1), 1–43. https://doi.org/10.1109/
tciaig.2012.2186810

Cao, Z., Zhou, L., Hu, B., & Lin, C. (2019). An adaptive scheduling algorithm for dynamic
jobs for dealing with the flexible job shop scheduling problem. Business & Information
Systems Engineering, 61(3), 299–309. https://doi.org/10.1007/s12599-019-00590-7

Chou, J.-J., Liang, C.-C., Wu, H.-C., Wu, I. C., & Wu, T.-Y. (2015). A new MCTS-based
algorithm for multi-objective flexible job shop scheduling problem. In 2015
Conference on Technologies and Applications of Artificial Intelligence (pp. 136–141).

Chryssolouris, G., & Subramaniam, V. (2001). Dynamic scheduling of manufacturing job
shops using genetic algorithms. Journal of Intelligent Manufacturing, 12(3), 281–293.
https://doi.org/10.1023/a:1011253011638

Church, L. K., & Uzsoy, R. (1992). Analysis of periodic and event-driven rescheduling
policies in dynamic shops. International Journal of Computer Integrated Manufacturing,
5(3), 153–163. https://doi.org/10.1080/09511929208944524

Furuoka, R., & Matsumoto, S. (2017). Worker’s knowledge evaluation with single-player
Monte Carlo tree search for a practical reentrant scheduling problem. Artificial Life
and Robotics, 22(1), 130–138. https://doi.org/10.1007/s10015-016-0325-2

Garey, M. R., Johnson, D. S., & Sethi, R. (1976). The complexity of flowshop and jobshop
scheduling. Mathematics of Operations Research, 1(2), 117–129. https://doi.org/
10.1287/moor.1.2.117

Gelly, S., & Silver, D. (2007). Combining online and offline knowledge in UCT. In
Proceedings of the 24th International Conference on Machine Learning (pp. 273–280).

Gelly, S., & Silver, D. (2011). Monte-Carlo tree search and rapid action value estimation
in computer Go. Artificial Intelligence, 175(11), 1856–1875. https://doi.org/
10.1016/j.artint.2011.03.007

Gholami, M., & Zandieh, M. (2009). Integrating simulation and genetic algorithm to
schedule a dynamic flexible job shop. Journal of Intelligent Manufacturing, 20(4),
481–498. https://doi.org/10.1007/s10845-008-0150-0

Kocsis, L. & Szepesvari, C. (2006). Bandit based Monte-Carlo planning. In J. Furnkranz,
T. Scheffer & M. Spiliopoulou (Eds.), Proceedings machine learning: Ecml 2006 (Vol.
4212, pp. 282–293).

Kundakci, N., & Kulak, O. (2016). Hybrid genetic algorithms for minimizing makespan in
dynamic job shop scheduling problem. Computers & Industrial Engineering, 96, 31–51.
https://doi.org/10.1016/j.cie.2016.03.011

Li, X., & Gao, L. (2016). An effective hybrid genetic algorithm and tabu search for flexible
job shop scheduling problem. International Journal of Production Economics, 174,
93–110. https://doi.org/10.1016/j.ijpe.2016.01.016

Liu, B., Fan, Y., & Liu, Y. (2015). A fast estimation of distribution algorithm for dynamic
fuzzy flexible job-shop scheduling problem. Computers & Industrial Engineering, 87,
193–201. https://doi.org/10.1016/j.cie.2015.04.029

Mehta, S. V., & Uzsoy, R. (1999). Predictable scheduling of a single machine subject to
breakdowns. International Journal of Computer Integrated Manufacturing, 12(1),
15–38. https://doi.org/10.1080/095119299130443

Nie, L., Gao, L., Li, P., & Li, X. (2013). A GEP-based reactive scheduling policies
constructing approach for dynamic flexible job shop scheduling problem with job
release dates. Journal of Intelligent Manufacturing, 24(4), 763–774. https://doi.org/
10.1007/s10845-012-0626-9

Nie, L., Gao, L., Li, P., & Shao, X. (2013). Reactive scheduling in a job shop where jobs
arrive over time. Computers & Industrial Engineering, 66(2), 389–405. https://doi.org/
10.1016/j.cie.2013.05.023

Ouelhadj, D., & Petrovic, S. (2009). A survey of dynamic scheduling in manufacturing
systems. Journal of Scheduling, 12(4), 417–431. https://doi.org/10.1007/s10951-
008-0090-8

Ozturk, G., Bahadir, O., & Teymourifar, A. (2019). Extracting priority rules for dynamic
multi-objective flexible job shop scheduling problems using gene expression
programming. International Journal of Production Research, 57(10), 3121–3137.
https://doi.org/10.1080/00207543.2018.1543964

Rajabinasab, A., & Mansour, S. (2011). Dynamic flexible job shop scheduling with
alternative process plans: An agent-based approach. International Journal of Advanced
Manufacturing Technology, 54(9–12), 1091–1107. https://doi.org/10.1007/s00170-
010-2986-7

Rangsaritratsamee, R., Ferrell, W. G., & Kurz, M. B. (2004). Dynamic rescheduling that
simultaneously considers efficiency and stability. Computers & Industrial Engineering,
46(1), 1–15. https://doi.org/10.1016/j.cie.2003.09.007

Reddy, M. B. S. S., Ratnam, C., Rajyalakshmi, G., & Manupati, V. K. (2018). An effective
hybrid multi objective evolutionary algorithm for solving real time event in flexible
job shop scheduling problem. Measurement, 114, 78–90. https://doi.org/10.1016/j.
measurement.2017.09.022

Sha, D. Y., & Liu, C. H. (2005). Using data mining for due date assignment in a dynamic
job shop environment. International Journal of Advanced Manufacturing Technology,
25(11–12), 1164–1174. https://doi.org/10.1007/s00170-003-1937-y

Shen, X.-N., & Yao, X. (2015). Mathematical modeling and multi-objective evolutionary
algorithms applied to dynamic flexible job shop scheduling problems. Information
Sciences, 298, 198–224. https://doi.org/10.1016/j.ins.2014.11.036

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G., …
Hassabis, D. (2016). Mastering the game of Go with deep neural networks and tree
search. Nature, 529(7587), 484-+. https://doi.org/10.1038/nature16961

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A.,
Hubert, T., Baker, L., Lai, M., Bolton, A., Chen, Y., Lillicrap, T., Hui, F., Sifre, L., van
den Driessche, G., Graepel, T., & Hassabis, D. (2017). Mastering the game of Go
without human knowledge. Nature, 550(7676), 354. https://doi.org/10.1038/
nature24270

Su, N., Zhang, M., Johnston, M., & Tan, K. C. (2013). A computational study of
representations in genetic programming to evolve dispatching rules for the job shop
scheduling problem. IEEE Transactions on Evolutionary Computation, 17(5), 621–639.

Teymourifar, A., Ozturk, G., Ozturk, Z. K., & Bahadir, O. (2020). Extracting new
dispatching rules for multi-objective dynamic flexible job shop scheduling with
limited buffer spaces. Cognitive Computation, 12(1), 195–205. https://doi.org/
10.1007/s12559-018-9595-4

Vieira, G. E., Herrmann, J. W., & Lin, E. (2003). Rescheduling manufacturing systems: A
framework of strategies, policies, and methods. Journal of Scheduling, 6(1), 39–62.
https://doi.org/10.1023/a:1022235519958

Vinod, V., & Sridharan, R. (2008). Scheduling a dynamic job shop production system
with sequence-dependent setups: An experimental study. Robotics and Computer-
Integrated Manufacturing, 24(3), 435–449. https://doi.org/10.1016/j.
rcim.2007.05.001

Waledzik, K., & Mandziuk, J. (2018). Applying hybrid Monte Carlo tree search methods
to risk-aware project scheduling problem. Information Sciences, 460, 450–468.
https://doi.org/10.1016/j.ins.2017.08.049

Wang, L., Luo, C., & Cai, J. (2017). A variable interval rescheduling strategy for dynamic
flexible job shop scheduling problem by improved genetic algorithm. Journal of
Advanced Transportation, 2017(3), 1–12. https://doi.org/10.1155/2017/1527858

Wu, T.-Y., Wu, I. C., & Liang, C.-C. (2013). Multi-objective flexible job shop scheduling
problem based on Monte-Carlo tree search. In 2013 conference on technologies and
applications of artificial intelligence (pp. 73–78).

Xu, B., Mei, Y., Wang, Y., Ji, Z., & Zhang, M. (2020). Genetic programming with delayed
routing for multiobjective dynamic flexible job shop scheduling. Evolutionary
Computation, 1–31. https://doi.org/10.1162/evco_a_00273

Zadeh, M. S., Katebi, Y., & Doniavi, A. (2019). A heuristic model for dynamic flexible job
shop scheduling problem considering variable processing times. International Journal
of Production Research, 57(10), 3020–3035. https://doi.org/10.1080/
00207543.2018.1524165

Zandieh, M., & Adibi, M. A. (2010). Dynamic job shop scheduling using variable
neighbourhood search. International Journal of Production Research, 48(8),
2449–2458. https://doi.org/10.1080/00207540802662896

Table A2
The MTBF and MTTR of eight machines.

Machine number 1 2 3 4 5 6 7 8

MTBF 58 68 62 58 69 59 66 51
MTTR 19 10 14 13 17 11 20 14

Table A1
Summary of the parameters used in the design of DFJSP instances.

Characteristics Specifications

Size m = 8 machines
Change in the processing time of operations U[1, 10]
Machine breakdowns MTBF = U[50, 70]

MTTR = U[10, 20]
Distribution of TBF Exponential distribution with the

MTBF
Distribution of TTR Exponential distribution with the

MTTR
The number of operations for each new job U[1, m + 2]
The number of optional machines for each new

operation
at random from the set {1, 2, …,
m}

The processing time of each new operation U[1, 10]
The mean time between job arrival (MTBJA) 20
Distribution of the time between job arrival

(TBJA)
Exponential distribution with the
MTBJA

The mean time between job cancellation
(MTBJC)

60

Distribution of the time between job
cancellation (TBJC)

Exponential distribution with the
MTBJC

The number of new jobs per arrival 5
The number of jobs per cancellation 1

U[a, b] denotes a number generated uniformly at random from the interval of [a,
b].

K. Li et al.

https://doi.org/10.1016/j.eswa.2009.05.001
https://doi.org/10.1016/j.ins.2016.09.010
https://doi.org/10.1016/j.ins.2016.09.010
https://doi.org/10.1007/bf02023073
https://doi.org/10.1007/bf02023073
https://doi.org/10.1109/tciaig.2012.2186810
https://doi.org/10.1109/tciaig.2012.2186810
https://doi.org/10.1007/s12599-019-00590-7
http://refhub.elsevier.com/S0360-8352(21)00115-7/h0030
http://refhub.elsevier.com/S0360-8352(21)00115-7/h0030
http://refhub.elsevier.com/S0360-8352(21)00115-7/h0030
https://doi.org/10.1023/a:1011253011638
https://doi.org/10.1080/09511929208944524
https://doi.org/10.1007/s10015-016-0325-2
https://doi.org/10.1287/moor.1.2.117
https://doi.org/10.1287/moor.1.2.117
http://refhub.elsevier.com/S0360-8352(21)00115-7/h0055
http://refhub.elsevier.com/S0360-8352(21)00115-7/h0055
https://doi.org/10.1016/j.artint.2011.03.007
https://doi.org/10.1016/j.artint.2011.03.007
https://doi.org/10.1007/s10845-008-0150-0
https://doi.org/10.1016/j.cie.2016.03.011
https://doi.org/10.1016/j.ijpe.2016.01.016
https://doi.org/10.1016/j.cie.2015.04.029
https://doi.org/10.1080/095119299130443
https://doi.org/10.1007/s10845-012-0626-9
https://doi.org/10.1007/s10845-012-0626-9
https://doi.org/10.1016/j.cie.2013.05.023
https://doi.org/10.1016/j.cie.2013.05.023
https://doi.org/10.1007/s10951-008-0090-8
https://doi.org/10.1007/s10951-008-0090-8
https://doi.org/10.1080/00207543.2018.1543964
https://doi.org/10.1007/s00170-010-2986-7
https://doi.org/10.1007/s00170-010-2986-7
https://doi.org/10.1016/j.cie.2003.09.007
https://doi.org/10.1016/j.measurement.2017.09.022
https://doi.org/10.1016/j.measurement.2017.09.022
https://doi.org/10.1007/s00170-003-1937-y
https://doi.org/10.1016/j.ins.2014.11.036
https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature24270
https://doi.org/10.1038/nature24270
http://refhub.elsevier.com/S0360-8352(21)00115-7/h0150
http://refhub.elsevier.com/S0360-8352(21)00115-7/h0150
http://refhub.elsevier.com/S0360-8352(21)00115-7/h0150
https://doi.org/10.1007/s12559-018-9595-4
https://doi.org/10.1007/s12559-018-9595-4
https://doi.org/10.1023/a:1022235519958
https://doi.org/10.1016/j.rcim.2007.05.001
https://doi.org/10.1016/j.rcim.2007.05.001
https://doi.org/10.1016/j.ins.2017.08.049
https://doi.org/10.1155/2017/1527858
http://refhub.elsevier.com/S0360-8352(21)00115-7/h0180
http://refhub.elsevier.com/S0360-8352(21)00115-7/h0180
http://refhub.elsevier.com/S0360-8352(21)00115-7/h0180
https://doi.org/10.1162/evco_a_00273
https://doi.org/10.1080/00207543.2018.1524165
https://doi.org/10.1080/00207543.2018.1524165
https://doi.org/10.1080/00207540802662896

Computers & Industrial Engineering 155 (2021) 107211

12

Zhang, F., Mei, Y., & Zhang, M. (2019). Evolving dispatching rules for multi-objective
dynamic flexible job shop scheduling via genetic programming hyper-heuristics. In
2019 IEEE congress on evolutionary computation (pp. 1366–1373).

Zhang, Y., Wang, J., & Liu, Y. (2017). Game theory based real-time multi-objective
flexible job shop scheduling considering environmental impact. Journal of Cleaner
Production, 167, 665–679. https://doi.org/10.1016/j.jclepro.2017.08.068

Zhou, H., Pang, J., Chen, P.-K., & Chou, F.-D. (2018). A modified particle swarm
optimization algorithm for a batch-processing machine scheduling problem with
arbitrary release times and non-identical job sizes. Computers & Industrial Engineering,
123, 67–81. https://doi.org/10.1016/j.cie.2018.06.018

K. Li et al.

http://refhub.elsevier.com/S0360-8352(21)00115-7/h0200
http://refhub.elsevier.com/S0360-8352(21)00115-7/h0200
http://refhub.elsevier.com/S0360-8352(21)00115-7/h0200
https://doi.org/10.1016/j.jclepro.2017.08.068
https://doi.org/10.1016/j.cie.2018.06.018

	An effective MCTS-based algorithm for minimizing makespan in dynamic flexible job shop scheduling problem
	1 Introduction
	2 Problem description
	3 A MCTS-based algorithm to achieve rescheduling
	3.1 Monte Carlo tree search
	3.2 Problem representations
	3.3 Decoding
	3.4 Some optimization techniques used to improve MCTS
	3.4.1 Subtree keeping policy
	3.4.2 Rapid action value estimation
	3.4.3 Prior knowledge
	3.4.4 Initialized prior knowledge

	3.5 Our modified MCTS

	4 Framework of the MCTS-based rescheduling method to solve DFJSP
	4.1 Rescheduling mode
	4.2 The flowchart of the modified MCTS-based method for DFJSP

	5 Experimental studies and discussion
	5.1 Experiment 1
	5.2 Experiment 2
	5.2.1 The experimental results
	5.2.2 Analysis of the response time

	6 Conclusions and future work
	CRediT authorship contribution statement
	Acknowledgments
	Declaration of Competing Interest
	Appendix A Declaration of Competing Interest
	References

