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Knowledge-driven two-stage memetic algorithm for energy-efficient flexible
job shop scheduling with machine breakdowns

Cong Luo, Wenyin Gong, Chao Lu

A two-stage evolution framework is proposed for EMBFJSP.

A rescheduling strategy is applied for machine breakdowns.

The population is initialized by three problem-specific heuristics.

Four knowledge-driven variable neighborhood search operators are pro-
posed.

Two types of energy-saving strategies are designed.
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Abstract

This paper focuses on the multi-objective energy-efficient flexible job shop
scheduling problem with machine breakdowns. To mitigate the impact of ma-
chine breakdowns, a rescheduling strategy is implemented in the scheduling
process. In addition to sequencing the operations, the current problem is to
determine the appropriate allocation of the machine and the proper speed of
the machine to minimize both makespan and total energy consumption simul-
taneously. A mixed integer linear programming model is established to de-
scribe the considered problem. With the aim of effectively solving this prob-
lem, a knowledge-driven two-stage memetic algorithm (KTMA) is proposed.
In the first stage, a hybrid initialization strategy that combines three problem-
specific heuristics is applied to generate a high-quality initial population. Then,
a knowledge-driven variable neighborhood search approach is designed for
quickly converging and fully exploiting the solution space of the KTMA. In the
second stage, two energy-saving strategies are designed to further reduce the
total energy consumption. Extensive experiments carried out to compare the
KTMA with some well-known algorithms confirm that the proposed KTMA
can efficiently solve this problem.

Keywords: Energy-efficient flexible job shop scheduling, machine breakdowns,
multi-objective optimization, memetic algorithm, knowledge.

1. Introduction

Over the past few decades, economic globalization has provided a strong
impetus for world economic growth, resulting in many uncertain challenges for
traditional manufacturing. Nowadays, some concepts place higher demands
on traditional manufacturing, for example, Industry 4.0, Carbon Neutrality, and
Intelligent Manufacturing (Serrano-Ruiz et al., 2022; Lu et al., 2021b). The man-
ufacturing industry is the foundation and backbone of the country’s production
capacity and national economy, and its level of development is often a reflec-
tion of a country’s comprehensive national power. As an important part of the
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national industry and the leading sector of economic growth, the manufactur-
ing industry of China has maintained a sustainable and stable development
trend (Liang et al., 2022). However, as the pressure of international competi-
tion climbs and the cost of labor increases, the traditional manufacturing in-
dustry is in urgent need of transformation and upgrading to seek a new path
of development.(Li et al., 2022a; Zhang et al., 2021).

On the other hand, with the frequent occurrence of environmental pollution,
extreme weather, energy shortage, and other problems, more and more people
are raising awareness of energy-saving and emission reduction (Lu et al., 2021a;
Wei et al,, 2022). In the past, the scheduling problem usually focuses on only
the factors, including makespan, machine workload, and production costs, but
often overlooked the importance of green energy-saving measures. Thus, green
scheduling (Gong et al., 2021; Li et al., 2020; Zheng & Wang, 2018) is proposed,
which focuses on energy-saving and consumption reduction and has become a
hot issue for scholars around the world. The efficiency of the scheduling scheme
will have a direct and significant impact on energy consumption and environ-
mental emissions. For sustainable development, energy-saving strategies for
job shop scheduling problems must receive sufficient attention. However, in a
real-world scheduling environment, various unexpected situations will occur,
for example, machine breakdowns (Wu et al., 2018), job arrivals (Gao et al.,
2019b; Caldeira et al., 2020), delivery date changes (Hidri et al., 2019), and other
uncertain factors (Afsar et al., 2022; Luo et al., 2022), etc. Therefore, it is very
necessary to investigate dynamic scheduling schemes to handle the actual sit-
uation.

As the most common type of job shop scheduling problem (JSP) (Bhatt &
Chauhan, 2015), the flexible job shop scheduling problem (FJSP), defined as
the NP-hard problem, has been widely studied by many scholars (Gao et al.,
2019a). Nowadays, in the existing literature on FJSP, most of the literature stud-
ies the static scheduling problems, but rarely studies the dynamic scheduling
problems. However, it is necessary to take full account of the actual manufactur-
ing environment and the customer requirements to propose a reliable schedule
scheme to deal with various dynamic events. Therefore, research on the dy-
namic flexible job shop scheduling problem (DFJSP) has aroused the interest
of many scholars (Lei et al., 2022; Ferreira et al., 2022; Mohan et al., 2019). Liang
etal. (2020) investigated the dynamic scheduling problem for the arrival of new
jobs and established an improved probabilistic neural network model. They ap-
plied a genetic algorithm to optimize the smoothing factor for the purpose of
improving model performance. Zaharie et al. (2017) investigated the uncertain
events for delivery date changes and proposed an integer programming model
for accepting, delaying, or rejecting the ordered products which aims at obtain-
ing the best long-term and short-term results. Wang et al. (2022) considered six
dynamic events to simulate a realistic production environment. They applied
deep reinforcement learning techniques to a real-time processing framework
with the combined scheduling rules to further optimize the obtained solutions.
In the actual scheduling environment, machine breakdowns frequently occur
as a type of dynamic event. Therefore, we mainly investigated the flexible job
shop scheduling with machine breakdowns in this paper. When machine break-
downs occur, reasonable rescheduling of the scheduling sequence is critical and
required. However, most studies on the dynamic event of machine breakdowns
are only dedicated to finding a new robust scheduling scheme, thus omitting



the need for rescheduling. Duan & Wang (2022) studied machine breakdown
problems considering the factors of system reusability and task recurrence and
proposed a dynamic event response strategy instead of rescheduling. They
developed a multi-objective particle swarm algorithm combined with the dy-
namic event response strategy to establish an optimization model which is eval-
uated by the indicators of reusability and reproducibility. Abedi et al. (2020)
focused on the energy-efficient job-shop scheduling problem with deteriorat-
ing machines. In order to reduce the impact of the deteriorating machines, they
proposed a multi-population, multi-objective memetic algorithm that aims to
determine the proper machine speeds, thus reducing the wear and tear of the
machine. Zhang et al. (2022) applied the convolutional neural network model
to the two-stage framework to address flexible job shop scheduling problem
considering machine breakdown. They trained a prediction model using CNN
in the first stage. Then, in the second stage, they used the model trained in the
first stage to predict the results and thus evaluate the robustness.

In the background of energy-saving and consumption reduction, more and
more scholars are focusing on green scheduling and designing effective energy-
saving strategies as a way to promote the synergistic development of intelli-
gent manufacturing and green production. Regarding the energy-efficient flex-
ible job shop scheduling problem, Gong et al. (2022) proposed a two-stage
memetic algorithm to reduce the times of machine restarts and designed a strat-
egy based on operation-block moving to further optimize the objective of total
energy consumption. Duan & Wang (2021) proposed a non-dominated ge-
netic ranking algorithm and developed two types of energy-saving strategies
considering idle time and speed level for the flexible job shop problem with
machine breakdowns. Pan et al. (2022) considered a fuzzy flexible job shop
scheduling problem, they constructed a bi-population evolutionary algorithm
with a feedback mechanism to reduce the consumption of energy. Zhao et al.
(2022) established a distributed no-idle flow-shop scheduling model related to
an energy-saving strategy and proposed a self-learning discrete Jaya algorithm
with a green neighborhood search strategy.

Memory algorithms (MAs) have been successfully utilized in various vari-
ants of the scheduling problem due to their excellent global and local search
capabilities (Wang & Wang, 2021; Lou et al., 2022). Many scholars have pro-
posed to incorporate problem knowledge into MAs to solve various types of
multi-objective energy-efficient scheduling problems (Li et al., 2022b; Lu et al.,
2022). Based on the above description, this study proposed a knowledge-
driven two-stage memetic algorithm for solving the energy-efficient flexible job
shop scheduling problem with machine breakdowns (EMBFJSP) to optimize
makespan and TEC simultaneously, which includes the following five inno-
vation points: (i) a two-stage evolution framework is utilized to address EM-
BFJSP; (ii) a rescheduling strategy is applied to reschedule the scheduling se-
quence when machine breakdowns occur. (iii) a hybrid initialization strategy
consisting of three heuristics is constructed for generating a high-quality pop-
ulation. (iv) a knowledge-driven variable neighborhood search approach that
includes four problem-specific neighborhood structures is presented to fully ex-
ploit the solution space. (v) two types of energy-saving strategies are designed
to further reduce TEC effectively without increasing makespan. Meanwhile,
to better solve EMBFJSP, we established a mixed-integer linear programming
(MILP) model for the EMBFJSP.
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The remainder of this paper is organized as follows. The problem descrip-
tion and modeling are described in Section 2. Moreover, details of our pro-
posed KTMA are explained in Section 3. After that, experimental results and
discussion are presented in Section 4. Finally, conclusions and future works are
introduced in Section 5.

2. Problem description and modeling

2.1. Problem description

The EMBFJSP is a complex combinatorial optimization problem that re-
quires allocating limited resources to several jobs under certain constraints in
order to optimize both the makespan and the TEC objectives simultaneously.
The makespan and the TEC are two conflicting objectives, and the decrease of
the makespan is often accompanied by the increase of the TEC. The trade-off
between makespan and TEC can be effectively reflected by the Pareto front,
and Figure 1 shows a Pareto front for this EMBFJSP. Meanwhile, it is not only
necessary to assign machines to operations, but also to select the appropri-
ate machine processing speed and obtain the optimal processing sequence of
jobs, and the start time and completion time of each job should be determined.
Therefore, the EMBEF]JSP is also a complicated scheduling problem. The EM-
BFJSP should solve the three sub-problems: machine allocation, machine speed
selection, and job processing sequence optimization. For this problem, thereisa
setof njobs J = {J1, Jo, ..., J, } and a set of m machines M = {M, Mo, ..., M, }.
Each job J; has a sequence of n; operations O; = {0, 1, 0; 2, ..., O; », } to be pro-
cessed one after another according to the precedence constraints. More pre-
cisely, the EMBFJSP is addressed by the following three steps: (i) allocate a
machine from the available machine set for each operation; (ii) select a suitable
processing speed level for each machine, it is worth noting that different pro-
cessing speeds of the machines have different processing time; (iii) arrange the
processing sequence of all operations on each machine.

x10*

42 44 46 48 50 52
Makespan

Figure 1: A Pareto front of the EMBFJSP.

Machine breakdown as the most common type of dynamic event, often ap-
pears in the actual manufacturing environment (Soofi et al., 2021). When ma-
chine breakdowns occur, the faulty machine should be repaired and can not
process any jobs until the repair process is complete. Therefore, machine break-
down must satisfy three critical factors: the breakdown machine, the condition
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that the machine breakdown occurs, and the time to repair the breakdown ma-
chine. There is a direct relationship between the workload of a machine and
the probability of machine breakdown; that is, a machine that has been used
for a long time tends to be more likely to break down than others. When ma-
chine breakdowns occur, the breakdown machine will no longer process any
operations until the faulty machine is repaired. All unstarted operations will
be rescheduled according to the rescheduling strategy.
In short, the assumptions of EMBFJSP are described below:

e Alljobs and all machines are ready at time zero.

e Any operations can be processed by machines that are available at any
speed level.

e Each operation can only be processed by one available machine with the
selected speed level at any time.

e Each machine can only process one operation at a time.

e An operation cannot be processed until its preceding operations are com-
pleted.

e Once started, no interruptions are allowed until the operation processing
is complete unless the machine breakdown occurs.

e When the machine breakdown occurs, the faulty machine cannot process
the operations and shut down instantly.

e In the case of a machine breakdown, the machine is repaired within a
determined period of time.

2.2. Rescheduling strategy

Based on the previous description, how rescheduling the unstarted opera-
tions has a significant effect on the scheduling sequence. Machine breakdown
is directly related to the processing time of the machines, therefore, when ma-
chine breakdowns occur, the most important thing is how to reschedule the
affected jobs to make the least occurrence of machine breakdowns. Thus, the
core idea of the rescheduling strategy is to evenly distribute the affected jobs so
that each machine has a similar processing time, which will reduce the prob-
ability of machine breakdowns and also reduce the makespan. In this study,
we design an effective rescheduling strategy to restore the previous scheduling
sequence when machine breakdowns occur. The rescheduling strategy aims to
reschedule the operations that have not yet started; that is, all unstarted oper-
ations in the original scheduling sequence will be rescheduled. Among them,
the unstarted operations are allocated to the candidate machines according to
the minimum machine workload rule, which aims to balance the workload to
reduce makespan and effectively reduce the occurrence of machine breakdown.
It is worth noting that when the job is being processed and its processing ma-
chine breakdown occurs, the job needs to wait until the processing machine
is repaired before continuing to complete subsequent processing. During this
period, the job will not be assigned to another machine for processing.



To explain it better, an example is shown in Figure 2. As shown in the origi-
nal scheduling sequence in (a) of Figure 2, M, breakdown at time six and O 3,
Os,2 and Oj 3 are the unstarted operations. The previous scheduling sequence
hasremained, O, 3, O3 2 and Os 3 select available candidate machine sets in turn
according to the minimum workload rule. Before rescheduling, the workload
of My, M, and M3 are 4, 5, and 6, respectively. Therefore, O; 3 is assigned to
M;, and the workload of M; is updated to 6. Then, based on the minimum
workload rule, Os 7 is assigned to Ms, and the workload of M, is updated to
7. Finally, Os 3 is assigned to M3, and the workload of M3 is updated to 9. It is
worth noting that, before rescheduling, the repair time of the machine should
be counted in the workload, and after the operations are assigned to the corre-
sponding machines, the workload of these machines should be updated.

Vachine Anchine [ Unstarted operations
oo [ Ut pentions ] i e
A e — 1A v —
e[ o] o o o] w o] o 0w ]
N —T— " p— o]
; R A R T S R R A R T
(a) Original scheduling sequence (b) New scheduling sequence based on
rescheduling strategy

Figure 2: Examples of the rescheduling strategy.

2.3. MILP model for EMBFJSP

To model the EMBFJSP, we employed a MILP model. Furthermore, in the
subsequent experiments, we adopted the CPLEX solver to solve this MILP
model as a way to verify the correctness of our proposed algorithm.

Before modeling for the EMBFJSP, the notations of EMBFJSP are defined as
follows:

Indices:

i,4": index of jobs, i, i’ = 1,2,...,n

J,j': index of operations, j, j' = 1,2,...,n;

k: index of machines, k = 1,2,...,m

¢: index of machine speeds, ¢ = 1,2, ..,

l: index of position on the machine, [ = 1,2, ..,k

Parameters:

n: the total number of jobs

n;: the total number of operations of job ¢

m: the total number of machines

r: the total number of machine speed levels

h: the total number of positions of machine k

0;,;: the jth operation of job ¢

Vi,j.x: the processing speed of O; ; on machine k, which contains three speed
levels

T PMj, 4: the turn on/off power of machine k at speed ¢

P My, 4 the processing power of machine & at speed ¢

IPMjy 4 the idle power of machine k at speed ¢

T; ;1 the basic time of operation O; ; on machine k

RT}: the repair time of breakdown machine &
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STy, the total turn on/off time of machine &

L: alarge enough integer

Decision variables:

S; j: the start time of operation O; ;

C;,;: the completion time of operation O; ;

By,1,4: the start time of machine % on position [ at speed ¢

F 1.4 the finish time of machine & on position [ at speed ¢

P; j 1,q: the processing time of operation O; ; on machine k at speed ¢

E;: the total turn on/off energy consumption

E,,: the total processing energy consumption

E;: the total idle energy consumption

TEC: the total energy consumption

Cmax: the makespan

X, ik, if operation O; ; is processed on machine k at speed g, X; j 1o = 1;
otherwise, X; j s =0

Zj, ,: if machine k processes at speed ¢, Zj, ; = 1; otherwise, Z;, , = 0

Ui jk,q0: if the position ! of machine k at speed g is selected for operation
Oi’j, Ui,j,k’,q,l = 1,' otherwise, Ui’j’]f’q’l =0

W, ; it If machine k breakdown while processing operation O; ;, W, ; = 1;
otherwise, W; ; 1, = 0

The objectives of EMBF]SP consist of makespan and TEC, which are de-
scribed in detail below.

(1) Makespan criterion: Makespan is often regarded as an efficiency indicator
in scheduling problems. In other words, the magnitude of the makespan value
can indicate the productivity of the enterprise. Thus, the objective of makespan
Cmax in EMBFJSP can be defined as follows:

min F; = Cpmax =maxC;;,Vi=1,...m;Vj=1,....n; (1)

(2) TEC criterion: TEC criterion is not only a critical green indicator of the
environment but also an economic indicator of an enterprise, which can reflect
the contribution to the environment and the economic benefits of the enter-
prise. The TEC contains three components: turn on/off energy consumption,
processing energy consumption, and idle energy consumption. Therefore, the
TEC objective of EMBFJSP can be defined as follows:

min F, = TEC = E; + E, + E; (2)
Ei=> > TPM;g- STy Zigq (3)
k=1gq=1

n o nm; m

Ew = Z Z Z Z P‘]\/[k-,(l ’ Pi,j,k,q ’ Xi’j’k"q (4)

i=1 j=1k=1g=1

m h T

E; = Z Z Z IPMpq - (Big — Fri-1,) (5)

k=1 1=2 q=1
In conclusion, the MILP model of EMBFJSP is described as follows:
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min F; = Cax
min 5 = TEC

Subject to:

Bijka=Tijk/Vijk:
Vi=1,..mVj=1..,n;Vk=1,...m;VYqg=1,....r

n

n ng Uy
E E Ui,j,mq.,l?E E Ui i kg, (141)5

i=1 j=1 i'=15'=1

VeE=1,..m;Vq=1,..m¥Vl=1,...h—1

D)D) BHIE
=1

k=1q=1
Vi=1,...nmVj=1,..n

m

n n;

>3 Uijkar <1,

i=1j=1

VeE=1,..m;¥q=1,...mVl=1,...,h

Si,j + Z Z ik * Kinjihog T BTk - Wi k) < 8i j11,
k=1 qg=1

Vi=1,..,m;Vj=1..,n;—1

Sijr12Ci 5, Vi=1,..,mVi=1..,n—1

n Mg
Biiy1,q — Brig = E E Pijkg Uigkgi)s

=1 j=1

Vk=1,..m;¥q=1,...mVl=1,..,.h—1

Biiq>8i; — L (1= Uijrgqu)
Vi=1,...m;Vy=1,...n;Vk=1,..m;Vg=1,...,m¥Vl=1,...,h

Brig<Sij+L-(1=Uijkgu)
Vi=1,...mVj=1 .. n;Vk=1,..m;¥Vg=1,...mVl=1,...h

(6)

(7)

(10)

(13)

(15)
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Cij=Si;+ Z Z(R]kq Xijkg T RTe - Wi jk),
k=1q=1 (16)

Vi=1,...m;Vj=1,...,n;

Chax = maxC; ,,,

17
Vi=1,..,n (17)

Siﬁj 2 O; Ci,j 2 O,Vi = 1,...,n;Vj = 1, ceey 145 (18)

Biig=>0;Fia>0VE=1,...m;Vl=1,...,KhVe=12 .7 (19)

Xk Liq: Ui kgl Wik € {0,1}, (20)
Vi=1,...m;Vj=1,...n;Vk=1,..m;¥g=1,...,rm;¥Vl=1,...,h

Here, Formula (6) is the objectives, including makespan and TEC. For-
mula (7) is to calculate the actual processing time, the faster the processing
speed, the shorter the actual processing time. Formula (8) ensures that the po-
sitions of each machine are sequentially assigned to the operations. Formula
(9) ensures that each operation can only correspond to one position of each
machine. Formula (10) ensures that each position of the machines can process
one operation at most. Formula (11) and Formula (12) guarantee the constraint
relationship between the operations of the job, for the adjacent operations, the
successor operation can only be started processing after the predecessor oper-
ation is completed. Formula (13) guarantees that a machine can only process
one operation at any given time, as each operation needs to occupy a position
on the machine to be processed. Formula (14) and Formula (15) define the re-
lationship between the start time of machines and the start time of operations.
Formula (16) defines the completion time of each operation. Formula (17) de-
fines the makespan. Formula (18) - Formula (20) determine the limitations on
the range of values. There are n(1 + 4n;) + 3mrh + nn;mr(1 + 2h) constraints,
2nn; + 2mh continuous variables, and nn;mr + n2n12 + mr + nn;mrh + nn;m
binary decision variables.

3. The proposed algorithm: KTMA

3.1. Framework of KTMA

Our proposed KTMA is based on the two-stage framework which is stated
in Algorithm 1, and it consists of two stages: the first stage is to find as many
optimal solutions as possible, and the second stage is to further optimize the
TEC criteria based on the optimal solutions found in the first stage. In the
first stage, a memetic algorithm framework is applied to accelerate the conver-
gence performance of the KTMA, thus obtaining a sufficient number of non-
dominated solutions. Afterward, a hybrid initialization strategy that consists
of three heuristic methods is utilized for generating a high-quality population.
Then, a knowledge-driven variable neighborhood search strategy that adjusts



the position of operations on the critical path is designed to fully explore the so-
lution space to improve the convergence performance efficiently. In the second
stage, an efficient energy-saving strategy is designed to further optimize the to-
tal energy consumption objective without deteriorating the makespan objective
by delaying the start time of operations and turning off specific machines. In
the following sections, we will introduce the components of each stage step by
step.

Algorithm 1 The Framework of KTMA

Input: PS (population size), G (maximum number of iterations), P
(crossover rate), P, (mutation rate)

Output: PF (Pareto solution set)

1. // First stage

2: Gen < 1,t+ 0, PF « 0.

3: Py < Initialization(PS).

4: while Gen < G do

. MatePool; < TournamentSelection(P;).

C: + GeneticOperation(MatePool, P, Ppy,).
Pt — Pt U Ct.
S; + Randomly select PS/4 individuals for variable neighborhood
search.

9: @y + VariableNeighborhoodSearch(S;).
10: P+ P U Q.
11:  {Fy, Py, ..., Flast, F } < FastNonDominatedSort(P;).
122 P < DeleteDuplicateIndividuals(P;).
130 k<« 1,Piq < 0.
14:  while ‘Pt+1| + |Fk‘ < PSdo
15: Pit1 + Piy1 U Fy.
16: k< k+1.
17:  end while
18: W%PS—‘Pt+1‘.
19:  Figst < CrowdingDistance(Fjgst)-
20: Pt+1 — Pt+1 U East(l W, )
21:  PF < UpdatePF(PF).
22: end while
23: // Second stage
24: fori=1to|PF|do
25.  PF(i) + DelayedStartTimeStrategy (PF(i)).
26:  PF(i) - MachineTurnoffStrategy (PF (7).
27: end for

® N9

3.2. Encoding and decoding

This section describes how to implement encoding and decoding. Three
vectors are applied to represent a chromosome: the operation sequence vec-
tor (OSV), the machine sequence vector (MSV), and the speed sequence vector
(S5V), which can be presented in Figure 3. For OSV, each gene i is sequentially
encoded by the job number. The numbering sequence between jobs indicates
the processing sequence of jobs. The jth appearance of the job number indi-
cates the jth operation O; ; of job J;. For MSV, all operations are arranged in

10



ascending order that are allocated by machines from left to right. For SSV, the
genes of MSV and the genes of SSV maintain a one-to-one mapping, which in-
dicates the processing speed of the machine for processing O; ;. Moreover, the
length of OSV, MSV, and SSV is equivalent to the total number of operations.

When decoding, each operation will start decoding as early as possible ac-
cording to the constraints between machines and jobs. First, all operations are
divided into a processing sequence according to their order in the OSV. Sec-
ond, each operation in the processing sequence is sequentially allocated to the
selected machine number from the MSV. Finally, the selected machines are as-
signed to the given processing speed from the SSV.

osv | 1 3 2 1 3 2 1 3

MSsv | 3 2 3 1 3 2 1 1

EERERER IR
011 Oz Ous 021 Oz 031 Osz2 Oss
bt tit pit ot t

SSV 1 1 2 2 3 1 8] 2

Figure 3: Encoding scheme.

3.3. Hybrid initialization strategy

Since the quality of the initial population often affects the speed of conver-
gence of the algorithm to find satisfactory solutions, the initialization strategy
becomes an important part of the evolutionary process. Therefore, the core pur-
pose is to design an effective initialization strategy to generate a high-quality
initial population. Generally, a simple single initialization strategy cannot ob-
tain a high-quality population. Therefore, the hybrid initialization strategy is
proposed to solve this problem, which is described as follows:

Minimum global machine workload heuristic (H,): Select the machine with the
smallest total machine workload from its candidate machine set, which can re-
duce makespan by balancing machine workload.

Minimum processing time heuristic (H2): Select the machine with the smallest
processing time from its candidate machine set to assign to each operation O ;,
which can effectively reduce total energy consumption.

Lower machine processing speed heuristic (H3): Randomly select a machine and
lower the machine processing speed by one level, which will reduce the idle
time to a certain extent. If the machine processing speed is at level 1, the pro-
cessing speed remains constant.

To ensure that the initial population does not fall into the local optimum,
as well as to maintain the diversity of the population, a random initialization
strategy is applied to the hybrid initialization strategy.

Random initialization strategy (R): Randomly initialize the population to
maintain the diversity performance of the initial population.

11
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The process of the hybrid initialization strategy is as follows: Firstly, the OSV
and the SSV are randomly generated using the strategy R to maintain the diver-
sity performance of the population. Then the MSV is generated by utilizing the
aforementioned four initialization strategies, which are defined the probabili-
ties as 0.3, 0.2, 0.2, and 0.3. It is worth noting that when using the heuristic 3,
the MSV randomly selects a machine, and the SSV also changes accordingly.

3.4. Genetic operator

The genetic operator is the critical step to perturb the population to generate
new individuals, thus achieving an optimal search to explore the feasible space.
For crossover operators, an improved precedence operation crossover (IPOX)
operator is employed for OSV and a multipoint crossover (MPX) operator is
employed for MSV and SSV (Wang et al., 2010). Examples of the IPOX and
MPX operators are presented in Figure 4 (a) and Figure 4 (b), respectively. The
procedure is described as follows:

For the IPOX operator:

Step 1: Divide all jobs into two sub-job sets JobSet; and JobSet, randomly.

Step 2: Select all the jobs belonging to JobSet; from parent P; to move into
offspring O, select all the jobs belonging to JobSet, from parent P to move
into offspring O, and keep their positions unchanged.

Step 3: Select all the jobs belonging to JobSet; from parent P, to move into
offspring Oy, select all the jobs belonging to JobSet, from parent P, to move
into offspring O, and keep their sequence unchanged.

For the MPX operator:

Step 1: Randomly generate a sequence consisting of integers 0 and 1 that
equals the length of the chromosome.

Step 2: Find the position T'P with the value 1 in the 0-1 sequence.

Step 3: Swap the machines or machine speeds in parent P, and parent P,
corresponding to position TP and the other machines or machine speeds in
parent P; and parent P, remain unchanged.

£ 44ty P2 s | | | 3 8
pla e | s ] - ax T
' =l . N N N Y O B
l :l :l :l l B N2 2
- 0 0 0 - P| 3 3 2 1 3 1
o 3,1 2 |1 |§1 3|1 3,1 2 | [Inga] JobSets
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(a) IPOX operator (b) MPX operator

Figure 4: Examples of the crossover operators.

For mutation operators, a swapping mutation (SM) operator is employed
for OSV and a multi-point mutation (MPM) operator is employed for MSV and
SSV (Deng et al., 2017). Examples of the SM and MPM operators are presented
in Figure 5 (a) and Figure 5 (b), respectively. The procedure is described as
follows:
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For the SM operator:

Step 1: Select two positions T'P; and T'P, in parent P, randomly.

Step 2: Exchange the jobs of positions T'P; and TP, in parent P; to generate
offspring O;.

For the MPM operator:

Step 1: Randomly select several positions T'P in parent P;.

Step 2: Randomly replace the machines or machine speeds of parent P; in
these positions with the candidate machine set or candidate machine speed set
to generate offspring O;.

O11 O3n 021 O22 032 033 O12 O O11 O12 O13 021 Oz Oz1 O3z Oss
(S S S S S S S S S S S S S S

P 1 3 2 2 3 3 1 1| op | 2 1 1 2 3 2 1 1

Oy 1 3 3 2 3 2 1 1 0O, 2 2 1 3 3 2 2 1

L T T e S

O11 Os1 O3z 021 O3z O22 O12 O

(a) SM operator (b) MPM operator

Figure 5: Examples of the mutation operators.

3.5. Knowledge-driven variable neighborhood search

Variable neighborhood search has become a very critical part of the schedul-
ing problems. Especially, an effective design of a variable neighborhood search
can greatly facilitate the search capabilities of the algorithm. By analyzing
the characteristics of EMBF]JSP, we added problem-specific knowledge to the
variable neighborhood search and constructed four knowledge-driven variable
neighborhood search operators as a way to enhance the convergence of the al-
gorithm. The EMBFJSP aims to optimize two objectives: makespan and TEC.
The makespan is mainly related to the operations on the critical path, and the
TEC is mainly related to the idle time of the machines. Therefore, when design-
ing the knowledge-driven variable neighborhood search operators, we mainly
consider how to optimize the operation sequence on the critical path and how
to reduce the idle time of the machines. The four knowledge-driven variable
neighborhood search operators are designed as follows:

3.5.1. Neighborhood operator 1

Neighborhood operator 1 (V) aims to adjust the position of the operation
on the critical block, which contains continuous operations on the same ma-
chine on the critical path. The critical path can be defined as the longest path
from the start node to the end node of the disjunctive graph. A more detailed
description of the disjunctive graphs can be referred to (Zhang et al., 2007).
Neighborhood operator 1 (N;) randomly selects the operations on the critical
path and adjusts them to the head of the critical block. An example of N is
shown in Figure 6 (a).

From Figure 6 (a), we can find the critical path (consisting of Oz 1, O3 2, O3 2,
01,3 and O3 3) and randomly select an operation O3 5 and move it to the head
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of the critical block (consisting of O2 2, O3 2 and O 3) satisfying its constraints.
Meanwhile, O3 3 can also move forward to connect its predecessor operation
(O3,2) and thus shorten the makespan of the original sequence.

3.5.2. Neighborhood operator 2

Neighborhood operator 2 (N-) is also based on the critical block and ran-
domly selects the operations on the critical path and adjusts them to the tail of
the critical block. An example of N is shown in Figure 6 (b).

From Figure 6 (b), we can find the critical path (consisting of O3 1, O2 2, O 3,
Os,2 and O3 3) and randomly select an operation O; 3 and move it to the tail of
the critical block (consisting of O 2, O1 3 and O3 2) satisfying its constraints. At
the same time, O3 3 can also move forward to connect its predecessor operation
(Os3,2) that can shorten the makespan of the original sequence.

3.5.3. Neighborhood operator 3

Neighborhood operator 3 (A3) aims to move the operations on the critical
path, which randomly selects an operation on the critical path and inserts it into
a different candidate machine. An example of N is shown in Figure 6 (c).

From Figure 6 (c¢), we can find the critical path (consisting of O3 1, Oz 2, O 3,
Os,2 and O3 3) and randomly select an operation O, 3 and insert it to M. O3 2
and Os 3 can move ahead accordingly, resulting in a smaller makespan value
than the original sequence.

3.5.4. Neighborhood operator 4

Neighborhood operator 4 (V) is based on the machine speeds which ran-
domly select an operation on the non-critical path where subsequent idle time
exists and lower the machine speed of its processing machine by one level. The
energy consumption generated by processing time and the energy consumption
generated by idle time are large in TEC. Therefore, by selecting operations on
the non-critical path and reducing the processing speed of their processing ma-
chines, the power of the processing machines can be reduced and the idle time
of the machines can also be reduced. Thus, the TEC can be effectively reduced.
An example of NV, is shown in Figure 6 (d).

From Figure 6 (d), we randomly select O, ; on the non-critical path and
lower the machine speed to satisfy its constraints. The processing speed of O ;
becomes slower, resulting in longer processing time, and the total energy con-
sumption of this sequence after using the N; is less than the original.

3.6. Energy-saving strategy

Energy-saving strategy is especially important in the energy-efficient
scheduling problem. An effective energy-saving strategy can reduce TEC
without increasing makespan, thus significantly increasing industry profits and
efficiently protecting the environment. TEC depends mainly on the processing
time and the idle time; therefore, we design two types of energy-saving strate-
gies based on the previous.
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Figure 6: Examples of the neighborhood operators.

3.6.1. Delayed start time strategy

The delayed start time strategy (DSTS) is designed to reduce idle time in
the scheduling sequence. By delaying the start time of the operations, the idle
time of machines can be reduced, thus optimizing TEC. However, it is not
possible to delay the start time of operations as long as there exists idle time,
the operations with delayed start times must satisfy their constraints ; that is,
adjacent operations of the same job must finish processing the predecessor op-
eration before starting to process the successor operation, and a machine can
only process one operation at a time. With the execution of the delayed start
time strategy, although the OSV, MSV, and SSV cannot be changed, it can delay
the start time of the jobs and obtain the start time and completion time of the
jobs, thus reducing the idle time of the machines to minimize the TEC criteria.
The detail of the delayed start time strategy is presented in Algorithm 2.
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Algorithm 2 Delayed Start Time Strategy

Input: J (job sequence), O (operation sequence), Po (successor operation

pointer), Pm (machine successor operation pointer), S (start time of op-
erations), C' (completion time of operations)

Output: S (start time of operations), C' (completion time of operations)

1:
2
3
4:
5
6:
7:
8
9

10:
11:
12:
13:
14:
15:
: end for
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for i = Length(O) to 1 do
Je=J(i),0c = O(i) //The current job and operation
if Po =0 A Pm # () then
//The operation is the last operation of the job
Jm = J(Pm(i)),Om = O(Pm(i)) //The successor job and opera-
tion on the machine
time = C(Je,Oc) — S(J¢, Oc)
C(Je,Oc) = S(Jm,0Om)
S(Je,Oc) = C(Je,Oc) — time
else if Po # 0 A Pm # () then
Os = O(Po(i)) //The successor operation
Jm = J(Pm(i)),Om = O(Pm(i))
time = C(Je,Oc) — S(Je, Oc)
C(Je,0c) = min(C(Jc,Os), C(Jm,Om))
S(Je,Oc) = C(Je,Oc) — time
end if

To better explain, an example is shown in Figure 7. As shown in the original

scheduling sequence in (a) of Figure 7, 7 units of idle time exist and DSTS can be
utilized to further reduce the idle time, where OSV = {1, 2, 3,2, 1, 1, 3, 3}, MSV
={1,2,3,2,3,3,2,1},and SSV = {1, 3, 3, 2, 2, 2, 3, 2}. Traversing the OSV from
backward to forward, O3 can be delayed without violating the constraints.
After O, 5 is delayed, O3 ; and O3 ; have the condition that can be delayed, so
03,1 and O3 ; are delayed accordingly. The scheduling sequence using DSTS is
shown in Figure 7 (b), where the idle time can be reduced to 4 unit time; thus,
the TEC can be reduced.

"""" Idle tin U e
M 0. [0 = o | M. [ 051 [ o [ o |
A e = v "
[ on T o ) wlow WL o ]
0 1 2 3 1 5 6 7 8 9 10 11 12 Time 0 1 2 3 1 5 6 7 8 9 10 11 12 Time
(a) Original scheduling sequence (b) Scheduling sequence using DSTS

Figure 7: Examples of the delayed start time strategy.

3.6.2. Machine turn off strategy

After the execution of DSTS, we designed the machine turn off strategy

(MTOS) to further optimize TEC criteria by reducing machine idle time. When
a machine has finished processing an operation and is waiting to process the
next operation, it will incur idle time. If the energy consumed when the ma-
chine is turned off and on is less than the energy consumed when the machine is
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idle, turn the machine off; otherwise, keep the machine in an idle state. Through
the machine turn off strategy, it is possible to determine which machines can be
turned off during idle time, and to determine the time of shutdown, thus re-
ducing the idle time of the machines to optimize the TEC objective.

4. Experimental results

In this section, sufficient experiments were designed to evaluate the perfor-
mance of KTMA. In addition, all algorithms are coded in MATLAB R2020b on
the Intel Core i7-7700 CPU @ 3.60GHz with 8G RAM.

4.1. Experimental instances

To verify the performance of our proposed KTMA, the benchmark example
is selected from (Wu & Sun, 2018) and referenced the DFJSP case from (Lietal.,
2021) with modifications to its machine breakdown part. Table S-I presents an
example of benchmark Ins01, which contains 10 jobs, 6 machines, and 6 max-
imum number of operations. Since there are 3 levels of machine processing
speeds, each level has a different power, the processing power, the idle power
and the turn on/off power are also different. As shown in Table 1, columns 2-7
listed the processing power and the idle power for each level. In addition, the
last column listed the turn on/off power.

Table 1: The power distribution for each machine.

Level 1 Level 2 Level 3
processing idle processing idle processing idle turn on/off
My 31.21 6.76 49.06 19.16 57.00 26.07 85.84
M, 35.90 2.89 48.80 10.01 56.39 21.92 88.63
M3 32.26 6.72 48.18 14.62 50.34 27.38 80.31
My 33.85 6.95 42.61 14.24 50.69 2243 99.68
M 35.83 1.68 45.94 14.61 53.20 29.17 83.34
Mg 32.52 2.55 40.23 17.70 55.31 22.69 82.12
My 32.90 2.24 44.25 13.22 56.54 27.66 87.45
My 36.17 6.68 43.13 17.85 54.08 21.89 83.96
My 32.65 8.44 41.61 14.71 58.20 22.87 89.79
Mo 38.24 3.44 41.79 10.36 57.18 2091 86.79
M 39.83 7.81 44.23 11.76 59.69 25.76 99.03
Mo 37.30 6.75 40.94 17.22 55.31 26.83 98.41
M3 33.44 5.67 45.99 14.73 53.25 27.47 81.05
My 35.84 6.02 44.71 11.53 51.06 24.26 94.76
Mis 31.08 3.87 46.96 13.41 56.11 26.66 85.38

4.2. Performance metrics

To fully evaluate the performance of the proposed KTMA, three evaluation
indicators are adopted, which are the hypervolume (HV) metric (While et al.,
2006), generation distance (GD) metric (Zitzler et al., 2000) and Spread metric
(Deb et al., 2002).

The HV metric is usually utilized to evaluate the comprehensive per-
formance of the multi-objective optimization algorithm (MOEAs), and the
MOEAs with higher HV values tend to have better comprehensive perfor-
mance. HV is calculated as follows:
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P
HV(P,R) = | ] v(z,R) (21)
z€EP
where P indicates the PF obtained by the MOEAs, and R indicates the ref-
erence point which is often set to (1.01, 1.01). x indicates all non-dominated
solution in PF that has been normalized and v indicates the volume of the hy-
percube enclosed by = and R.
The GD metric is used to evaluate the convergence performance of the
MOEAs, and the MOEAs with lower GD values tend to have better convergence
performance. GD is calculated as follows:

\/ZyEP minge p+ dis(z, y)?
1P|
where P indicates the non-dominated solutions set of the MOEAs and P*
indicates the reference PF obtained by all MOEAs. dis(z,y) indicates the Eu-
clidean distance between the point € P* and the point y € P.
The Spread metric is applied to evaluate the diversity performance of the

MOEAs, and the MOEAs with lower Spread values tend to have better diversity
performance. Spread is calculated as follows:

GD(P, P*) (22)

di+d NYdi—d
Spread = itdr )i | = | (23)
dl+df+(N7].)d

where d indicates the Euclidean distance and d indicates the average dis-
tance of d;,i = 1,2,...,(N — 1). d; and dy indicate the Euclidean distances
between the extreme points and the boundary points of the obtained non-
dominated set.

4.3. Parameter calibration

The importance of parameter configuration to the proposed KTMA in solv-
ing EMBFJSP cannot be overstated. In the proposed KTMA, four critical pa-
rameters should be calibrated, which are population size PS, maximum num-
ber of iterations G, crossover probability P., and mutation probability P,,. To
obtain the best setting for these parameter combinations, a Taguchi method
of design-of-experiments (DOE) (Roy & K, 2001) is adopted. More precisely,
each parameter has four different levels; that is, PS = {40, 60, 80,100}, G =
{125,150, 175,200}, P. = {0.7,0.8,0.9,1.0} and P,, = {0.05,0.10,0.15,0.20}
and an orthogonal array L;5(4%) was employed in this parameter calibration
experiment. To ensure a fair comparison of experiments, each parameter com-
bination ran 20 times independently. Figure 8 presents the main effects plots
of four parameters for three metrics. Generally, the combination of parameters
with a higher HV value has better performance. On the contrary, the combina-
tion of parameters with a lower HV value and a lower Spread value has better
performance. From the experimental results and the comprehensive observa-
tion, it is clear that the best parameter combination is PS = 100, G = 125,
P.=0.9,and P,, = 0.05.
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Figure 8: Main effects plots of three metrics: (a) HV, (b) GD, and (c) Spread.

4.4. MILP model validation

To verify the correctness of the MILP model, the CPLEX 12.6.3 solver was
applied to obtain the optimal solutions for the optimization objectives of the
EMBFJSP. Since the CPLEX solver can only obtain the value of one objective at
a time, and EMBFJSP is a bi-objective problem, therefore the MILP model needs
to be transformed into a single-objective problem and solved in two times. As
the scale of the EMBFJSP increases, the constraints increase dramatically, it is
impractical to obtain the optimal solution set in a finite time. Therefore, we
utilized the CPLEX solver to solve the smallest size instance to verify the cor-
rectness of the MILP model. The size of the smallest instance is as follows: the
number of jobs is 10, the number of machines is 6, and the maximum number of
operations is 6. Not only that, some larger instances like Ins05 and Ins10 were
also selected to validate the correctness of the MILP model, which consisted
of 15 jobs, 4 machines, 9 maximum number of operations, and 20 jobs, 15 ma-
chines, 14 maximum number of operations, respectively. Our proposed KIMA
also executed this instance as a comparison.

In order to compare the optimization performance of the CPLEX and the
KTMA, the Relative Percentage Difference (RPD) (Hatami et al., 2015) metric
is employed for evaluation, which is calculated as follows:

Ry — Ry

RPD = 222 5 100% (24)
Ry

where R; denotes the objective values obtained from the KTMA, and R, de-
notes the objective values obtained from the CPLEX.
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Additionally, the CPU time consumed by the CPLEX and the KTMA is also
employed for the comparison. Table 2 records the results.

From Table 2, the solutions obtained by the CPLEX are better than that ob-
tained by the KTMA because the CPLEX uses the branch-and-bound algorithm,
which can find the optimal solutions with fast average speed. However, the re-
sults obtained by the CPLEX can verify the correctness of our proposed KTMA.
Meanwhile, compared to the CPLEX, our proposed KTMA consumes less CPU
time.

Table 2: Comparison results of the CPLEX solver and the KTMA on the selected instances.

makespan TEC RPD CPU time
CPLEX KTMA  CPLEX KTMA  makespan TEC CPLEX KIMA

Ins01 39.00 4550 9.83E+03 1.02E+04 16.67% 3.76%  90.25 70.92
Ins05 231.75 25750 4.32E+04 4.51E+04 11.11% 4.40% 267.83  131.98
Ins10 453.50  482.00 1.67E+05 1.71E4+05 6.28% 240% 970.19  667.70

Instance

4.5. Effectiveness of each improvement part of KTMA

To verify the effectiveness of each improvement part of the proposed al-
gorithm, three variants of KTMA are compared as follows: KTMA1 denotes
KTMA without the hybrid initialization strategy, KTMA2 denotes KTMA with-
out the knowledge-driven variable neighborhood search operation and KITMA3
denotes KTMA without the energy-saving strategy. To ensure the fairness of the
comparison, the KTMA and its all variants are run 20 times in all instances. The
statistical values of HV, GD, and Spread of all variant algorithms over 20 times
runs independently in all instances are listed in Table 3, Table 4 and Table 5,
where the best values are marked in bold. We can see that in most instances,
the performance of KTMA is not inferior to that of all variants of KTMA for
HV, GD, and Spread metrics. Moreover, Table 6 lists the Friedman rank test
results for all variants of the algorithm with a confidence level o = 0.05. There-
fore, based on the comprehensive performance of the three metrics in the table,
KTMA has the highest overall ranking, which indicates that the KTMA outper-
forms its four variants.

Table 3: HV statistical values of all variant algorithms in all instances.

KTMA1 KTMA2 KTMA3 KTMA
Instances
mean std mean std mean std mean std
Ins01 0.5257 0.1761 0.4072 0.1867 0.6259 0.1332 0.6911 0.1290
Ins02 0.3418 0.1287 0.2242 0.1696 0.6428 0.1836 0.6502 0.1849
Ins03 0.2429 0.2054 0.5415 0.3262 0.3152 0.2004 0.3998 0.2193
Ins04 0.4006 0.2017 0.2146 0.1597 0.3052 0.1346 0.3715 0.1457
Ins05 0.3650 0.2942 0.1915 0.1279 0.4707 0.3336 0.4707 0.3336
Ins06 0.4273 0.2425 0.3794 0.2775 0.5605 0.2927 0.6231 0.3180
Ins07 0.1818 0.1891 0.3354 0.3526 0.2068 0.2370 0.2074 0.2376
Ins08 0.4240 0.2925 0.2483 0.2027 0.2062 0.2486 0.3014 0.3183
Ins09 0.3159 0.2405 0.4233 0.2418 0.2065 0.2009 0.2964 0.2496
Ins10 0.3225 0.2306 0.5233 0.2307 0.2543 0.1867 0.4471 0.2107
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Table 4: GD statistical values of all variant algorithms in all instances.

KTMA1 KTMA2 KTMA3 KTMA
Instances
mean std mean std mean std mean std
Ins01 0.1081 0.0628 0.1536 0.0624 0.0864 0.0440 0.0558 0.0351
Ins02 0.2703 0.0881 0.3547 0.1439 0.1304 0.0889 0.1176 0.086864
Ins03 0.3717 0.2423 0.1365 0.1142 0.3349 0.1890 0.2735 0.1720
Ins04 0.1493 0.1017 0.2617 0.1394 0.1987 0.0779 0.1442 0.0630
Ins05 0.3831 0.2924 0.4865 0.1789 0.2643 0.2618 0.2641 0.2615
Ins06 0.1872 0.0933 0.1182 0.0726 0.1067 0.0797 0.0645 0.0764
Ins07 0.4788 0.2518 0.1993 0.1552 0.4330 0.2199 0.4264 0.2197
Ins08 0.1842 0.1295 0.2517 0.1349 0.4316 0.2558 0.2618 0.2222
Ins09 0.3731 0.1678 0.2850 0.1407 0.5358 0.3145 0.4276 0.2876
Ins10 0.3072 0.1227 0.2074 0.0831 0.3563 0.1590 0.2391 0.1366

Table 5: Spread statistical values of all variant algorithms in all instances.

KTMA1 KTMA2 KTMA3 KTMA
Instances
mean std mean std mean std mean std
Ins01 0.9588 0.0579 0.9817 0.0571 0.9095 0.0806 0.9477 0.0883
Ins02 0.9564 0.0430 0.9731 0.0395 0.8958 0.0677 0.9150 0.0817
Ins03 0.9797 0.0184 0.8422 0.1584 0.9607 0.0424 0.9583 0.0490
Ins04 0.9614 0.0516 0.9824 0.0454 0.9455 0.0599 0.9714 0.0588
Ins05 0.9371 0.0790 0.9805 0.0145 0.9137 0.1450 0.9139 0.1450
Ins06 0.9843 0.0143 0.9919 0.0142 0.9722 0.0291 0.9669 0.0292
Ins07 0.9752 0.0369 0.9583 0.0766 0.9712 0.0480 0.9826 0.0204
Ins08 0.9845 0.0273 0.9939 0.0145 0.9886 0.0152 0.9841 0.0216
Ins09 0.9801 0.0151 0.9632 0.0260 0.9803 0.0278 0.9356 0.2153
Ins10 0.9674 0.0547 0.9223 0.0816 0.9738 0.0404 0.9552 0.1072

Table 6: Overall ranks through the Friedman test among all variants (a level of significant o =
0.05).

MOEAs HV GD Spread
rank p-value rank p-value rank p-value
KTMA1 2.30 2.90 2.90
KTMA2 2.30 2.50 2.90
KTMA3 330 1.52E-05 290 1.24E-05 220 2.66E-03
KTMA 2.10 1.70 2.00

4.6. Comparison and discussion among other algorithms

To further verify the performance of the proposed KTMA, we compared it
with the classical MOEAs, including SPEA?2 (Zitzler et al., 2001), NSGA-II (Deb
et al.,, 2002) and MOEA/D (Zhang & Li, 2007), the current proposed MOEAs,
including AdaW (Li & Yao, 2020) and TS-NSGA-II (Ming et al., 2022), a state-
of-art algorithm named NSGA-III/ARV (An et al., 2022), a RL-based algorithm
named LRVMA (Li et al.,, 2022b), and a GP-related algorithm named GPHH
(Fan et al., 2021). The best parameter settings refer to the corresponding refer-
ences. For SPEA2, NSGA-II and MOEA /D, PS =100, P, = 0.9 and P,, = 0.05.
The archive size of SPEA2 is set to 50 and the neighborhood size of MOEA /D
is set to 15. Furthermore, for a fair comparison, all comparison algorithms are
compared in the same environment, which are coded in MATLAB R2020b on
the Intel Core i7-7700 CPU @ 3.60GHz with 8G RAM and run 20 times inde-
pendently with the same stopping criteria in all instances. (G = 125).
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Table 7: HV statistical values of all comparison algorithms in all instances.

Instances SPEA2 NSGA-II MOEA/D AdaW TS-NSGA-II NSGA-II[/ARV LRVMA GPHH KTMA

Ins01 0.8242 0.2677 0.1134 0.0465 0.0458 0.3832 0.1997  0.2952  0.9432
Ins02 0.6948 0.2477 0.1301 0.0509 0.0191 0.4628 0.1032  0.3111  0.9458
Ins03 0.3308 0.2157 0.1023 0.1042 0.0399 0.4259 0.1758  0.1933 0.7374
Ins04 0.7494 0.2131 0.0964 0.0503 0.0207 0.4119 0.1266  0.1543  0.8789
Ins05 0.2545 0.0929 0.0473 0.0318 0.0207 0.1089 0.0530  0.0711  0.6467
Ins06 0.2277  0.1077 0.0547 0.0408 0.0101 0.3140 0.0668  0.1158 0.7624
Ins07 0.2220 0.2112 0.1009 0.0815 0.0625 0.2731 0.1137  0.1477  0.5439
Ins08 0.4199 0.1755 0.0631 0.0532 0.0119 0.1465 0.0819  0.0885 0.4793
Ins09 0.2312 0.1608 0.0749 0.0323 0.0292 0.2136 0.0813  0.1613  0.5609
Ins10 0.1950 0.1789 0.0697 0.0407 0.1012 0.3289 0.1025  0.1341 0.7212

Table 8: GD statistical values of all comparison algorithms in all instances.

Instances SPEA2 NSGA-II MOEA/D AdaW TS-NSGA-II NSGA-II[/ARV LRVMA GPHH KTMA

Ins01 0.0514 0.3310 0.5357 0.6365 0.5407 0.2295 0.4725 03096 0.0123
Ins02 0.1212 0.3841 0.4860 0.6973 0.6839 0.2297 0.5981  0.3861 0.0216
Ins03 0.3223 0.4140 0.5844 0.6202 0.6594 0.2533 05222 0.4724  0.0955
Ins04 0.0943 0.4057 0.5118 0.7352 0.7636 0.2618 0.5184  0.5457  0.0207
Ins05 0.4280 0.5742 0.6586 0.8747 0.8990 0.5290 0.7209  0.7096  0.0939
Ins06 0.3639 0.5265 0.6987 0.7620 0.9061 0.3369 0.6469  0.6135 0.0335
Ins07 0.4574 0.4083 0.6031 0.7185 0.7431 0.4077 0.6317  0.5441 0.1725
Ins08 0.2515 0.3879 0.5856 0.8264 0.9175 0.5554 0.6188  0.6945 0.1322
Ins09 0.4330 0.4603 0.6243 0.8467 0.8832 0.4204 0.6830  0.5504 0.1737
Ins10 0.4362 0.4393 0.5535 0.8158 0.7171 0.3624 0.6281 0.5636  0.1131

Table 9: Spread statistical values of all comparison algorithms in all instances.

Instances SPEA2 NSGA-II MOEA/D AdaW TS-NSGA-II NSGA-III/ARV LRVMA GPHH KTMA

Ins01 0.9298 0.9834 0.9772 0.9931 0.9974 0.9657 0.9642  0.9680  0.9537
Ins02 0.9778 0.9876 0.9883 0.9948 0.9990 0.9778 0.9866  0.9799 0.9146
Ins03 0.9872 0.9895 0.9828 0.9768 0.9910 0.9726 0.9671 0.9858  0.9513
Ins04 0.9580 0.9813 0.9901 0.9892 0.9981 0.9655 0.9749  0.9782  0.9499
Ins05 0.9888 0.9921 0.9950 0.9964 0.9960 0.9950 0.9928  0.9957 0.9179
Ins06 0.9920 0.9941 0.9908 0.9865 0.9992 0.9935 0.9868  0.9834 0.9557
Ins07 0.9897  0.9821 0.9887 0.9898 0.9923 0.9902 0.9843  0.9865 0.9577
Ins08 0.9911 0.9941 0.9937 0.9916 0.9985 0.9918 0.9919  0.9931  0.9557
Ins09 0.9906 0.9880 0.9870 0.9911 0.9979 0.9884 0.9893  0.9897 0.9371
Ins10 0.9917  0.9859 0.9901 0.9898 0.9806 0.9790 0.9842  0.9893 0.9315

The statistical values of HV, GD, and Spread of all comparison algorithms
are listed in Table 7, Table 8 and Table 9, where the best values are marked in
bold. As observed in those three tables, in almost all instances, the proposed
KTMA significantly outperforms these comparison algorithms in terms of HV,
GD, and Spread metrics. Moreover, Table 10 lists the Friedman rank test re-
sults for all comparison algorithms with a confidence level a = 0.05. Through
observation, KIMA ranks best in HV, GD, and Spread metrics, which shows
the excellent convergence performance and diversity performance of KTMA.
More than that, Figure S-1 - S-2, Figure S-3 - S-4 and Figure S-5 - S-6 present
the boxplot comparison of HV, GD and Spread metrics of all comparison al-
gorithms in all instances, where the values obtained by KTMA are better than
those obtained by other comparison algorithms, highlighting the advantages
of KTMA. Regarding the boxplot of the Spread metric, the box width of KTMA
is greater than that of other comparison algorithms, which means that the sta-
bility of KTMA in the Spread metric still has room for improvement. Table 11
shows the CPU computation time of all comparison algorithms in all instances,
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from which it can be concluded that NSGA-II and MOEA /D consume the least
amount of CPU time for all the instances, implying that they run faster for the
same number of iterations. Although our proposed KTMA is not superior in
terms of CPU computation time metric, the comprehensive performance of our
proposed KTMA is the best among all the compared algorithms, therefore, it is

worthwhile to consume slightly more CPU computation time.
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Figure 9: PF comparison results of all comparison algorithms in the instances of Ins01 - Ins04.

Table 10: Overall ranks through the Friedman test among all comparison algorithms (a level of
significant o = 0.05).

MOEAs HV GD Spread

rank p-value rank p-value rank p-value
SPEA2 2.00 2.00 4.40
NSGA-II 3.90 3.90 5.60
MOEA/D 7.30 5.90 5.80
AdaW 7.60 8.30 6.40

TS-NSGA-II 9.00 1.95E-13 8.70 3.93E-13 8.30 1.81E-06
NSGA-III/ARV 2.90 2.60 4.40
LRVMA 5.70 6.50 3.90
GPHH 5.40 5.50 5.10
KTMA 1.20 1.00 1.10

The excellent convergence and distribution of KTMA benefit from its de-
sign. First, a two-stage framework is utilized for improving the convergence
performance of the algorithm and maintaining the diversity performance of
the population. Second, a rescheduling strategy is applied when machine
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breakdowns occur, which can balance the workload of machines, thus reduc-
ing makespan. Third, three problem-specific heuristics are proposed to gener-
ate a high-quality initial population, which can maintain population diversity.
Then, four knowledge-driven variable neighborhood search operators are de-
veloped to improve convergence performance, which can fully explore the so-
lution space to obtain better PF solutions. Finally, two types of energy-saving
strategies are designed to further reduce TEC without increasing makespan,
which can increase convergence vastly.
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Figure 10: PF comparison results of all comparison algorithms in the instances of Ins05 - Ins10.

Figure 9 - 10 presents the comparison results of the Pareto front obtained
by all comparison algorithms in all instances. Regarding the convergence and
diversity of the Pareto front, KTMA can obtain better solutions than its competi-
tors. Because KTMA has strong exploration ability, KTMA can explore better
PF, while other comparison algorithms can only find inferior PF due to insuffi-
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cient exploration solution space ability. Meanwhile, the Pareto front obtained
by KTMA is closer to the lower left corner of the graph, which indicates that
the non-dominated solutions obtained by KTMA are closer approximations to-
ward real PF. Based on the observation and analysis of the above experimental
results, our proposed KTMA can solve EMBFJSP effectively.

Table 11: The CPU computation time of all comparison algorithms in all instances.

Instances SPEA2 NSGA-IIT MOEA/D AdaW TS-NSGA-II NSGA-IIIJARV LRVMA GPHH KTMA

Ins01 18.27 25.39 15.80 18.59 107.48 37.27 21.99 262.27 70.92
Ins02 18.98 26.00 17.15 18.93 113.45 34.10 20.97 215.41 81.14
Ins03 180.12 121.81 127.10 149.11 223.27 176.07 243.53  2533.56 261.17
Ins04 21.60 27.43 21.60 25.19 118.31 49.84 30.87 286.06 81.89
Ins05 63.86 56.49 53.33 65.37 170.57 107.99 92.80 982.02  131.98
Ins06 65.20 41.25 50.83 48.67 132.87 71.32 76.41 688.05 99.66
Ins07 80.79 65.80 70.68 73.56 162.79 95.34 11132 116436  138.95
Ins08 407.03 268.38 303.37 338.96 406.64 569.42 601.31  6199.92 529.97
Ins09 527.44 356.33 375.52 434.51 511.96 624.26 77797 788494 632.66
Ins10 482.93 324.12 351.60 424.50 482.47 582.85 677.82  7340.27  667.70

Figure 11 and Table 12 present the comparison results of all algorithms un-
der different preferences. In the case of preference 1, the makespan objective
and the TEC objective are of equal importance, and our proposed KTMA can
obtain the better solution of (44.50, 1.02E+04), which dominates the solutions
obtained by all the other comparison algorithms, and therefore, the proposed
KTMA performs better in solving the actual EMBFJSP. In the case of preference
2, it focuses primarily on the makespan objective, and our proposed KTMA
can obtain the optimal solution of 42.00, which is improved by 3.45%, 27.59%,
41.25%, 40.43%, 28.81%, 12.50%, 32.26%, and 24.32% respectively compared to
other algorithms. Therefore, when focusing on improving the economic effi-
ciency of the enterprises, the proposed KITMA can achieve better performance
to improve productivity. In the case of preference 3, it focuses primarily on
the TEC objective, and our proposed KTMA can obtain the optimal solution
of 9.85E+03, which is improved by 7.08%, 23.05%, 29.14%, 25.38%, 25.94%,
13.60%, 26.49%, and 15.81% respectively compared to other algorithms. There-
fore, when focusing on energy saving and emission reduction, the proposed
KTMA can bring better green benefits to enterprises.
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Figure 11: Comparison figure of all algorithms with different preferences.
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Table 12: The optimal objective values of all comparison algorithms under different preferences.

SPEA2 NSGA-II. MOEA/D  AdaW  TS-NSGA-II NSGA-III/ARV ~LRVMA GPHH KTMA

Preference] Cmax  48.00 59.00 75.50 70.50 66.00 55.50 65.00 55.50 44,50
CIETENCel  TEC  1.06E+04 128E+04 145B+04 137E+04  133E+04 1.14E+04 134E+04 1.17E+04 1.02E-+04

Preference2 Cpmax 4350 58.00 71.50 70.50 59.00 48.00 62.00 55.50 42.00

Preference3 TEC 106E+04 128E+04 139E+04 132E+04  133E+04 1.14E+04  134E+04 1.17E+04 9.85E+03

5. Conclusion

This paper proposed a knowledge-driven two-stage memetic algorithm for
energy-efficient flexible job shop scheduling with machine breakdowns, aim-
ing at optimizing makespan and TEC simultaneously. A two-stage framework
is utilized to enhance convergence performance and diversity performance.
Meanwhile, a rescheduling strategy is developed to be applied to reschedule
the scheduling sequence when machine breakdowns occur. In the first stage, a
hybrid initialization strategy is proposed to obtain a high-quality initial popu-
lation. Then, a knowledge-driven variable neighborhood search is represented
that combines four problem-specific operators to accelerate the convergence
speed and fully exploit the solution space. In the second stage, an energy-saving
strategy, including two types of strategies, is designed to further reduce TEC
without increasing the makespan. Comprehensive experiments confirmed that
the proposed KTMA significantly outperforms other comparison algorithms in
solving EMBFJSP and the solutions obtained by the KTMA have better conver-
gence performance and diversity performance.

For future work, several directions can be further studied: (i) designing
more effective energy-saving strategies for EMBFJSP; (ii) considering more re-
liable rescheduling strategies to handle the situation of machine breakdowns;
(iii) combining reinforcement learning technology to solve EMBEFJSP; (iv)
studying on other job shop scheduling problems under different dynamic
events; (v) Investigating scheduling problems with priority constraints.
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Figure S-1: Boxplot comparison of HV values of all comparison algorithms in the instances of

Ins01 - Ins04.
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Figure S-2: Boxplot comparison of HV values of all comparison algorithms in the instances of

Ins05 - Ins10.
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Figure S-3: Boxplot comparison of GD values of all comparison algorithms in the instances of

Ins01 - Ins04.
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Figure S-4: Boxplot comparison of GD values of all comparison algorithms in the instances of

Ins05 - Ins10.
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Figure S-5: Boxplot comparison of Spread values of all comparison algorithms in the instances of

Ins01 - Ins04.
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Figure S-6: Boxplot comparison of Spread values of all comparison algorithms in the instances of

Ins05 - Ins10.



