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• A two-stage evolution framework is proposed for EMBFJSP.
• A rescheduling strategy is applied for machine breakdowns.
• The population is initialized by three problem-specific heuristics.
• Four knowledge-driven variable neighborhood search operators are pro-

posed.
• Two types of energy-saving strategies are designed.
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Abstract

This paper focuses on the multi-objective energy-efficient flexible job shop
scheduling problem with machine breakdowns. To mitigate the impact of ma-
chine breakdowns, a rescheduling strategy is implemented in the scheduling
process. In addition to sequencing the operations, the current problem is to
determine the appropriate allocation of the machine and the proper speed of
the machine to minimize both makespan and total energy consumption simul-
taneously. A mixed integer linear programming model is established to de-
scribe the considered problem. With the aim of effectively solving this prob-
lem, a knowledge-driven two-stage memetic algorithm (KTMA) is proposed.
In the first stage, a hybrid initialization strategy that combines three problem-
specific heuristics is applied to generate a high-quality initial population. Then,
a knowledge-driven variable neighborhood search approach is designed for
quickly converging and fully exploiting the solution space of the KTMA. In the
second stage, two energy-saving strategies are designed to further reduce the
total energy consumption. Extensive experiments carried out to compare the
KTMA with some well-known algorithms confirm that the proposed KTMA
can efficiently solve this problem.
Keywords: Energy-efficient flexible job shop scheduling, machine breakdowns,
multi-objective optimization, memetic algorithm, knowledge.

1. Introduction1

Over the past few decades, economic globalization has provided a strong2

impetus for world economic growth, resulting inmany uncertain challenges for3

traditional manufacturing. Nowadays, some concepts place higher demands4

on traditionalmanufacturing, for example, Industry 4.0, CarbonNeutrality, and5

IntelligentManufacturing (Serrano-Ruiz et al., 2022; Lu et al., 2021b). Theman-6

ufacturing industry is the foundation and backbone of the country’s production7

capacity and national economy, and its level of development is often a reflec-8

tion of a country’s comprehensive national power. As an important part of the9
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national industry and the leading sector of economic growth, the manufactur-10

ing industry of China has maintained a sustainable and stable development11

trend (Liang et al., 2022). However, as the pressure of international competi-12

tion climbs and the cost of labor increases, the traditional manufacturing in-13

dustry is in urgent need of transformation and upgrading to seek a new path14

of development.(Li et al., 2022a; Zhang et al., 2021).15

On the other hand,with the frequent occurrence of environmental pollution,16

extreme weather, energy shortage, and other problems, more and more people17

are raising awareness of energy-saving and emission reduction (Lu et al., 2021a;18

Wei et al., 2022). In the past, the scheduling problem usually focuses on only19

the factors, including makespan, machine workload, and production costs, but20

often overlooked the importance of green energy-savingmeasures. Thus, green21

scheduling (Gong et al., 2021; Li et al., 2020; Zheng &Wang, 2018) is proposed,22

which focuses on energy-saving and consumption reduction and has become a23

hot issue for scholars around theworld. The efficiency of the scheduling scheme24

will have a direct and significant impact on energy consumption and environ-25

mental emissions. For sustainable development, energy-saving strategies for26

job shop scheduling problems must receive sufficient attention. However, in a27

real-world scheduling environment, various unexpected situations will occur,28

for example, machine breakdowns (Wu et al., 2018), job arrivals (Gao et al.,29

2019b; Caldeira et al., 2020), delivery date changes (Hidri et al., 2019), and other30

uncertain factors (Afsar et al., 2022; Luo et al., 2022), etc. Therefore, it is very31

necessary to investigate dynamic scheduling schemes to handle the actual sit-32

uation.33

As the most common type of job shop scheduling problem (JSP) (Bhatt &34

Chauhan, 2015), the flexible job shop scheduling problem (FJSP), defined as35

the NP-hard problem, has been widely studied by many scholars (Gao et al.,36

2019a). Nowadays, in the existing literature on FJSP, most of the literature stud-37

ies the static scheduling problems, but rarely studies the dynamic scheduling38

problems. However, it is necessary to take full account of the actualmanufactur-39

ing environment and the customer requirements to propose a reliable schedule40

scheme to deal with various dynamic events. Therefore, research on the dy-41

namic flexible job shop scheduling problem (DFJSP) has aroused the interest42

ofmany scholars (Lei et al., 2022; Ferreira et al., 2022;Mohan et al., 2019). Liang43

et al. (2020) investigated the dynamic scheduling problem for the arrival of new44

jobs and established an improved probabilistic neural networkmodel. They ap-45

plied a genetic algorithm to optimize the smoothing factor for the purpose of46

improving model performance. Zaharie et al. (2017) investigated the uncertain47

events for delivery date changes and proposed an integer programming model48

for accepting, delaying, or rejecting the ordered products which aims at obtain-49

ing the best long-term and short-term results. Wang et al. (2022) considered six50

dynamic events to simulate a realistic production environment. They applied51

deep reinforcement learning techniques to a real-time processing framework52

with the combined scheduling rules to further optimize the obtained solutions.53

In the actual scheduling environment, machine breakdowns frequently occur54

as a type of dynamic event. Therefore, we mainly investigated the flexible job55

shop schedulingwithmachine breakdowns in this paper. Whenmachine break-56

downs occur, reasonable rescheduling of the scheduling sequence is critical and57

required. However, most studies on the dynamic event ofmachine breakdowns58

are only dedicated to finding a new robust scheduling scheme, thus omitting59
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the need for rescheduling. Duan & Wang (2022) studied machine breakdown60

problems considering the factors of system reusability and task recurrence and61

proposed a dynamic event response strategy instead of rescheduling. They62

developed a multi-objective particle swarm algorithm combined with the dy-63

namic event response strategy to establish an optimizationmodel which is eval-64

uated by the indicators of reusability and reproducibility. Abedi et al. (2020)65

focused on the energy-efficient job-shop scheduling problem with deteriorat-66

ing machines. In order to reduce the impact of the deterioratingmachines, they67

proposed a multi-population, multi-objective memetic algorithm that aims to68

determine the proper machine speeds, thus reducing the wear and tear of the69

machine. Zhang et al. (2022) applied the convolutional neural network model70

to the two-stage framework to address flexible job shop scheduling problem71

considering machine breakdown. They trained a prediction model using CNN72

in the first stage. Then, in the second stage, they used the model trained in the73

first stage to predict the results and thus evaluate the robustness.74

In the background of energy-saving and consumption reduction, more and75

more scholars are focusing on green scheduling and designing effective energy-76

saving strategies as a way to promote the synergistic development of intelli-77

gent manufacturing and green production. Regarding the energy-efficient flex-78

ible job shop scheduling problem, Gong et al. (2022) proposed a two-stage79

memetic algorithm to reduce the times ofmachine restarts and designed a strat-80

egy based on operation-block moving to further optimize the objective of total81

energy consumption. Duan & Wang (2021) proposed a non-dominated ge-82

netic ranking algorithm and developed two types of energy-saving strategies83

considering idle time and speed level for the flexible job shop problem with84

machine breakdowns. Pan et al. (2022) considered a fuzzy flexible job shop85

scheduling problem, they constructed a bi-population evolutionary algorithm86

with a feedback mechanism to reduce the consumption of energy. Zhao et al.87

(2022) established a distributed no-idle flow-shop scheduling model related to88

an energy-saving strategy and proposed a self-learning discrete Jaya algorithm89

with a green neighborhood search strategy.90

Memory algorithms (MAs) have been successfully utilized in various vari-91

ants of the scheduling problem due to their excellent global and local search92

capabilities (Wang & Wang, 2021; Lou et al., 2022). Many scholars have pro-93

posed to incorporate problem knowledge into MAs to solve various types of94

multi-objective energy-efficient scheduling problems (Li et al., 2022b; Lu et al.,95

2022). Based on the above description, this study proposed a knowledge-96

driven two-stage memetic algorithm for solving the energy-efficient flexible job97

shop scheduling problem with machine breakdowns (EMBFJSP) to optimize98

makespan and TEC simultaneously, which includes the following five inno-99

vation points: (i) a two-stage evolution framework is utilized to address EM-100

BFJSP; (ii) a rescheduling strategy is applied to reschedule the scheduling se-101

quence when machine breakdowns occur. (iii) a hybrid initialization strategy102

consisting of three heuristics is constructed for generating a high-quality pop-103

ulation. (iv) a knowledge-driven variable neighborhood search approach that104

includes four problem-specific neighborhood structures is presented to fully ex-105

ploit the solution space. (v) two types of energy-saving strategies are designed106

to further reduce TEC effectively without increasing makespan. Meanwhile,107

to better solve EMBFJSP, we established a mixed-integer linear programming108

(MILP) model for the EMBFJSP.109
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The remainder of this paper is organized as follows. The problem descrip-110

tion and modeling are described in Section 2. Moreover, details of our pro-111

posed KTMA are explained in Section 3. After that, experimental results and112

discussion are presented in Section 4. Finally, conclusions and future works are113

introduced in Section 5.114

2. Problem description and modeling115

2.1. Problem description116

The EMBFJSP is a complex combinatorial optimization problem that re-117

quires allocating limited resources to several jobs under certain constraints in118

order to optimize both the makespan and the TEC objectives simultaneously.119

The makespan and theTEC are two conflicting objectives, and the decrease of120

the makespan is often accompanied by the increase of the TEC. The trade-off121

between makespan and TEC can be effectively reflected by the Pareto front,122

and Figure 1 shows a Pareto front for this EMBFJSP. Meanwhile, it is not only123

necessary to assign machines to operations, but also to select the appropri-124

ate machine processing speed and obtain the optimal processing sequence of125

jobs, and the start time and completion time of each job should be determined.126

Therefore, the EMBFJSP is also a complicated scheduling problem. The EM-127

BFJSP should solve the three sub-problems: machine allocation, machine speed128

selection, and job processing sequence optimization. For this problem, there is a129

set of n jobs J = {J1, J2, ..., Jn} and a set ofmmachinesM = {M1,M2, ...,Mm}.130

Each job Ji has a sequence of ni operationsOi = {Oi,1, Oi,2, ..., Oi,ni} to be pro-131

cessed one after another according to the precedence constraints. More pre-132

cisely, the EMBFJSP is addressed by the following three steps: (i) allocate a133

machine from the available machine set for each operation; (ii) select a suitable134

processing speed level for each machine, it is worth noting that different pro-135

cessing speeds of the machines have different processing time; (iii) arrange the136

processing sequence of all operations on each machine.137
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Figure 1: A Pareto front of the EMBFJSP.

Machine breakdown as the most common type of dynamic event, often ap-138

pears in the actual manufacturing environment (Soofi et al., 2021). When ma-139

chine breakdowns occur, the faulty machine should be repaired and can not140

process any jobs until the repair process is complete. Therefore, machine break-141

downmust satisfy three critical factors: the breakdownmachine, the condition142
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that the machine breakdown occurs, and the time to repair the breakdownma-143

chine. There is a direct relationship between the workload of a machine and144

the probability of machine breakdown; that is, a machine that has been used145

for a long time tends to be more likely to break down than others. When ma-146

chine breakdowns occur, the breakdown machine will no longer process any147

operations until the faulty machine is repaired. All unstarted operations will148

be rescheduled according to the rescheduling strategy.149

In short, the assumptions of EMBFJSP are described below:150

• All jobs and all machines are ready at time zero.151

• Any operations can be processed by machines that are available at any152

speed level.153

• Each operation can only be processed by one available machine with the154

selected speed level at any time.155

• Each machine can only process one operation at a time.156

• An operation cannot be processed until its preceding operations are com-157

pleted.158

• Once started, no interruptions are allowed until the operation processing159

is complete unless the machine breakdown occurs.160

• When the machine breakdown occurs, the faulty machine cannot process161

the operations and shut down instantly.162

• In the case of a machine breakdown, the machine is repaired within a163

determined period of time.164

2.2. Rescheduling strategy165

Based on the previous description, how rescheduling the unstarted opera-166

tions has a significant effect on the scheduling sequence. Machine breakdown167

is directly related to the processing time of the machines, therefore, when ma-168

chine breakdowns occur, the most important thing is how to reschedule the169

affected jobs to make the least occurrence of machine breakdowns. Thus, the170

core idea of the rescheduling strategy is to evenly distribute the affected jobs so171

that each machine has a similar processing time, which will reduce the prob-172

ability of machine breakdowns and also reduce the makespan. In this study,173

we design an effective rescheduling strategy to restore the previous scheduling174

sequence when machine breakdowns occur. The rescheduling strategy aims to175

reschedule the operations that have not yet started; that is, all unstarted oper-176

ations in the original scheduling sequence will be rescheduled. Among them,177

the unstarted operations are allocated to the candidate machines according to178

the minimum machine workload rule, which aims to balance the workload to179

reducemakespan and effectively reduce the occurrence ofmachine breakdown.180

It is worth noting that when the job is being processed and its processing ma-181

chine breakdown occurs, the job needs to wait until the processing machine182

is repaired before continuing to complete subsequent processing. During this183

period, the job will not be assigned to another machine for processing.184
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To explain it better, an example is shown in Figure 2. As shown in the origi-185

nal scheduling sequence in (a) of Figure 2,M2 breakdown at time six andO1,3,186

O3,2 and O3,3 are the unstarted operations. The previous scheduling sequence187

has remained,O1,3,O3,2 andO3,3 select available candidatemachine sets in turn188

according to the minimum workload rule. Before rescheduling, the workload189

of M1, M2, and M3 are 4, 5, and 6, respectively. Therefore, O1,3 is assigned to190

M1, and the workload of M1 is updated to 6. Then, based on the minimum191

workload rule, O3,2 is assigned to M2, and the workload of M2 is updated to192

7. Finally, O3,3 is assigned to M3, and the workload of M3 is updated to 9. It is193

worth noting that, before rescheduling, the repair time of the machine should194

be counted in the workload, and after the operations are assigned to the corre-195

sponding machines, the workload of these machines should be updated.196

Time

Machine

0 1 2 3 4 5 6 7 8 9 10 11 12 13

M1

M2

M3

O2,1 O3,3

O1,1 O2,2 O1,3 O3,2

O3,1 O1,2

M2 breakdown
Unstarted operations

(a) Original scheduling sequence
Time

Machine

0 1 2 3 4 5 6 7 8 9 10 11 12 13

M1

M2

M3

O2,1 O1,3

O1,1 O2,2 O3,2

O3,1 O1,2 O3,3

Repair Time

Unstarted operations

(b) New scheduling sequence based on
rescheduling strategy

Figure 2: Examples of the rescheduling strategy.

2.3. MILP model for EMBFJSP197

To model the EMBFJSP, we employed a MILP model. Furthermore, in the198

subsequent experiments, we adopted the CPLEX solver to solve this MILP199

model as a way to verify the correctness of our proposed algorithm.200

Before modeling for the EMBFJSP, the notations of EMBFJSP are defined as201

follows:202

Indices:203

i, i′: index of jobs, i, i′ = 1, 2, ..., n204

j, j′: index of operations, j, j′ = 1, 2, ..., ni205

k: index of machines, k = 1, 2, ...,m206

q: index of machine speeds, q = 1, 2, .., r207

l: index of position on the machine, l = 1, 2, .., h208

Parameters:209

n: the total number of jobs210

ni: the total number of operations of job i211

m: the total number of machines212

r: the total number of machine speed levels213

h: the total number of positions of machine k214

Oi,j : the jth operation of job i215

Vi,j,k: the processing speed ofOi,j onmachine k, which contains three speed216

levels217

TPMk,q : the turn on/off power of machine k at speed q218

PMk,q : the processing power of machine k at speed q219

IPMk,q : the idle power of machine k at speed q220

Ti,j,k: the basic time of operation Oi,j on machine k221

RTk: the repair time of breakdown machine k222
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STk: the total turn on/off time of machine k223

L: a large enough integer224

Decision variables:225

Si,j : the start time of operation Oi,j226

Ci,j : the completion time of operation Oi,j227

Bk,l,q : the start time of machine k on position l at speed q228

Fk,l,q : the finish time of machine k on position l at speed q229

Pi,j,k,q : the processing time of operation Oi,j on machine k at speed q230

Et: the total turn on/off energy consumption231

Ew: the total processing energy consumption232

Ei: the total idle energy consumption233

TEC: the total energy consumption234

Cmax: the makespan235

Xi,j,k,q : if operation Oi,j is processed on machine k at speed q, Xi,j,k,q = 1;236

otherwise, Xi,j,k,q = 0237

Zk,q : if machine k processes at speed q, Zk,q = 1; otherwise, Zk,q = 0238

Ui,j,k,q,l: if the position l of machine k at speed q is selected for operation239

Oi,j ,Ui,j,k,q,l = 1; otherwise, Ui,j,k,q,l = 0240

Wi,j,k: Ifmachine k breakdownwhile processing operationOi,j ,Wi,j,k = 1;241

otherwise, Wi,j,k = 0242

The objectives of EMBFJSP consist of makespan and TEC, which are de-243

scribed in detail below.244

(1)Makespan criterion: Makespan is often regarded as an efficiency indicator245

in scheduling problems. In other words, the magnitude of the makespan value246

can indicate the productivity of the enterprise. Thus, the objective of makespan247

Cmax in EMBFJSP can be defined as follows:248

minF1 = Cmax = maxCi,j ,∀i = 1, ..., n;∀j = 1, ..., ni (1)
(2)TEC criterion: TEC criterion is not only a critical green indicator of the249

environment but also an economic indicator of an enterprise, which can reflect250

the contribution to the environment and the economic benefits of the enter-251

prise. The TEC contains three components: turn on/off energy consumption,252

processing energy consumption, and idle energy consumption. Therefore, the253

TEC objective of EMBFJSP can be defined as follows:254

minF2 = TEC = Et +Ew +Ei (2)

Et =

m∑
k=1

r∑
q=1

TPMk,q · STk · Zk,q (3)

Ew =

n∑
i=1

ni∑
j=1

m∑
k=1

r∑
q=1

PMk,q · Pi,j,k,q ·Xi,j,k,q (4)

Ei =

m∑
k=1

h∑
l=2

r∑
q=1

IPMk,q · (Bk,l,q − Fk,l−1,q) (5)

In conclusion, the MILP model of EMBFJSP is described as follows:255
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{
minF1 = Cmax

minF2 = TEC
(6)

Subject to:256

Pi,j,k,q = Ti,j,k/Vi,j,k,

∀i = 1, ..., n;∀j = 1, ..., ni;∀k = 1, ...,m;∀q = 1, ..., r
(7)

n∑
i=1

ni∑
j=1

Ui,j,k,q,l ⩾
n∑

i′=1

ni′∑
j′=1

Ui′,j′,k,q,(l+1),

∀k = 1, ...,m;∀q = 1, ..., r;∀l = 1, ..., h− 1

(8)

m∑
k=1

r∑
q=1

h∑
l=1

Ui,j,k,q,l = 1,

∀i = 1, ..., n;∀j = 1, ..., ni

(9)

n∑
i=1

ni∑
j=1

Ui,j,k,q,l ⩽ 1,

∀k = 1, ...,m;∀q = 1, ..., r;∀l = 1, ..., h

(10)

Si,j +

m∑
k=1

r∑
q=1

(Pi,j,k,q ·Xi,j,k,q +RTk ·Wi,j,k) ⩽ Si,j+1,

∀i = 1, ..., n;∀j = 1, ..., ni − 1

(11)

Si,j+1 ⩾ Ci,j ,∀i = 1, ..., n;∀j = 1, ..., ni − 1 (12)

Bk,l+1,q −Bk,l,q ⩾
n∑

i=1

ni∑
j=1

(Pi,j,k,q ·Ui,j,k,q,l),

∀k = 1, ...,m;∀q = 1, ..., r;∀l = 1, ..., h− 1

(13)

Bk,l,q ⩾ Si,j − L · (1−Ui,j,k,q,l),

∀i = 1, ..., n;∀j = 1, ..., ni;∀k = 1, ...,m;∀q = 1, ..., r;∀l = 1, ..., h
(14)

Bk,l,q ⩽ Si,j + L · (1−Ui,j,k,q,l),

∀i = 1, ..., n;∀j = 1, ..., ni;∀k = 1, ...,m;∀q = 1, ..., r;∀l = 1, ..., h
(15)
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Ci,j = Si,j +

m∑
k=1

r∑
q=1

(Pi,j,k,q ·Xi,j,k,q +RTk ·Wi,j,k),

∀i = 1, ..., n;∀j = 1, ..., ni

(16)

Cmax = maxCi,ni ,

∀i = 1, ..., n
(17)

Si,j ⩾ 0;Ci,j ⩾ 0,∀i = 1, ..., n;∀j = 1, ..., ni; (18)

Bk,l,q ⩾ 0;Fk,l,q ⩾ 0,∀k = 1, ...,m;∀l = 1, ..., h;∀q = 1, 2, ..., r (19)

Xi,j,k,q,Zk,q,Ui,j,k,q,l,Wi,j,k ∈ {0, 1},
∀i = 1, ..., n;∀j = 1, ..., ni;∀k = 1, ...,m;∀q = 1, ..., r;∀l = 1, ..., h

(20)

Here, Formula (6) is the objectives, including makespan and TEC. For-257

mula (7) is to calculate the actual processing time, the faster the processing258

speed, the shorter the actual processing time. Formula (8) ensures that the po-259

sitions of each machine are sequentially assigned to the operations. Formula260

(9) ensures that each operation can only correspond to one position of each261

machine. Formula (10) ensures that each position of the machines can process262

one operation atmost. Formula (11) and Formula (12) guarantee the constraint263

relationship between the operations of the job, for the adjacent operations, the264

successor operation can only be started processing after the predecessor oper-265

ation is completed. Formula (13) guarantees that a machine can only process266

one operation at any given time, as each operation needs to occupy a position267

on the machine to be processed. Formula (14) and Formula (15) define the re-268

lationship between the start time of machines and the start time of operations.269

Formula (16) defines the completion time of each operation. Formula (17) de-270

fines the makespan. Formula (18) - Formula (20) determine the limitations on271

the range of values. There are n(1 + 4ni) + 3mrh+ nnimr(1 + 2h) constraints,272

2nni + 2mh continuous variables, and nnimr + n2n2
i +mr + nnimrh + nnim273

binary decision variables.274

3. The proposed algorithm: KTMA275

3.1. Framework of KTMA276

Our proposed KTMA is based on the two-stage framework which is stated277

in Algorithm 1, and it consists of two stages: the first stage is to find as many278

optimal solutions as possible, and the second stage is to further optimize the279

TEC criteria based on the optimal solutions found in the first stage. In the280

first stage, a memetic algorithm framework is applied to accelerate the conver-281

gence performance of the KTMA, thus obtaining a sufficient number of non-282

dominated solutions. Afterward, a hybrid initialization strategy that consists283

of three heuristic methods is utilized for generating a high-quality population.284

Then, a knowledge-driven variable neighborhood search strategy that adjusts285
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the position of operations on the critical path is designed to fully explore the so-286

lution space to improve the convergence performance efficiently. In the second287

stage, an efficient energy-saving strategy is designed to further optimize the to-288

tal energy consumption objective without deteriorating themakespan objective289

by delaying the start time of operations and turning off specific machines. In290

the following sections, we will introduce the components of each stage step by291

step.292

Algorithm 1 The Framework of KTMA
Input: PS (population size), G (maximum number of iterations), Pc

(crossover rate), Pm (mutation rate)
Output: PF (Pareto solution set)
1: // First stage
2: Gen← 1, t← 0, PF ← ∅.
3: P0 ← Initialization(PS).
4: while Gen ⩽ G do
5: MatePoolt ← TournamentSelection(Pt).
6: Ct ← GeneticOperation(MatePoolt, Pc, Pm).
7: Pt ← Pt ∪ Ct.
8: St ← Randomly select PS/4 individuals for variable neighborhood

search.
9: Qt ← VariableNeighborhoodSearch(St).
10: Pt ← Pt ∪Qt.
11: {F1, F2, ..., Flast, Fn} ← FastNonDominatedSort(Pt).
12: Pt ← DeleteDuplicateIndividuals(Pt).
13: k ← 1, Pt+1 ← ∅.
14: while |Pt+1|+ |Fk| ⩽ PS do
15: Pt+1 ← Pt+1 ∪ Fk.
16: k ← k + 1.
17: end while
18: W ← PS − |Pt+1|.
19: Flast ← CrowdingDistance(Flast).
20: Pt+1 ← Pt+1 ∪ Flast(1 : W, :).
21: PF ← UpdatePF(PF).
22: end while
23: // Second stage
24: for i = 1 to |PF| do
25: PF(i)← DelayedStartTimeStrategy(PF(i)).
26: PF(i)←MachineTurnoffStrategy(PF(i)).
27: end for

3.2. Encoding and decoding293

This section describes how to implement encoding and decoding. Three294

vectors are applied to represent a chromosome: the operation sequence vec-295

tor (OSV), the machine sequence vector (MSV), and the speed sequence vector296

(SSV), which can be presented in Figure 3. For OSV, each gene i is sequentially297

encoded by the job number. The numbering sequence between jobs indicates298

the processing sequence of jobs. The jth appearance of the job number indi-299

cates the jth operation Oi,j of job Ji. For MSV, all operations are arranged in300
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ascending order that are allocated by machines from left to right. For SSV, the301

genes of MSV and the genes of SSV maintain a one-to-one mapping, which in-302

dicates the processing speed of the machine for processing Oi,j . Moreover, the303

length of OSV, MSV, and SSV is equivalent to the total number of operations.304

When decoding, each operation will start decoding as early as possible ac-305

cording to the constraints between machines and jobs. First, all operations are306

divided into a processing sequence according to their order in the OSV. Sec-307

ond, each operation in the processing sequence is sequentially allocated to the308

selected machine number from the MSV. Finally, the selected machines are as-309

signed to the given processing speed from the SSV.310

OSV 1 3 2 1 3 2 1 3

O1,1 O3,1 O2,1 O1,2 O3,2 O2,2 O1,3 O3,3

MSV 3 2 3 1 3 2 1 1

O1,1 O1,2 O1,3 O2,1 O2,2 O3,1 O3,2 O3,3

SSV 1 1 2 2 3 1 3 2

J1 J2 J3

Figure 3: Encoding scheme.

3.3. Hybrid initialization strategy311

Since the quality of the initial population often affects the speed of conver-312

gence of the algorithm to find satisfactory solutions, the initialization strategy313

becomes an important part of the evolutionary process. Therefore, the core pur-314

pose is to design an effective initialization strategy to generate a high-quality315

initial population. Generally, a simple single initialization strategy cannot ob-316

tain a high-quality population. Therefore, the hybrid initialization strategy is317

proposed to solve this problem, which is described as follows:318

Minimum global machine workload heuristic (H1): Select the machine with the319

smallest total machine workload from its candidate machine set, which can re-320

duce makespan by balancing machine workload.321

Minimum processing time heuristic (H2): Select the machine with the smallest322

processing time from its candidate machine set to assign to each operationOi,j ,323

which can effectively reduce total energy consumption.324

Lower machine processing speed heuristic (H3): Randomly select amachine and325

lower the machine processing speed by one level, which will reduce the idle326

time to a certain extent. If the machine processing speed is at level 1, the pro-327

cessing speed remains constant.328

To ensure that the initial population does not fall into the local optimum,329

as well as to maintain the diversity of the population, a random initialization330

strategy is applied to the hybrid initialization strategy.331

Random initialization strategy (R): Randomly initialize the population to332

maintain the diversity performance of the initial population.333
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The process of the hybrid initialization strategy is as follows: Firstly, theOSV334

and the SSV are randomly generated using the strategyR tomaintain the diver-335

sity performance of the population. Then the MSV is generated by utilizing the336

aforementioned four initialization strategies, which are defined the probabili-337

ties as 0.3, 0.2, 0.2, and 0.3. It is worth noting that when using the heuristicH3,338

the MSV randomly selects a machine, and the SSV also changes accordingly.339

3.4. Genetic operator340

The genetic operator is the critical step to perturb the population to generate341

new individuals, thus achieving an optimal search to explore the feasible space.342

For crossover operators, an improved precedence operation crossover (IPOX)343

operator is employed for OSV and a multipoint crossover (MPX) operator is344

employed for MSV and SSV (Wang et al., 2010). Examples of the IPOX and345

MPX operators are presented in Figure 4 (a) and Figure 4 (b), respectively. The346

procedure is described as follows:347

For the IPOX operator:348

Step 1: Divide all jobs into two sub-job sets JobSet1 and JobSet2 randomly.349

Step 2: Select all the jobs belonging to JobSet1 from parent P1 to move into350

offspring O1, select all the jobs belonging to JobSet2 from parent P2 to move351

into offspring O2, and keep their positions unchanged.352

Step 3: Select all the jobs belonging to JobSet1 from parent P1 to move into353

offspring O2, select all the jobs belonging to JobSet2 from parent P2 to move354

into offspring O1, and keep their sequence unchanged.355

For the MPX operator:356

Step 1: Randomly generate a sequence consisting of integers 0 and 1 that357

equals the length of the chromosome.358

Step 2: Find the position TP with the value 1 in the 0-1 sequence.359

Step 3: Swap the machines or machine speeds in parent P1 and parent P2360

corresponding to position TP and the other machines or machine speeds in361

parent P1 and parent P2 remain unchanged.362

O3,1 O2,1 O1,1 O1,2 O3,2 O1,3 O3,3 O2,2

P1 3 2 1 1 3 1 3 2

O1 3 2 1 1 3 1 3 2

O2 2 3 1 1 3 1 2 3

P2 2 3 1 1 3 1 2 3

O2,1 O3,1 O1,1 O1,2 O3,2 O1,3 O2,2 O3,3

JobSet1

JobSet2

J1, J2

J3

(a) IPOX operator

P1 2 3 1 1 3 2 3 1

0 1 1 0 0 1 0 1

P2 3 3 2 1 3 1 1 2

O1,1 O1,2 O1,3 O2,1 O2,2 O3,1 O3,2 O3,3

O1 2 3 2 1 3 1 3 2

O2 3 3 1 1 3 2 1 1

J1 J2 J3

(b) MPX operator

Figure 4: Examples of the crossover operators.

For mutation operators, a swapping mutation (SM) operator is employed363

for OSV and amulti-point mutation (MPM) operator is employed for MSV and364

SSV (Deng et al., 2017). Examples of the SM andMPM operators are presented365

in Figure 5 (a) and Figure 5 (b), respectively. The procedure is described as366

follows:367
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For the SM operator:368

Step 1: Select two positions TP1 and TP2 in parent P1 randomly.369

Step 2: Exchange the jobs of positions TP1 and TP2 in parent P1 to generate370

offspring O1.371

For the MPM operator:372

Step 1: Randomly select several positions TP in parent P1.373

Step 2: Randomly replace the machines or machine speeds of parent P1 in374

these positions with the candidate machine set or candidate machine speed set375

to generate offspring O1.376

O1,1 O3,1 O2,1 O2,2 O3,2 O3,3 O1,2 O1,3

P1 1 3 2 2 3 3 1 1

O1 1 3 3 2 3 2 1 1

O1,1 O3,1 O3,2 O2,1 O3,3 O2,2 O1,2 O1,3

(a) SM operator

O1,1 O1,2 O1,3 O2,1 O2,2 O3,1 O3,2 O3,3

P1 2 1 1 2 3 2 1 1

O1 2 2 1 3 3 2 2 1

J1 J2 J3

(b) MPM operator

Figure 5: Examples of the mutation operators.

3.5. Knowledge-driven variable neighborhood search377

Variable neighborhood search has become a very critical part of the schedul-378

ing problems. Especially, an effective design of a variable neighborhood search379

can greatly facilitate the search capabilities of the algorithm. By analyzing380

the characteristics of EMBFJSP, we added problem-specific knowledge to the381

variable neighborhood search and constructed four knowledge-driven variable382

neighborhood search operators as a way to enhance the convergence of the al-383

gorithm. The EMBFJSP aims to optimize two objectives: makespan and TEC.384

The makespan is mainly related to the operations on the critical path, and the385

TEC ismainly related to the idle time of themachines. Therefore, whendesign-386

ing the knowledge-driven variable neighborhood search operators, we mainly387

consider how to optimize the operation sequence on the critical path and how388

to reduce the idle time of the machines. The four knowledge-driven variable389

neighborhood search operators are designed as follows:390

3.5.1. Neighborhood operator 1391

Neighborhood operator 1 (N1) aims to adjust the position of the operation392

on the critical block, which contains continuous operations on the same ma-393

chine on the critical path. The critical path can be defined as the longest path394

from the start node to the end node of the disjunctive graph. A more detailed395

description of the disjunctive graphs can be referred to (Zhang et al., 2007).396

Neighborhood operator 1 (N1) randomly selects the operations on the critical397

path and adjusts them to the head of the critical block. An example of N1 is398

shown in Figure 6 (a).399

FromFigure 6 (a), we can find the critical path (consisting ofO2,1,O2,2,O3,2,400

O1,3 and O3,3) and randomly select an operation O3,2 and move it to the head401
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of the critical block (consisting of O2,2, O3,2 and O1,3) satisfying its constraints.402

Meanwhile, O3,3 can also move forward to connect its predecessor operation403

(O3,2) and thus shorten the makespan of the original sequence.404

3.5.2. Neighborhood operator 2405

Neighborhood operator 2 (N2) is also based on the critical block and ran-406

domly selects the operations on the critical path and adjusts them to the tail of407

the critical block. An example of N2 is shown in Figure 6 (b).408

FromFigure 6 (b), we can find the critical path (consisting ofO2,1,O2,2,O1,3,409

O3,2 and O3,3) and randomly select an operation O1,3 and move it to the tail of410

the critical block (consisting ofO2,2,O1,3 andO3,2) satisfying its constraints. At411

the same time,O3,3 can also move forward to connect its predecessor operation412

(O3,2) that can shorten the makespan of the original sequence.413

3.5.3. Neighborhood operator 3414

Neighborhood operator 3 (N3) aims to move the operations on the critical415

path, which randomly selects an operation on the critical path and inserts it into416

a different candidate machine. An example of N3 is shown in Figure 6 (c).417

FromFigure 6 (c), we can find the critical path (consisting ofO2,1,O2,2,O1,3,418

O3,2 and O3,3) and randomly select an operation O1,3 and insert it to M1. O3,2419

and O3,3 can move ahead accordingly, resulting in a smaller makespan value420

than the original sequence.421

3.5.4. Neighborhood operator 4422

Neighborhood operator 4 (N4) is based on the machine speeds which ran-423

domly select an operation on the non-critical path where subsequent idle time424

exists and lower the machine speed of its processing machine by one level. The425

energy consumption generated by processing time and the energy consumption426

generated by idle time are large in TEC. Therefore, by selecting operations on427

the non-critical path and reducing the processing speed of their processingma-428

chines, the power of the processing machines can be reduced and the idle time429

of themachines can also be reduced. Thus, theTEC can be effectively reduced.430

An example of N4 is shown in Figure 6 (d).431

From Figure 6 (d), we randomly select O1,1 on the non-critical path and432

lower the machine speed to satisfy its constraints. The processing speed ofO1,1433

becomes slower, resulting in longer processing time, and the total energy con-434

sumption of this sequence after using the N4 is less than the original.435

3.6. Energy-saving strategy436

Energy-saving strategy is especially important in the energy-efficient437

scheduling problem. An effective energy-saving strategy can reduce TEC438

without increasingmakespan, thus significantly increasing industry profits and439

efficiently protecting the environment. TEC dependsmainly on the processing440

time and the idle time; therefore, we design two types of energy-saving strate-441

gies based on the previous.442
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O3,1 O1,2

Critical path
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(a) N1
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(b) N2
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(c) N3
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O2,1 O3,3

O1,1 O2,2 O1,3 O3,2

O3,1 O1,2
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Time

Machine

0 1 2 3 4 5 6 7 8 9 10 11 12 13

M1

M2

M3

O2,1 O3,3

O1,1 O2,2 O1,3 O3,2

O3,1 O1,2

Reduced energy consumption

(d) N4

Figure 6: Examples of the neighborhood operators.

3.6.1. Delayed start time strategy443

The delayed start time strategy (DSTS) is designed to reduce idle time in444

the scheduling sequence. By delaying the start time of the operations, the idle445

time of machines can be reduced, thus optimizing TEC. However, it is not446

possible to delay the start time of operations as long as there exists idle time,447

the operations with delayed start times must satisfy their constraints ; that is,448

adjacent operations of the same job must finish processing the predecessor op-449

eration before starting to process the successor operation, and a machine can450

only process one operation at a time. With the execution of the delayed start451

time strategy, although the OSV, MSV, and SSV cannot be changed, it can delay452

the start time of the jobs and obtain the start time and completion time of the453

jobs, thus reducing the idle time of the machines to minimize theTEC criteria.454

The detail of the delayed start time strategy is presented in Algorithm 2.455
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Algorithm 2 Delayed Start Time Strategy
Input: J (job sequence), O (operation sequence), Po (successor operation

pointer), Pm (machine successor operation pointer), S (start time of op-
erations), C (completion time of operations)

Output: S (start time of operations), C (completion time of operations)
1: for i = Length(O) to 1 do
2: Jc = J(i), Oc = O(i) //The current job and operation
3: if Po = ∅ ∧ Pm ̸= ∅ then
4: //The operation is the last operation of the job
5: Jm = J(Pm(i)), Om = O(Pm(i)) //The successor job and opera-

tion on the machine
6: time = C(Jc,Oc)− S(Jc,Oc)
7: C(Jc,Oc) = S(Jm,Om)
8: S(Jc,Oc) = C(Jc,Oc)− time
9: else if Po ̸= ∅ ∧ Pm ̸= ∅ then
10: Os = O(Po(i)) //The successor operation
11: Jm = J(Pm(i)), Om = O(Pm(i))
12: time = C(Jc,Oc)− S(Jc,Oc)
13: C(Jc,Oc) = min(C(Jc,Os), C(Jm,Om))
14: S(Jc,Oc) = C(Jc,Oc)− time
15: end if
16: end for

To better explain, an example is shown in Figure 7. As shown in the original456

scheduling sequence in (a) of Figure 7, 7 units of idle time exist andDSTS can be457

utilized to further reduce the idle time, where OSV = {1, 2, 3, 2, 1, 1, 3, 3}, MSV458

= {1, 2, 3, 2, 3, 3, 2, 1}, and SSV = {1, 3, 3, 2, 2, 2, 3, 2}. Traversing the OSV from459

backward to forward, O2,2 can be delayed without violating the constraints.460

After O2,2 is delayed, O3,1 and O2,1 have the condition that can be delayed, so461

O3,1 and O2,1 are delayed accordingly. The scheduling sequence using DSTS is462

shown in Figure 7 (b), where the idle time can be reduced to 4 unit time; thus,463

the TEC can be reduced.464

Time

Machine

0 1 2 3 4 5 6 7 8 9 10 11 12

M1

M2

M3

O1,1 O3,3

O2,1 O1,2 O3,2

O3,1 O2,2 O1,3

Idle time

(a) Original scheduling sequence
Time

Machine

0 1 2 3 4 5 6 7 8 9 10 11 12

M1

M2

M3

O1,1 O3,3

O2,1 O1,2 O3,2

O3,1 O2,2 O1,3

Idle time

(b) Scheduling sequence using DSTS

Figure 7: Examples of the delayed start time strategy.

3.6.2. Machine turn off strategy465

After the execution of DSTS, we designed the machine turn off strategy466

(MTOS) to further optimizeTEC criteria by reducingmachine idle time. When467

a machine has finished processing an operation and is waiting to process the468

next operation, it will incur idle time. If the energy consumed when the ma-469

chine is turned off and on is less than the energy consumedwhen themachine is470
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idle, turn themachine off; otherwise, keep themachine in an idle state. Through471

the machine turn off strategy, it is possible to determine which machines can be472

turned off during idle time, and to determine the time of shutdown, thus re-473

ducing the idle time of the machines to optimize the TEC objective.474

4. Experimental results475

In this section, sufficient experiments were designed to evaluate the perfor-476

mance of KTMA. In addition, all algorithms are coded in MATLAB R2020b on477

the Intel Core i7-7700 CPU @ 3.60GHz with 8G RAM.478

4.1. Experimental instances479

To verify the performance of our proposed KTMA, the benchmark example480

is selected from (Wu& Sun, 2018) and referenced the DFJSP case from (Li et al.,481

2021) with modifications to its machine breakdown part. Table S-I presents an482

example of benchmark Ins01, which contains 10 jobs, 6 machines, and 6 max-483

imum number of operations. Since there are 3 levels of machine processing484

speeds, each level has a different power, the processing power, the idle power485

and the turn on/off power are also different. As shown in Table 1, columns 2–7486

listed the processing power and the idle power for each level. In addition, the487

last column listed the turn on/off power.488

Table 1: The power distribution for each machine.

Level 1 Level 2 Level 3
processing idle processing idle processing idle turn on/off

M1 31.21 6.76 49.06 19.16 57.00 26.07 85.84
M2 35.90 2.89 48.80 10.01 56.39 21.92 88.63
M3 32.26 6.72 48.18 14.62 50.34 27.38 80.31
M4 33.85 6.95 42.61 14.24 50.69 22.43 99.68
M5 35.83 1.68 45.94 14.61 53.20 29.17 83.34
M6 32.52 2.55 40.23 17.70 55.31 22.69 82.12
M7 32.90 2.24 44.25 13.22 56.54 27.66 87.45
M8 36.17 6.68 43.13 17.85 54.08 21.89 83.96
M9 32.65 8.44 41.61 14.71 58.20 22.87 89.79
M10 38.24 3.44 41.79 10.36 57.18 20.91 86.79
M11 39.83 7.81 44.23 11.76 59.69 25.76 99.03
M12 37.30 6.75 40.94 17.22 55.31 26.83 98.41
M13 33.44 5.67 45.99 14.73 53.25 27.47 81.05
M14 35.84 6.02 44.71 11.53 51.06 24.26 94.76
M15 31.08 3.87 46.96 13.41 56.11 26.66 85.38

4.2. Performance metrics489

To fully evaluate the performance of the proposed KTMA, three evaluation490

indicators are adopted, which are the hypervolume (HV) metric (While et al.,491

2006), generation distance (GD) metric (Zitzler et al., 2000) and Spread metric492

(Deb et al., 2002).493

The HV metric is usually utilized to evaluate the comprehensive per-494

formance of the multi-objective optimization algorithm (MOEAs), and the495

MOEAs with higher HV values tend to have better comprehensive perfor-496

mance. HV is calculated as follows:497
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HV (P,R) =

P⋃
x∈P

v(x,R) (21)

where P indicates the PF obtained by the MOEAs, and R indicates the ref-498

erence point which is often set to (1.01, 1.01). x indicates all non-dominated499

solution in PF that has been normalized and v indicates the volume of the hy-500

percube enclosed by x and R.501

The GD metric is used to evaluate the convergence performance of the502

MOEAs, and theMOEAswith lower GDvalues tend to have better convergence503

performance. GD is calculated as follows:504

GD(P, P ∗) =

√∑
y∈P minx∈P∗ dis(x, y)2

|P |
(22)

where P indicates the non-dominated solutions set of the MOEAs and P ∗
505

indicates the reference PF obtained by all MOEAs. dis(x, y) indicates the Eu-506

clidean distance between the point x ∈ P ∗ and the point y ∈ P .507

The Spread metric is applied to evaluate the diversity performance of the508

MOEAs, and theMOEAswith lower Spread values tend to have better diversity509

performance. Spread is calculated as follows:510

Spread =
dl + df +

∑N−1
i=1 |di − d|

dl + df + (N − 1)d
(23)

where d indicates the Euclidean distance and d indicates the average dis-511

tance of di, i = 1, 2, ..., (N − 1). dl and df indicate the Euclidean distances512

between the extreme points and the boundary points of the obtained non-513

dominated set.514

4.3. Parameter calibration515

The importance of parameter configuration to the proposed KTMA in solv-516

ing EMBFJSP cannot be overstated. In the proposed KTMA, four critical pa-517

rameters should be calibrated, which are population size PS, maximum num-518

ber of iterations G, crossover probability Pc, and mutation probability Pm. To519

obtain the best setting for these parameter combinations, a Taguchi method520

of design-of-experiments (DOE) (Roy & K, 2001) is adopted. More precisely,521

each parameter has four different levels; that is, PS = {40, 60, 80, 100}, G =522

{125, 150, 175, 200}, Pc = {0.7, 0.8, 0.9, 1.0} and Pm = {0.05, 0.10, 0.15, 0.20}523

and an orthogonal array L16(4
4) was employed in this parameter calibration524

experiment. To ensure a fair comparison of experiments, each parameter com-525

bination ran 20 times independently. Figure 8 presents the main effects plots526

of four parameters for three metrics. Generally, the combination of parameters527

with a higher HV value has better performance. On the contrary, the combina-528

tion of parameters with a lower HV value and a lower Spread value has better529

performance. From the experimental results and the comprehensive observa-530

tion, it is clear that the best parameter combination is PS = 100, G = 125,531

Pc = 0.9, and Pm = 0.05.532
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(a) HV (b) GD

(c) Spread

Figure 8: Main effects plots of three metrics: (a) HV, (b) GD, and (c) Spread.

4.4. MILP model validation533

To verify the correctness of the MILP model, the CPLEX 12.6.3 solver was534

applied to obtain the optimal solutions for the optimization objectives of the535

EMBFJSP. Since the CPLEX solver can only obtain the value of one objective at536

a time, and EMBFJSP is a bi-objective problem, therefore theMILPmodel needs537

to be transformed into a single-objective problem and solved in two times. As538

the scale of the EMBFJSP increases, the constraints increase dramatically, it is539

impractical to obtain the optimal solution set in a finite time. Therefore, we540

utilized the CPLEX solver to solve the smallest size instance to verify the cor-541

rectness of the MILP model. The size of the smallest instance is as follows: the542

number of jobs is 10, the number of machines is 6, and themaximumnumber of543

operations is 6. Not only that, some larger instances like Ins05 and Ins10 were544

also selected to validate the correctness of the MILP model, which consisted545

of 15 jobs, 4 machines, 9 maximum number of operations, and 20 jobs, 15 ma-546

chines, 14 maximum number of operations, respectively. Our proposed KTMA547

also executed this instance as a comparison.548

In order to compare the optimization performance of the CPLEX and the549

KTMA, the Relative Percentage Difference (RPD) (Hatami et al., 2015) metric550

is employed for evaluation, which is calculated as follows:551

RPD =
R1 −R2

R2
× 100% (24)

where R1 denotes the objective values obtained from the KTMA, and R2 de-552

notes the objective values obtained from the CPLEX.553
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Additionally, the CPU time consumed by the CPLEX and the KTMA is also554

employed for the comparison. Table 2 records the results.555

From Table 2, the solutions obtained by the CPLEX are better than that ob-556

tained by theKTMAbecause the CPLEXuses the branch-and-bound algorithm,557

which can find the optimal solutions with fast average speed. However, the re-558

sults obtained by the CPLEX can verify the correctness of our proposed KTMA.559

Meanwhile, compared to the CPLEX, our proposed KTMA consumes less CPU560

time.561

Table 2: Comparison results of the CPLEX solver and the KTMA on the selected instances.

Instance makespan TEC RPD CPU time
CPLEX KTMA CPLEX KTMA makespan TEC CPLEX KTMA

Ins01 39.00 45.50 9.83E+03 1.02E+04 16.67% 3.76% 90.25 70.92
Ins05 231.75 257.50 4.32E+04 4.51E+04 11.11% 4.40% 267.83 131.98
Ins10 453.50 482.00 1.67E+05 1.71E+05 6.28% 2.40% 970.19 667.70

4.5. Effectiveness of each improvement part of KTMA562

To verify the effectiveness of each improvement part of the proposed al-563

gorithm, three variants of KTMA are compared as follows: KTMA1 denotes564

KTMAwithout the hybrid initialization strategy, KTMA2 denotes KTMAwith-565

out the knowledge-driven variable neighborhood search operation andKTMA3566

denotesKTMAwithout the energy-saving strategy. To ensure the fairness of the567

comparison, the KTMA and its all variants are run 20 times in all instances. The568

statistical values of HV, GD, and Spread of all variant algorithms over 20 times569

runs independently in all instances are listed in Table 3, Table 4 and Table 5,570

where the best values are marked in bold. We can see that in most instances,571

the performance of KTMA is not inferior to that of all variants of KTMA for572

HV, GD, and Spread metrics. Moreover, Table 6 lists the Friedman rank test573

results for all variants of the algorithm with a confidence level α = 0.05. There-574

fore, based on the comprehensive performance of the three metrics in the table,575

KTMA has the highest overall ranking, which indicates that the KTMA outper-576

forms its four variants.577

Table 3: HV statistical values of all variant algorithms in all instances.

Instances KTMA1 KTMA2 KTMA3 KTMA
mean std mean std mean std mean std

Ins01 0.5257 0.1761 0.4072 0.1867 0.6259 0.1332 0.6911 0.1290
Ins02 0.3418 0.1287 0.2242 0.1696 0.6428 0.1836 0.6502 0.1849
Ins03 0.2429 0.2054 0.5415 0.3262 0.3152 0.2004 0.3998 0.2193
Ins04 0.4006 0.2017 0.2146 0.1597 0.3052 0.1346 0.3715 0.1457
Ins05 0.3650 0.2942 0.1915 0.1279 0.4707 0.3336 0.4707 0.3336
Ins06 0.4273 0.2425 0.3794 0.2775 0.5605 0.2927 0.6231 0.3180
Ins07 0.1818 0.1891 0.3354 0.3526 0.2068 0.2370 0.2074 0.2376
Ins08 0.4240 0.2925 0.2483 0.2027 0.2062 0.2486 0.3014 0.3183
Ins09 0.3159 0.2405 0.4233 0.2418 0.2065 0.2009 0.2964 0.2496
Ins10 0.3225 0.2306 0.5233 0.2307 0.2543 0.1867 0.4471 0.2107
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Table 4: GD statistical values of all variant algorithms in all instances.

Instances KTMA1 KTMA2 KTMA3 KTMA
mean std mean std mean std mean std

Ins01 0.1081 0.0628 0.1536 0.0624 0.0864 0.0440 0.0558 0.0351
Ins02 0.2703 0.0881 0.3547 0.1439 0.1304 0.0889 0.1176 0.086864
Ins03 0.3717 0.2423 0.1365 0.1142 0.3349 0.1890 0.2735 0.1720
Ins04 0.1493 0.1017 0.2617 0.1394 0.1987 0.0779 0.1442 0.0630
Ins05 0.3831 0.2924 0.4865 0.1789 0.2643 0.2618 0.2641 0.2615
Ins06 0.1872 0.0933 0.1182 0.0726 0.1067 0.0797 0.0645 0.0764
Ins07 0.4788 0.2518 0.1993 0.1552 0.4330 0.2199 0.4264 0.2197
Ins08 0.1842 0.1295 0.2517 0.1349 0.4316 0.2558 0.2618 0.2222
Ins09 0.3731 0.1678 0.2850 0.1407 0.5358 0.3145 0.4276 0.2876
Ins10 0.3072 0.1227 0.2074 0.0831 0.3563 0.1590 0.2391 0.1366

Table 5: Spread statistical values of all variant algorithms in all instances.

Instances KTMA1 KTMA2 KTMA3 KTMA
mean std mean std mean std mean std

Ins01 0.9588 0.0579 0.9817 0.0571 0.9095 0.0806 0.9477 0.0883
Ins02 0.9564 0.0430 0.9731 0.0395 0.8958 0.0677 0.9150 0.0817
Ins03 0.9797 0.0184 0.8422 0.1584 0.9607 0.0424 0.9583 0.0490
Ins04 0.9614 0.0516 0.9824 0.0454 0.9455 0.0599 0.9714 0.0588
Ins05 0.9371 0.0790 0.9805 0.0145 0.9137 0.1450 0.9139 0.1450
Ins06 0.9843 0.0143 0.9919 0.0142 0.9722 0.0291 0.9669 0.0292
Ins07 0.9752 0.0369 0.9583 0.0766 0.9712 0.0480 0.9826 0.0204
Ins08 0.9845 0.0273 0.9939 0.0145 0.9886 0.0152 0.9841 0.0216
Ins09 0.9801 0.0151 0.9632 0.0260 0.9803 0.0278 0.9356 0.2153
Ins10 0.9674 0.0547 0.9223 0.0816 0.9738 0.0404 0.9552 0.1072

Table 6: Overall ranks through the Friedman test among all variants (a level of significant α =
0.05).

MOEAs HV GD Spread
rank p-value rank p-value rank p-value

KTMA1 2.30
1.52E-05

2.90
1.24E-05

2.90
2.66E-03KTMA2 2.30 2.50 2.90

KTMA3 3.30 2.90 2.20
KTMA 2.10 1.70 2.00

4.6. Comparison and discussion among other algorithms578

To further verify the performance of the proposed KTMA, we compared it579

with the classicalMOEAs, including SPEA2 (Zitzler et al., 2001), NSGA-II (Deb580

et al., 2002) and MOEA/D (Zhang & Li, 2007), the current proposed MOEAs,581

including AdaW (Li & Yao, 2020) and TS-NSGA-II (Ming et al., 2022), a state-582

of-art algorithm named NSGA-III/ARV (An et al., 2022), a RL-based algorithm583

named LRVMA (Li et al., 2022b), and a GP-related algorithm named GPHH584

(Fan et al., 2021). The best parameter settings refer to the corresponding refer-585

ences. For SPEA2, NSGA-II and MOEA/D, PS = 100, Pc = 0.9 and Pm = 0.05.586

The archive size of SPEA2 is set to 50 and the neighborhood size of MOEA/D587

is set to 15. Furthermore, for a fair comparison, all comparison algorithms are588

compared in the same environment, which are coded in MATLAB R2020b on589

the Intel Core i7-7700 CPU @ 3.60GHz with 8G RAM and run 20 times inde-590

pendently with the same stopping criteria in all instances. (G = 125).591
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Table 7: HV statistical values of all comparison algorithms in all instances.

Instances SPEA2 NSGA-II MOEA/D AdaW TS-NSGA-II NSGA-III/ARV LRVMA GPHH KTMA
Ins01 0.8242 0.2677 0.1134 0.0465 0.0458 0.3832 0.1997 0.2952 0.9432
Ins02 0.6948 0.2477 0.1301 0.0509 0.0191 0.4628 0.1032 0.3111 0.9458
Ins03 0.3308 0.2157 0.1023 0.1042 0.0399 0.4259 0.1758 0.1933 0.7374
Ins04 0.7494 0.2131 0.0964 0.0503 0.0207 0.4119 0.1266 0.1543 0.8789
Ins05 0.2545 0.0929 0.0473 0.0318 0.0207 0.1089 0.0530 0.0711 0.6467
Ins06 0.2277 0.1077 0.0547 0.0408 0.0101 0.3140 0.0668 0.1158 0.7624
Ins07 0.2220 0.2112 0.1009 0.0815 0.0625 0.2731 0.1137 0.1477 0.5439
Ins08 0.4199 0.1755 0.0631 0.0532 0.0119 0.1465 0.0819 0.0885 0.4793
Ins09 0.2312 0.1608 0.0749 0.0323 0.0292 0.2136 0.0813 0.1613 0.5609
Ins10 0.1950 0.1789 0.0697 0.0407 0.1012 0.3289 0.1025 0.1341 0.7212

Table 8: GD statistical values of all comparison algorithms in all instances.

Instances SPEA2 NSGA-II MOEA/D AdaW TS-NSGA-II NSGA-III/ARV LRVMA GPHH KTMA
Ins01 0.0514 0.3310 0.5357 0.6365 0.5407 0.2295 0.4725 0.3096 0.0123
Ins02 0.1212 0.3841 0.4860 0.6973 0.6839 0.2297 0.5981 0.3861 0.0216
Ins03 0.3223 0.4140 0.5844 0.6202 0.6594 0.2533 0.5222 0.4724 0.0955
Ins04 0.0943 0.4057 0.5118 0.7352 0.7636 0.2618 0.5184 0.5457 0.0207
Ins05 0.4280 0.5742 0.6586 0.8747 0.8990 0.5290 0.7209 0.7096 0.0939
Ins06 0.3639 0.5265 0.6987 0.7620 0.9061 0.3369 0.6469 0.6135 0.0335
Ins07 0.4574 0.4083 0.6031 0.7185 0.7431 0.4077 0.6317 0.5441 0.1725
Ins08 0.2515 0.3879 0.5856 0.8264 0.9175 0.5554 0.6188 0.6945 0.1322
Ins09 0.4330 0.4603 0.6243 0.8467 0.8832 0.4204 0.6830 0.5504 0.1737
Ins10 0.4362 0.4393 0.5535 0.8158 0.7171 0.3624 0.6281 0.5636 0.1131

Table 9: Spread statistical values of all comparison algorithms in all instances.

Instances SPEA2 NSGA-II MOEA/D AdaW TS-NSGA-II NSGA-III/ARV LRVMA GPHH KTMA
Ins01 0.9298 0.9834 0.9772 0.9931 0.9974 0.9657 0.9642 0.9680 0.9537
Ins02 0.9778 0.9876 0.9883 0.9948 0.9990 0.9778 0.9866 0.9799 0.9146
Ins03 0.9872 0.9895 0.9828 0.9768 0.9910 0.9726 0.9671 0.9858 0.9513
Ins04 0.9580 0.9813 0.9901 0.9892 0.9981 0.9655 0.9749 0.9782 0.9499
Ins05 0.9888 0.9921 0.9950 0.9964 0.9960 0.9950 0.9928 0.9957 0.9179
Ins06 0.9920 0.9941 0.9908 0.9865 0.9992 0.9935 0.9868 0.9834 0.9557
Ins07 0.9897 0.9821 0.9887 0.9898 0.9923 0.9902 0.9843 0.9865 0.9577
Ins08 0.9911 0.9941 0.9937 0.9916 0.9985 0.9918 0.9919 0.9931 0.9557
Ins09 0.9906 0.9880 0.9870 0.9911 0.9979 0.9884 0.9893 0.9897 0.9371
Ins10 0.9917 0.9859 0.9901 0.9898 0.9806 0.9790 0.9842 0.9893 0.9315

The statistical values of HV, GD, and Spread of all comparison algorithms592

are listed in Table 7, Table 8 and Table 9, where the best values are marked in593

bold. As observed in those three tables, in almost all instances, the proposed594

KTMA significantly outperforms these comparison algorithms in terms of HV,595

GD, and Spread metrics. Moreover, Table 10 lists the Friedman rank test re-596

sults for all comparison algorithms with a confidence level α = 0.05. Through597

observation, KTMA ranks best in HV, GD, and Spread metrics, which shows598

the excellent convergence performance and diversity performance of KTMA.599

More than that, Figure S-1 - S-2, Figure S-3 - S-4 and Figure S-5 - S-6 present600

the boxplot comparison of HV, GD and Spread metrics of all comparison al-601

gorithms in all instances, where the values obtained by KTMA are better than602

those obtained by other comparison algorithms, highlighting the advantages603

of KTMA. Regarding the boxplot of the Spread metric, the box width of KTMA604

is greater than that of other comparison algorithms, which means that the sta-605

bility of KTMA in the Spread metric still has room for improvement. Table 11606

shows the CPU computation time of all comparison algorithms in all instances,607
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from which it can be concluded that NSGA-II and MOEA/D consume the least608

amount of CPU time for all the instances, implying that they run faster for the609

same number of iterations. Although our proposed KTMA is not superior in610

terms of CPU computation time metric, the comprehensive performance of our611

proposed KTMA is the best among all the compared algorithms, therefore, it is612

worthwhile to consume slightly more CPU computation time.613
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Figure 9: PF comparison results of all comparison algorithms in the instances of Ins01 - Ins04.

Table 10: Overall ranks through the Friedman test among all comparison algorithms (a level of
significant α = 0.05).

MOEAs HV GD Spread
rank p-value rank p-value rank p-value

SPEA2 2.00

1.95E-13

2.00

3.93E-13

4.40

1.81E-06

NSGA-II 3.90 3.90 5.60
MOEA/D 7.30 5.90 5.80
AdaW 7.60 8.30 6.40

TS-NSGA-II 9.00 8.70 8.30
NSGA-III/ARV 2.90 2.60 4.40

LRVMA 5.70 6.50 3.90
GPHH 5.40 5.50 5.10
KTMA 1.20 1.00 1.10

The excellent convergence and distribution of KTMA benefit from its de-614

sign. First, a two-stage framework is utilized for improving the convergence615

performance of the algorithm and maintaining the diversity performance of616

the population. Second, a rescheduling strategy is applied when machine617
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breakdowns occur, which can balance the workload of machines, thus reduc-618

ing makespan. Third, three problem-specific heuristics are proposed to gener-619

ate a high-quality initial population, which can maintain population diversity.620

Then, four knowledge-driven variable neighborhood search operators are de-621

veloped to improve convergence performance, which can fully explore the so-622

lution space to obtain better PF solutions. Finally, two types of energy-saving623

strategies are designed to further reduce TEC without increasing makespan,624

which can increase convergence vastly.625
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Figure 10: PF comparison results of all comparison algorithms in the instances of Ins05 - Ins10.

Figure 9 - 10 presents the comparison results of the Pareto front obtained626

by all comparison algorithms in all instances. Regarding the convergence and627

diversity of the Pareto front, KTMA can obtain better solutions than its competi-628

tors. Because KTMA has strong exploration ability, KTMA can explore better629

PF, while other comparison algorithms can only find inferior PF due to insuffi-630
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cient exploration solution space ability. Meanwhile, the Pareto front obtained631

by KTMA is closer to the lower left corner of the graph, which indicates that632

the non-dominated solutions obtained by KTMA are closer approximations to-633

ward real PF. Based on the observation and analysis of the above experimental634

results, our proposed KTMA can solve EMBFJSP effectively.635

Table 11: The CPU computation time of all comparison algorithms in all instances.

Instances SPEA2 NSGA-II MOEA/D AdaW TS-NSGA-II NSGA-III/ARV LRVMA GPHH KTMA
Ins01 18.27 25.39 15.80 18.59 107.48 37.27 21.99 262.27 70.92
Ins02 18.98 26.00 17.15 18.93 113.45 34.10 20.97 215.41 81.14
Ins03 180.12 121.81 127.10 149.11 223.27 176.07 243.53 2533.56 261.17
Ins04 21.60 27.43 21.60 25.19 118.31 49.84 30.87 286.06 81.89
Ins05 63.86 56.49 53.33 65.37 170.57 107.99 92.80 982.02 131.98
Ins06 65.20 41.25 50.83 48.67 132.87 71.32 76.41 688.05 99.66
Ins07 80.79 65.80 70.68 73.56 162.79 95.34 111.32 1164.36 138.95
Ins08 407.03 268.38 303.37 338.96 406.64 569.42 601.31 6199.92 529.97
Ins09 527.44 356.33 375.52 434.51 511.96 624.26 777.97 7884.94 632.66
Ins10 482.93 324.12 351.60 424.50 482.47 582.85 677.82 7340.27 667.70

Figure 11 and Table 12 present the comparison results of all algorithms un-636

der different preferences. In the case of preference 1, the makespan objective637

and the TEC objective are of equal importance, and our proposed KTMA can638

obtain the better solution of (44.50, 1.02E+04), which dominates the solutions639

obtained by all the other comparison algorithms, and therefore, the proposed640

KTMA performs better in solving the actual EMBFJSP. In the case of preference641

2, it focuses primarily on the makespan objective, and our proposed KTMA642

can obtain the optimal solution of 42.00, which is improved by 3.45%, 27.59%,643

41.25%, 40.43%, 28.81%, 12.50%, 32.26%, and 24.32% respectively compared to644

other algorithms. Therefore, when focusing on improving the economic effi-645

ciency of the enterprises, the proposed KTMA can achieve better performance646

to improve productivity. In the case of preference 3, it focuses primarily on647

the TEC objective, and our proposed KTMA can obtain the optimal solution648

of 9.85E+03, which is improved by 7.08%, 23.05%, 29.14%, 25.38%, 25.94%,649

13.60%, 26.49%, and 15.81% respectively compared to other algorithms. There-650

fore, when focusing on energy saving and emission reduction, the proposed651

KTMA can bring better green benefits to enterprises.652
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Figure 11: Comparison figure of all algorithms with different preferences.
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Table 12: The optimal objective values of all comparison algorithms under different preferences.

SPEA2 NSGA-II MOEA/D AdaW TS-NSGA-II NSGA-III/ARV LRVMA GPHH KTMA

Preference1 Cmax 48.00 59.00 75.50 70.50 66.00 55.50 65.00 55.50 44.50
TEC 1.06E+04 1.28E+04 1.45E+04 1.37E+04 1.33E+04 1.14E+04 1.34E+04 1.17E+04 1.02E+04

Preference2 Cmax 43.50 58.00 71.50 70.50 59.00 48.00 62.00 55.50 42.00
Preference3 TEC 1.06E+04 1.28E+04 1.39E+04 1.32E+04 1.33E+04 1.14E+04 1.34E+04 1.17E+04 9.85E+03

5. Conclusion653

This paper proposed a knowledge-driven two-stage memetic algorithm for654

energy-efficient flexible job shop scheduling with machine breakdowns, aim-655

ing at optimizing makespan andTEC simultaneously. A two-stage framework656

is utilized to enhance convergence performance and diversity performance.657

Meanwhile, a rescheduling strategy is developed to be applied to reschedule658

the scheduling sequence when machine breakdowns occur. In the first stage, a659

hybrid initialization strategy is proposed to obtain a high-quality initial popu-660

lation. Then, a knowledge-driven variable neighborhood search is represented661

that combines four problem-specific operators to accelerate the convergence662

speed and fully exploit the solution space. In the second stage, an energy-saving663

strategy, including two types of strategies, is designed to further reduce TEC664

without increasing the makespan. Comprehensive experiments confirmed that665

the proposed KTMA significantly outperforms other comparison algorithms in666

solving EMBFJSP and the solutions obtained by the KTMA have better conver-667

gence performance and diversity performance.668

For future work, several directions can be further studied: (i) designing669

more effective energy-saving strategies for EMBFJSP; (ii) considering more re-670

liable rescheduling strategies to handle the situation of machine breakdowns;671

(iii) combining reinforcement learning technology to solve EMBFJSP; (iv)672

studying on other job shop scheduling problems under different dynamic673

events; (v) Investigating scheduling problems with priority constraints.674
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Supplementary Files845

Table S-I: Example of benchmark Ins01.

M1 M2 M3 M4 M5 M6

J1

O1,1 5 – 4 – – –
O1,2 – 1 5 – 3 –
O1,3 – – 4 – – 2
O1,4 1 6 – – – 5
O1,5 – – 1 – – –
O1,6 – – 6 3 – 6

J2

O2,1 – 6 – – – –
O2,2 – – 1 – – –
O2,3 2 – – – – –
O2,4 – 6 – 6 – –
O2,5 1 6 – – – 5

J3

O3,1 – 6 – – – –
O3,2 – – 4 – – 2
O3,3 1 6 – – – 5
O3,4 – 6 4 – – 6
O3,5 1 – – – 5 –

J4

O4,1 1 6 – – – 5
O4,2 – 6 – – – –
O4,3 – – 1 – – –
O4,4 – 1 5 – 3 –
O4,5 – – 4 – – 2

J5

O5,1 – 1 5 – 3 –
O5,2 1 6 – – – 5
O5,3 – 6 – – – –
O5,4 5 – 4 – – –
O5,5 – 6 – 6 – –
O5,6 – 6 4 – – 6

J6

O6,1 – – 4 – – 2
O6,2 2 – – – – –
O6,3 – 6 4 – – 6
O6,4 – 6 – – – –
O6,5 1 6 – – – 5
O6,6 3 – – 2 – –

J7

O7,1 – – – – – 1
O7,2 3 – – 2 – –
O7,3 – 6 4 – – 6
O7,4 6 6 – – 1 –
O7,5 – – 1 – – –

J8

O8,1 – – 4 – – 2
O8,2 – 6 4 – – 6
O8,3 1 6 – – 5 –
O8,4 – 6 – – – –
O8,5 – 6 – 6 – –

J9

O9,1 – – – – – 1
O9,2 1 – – – 5 –
O9,3 – – 6 3 – 6
O9,4 2 – – – – –
O9,5 – 6 4 – – 6
O9,6 – 6 – 6 – –

J10

O10,1 – – 4 – – 2
O10,2 – 6 4 – – 6
O10,3 – 1 5 – 3 –
O10,4 – – – – – 1
O10,5 – 6 – 6 – –
O10,6 3 – – 2 – –
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Figure S-1: Boxplot comparison of HV values of all comparison algorithms in the instances of
Ins01 - Ins04.
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Figure S-2: Boxplot comparison of HV values of all comparison algorithms in the instances of
Ins05 - Ins10.
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Figure S-3: Boxplot comparison of GD values of all comparison algorithms in the instances of
Ins01 - Ins04.
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Figure S-4: Boxplot comparison of GD values of all comparison algorithms in the instances of
Ins05 - Ins10.
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Figure S-5: Boxplot comparison of Spread values of all comparison algorithms in the instances of
Ins01 - Ins04.
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Figure S-6: Boxplot comparison of Spread values of all comparison algorithms in the instances of
Ins05 - Ins10.
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