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Abstract—Differential evolution (DE) has been proven to be
one of the most powerful global numerical optimization algo-
rithms in the evolutionary algorithm family. The core operator
of DE is the differential mutation operator. Generally, the parents
in the mutation operator are randomly chosen from the current
population. In the nature, good species always contain good
information, and hence, they have more chance to be utilized
to guide other species. Inspired by this phenomenon, in this
paper, we propose the ranking-based mutation operators for
the DE algorithm, where some of the parents in the mutation
operators are proportionally selected according their rankings
in the current population. The higher ranking a parent obtains,
the more opportunity it will be selected. In order to evaluate
the influence of our proposed ranking-based mutation operators
on DE, our approach is compared with the jDE algorithm,
which is a highly competitive DE variant with self-adaptive
parameters, with different mutation operators. In addition, the
proposed ranking-based mutation operators are also integrated
into other advanced DE variants to verify the effect on them.
Experimental results indicate that our proposed ranking-based
mutation operators are able to enhance the performance of the
original DE algorithm and the advanced DE algorithms.

Index Terms—Differential evolution, ranking, mutation oper-
ator, numerical optimization.

I. I NTRODUCTION

EVOLUTIONARY algorithms (EAs), including genetic
algorithm (GA), evolution strategy (ES), evolutionary

programming (EP), and genetic programming (GP), are search
algorithms that simulate evolutionary process of natural selec-
tion, variation, and genetics [1]. During the last few decades,
research in evolutionary computation and the application of
EAs to real-world problems have steadily and significantly
expanded. Differential evolution (DE), which was firstly pro-
posed by Storn and Price in 1995 [2], [3], is one of the
most powerful evolutionary algorithms for global numerical
optimization. The advantages of DE are its ease of use, simple
structure, speed, efficacy, and robustness. In the last few
years, DE has obtained many successful applications in diverse
domains, such as engineering optimal design, digital filter
design, image processing, data mining, multisensor fusion, and
so on [4], [5]. Interested readers can refer to two good surveys
of DE in [6] and [7] and the references therein.
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Similar to other EAs, in the DE algorithm, it employs the
mutation, crossover, and selection operators at each generation
to evolve the population to the global optimum. In these
three operators, the core operator is the differential mutation
operator. Through the mutation operator, themutant vector
(also known asdonor vector) is generated. Generally, the
parents in the mutation operator are chosen randomly from the
current population. For example, in the classical “DE/rand/1”
mutation, three parent vectorsxr1 , xr2 , andxr3 are selected
randomly from the current population. The indexesr1, r2,
and r3 satisfy r1, r2, r3 ∈ {1, Np} and r1 6= r2 6= r3 6= i,
whereNp is the population size. However, since all parents
are chosen randomly, it may lead to the DE algorithm be good
at exploring the search space and locating the region of global
minimum, but be slow at exploitation of the solutions [8].
Some researchers investigate to hybridize other techniques
with DE to accelerate its convergence. Fan and Lampinen [9]
proposed a new version of DE which uses an additional
mutation operation called trigonometric mutation operation.
Sun et al. [10] proposed a new hybrid algorithm based on a
combination of DE and estimation of distribution algorithm.
Kaelo and Ali [11] adopted the attraction-repulsion concept
of electromagnetism-like algorithm to boost the mutation
operation of the original DE. Yanget al.. [12] proposed a
neighborhood search based DE. Noman and Iba incorporated
local search (LS) into the classical DE algorithm in [8].
They presented an LS technique to solve this problem by
adaptively adjusting the length of the search, using a hill-
climbing heuristic. Caiet al. [13] presented an one-step-K-
means based DE algorithm, where the K-means method is
used to enhance the exploitation ability of DE.

Combing DE with other search techniques is effective to
improve its performance, however, the hybrid approaches are
usually more complicated than the original DE algorithm.
Generally, in the nature, good species always contain good
information, and hence, they are more likely to be utilized
to guide other species. Based on these considerations, in
this paper, we present ranking-based mutation operators for
the DE algorithm. Different from the parent selection in the
original DE algorithm, in our approach some of the parents in
the mutation operators are proportionally selected according
their rankings in the current population. The higher ranking
a parent obtains, the more opportunity it will be selected.
The major advantages of our approach are as follows: i)
since good parents are more likely to be chosen, the ranking-
based mutation operators are able to enhance DE’s exploitation
ability; ii) our approach is still very simple, it does not destroy
the simple structure of the original DE algorithm any more;
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iii) the ranking-based mutation operators can be easily used
in other advanced DE variants; and iv) our approach does not
increase the overall complexity of DE. In order to evaluate the
influence of our proposed ranking-based mutation operators
on DE, our approach is compared with the original DE
algorithm with different mutation operators. In addition,the
proposed ranking-based mutation operators are also integrated
into other advanced DE variants to verify the effect on them.
Experimental results indicate that our proposed ranking-based
mutation operators are able to enhance the performance of the
original DE algorithm and the advanced DE algorithms.

The rest of this paper is organized as follows. Section II
briefly describes the original DE algorithm and some related
work to the mutation operators in DE. We present our proposed
ranking-based mutation operators in Section III in detail.
Section IV performs the comprehensive experiments using
benchmark functions and real-world application problems.The
experimental results are also analyzed in this section. In the
last section, Section V draws the conclusions from this work
and points out the possible future work.

II. RELATED WORK

For the sake of completeness, in this section, we first
describes the original DE algorithm briefly. Then, some related
work to the mutation operators in DE are presented.

Without loss of generality, in this work, we consider the
following numerical optimization problem:

Minimize f(x), x ∈ S, (1)

whereS ⊆ R
D is a compact set,x = [x1, x2, · · · , xD]T , and

D is the dimension,i.e., the number of decision variables.
Generally, for each variablexj , it satisfies a boundary con-
straint, such that:

xj ≤ xj ≤ xj , j = 1, 2, · · · , D. (2)

wherexj andxj are respectively the lower bound and upper
bound ofxj .

A. Differential Evolution

The DE algorithm [3] is a simple evolutionary algorithm
(EA) for global numerical optimization. It creates new candi-
date solutions by combining the parent individual and several
other individuals of the same population. A candidate replaces
the parent only if it has an equal or better fitness value.
The pseudo-code of the original DE algorithm is shown in
Algorithm 1, whereD is the number of decision variables;
Np is the population size;F is the mutation scaling factor;Cr
is the crossover rate;xi,j is the j-th variable of the solution
xi; ui is the offspring. The functionrndint(1, D) returns a
uniformly distributed random integer number between1 and
D, while rndrealj [0, 1) gives a uniformly distributed random
real number in[0, 1), generated anew for each value ofj.
Many mutation strategies to create a candidate are available;
in Algorithm 1, the use of the classic “DE/rand/1” mutation
operator is illustrated (see line 9).

From Algorithm 1, we can see that there are only three
control parameters (Np, F andCr) in DE. As for the terminal

Algorithm 1 The DE algorithm with “DE/rand/1/bin” strategy
1: Generate the initial population randomly
2: Evaluate the fitness for each individual in the population
3: while the stop criterion is not satisfieddo
4: for i = 1 to Np do
5: Select uniform randomlyr1 6= r2 6= r3 6= i
6: jrand = rndint(1, D)
7: for j = 1 to D do
8: if rndrealj [0, 1) < Cr or j is equal tojrand then
9: ui,j = xr1,j + F ·

(

xr2,j − xr3,j

)

10: else
11: ui,j = xi,j

12: end if
13: end for
14: end for
15: for i = 1 to Np do
16: Evaluate the offspringui

17: if f(ui) is better thanor equal tof(xi) then
18: Replacexi with ui

19: end if
20: end for
21: end while

conditions, we can either fix the maximum number of fitness
function evaluations (Max NFFEs) or define a desired solution
value-to-reach (VTR).

B. Mutation Operators in DE

In the DE algorithm, the core operator is the differential
mutation operator. There are many mutation operators that
have been proposed [14], [4]. They use different learning
strategies in the reproduction stage. In order to distinguish
among DE’s mutation operators, the notation “DE/a/b” is used,
where “DE” indicates the Differential Evolution; “a” denotes
the vector to be mutated; and “b” is the number of difference
vectors used. In DE, some well-known mutation operators are
listed as follows.

1) “DE/rand/1”:

vi = xr1 + F ·
(

xr2 − xr3

)

(3)

2) “DE/rand/2”:

vi = xr1 + F ·
(

xr2 − xr3

)

+ F ·
(

xr4 − xr5

)

(4)

3) “DE/current-to-best/1”1:

vi = xi + F ·
(

xbest − xi

)

+ F ·
(

xr2 − xr3

)

(5)

4) “DE/current-to-best/2”:

vi = xi +F ·

(

xbest −xi

)

+F ·

(

xr2 −xr3

)

+F ·

(

xr4 −xr5

)

(6)

5) “DE/rand-to-best/1”:

vi = xr1 + F ·
(

xbest − xr1

)

+ F ·
(

xr2 − xr3

)

(7)

6) “DE/rand-to-best/2”:

vi = xr1 +F ·

(

xbest−xr1

)

+F ·

(

xr2 −xr3

)

+F ·

(

xr4 −xr5

)

(8)

1“DE/current-to-best” is also referred to as “DE/target-to-best/” [4], [15].
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where xbest represents the best individual in the current
generation,r1, r2, r3, r4, and r5 ∈ {1, · · · , Np}, and r1 6=
r2 6= r3 6= r4 6= r5 6= i. As shown in Equation (3),xi is
referred to as thetarget vector;ui is thetrial vector;vi is the
mutant vector; xr1 is the basevector; andxr2 − xr3 is the
differential vector.

Generally, different mutation operators have different fea-
tures and are suitable to different set of problems. However,
the choice of the best mutation operators for DE is not easy
for a specific problem [16], [17], [18]. Therefore, in order
to make the mutation operator selection more easily, some
researchers studied new mutation operators. For example, Iorio
and Li [19] presented a rotation-invariant operator, namely
“DE/current-to-rand/1”. Priceet al. [4, pp. 117] proposed
the “DE/rand/1/either-or” algorithm, where the trial vector
are either pure mutant or pure recombinant with a given
probability. Ensemble of different mutation operators is also
an interesting topic for improving the performance of DE, such
as SaDE [18], EPSDE [20], SaJADE [21], CoDE [22], DE-
SG [23], etc.

Apart from developing new mutation operators, some re-
searchers investigated the selection of vectors in the existing
mutation operators. In [4, pp. 61], Priceet al. studied the
vector index selection for DE, where the random selection,
stochastic universal sampling selection, one-to-one selection,
best-so-far base vector selection, and so on, are presented.
Kaelo and Ali [24] proposedtournament-bestbase vector
selection for DE, where the best vector among the three
random ones is selected as the base vector and the remaining
two are contributed to the difference vector in the “DE/rand/1”
mutation operator. Inspired by the particle swarm optimization,
Das et al. [15] proposed a modified “DE/current-to-best/1”
mutation operator, namely local version of “DE/current-to-
best/1”, where all of the vectors are selected in the neigh-
borhood of the target vector. In [25], Zhang and Sanderson
presented the “DE/current-to-pbest/1” mutation operator with
optional archive, where thexp

best is a pbest solution, which
is randomly selected as one of the top100p% solutions with
p ∈ (0, 1]. When the archiveA is used,xr3 in Equation (5)
is randomly chosen from the union,P ∪ A, of the archive
and current populationP. Epitropakiset al. [26] proposed the
proximity-based mutation operators, in which the proximity
characteristics among the vectors are used to assign the selec-
tion probabilities of different vectors. In [27], Garcı́a-Martı́nez
et al. presented the role differentiation and malleable mating
for DE, where the vectors in the population are differentiated
into four groups,i.e., receivinggroup,placing group,leading
group, andcorrecting group. In the mutation and crossover
operations, the vectors are chosen from the corresponding
groups, instead of the whole population.

III. R ANKING -BASED MUTATION OPERATORS

As mentioned above, the DE algorithm is good at exploring
the search space, however, it may be slow at exploitation of the
solutions in the current population, especially when the best-
so-far vector (i.e., xbest) is not used in the mutation operator.
Thus, in order to improve the performance of DE, one possible

Algorithm 2 Ranking-based vector selection for “DE/rand/1”
1: Input : The target vector indexi
2: Output : The selected vector indexesr1, r2, r3
3: Randomly selectr1 ∈ {1, Np} {base vector index}
4: while rndreal[0, 1) > pr1 or r1 == i do
5: Randomly selectr1 ∈ {1, Np}
6: end while
7: Randomly selectr2 ∈ {1, Np} {terminal vector index}
8: while rndreal[0, 1) > pr2 or r2 == r1 or r2 == i do
9: Randomly selectr2 ∈ {1, Np}

10: end while
11: Randomly selectr3 ∈ {1, Np}
12: while r3 == r2 or r3 == r1 or r3 == i do
13: Randomly selectr3 ∈ {1, Np}
14: end while

way is to enhance its exploitation ability. Additionally, in the
nature good species always contain good information and are
more likely to be selected to propagate the offspring. Based
on these considerations, in this section, in order to balance the
exploration and exploitation abilities of DE we propose the
ranking-based mutation operators, where some of the vectors
in the mutation operators are proportionally chosen according
to their rankings in the current population. The key points of
our approach are described in detail as follows.

A. Our Approach

1) Rankings Assignment:In order to utilize the information
of good vectors in the DE population, in this work, we assign
a ranking for each vector according to its fitness. Firstly, the
population is sorted in ascent order (i.e., from the best to the
worst) based on the fitness of each vector. Then, the ranking
of a vector is assigned as follows:

Ri = Np− i, i = 1, 2, · · · , Np (9)

whereNp is the population size. According to Equation (9),
the best vector in the current population will obtain the highest
ranking.

2) Selection Probability:After assigning the ranking for
each vector, the selection probabilitypi of the i-th vectorxi

is calculated as

pi =
Ri

Np
, i = 1, 2, · · · , Np (10)

Note that the selection probability calculation is similarto
the assignment of the emigration rate in biogeography-based
optimization (BBO) [28]. In addition, it is worth pointing out
that the probability calculation method in Equation (10) isalso
similar to the linear ranking fitness assignment presented in
evolutionary algorithms [1]. Also, other methods can be used
to replace the probability calculation in Equation (10) similar
to the migration models of BBO presented in [29]. However,
in this work, we only use the simplest method as shown in
Equation (10). The influence of other probability calculation
techniques on the performance of the ranking-based mutation
operators will be evaluated in Section IV-D.
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3) Vector Selection:After calculating the selection prob-
ability of each vector in Equation (10), the other issue is
that in the mutation operator which vectors should be selected
according to the selection probabilities. In this work, we select
thebasevector2 and theterminalpoint of the difference vector
based on their selection probabilities, while other vectors in
the mutation operator are selected randomly as the original
DE algorithm. For example, for the “DE/rand/1” mutation
the vectors are selected as shown in Algorithm 2. Note that
the notation “a == b” indicates a is equal to b. From
Algorithm 2 we can see that the vectors with higher rankings
(or selection probabilities) are more likely to be chosen as
the base vector or the terminal point in the mutation operator.
We do not select the starting point according to its selection
probability, because if the two points in the difference vector
are chosen from the better vectors, then the search step-size
of the difference vector maybe decrease quickly and lead to
premature convergence. The influence of other vector selection
methods will be empirically compared in Section IV-E. Note
that in Algorithm 2 we only illustrate the vector selection for
“DE/rand/1”, for other mutation operators the vector selection
is similar to Algorithm 2.

B. DE with Ranking-based Mutation Operators

Combing our above-proposed ranking-based mutation op-
erator with DE, the ranking-based DE algorithm (rank-DE
for short) are presented. The pseudo-code of rank-DE with
“DE/rand/1” mutation is shown in Algorithm 3. The differ-
ences between Algorithm 1 and Algorithm 3 are highlighted
in “⇐”. From Algorithm 3, it is clear that rank-DE maintains
the advantages of the original DE algorithm, such as simple
structure, ease of use, and so on. In addition, since some
vectors in the mutation operator are chosen based on their
rankings, better ones are more likely to be chosen. In this way,
the exploitation ability of DE can be enhanced. Moreover, the
ranking-based mutation operators are also able to integrate into
other advanced DE variants.

Unlike proximity-based DE proposed in [26], our proposed
rank-DE does not significantly increase the overall complexity
of the original DE algorithm any more. The additional com-
plexity of our proposed ranking-based DE is population sorting
and probability calculation, as shown in Algorithm 3. The
complexity of population sorting isO(Np · log (Np)), and the
complexity of probability calculation isO(Np). Since the total
complexity of DE isO(G ·Np ·D), whereG is the maximal
number of generations, rank-DE has the total complexity of
O(G·Np·(D+log (Np) + 1)). In general, the population size
Np is set to be proportional to the problem dimensionD in
the DE literature [30]. Thus, the total complexity of rank-DE
is O(G ·D2), which is the same as the original DE algorithm
and many other DE variants.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we perform comprehensive experiments to
verify the performance of the proposed ranking-based DE

2If the base vector is the best-so-far vector or the target vector, we do not
need to select it based on its selection probability.

Algorithm 3 DE with ranking-based “DE/rand/1” mutation
1: Generate the initial population randomly
2: Evaluate the fitness for each individual in the population
3: while the stop criterion is not satisfieddo
4: Sort the population based on the fitness of each indi-

vidual ⇐
5: Calculate the selection probability for each individual

according to Equation (10) ⇐
6: for i = 1 to Np do
7: Selectr1, r2, r3 as shown in Algorithm 2 ⇐
8: jrand = rndint(1, D)
9: for j = 1 to D do

10: if rndrealj [0, 1) < Cr or j is equal tojrand then
11: ui,j = xr1,j + F ·

(

xr2,j − xr3,j

)

12: else
13: ui,j = xi,j

14: end if
15: end for
16: end for
17: for i = 1 to Np do
18: Evaluate the offspringui

19: if f(ui) is better thanor equal tof(xi) then
20: Replacexi with ui

21: end if
22: end for
23: end while

algorithm. We select25 benchmark functions presented in the
CEC-2005 competition [31] on real-parameter optimizationas
the test suite. These functions can be categorized into three
groups: i) unimodal functions (F01 - F05); ii) basic multimodal
functions (F06 - F12); iii) expanded multimodal functions (F13
- F14); and iv) hybrid composition functions (F15 - F25). More
details for these functions can be found in [31].

TABLE I
PARAMETER SETTINGS FOR ALLDE VARIANTS .

Algorithm Parameter settings
jDE, rank-jDE Np = 100, τ1 = 0.1, τ2 = 0.1 [32]

ODE, rank-ODE Np = 100, Cr = 0.9, F = 0.5, Jr = 0.3 [33]
SaDE, rank-SaDE Np = 50, LP = 50 [18]
JADE, rank-JADE Np = 100, p = 0.05, c = 0.1 [25]
CoDE, rank-CoDE Np = 30 [22]
DEGL, rank-DEGL Np = 10×D,Cr = 0.9, F = 0.8 [15]

A. Parameter Settings

In order to compare the results between ranking-based DE
and its corresponding original DE, in all experiments, we use
the following parameters as shown in Table I unless a change
is mentioned. Note that we use jDE [32], a self-adaptive DE
algorithm, to test the influence of our approach in different
mutation operators, since this algorithm obtains promising
results among various mutation operators. The ranking-based
jDE algorithm is referred to as rank-jDE. To make a fair
comparison, all parameters of DE variants in Table I are kept
the same as used in their original literature.
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TABLE II
COMPARISON ON THEERRORVALUES BETWEEN JDE AND ITS CORRESPONDING RANK-JDE WITH DIFFERENTMUTATION OPERATORS FORFUNCTIONS

F01 - F25AT D = 30.

Prob DE/rand/1/bin DE/current-to-best/1/bin DE/rand-to-best/1/bin
jDE rank-jDE jDE rank-jDE jDE rank-jDE

F01⋆ 7.37E+00± 3.02E+00 + 8.93E-02± 4.02E-02 1.56E-03± 9.82E-04 + 1.31E-04± 1.05E-04 1.06E-05± 1.13E-05 + 2.59E-08± 1.80E-08
F02 1.08E-05± 1.54E-05 + 1.44E-11± 2.64E-11 4.97E-11± 1.82E-10 + 1.15E-12± 4.65E-12 2.77E-17± 5.78E-17 + 3.30E-22± 7.43E-22
F03 1.89E+05± 1.04E+05 + 8.12E+04± 3.87E+04 3.85E+04± 2.81E+04 + 3.08E+04± 2.71E+04 3.90E+04± 2.50E+04 + 2.59E+04± 1.77E+04
F04 2.98E-01± 5.78E-01 + 7.98E-04± 1.65E-03 1.08E+00± 2.95E+00 = 1.29E+00± 5.24E+00 1.58E-03± 4.63E-03 = 5.04E-02± 2.25E-01
F05 1.10E+03± 4.44E+02 = 1.11E+03± 5.67E+02 2.26E+03± 6.82E+02 + 2.07E+03± 6.00E+02 1.67E+03± 4.94E+02 = 1.82E+03± 5.54E+02
F06 2.46E+01± 2.57E+01 + 5.74E-01± 1.37E+00 9.31E+00± 1.70E+01 + 2.93E+00± 4.22E+00 1.52E+00± 1.95E+00 + 1.44E+00± 1.93E+00
F07 1.31E-02± 9.30E-03 + 9.75E-03± 8.92E-03 1.60E-02± 1.26E-02 + 1.44E-02± 1.32E-02 1.42E-02± 1.44E-02 = 1.53E-02± 1.36E-02
F08 2.09E+01± 4.94E-02 = 2.09E+01± 4.98E-02 2.10E+01± 4.20E-02 = 2.10E+01± 4.91E-02 2.09E+01± 5.44E-02 = 2.09E+01± 5.16E-02
F09⋆ 7.64E+01± 8.36E+00 + 6.42E+01± 9.08E+00 8.92E+01± 8.62E+00 + 8.74E+01± 9.69E+00 6.13E+01± 7.94E+00 + 5.01E+01± 7.77E+00
F10 5.86E+01± 1.05E+01 + 4.71E+01± 9.42E+00 4.44E+01± 8.41E+00 = 4.41E+01± 9.55E+00 3.49E+01± 8.04E+00 = 3.71E+01± 9.61E+00
F11 2.80E+01± 1.74E+00 = 2.79E+01± 2.29E+00 2.57E+01± 1.54E+00 + 2.46E+01± 1.63E+00 2.72E+01± 1.69E+00 + 2.48E+01± 5.31E+00
F12 1.16E+04± 8.08E+03 + 1.65E+03± 1.80E+03 2.05E+03± 2.13E+03 = 2.48E+03± 2.93E+03 1.59E+03± 2.32E+03 = 1.91E+03± 2.57E+03
F13 1.70E+00± 1.43E-01 + 1.60E+00± 1.26E-01 1.68E+00± 2.63E-01 – 1.80E+00± 2.36E-01 1.55E+00± 1.33E-01 – 1.63E+00± 2.34E-01
F14 1.30E+01± 2.00E-01 = 1.30E+01± 2.05E-01 1.26E+01± 2.56E-01 = 1.26E+01± 2.68E-01 1.28E+01± 2.83E-01 = 1.28E+01± 2.66E-01
F15 3.40E+02± 1.09E+02 = 3.66E+02± 5.58E+01 3.36E+02± 1.27E+02 = 3.50E+02± 1.51E+02 3.28E+02± 1.38E+02 = 3.58E+02± 9.00E+01
F16 7.56E+01± 8.99E+00 + 6.12E+01± 9.00E+00 1.43E+02± 1.41E+02 = 1.48E+02± 1.40E+02 1.51E+02± 1.57E+02 = 1.42E+02± 1.55E+02
F17 1.33E+02± 1.43E+01 + 1.06E+02± 3.81E+01 1.58E+02± 1.19E+02 = 1.92E+02± 1.47E+02 1.55E+02± 1.22E+02 + 1.40E+02± 1.32E+02
F18 9.07E+02± 1.45E+00 = 9.08E+02± 2.28E+00 8.98E+02± 4.97E+01 = 9.09E+02± 4.56E+01 8.92E+02± 4.96E+01 – 9.04E+02± 4.27E+01
F19 9.06E+02± 1.72E+00 – 9.08E+02± 1.90E+00 9.10E+02± 4.19E+01 = 9.05E+02± 4.36E+01 8.90E+02± 5.11E+01 – 8.97E+02± 4.95E+01
F20 9.06E+02± 1.68E+00 – 9.08E+02± 1.87E+00 9.12E+02± 3.83E+01 = 9.10E+02± 3.79E+01 8.83E+02± 5.49E+01 – 8.95E+02± 5.14E+01
F21 5.00E+02± 0.00E+00 = 5.00E+02± 0.00E+00 7.01E+02± 2.71E+02 = 5.85E+02± 1.96E+02 5.25E+02± 1.07E+02 = 5.21E+02± 1.14E+02
F22 9.04E+02± 1.03E+01 + 8.97E+02± 1.16E+01 9.28E+02± 1.62E+01 = 9.32E+02± 1.86E+01 9.19E+02± 9.89E+00 = 9.18E+02± 1.52E+01
F23 5.34E+02± 2.19E-04 = 5.34E+02± 1.20E-03 6.39E+02± 2.20E+02 = 6.29E+02± 2.20E+02 5.35E+02± 1.91E+00 – 5.52E+02± 7.98E+01
F24 2.00E+02± 0.00E+00 = 2.00E+02± 0.00E+00 2.00E+02± 0.00E+00 = 2.00E+02± 0.00E+00 2.00E+02± 0.00E+00 = 2.00E+02± 0.00E+00
F25 2.10E+02± 3.33E-01 + 2.09E+02± 2.76E-01 2.30E+02± 1.40E+02 = 2.56E+02± 1.99E+02 2.10E+02± 7.77E-01 = 2.10E+02± 6.86E-01

w/t/l 14/9/2 – 8/16/1 – 7/13/5 –

Prob DE/rand/2/bin DE/current-to-best/2/bin DE/rand-to-best/2/bin
jDE rank-jDE jDE rank-jDE jDE rank-jDE

F01⋆ 4.88E+01± 1.82E+01 + 1.20E+00± 5.54E-01 2.85E-01± 1.52E-01 + 5.28E-02± 2.78E-02 6.81E-03± 4.10E-03 + 9.35E-06± 7.55E-06
F02 2.83E-03± 7.26E-03 + 6.79E-09± 2.49E-08 5.05E-18± 1.68E-17 + 5.89E-22± 1.94E-21 1.64E-13± 5.10E-13 + 7.77E-21± 2.50E-20
F03 2.85E+05± 1.76E+05 + 9.65E+04± 5.65E+04 2.85E+04± 2.17E+04 + 1.91E+04± 1.27E+04 5.34E+04± 3.34E+04 + 3.16E+04± 1.77E+04
F04 6.06E+00± 1.32E+01 + 3.38E-03± 6.47E-03 1.27E-06± 3.28E-06 + 4.46E-08± 1.40E-07 6.78E-06± 2.80E-05 + 5.08E-06± 3.02E-05
F05 7.72E+02± 4.44E+02 + 5.24E+02± 3.49E+02 8.94E+02± 4.56E+02 + 7.59E+02± 4.26E+02 7.01E+02± 4.12E+02 = 7.45E+02± 4.02E+02
F06 1.92E+01± 1.77E+01 + 9.87E-01± 1.74E+00 1.74E+01± 2.35E+01 + 7.92E+00± 1.36E+01 2.34E+00± 2.54E+00 + 6.42E-01± 1.47E+00
F07 6.70E-03± 5.90E-03 + 4.88E-03± 5.98E-03 8.94E-03± 1.12E-02 = 1.04E-02± 1.04E-02 1.24E-02± 1.27E-02 = 9.45E-03± 9.97E-03
F08 2.10E+01± 4.45E-02 + 2.09E+01± 4.99E-02 2.09E+01± 4.17E-02 = 2.09E+01± 5.85E-02 2.10E+01± 4.95E-02 = 2.09E+01± 4.85E-02
F09⋆ 9.56E+01± 1.03E+01 + 8.65E+01± 1.09E+01 1.06E+02± 1.03E+01 = 1.02E+02± 1.08E+01 7.77E+01± 9.04E+00 + 6.98E+01± 9.53E+00
F10 6.75E+01± 7.99E+00 + 5.65E+01± 9.96E+00 4.73E+01± 9.79E+00 + 4.20E+01± 7.41E+00 3.99E+01± 7.44E+00 + 3.49E+01± 6.76E+00
F11 2.88E+01± 1.76E+00 = 2.87E+01± 1.46E+00 2.55E+01± 1.59E+00 = 2.54E+01± 1.53E+00 2.78E+01± 1.79E+00 = 2.82E+01± 1.54E+00
F12 2.13E+04± 5.21E+03 + 1.97E+04± 6.16E+03 9.74E+03± 3.80E+03 + 8.31E+03± 4.25E+03 1.30E+04± 7.07E+03 + 2.09E+03± 3.77E+03
F13 1.80E+00± 1.64E-01 + 1.67E+00± 1.61E-01 1.72E+00± 1.59E-01 = 1.72E+00± 1.66E-01 1.60E+00± 1.79E-01 = 1.66E+00± 1.45E-01
F14 1.30E+01± 2.58E-01 = 1.30E+01± 2.35E-01 1.28E+01± 2.11E-01 = 1.28E+01± 2.49E-01 1.29E+01± 2.10E-01 = 1.30E+01± 2.10E-01
F15 1.20E+02± 1.60E+02 – 3.34E+02± 1.35E+02 2.28E+02± 1.82E+02 – 3.33E+02± 1.37E+02 3.62E+02± 1.18E+02 = 3.56E+02± 1.03E+02
F16 9.82E+01± 1.48E+01 + 7.85E+01± 1.47E+01 9.17E+01± 3.34E+01 + 1.10E+02± 1.08E+02 9.12E+01± 8.50E+01 + 9.61E+01± 9.71E+01
F17 1.60E+02± 2.02E+01 + 1.36E+02± 1.71E+01 1.32E+02± 3.52E+01 + 1.24E+02± 4.07E+01 1.29E+02± 6.73E+01 = 1.30E+02± 7.88E+01
F18 9.05E+02± 1.52E+01 + 9.04E+02± 1.54E+00 8.80E+02± 5.07E+01 – 9.05E+02± 2.69E+01 9.07E+02± 1.58E+01 + 9.09E+02± 1.60E+01
F19 9.05E+02± 1.52E+01 + 9.04E+02± 1.67E+00 8.84E+02± 4.80E+01 – 9.05E+02± 2.70E+01 8.98E+02± 3.32E+01 + 9.09E+02± 1.59E+01
F20 9.07E+02± 1.44E+00 + 9.06E+02± 1.33E+00 8.85E+02± 4.82E+01 – 9.01E+02± 3.40E+01 9.00E+02± 3.00E+01 + 9.07E+02± 2.22E+01
F21 5.00E+02± 0.00E+00 = 5.00E+02± 0.00E+00 5.32E+02± 9.78E+01 = 5.37E+02± 1.20E+02 5.00E+02± 0.00E+00 = 5.00E+02± 0.00E+00
F22 9.23E+02± 9.69E+00 + 9.02E+02± 6.68E+00 9.15E+02± 1.18E+01 + 9.08E+02± 1.51E+01 9.04E+02± 8.43E+00 + 8.98E+02± 1.23E+01
F23 5.34E+02± 1.37E-04 + 5.34E+02± 2.41E-04 5.71E+02± 1.28E+02 = 5.66E+02± 1.09E+02 5.42E+02± 5.70E+01 = 5.47E+02± 8.84E+01
F24 2.00E+02± 0.00E+00 = 2.00E+02± 0.00E+00 2.00E+02± 0.00E+00 = 2.00E+02± 0.00E+00 2.00E+02± 0.00E+00 = 2.00E+02± 0.00E+00
F25 2.09E+02± 2.40E-01 + 2.09E+02± 1.89E-01 2.09E+02± 2.63E-01 + 2.09E+02± 3.09E-01 2.09E+02± 2.46E-01 = 2.09E+02± 2.66E-01

w/t/l 20/4/1 – 12/9/4 – 13/12/0 –

⋆ indicates that when several algorithms obtain the global optimum, the intermediate results are reported atNFFEs = 20, 000.
“+”, “–”, and “=” indicate our approach is respectively better than, worse than, or similar to its competitor according to the Wilcoxon signed-rank test atα = 0.05.

The maximal number of fitness function evaluations
(Max NFFEs) are set toD · 10, 000 [31]. To compare the
results of different algorithms, each function is optimized over
50 independent runs. We use the same set of initial random
populations to evaluate different algorithms in a similar way
done in [8], i.e., all of the compared algorithms are started
from the same initial population in each out of50 runs.
In addition, it is important to point out that the boundary-
handling method has significant influence to the performance
of DE [34]. Therefore, in order to make a fair comparison,
in this work, for all mentioned DE methods we use the
reinitialization method,i.e., when one of the decision variable
is beyond its boundary constraint, it is generated with the
uniform distribution within the boundary [34].

B. Influence on jDE with Different Mutation Operators

In this section, we evaluate the effectiveness of our pro-
posed ranking-based mutation operators in jDE. Six mutation
operators (see Equations (3) - (8)) are used in the experi-
mental study. Among these six mutation operators, three of
them have one difference vectors, while the rest three ones
have two difference vectors. Normally, the mutation operators
with two difference vectors are more explorative. There are
four mutation operators that utilize the best-so-far solution
(xbest); these operators always converges faster and are more
exploitive, especially only with one difference vector.

The results for all functions atD = 30 are shown in
Table II. The better values compared between jDE and its
corresponding rank-jDE are highlighted inboldface. In order
to compare the significance between two algorithms the paired
Wilcoxon signed-rank test is used. In Table II, according tothe
Wilcoxon’s test, the results are summarized as “w/t/l”, which
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TABLE III
COMPARISON ON THEERRORVALUES BETWEEN ADVANCED DE AND ITS CORRESPONDINGRANKING -BASED DE VARIANT FOR FUNCTIONSF01 - F25

AT D = 30.

Prob jDE rank-jDE ODE rank-ODE SaDE rank-SaDE
F01⋆ 7.37E+00± 3.02E+00 + 8.93E-02± 4.02E-02 2.82E+00± 2.17E+00 + 3.46E-02± 2.86E-02 2.22E-05± 1.51E-05 + 2.80E-08± 2.29E-08
F02 1.08E-05± 1.54E-05 + 1.44E-11± 2.64E-11 3.68E-04± 5.56E-04 + 1.43E-10± 2.39E-10 1.53E-18± 9.14E-18 + 2.13E-27± 2.03E-27
F03 1.89E+05± 1.04E+05 + 8.12E+04± 3.87E+04 5.86E+05± 2.80E+05 + 2.52E+05± 1.57E+05 5.40E+04± 4.32E+04 + 1.85E+04± 1.68E+04
F04 2.98E-01± 5.78E-01 + 7.98E-04± 1.65E-03 1.95E-01± 4.65E-01 + 6.76E-05± 2.14E-04 3.66E-01± 1.39E+00 + 3.81E-02± 2.55E-01
F05 1.10E+03± 4.44E+02 = 1.11E+03± 5.67E+02 1.55E+02± 1.30E+02 + 2.68E+01± 3.21E+01 1.58E+03± 5.06E+02 + 1.13E+03± 4.18E+02
F06 2.46E+01± 2.57E+01 + 5.74E-01± 1.37E+00 4.56E+01± 2.82E+01 + 1.42E+01± 8.73E+00 2.09E+00± 2.93E+00 + 1.20E+00± 1.85E+00
F07 1.31E-02± 9.30E-03 + 9.75E-03± 8.92E-03 6.26E-03± 7.73E-03 = 6.94E-03± 7.67E-03 1.44E-02± 1.15E-02 = 1.48E-02± 1.18E-02
F08 2.09E+01± 4.94E-02 = 2.09E+01± 4.98E-02 2.10E+01± 4.99E-02 = 2.09E+01± 4.75E-02 2.09E+01± 5.80E-02 = 2.09E+01± 5.19E-02
F09⋆ 7.64E+01± 8.36E+00 + 6.42E+01± 9.08E+00 2.26E+02± 1.73E+01 + 2.05E+02± 2.04E+01 7.16E+01± 8.07E+00 + 6.05E+01± 6.66E+00
F10 5.86E+01± 1.05E+01 + 4.71E+01± 9.42E+00 5.13E+01± 4.54E+01 + 3.78E+01± 2.28E+01 4.81E+01± 7.26E+00 + 4.44E+01± 8.96E+00
F11 2.80E+01± 1.74E+00 = 2.79E+01± 2.29E+00 7.50E+00± 8.10E+00 – 9.72E+00± 6.51E+00 2.83E+01± 3.22E+00 = 2.77E+01± 4.18E+00
F12 1.16E+04± 8.08E+03 + 1.65E+03± 1.80E+03 2.57E+03± 2.91E+03 = 2.16E+03± 2.34E+03 2.44E+03± 3.17E+03 + 1.63E+03± 1.91E+03
F13 1.70E+00± 1.43E-01 + 1.60E+00± 1.26E-01 7.08E+00± 2.43E+00 + 2.87E+00± 7.73E-01 2.24E+00± 1.79E-01 = 2.25E+00± 2.59E-01
F14 1.30E+01± 2.00E-01 = 1.30E+01± 2.05E-01 1.31E+01± 2.28E-01 + 1.29E+01± 4.39E-01 1.29E+01± 1.81E-01 + 1.28E+01± 1.90E-01
F15 3.40E+02± 1.09E+02 = 3.66E+02± 5.58E+01 4.18E+02± 3.88E+01 = 4.12E+02± 5.58E+01 3.86E+02± 6.71E+01 + 3.45E+02± 9.59E+01
F16 7.56E+01± 8.99E+00 + 6.12E+01± 9.00E+00 9.79E+01± 7.18E+01 + 6.95E+01± 5.36E+01 7.51E+01± 4.89E+01 + 6.91E+01± 4.97E+01
F17 1.33E+02± 1.43E+01 + 1.06E+02± 3.81E+01 1.48E+02± 8.04E+01 + 1.14E+02± 9.11E+01 1.43E+02± 5.05E+01 = 1.34E+02± 7.75E+01
F18 9.07E+02± 1.45E+00 = 9.08E+02± 2.28E+00 9.01E+02± 2.08E+01 – 9.01E+02± 2.09E+01 8.76E+02± 5.54E+01 = 8.75E+02± 5.49E+01
F19 9.06E+02± 1.72E+00 – 9.08E+02± 1.90E+00 8.90E+02± 3.66E+01 – 9.03E+02± 1.49E+01 8.77E+02± 5.36E+01 = 8.86E+02± 4.87E+01
F20 9.06E+02± 1.68E+00 – 9.08E+02± 1.87E+00 8.92E+02± 3.42E+01 – 8.97E+02± 2.89E+01 8.75E+02± 5.45E+01 – 8.95E+02± 4.22E+01
F21 5.00E+02± 0.00E+00 = 5.00E+02± 0.00E+00 5.00E+02± 0.00E+00 = 5.00E+02± 0.00E+00 5.06E+02± 4.24E+01 = 5.06E+02± 4.24E+01
F22 9.04E+02± 1.03E+01 + 8.97E+02± 1.16E+01 9.09E+02± 9.31E+00 + 9.04E+02± 9.75E+00 9.29E+02± 1.51E+01 + 9.22E+02± 1.47E+01
F23 5.34E+02± 2.19E-04 = 5.34E+02± 1.20E-03 5.34E+02± 3.08E-04 = 5.34E+02± 3.37E-04 5.34E+02± 1.20E-03 = 5.34E+02± 8.30E-03
F24 2.00E+02± 0.00E+00 = 2.00E+02± 0.00E+00 2.00E+02± 0.00E+00 = 2.00E+02± 0.00E+00 2.00E+02± 0.00E+00 = 2.00E+02± 0.00E+00
F25 2.10E+02± 3.33E-01 + 2.09E+02± 2.76E-01 2.09E+02± 2.29E-01 + 2.09E+02± 1.26E-01 2.10E+02± 3.34E-01 + 2.09E+02± 2.72E-01

w/t/l 14/9/2 – 14/7/4 – 14/10/1 –

Prob JADE rank-JADE CoDE rank-CoDE DEGL rank-DEGL
F01⋆ 7.91E-04± 4.22E-04 + 2.60E-04± 1.63E-04 3.29E-02± 2.27E-02 + 2.22E-04± 1.52E-04 9.02E-03± 2.23E-03 + 7.73E-04± 2.40E-04
F02 4.39E-28± 1.51E-28 + 2.99E-28± 1.25E-28 3.57E-14± 8.14E-14 + 4.73E-21± 7.52E-21 4.89E-27± 1.26E-26 + 9.12E-28± 2.22E-28
F03 8.12E+03± 5.58E+03 = 7.67E+03± 6.70E+03 1.41E+05± 7.39E+04 + 6.07E+04± 3.84E+04 4.83E+04± 2.97E+04 = 4.28E+04± 2.32E+04
F04 8.15E-16± 2.97E-15 + 5.61E-16± 3.03E-15 6.79E-02± 2.87E-01 + 1.08E-03± 3.74E-03 6.95E-16± 2.86E-15 + 4.27E-20± 1.94E-19
F05 9.67E-02± 2.88E-01 + 4.77E-02± 1.59E-01 8.27E+02± 4.12E+02 + 7.12E+02± 4.32E+02 4.10E+02± 2.54E+02 + 2.14E+02± 1.81E+02
F06 8.24E+00± 2.44E+01 + 7.74E-01± 3.87E+00 3.29E-08± 1.22E-07 + 3.99E-01± 1.21E+00 6.72E+01± 4.99E+01 + 4.89E+01± 2.71E+01
F07 9.55E-03± 8.31E-03 + 6.06E-03± 7.82E-03 5.71E-03± 6.79E-03 – 9.65E-03± 8.37E-03 2.14E+02± 8.41E+01 + 1.20E+02± 4.66E+01
F08 2.09E+01± 1.43E-01 = 2.09E+01± 1.43E-01 2.09E+01± 4.66E-02 + 2.08E+01± 3.47E-01 2.09E+01± 5.30E-02 = 2.09E+01± 6.92E-02
F09⋆ 8.12E+01± 8.81E+00 + 7.86E+01± 7.01E+00 8.03E+01± 8.04E+00 + 6.31E+01± 9.02E+00 1.98E+02± 1.49E+01 + 1.93E+02± 1.23E+01
F10 2.66E+01± 4.97E+00 + 2.48E+01± 4.66E+00 4.63E+01± 1.03E+01 = 4.54E+01± 1.21E+01 1.50E+02± 4.22E+01 + 1.17E+02± 5.94E+01
F11 2.50E+01± 1.43E+00 = 2.55E+01± 1.58E+00 1.10E+01± 2.99E+00 – 1.32E+01± 3.26E+00 2.54E+01± 1.63E+01 + 1.62E+01± 1.67E+01
F12 7.26E+03± 3.88E+03 + 3.91E+03± 3.88E+03 1.68E+03± 2.21E+03 = 1.50E+03± 2.28E+03 5.61E+03± 4.73E+03 = 6.62E+03± 5.82E+03
F13 1.43E+00± 1.08E-01 = 1.47E+00± 1.08E-01 3.25E+00± 1.16E+00 + 1.82E+00± 4.99E-01 1.17E+01± 1.42E+00 + 1.06E+01± 2.49E+00
F14 1.23E+01± 3.14E-01 = 1.22E+01± 3.29E-01 1.23E+01± 4.73E-01 = 1.23E+01± 5.27E-01 1.25E+01± 3.18E-01 + 1.22E+01± 3.98E-01
F15 3.43E+02± 8.67E+01 = 3.56E+02± 9.29E+01 4.04E+02± 1.98E+01 + 3.82E+02± 9.84E+01 3.45E+02± 8.77E+01 = 3.44E+02± 8.86E+01
F16 7.78E+01± 8.76E+01 = 8.83E+01± 1.12E+02 6.80E+01± 1.33E+01 = 6.92E+01± 1.43E+01 1.45E+02± 1.27E+02 + 1.07E+02± 1.02E+02
F17 1.13E+02± 9.17E+01 = 1.05E+02± 8.49E+01 6.58E+01± 1.36E+01 = 6.91E+01± 1.48E+01 2.22E+02± 1.01E+02 + 1.73E+02± 1.38E+02
F18 8.95E+02± 3.90E+01 = 9.02E+02± 2.62E+01 8.91E+02± 4.01E+01 = 8.98E+02± 3.32E+01 8.70E+02± 5.52E+01 = 8.84E+02± 4.77E+01
F19 8.97E+02± 3.61E+01 = 9.05E+02± 2.18E+01 8.95E+02± 3.57E+01 – 9.01E+02± 3.03E+01 8.68E+02± 5.64E+01 = 8.96E+02± 3.93E+01
F20 8.96E+02± 3.60E+01 = 8.95E+02± 3.57E+01 8.96E+02± 3.57E+01 – 9.02E+02± 2.78E+01 8.73E+02± 5.50E+01 = 8.91E+02± 4.32E+01
F21 5.00E+02± 0.00E+00 = 5.00E+02± 0.00E+00 5.00E+02± 0.00E+00 = 5.00E+02± 0.00E+00 5.34E+02± 9.82E+01 = 5.18E+02± 7.20E+01
F22 8.95E+02± 1.26E+01 + 8.90E+02± 1.37E+01 9.18E+02± 1.23E+01 + 8.88E+02± 2.19E+01 9.20E+02± 1.48E+01 + 9.12E+02± 1.35E+01
F23 5.34E+02± 1.29E-04 + 5.34E+02± 2.82E-03 5.34E+02± 4.29E-04 = 5.34E+02± 4.36E-04 5.88E+02± 1.35E+02 + 5.72E+02± 1.22E+02
F24 2.00E+02± 0.00E+00 = 2.00E+02± 0.00E+00 2.00E+02± 0.00E+00 = 2.00E+02± 0.00E+00 2.00E+02± 0.00E+00 = 2.00E+02± 0.00E+00
F25 2.09E+02± 1.22E-01 = 2.09E+02± 1.05E-01 2.09E+02± 2.47E-01 + 2.09E+02± 2.33E-01 2.94E+02± 2.39E+02 + 2.46E+02± 1.50E+02

w/t/l 11/14/0 – 12/9/4 – 16/9/0 –

⋆ indicates that when several algorithms obtain the global optimum, the intermediate results are reported atNFFEs = 20, 000.
“+”, “–”, and “=” indicate our approach is respectively better than, worse than, or similar to its competitor according to the Wilcoxon signed-rank test atα = 0.05.

denotes that our proposed ranking-jDE wins inw functions,
ties in t functions, and loses inl functions, compared with its
corresponding jDE method.

With respect to the overall performance, from Table II we
can see that in the majority of the test functions atD = 30
the ranking-based jDE methods obtain the significantly better
errors values compared with their corresponding jDE meth-
ods. For example, with “DE/rand/1/bin” strategy, rank-jDE
significantly improves the performance of jDE in14 out of
25 functions, but only loses in2 functions. With “DE/current-
to-best/2/bin” strategy, rank-jDE wins in12 functions, ties
in 9 functions, and only loses in4 functions according to
the Wilcoxon’s test results atα = 0.05. The only exception
is for the “DE/rand-to-best/1/bin” strategy, where rank-jDE
improves jDE in7 functions, but loses in5 functions. For the
rest13 functions, both rank-jDE and jDE provides similar error
values. The reasons might be two-fold: First, in “DE/rand-
to-best/1/bin” the best-so-far solution is always used and

there is only one difference vector, both of them make this
strategy be more exploitative. When the ranking-based vector
selection is applied to “DE/rand-to-best/1/bin”, it may beover-
exploitative, and hence, it leads to deteriorate the performance
of rank-jDE. Second, as shown in Equation (7) the base
vector xr1 is also the starting point ofxbest − xr1 , in this
way, the ranking-based selection ofxr1 may also deteriorate
the improved performance of rank-jDE. Oppositely, although
“DE/current-to-best/1/bin” is also more exploitative dueto the
best-so-far solution and one difference vector, rank-jDE gets
significantly better results in8 functions, but only loses in1
functions. The reason is that the base vectorxi, which is also
the starting point ofxbest − xi, is not selected based on its
ranking.

As mentioned above, DE mutation operators with two dif-
ference vectors are more explorative than those with only one
difference vector. This can be verified according to the results
shown in Table II. When the ranking-based mutation operators
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TABLE IV
COMPARISON ON THEERRORVALUES BETWEEN ADVANCED DE AND ITS CORRESPONDINGRANKING -BASED DE VARIANT FOR FUNCTIONSF01 - F25

AT D = 50.

Prob jDE rank-jDE ODE rank-ODE SaDE rank-SaDE
F01⋆ 4.88E-03± 2.15E-03 + 2.29E-06± 1.32E-06 9.65E-02± 9.15E-02 + 6.30E-05± 8.72E-05 7.83E-11± 6.33E-11 + 2.23E-15± 2.96E-15
F02 8.99E-02± 8.43E-02 + 3.46E-05± 3.84E-05 8.37E+00± 4.93E+00 + 1.20E-03± 1.19E-03 2.62E-10± 4.61E-10 + 3.30E-18± 1.25E-17
F03 5.30E+05± 3.05E+05 + 3.25E+05± 1.33E+05 3.84E+06± 1.40E+06 + 6.15E+05± 2.38E+05 1.50E+05± 5.63E+04 + 7.22E+04± 3.57E+04
F04 8.31E+02± 7.64E+02 + 2.87E+02± 4.72E+02 8.77E+02± 4.38E+02 + 3.45E+01± 2.81E+01 1.19E+03± 1.05E+03 + 5.34E+02± 6.59E+02
F05 3.39E+03± 6.32E+02 – 3.63E+03± 5.83E+02 2.30E+03± 3.66E+02 + 2.13E+03± 3.75E+02 4.60E+03± 8.83E+02 + 4.10E+03± 7.06E+02
F06 3.98E+01± 2.68E+01 + 7.65E+00± 1.68E+01 4.20E+04± 1.82E+05 + 6.25E+01± 5.14E+01 5.39E+00± 2.07E+01 + 1.28E+00± 1.88E+00
F07 4.13E-03± 8.97E-03 + 4.82E-03± 9.17E-03 1.38E-02± 1.44E-02 + 6.15E-03± 7.95E-03 7.46E-03± 1.32E-02 + 5.90E-03± 1.11E-02
F08 2.11E+01± 3.58E-02 = 2.11E+01± 3.81E-02 2.11E+01± 4.07E-02 = 2.11E+01± 3.94E-02 2.11E+01± 3.61E-02 = 2.11E+01± 4.26E-02
F09⋆ 7.69E+01± 9.24E+00 + 5.66E+01± 6.53E+00 4.14E+02± 3.40E+01 + 3.76E+02± 3.45E+01 8.09E+01± 6.36E+00 + 6.32E+01± 7.57E+00
F10 1.00E+02± 1.31E+01 + 7.66E+01± 1.85E+01 1.12E+02± 1.03E+02 = 8.22E+01± 6.18E+01 1.27E+02± 1.54E+01 + 1.02E+02± 1.91E+01
F11 5.54E+01± 2.31E+00 + 5.31E+01± 5.03E+00 1.67E+01± 9.27E+00 – 2.02E+01± 5.78E+00 5.73E+01± 3.77E+00 = 5.66E+01± 6.14E+00
F12 3.71E+04± 2.27E+04 + 6.20E+03± 6.10E+03 1.12E+04± 9.58E+03 + 7.61E+03± 7.34E+03 1.10E+04± 9.51E+03 + 6.17E+03± 6.14E+03
F13 2.90E+00± 2.23E-01 + 2.81E+00± 3.07E-01 1.47E+01± 4.72E+00 + 5.87E+00± 1.40E+00 4.89E+00± 6.23E-01 = 4.94E+00± 6.14E-01
F14 2.26E+01± 3.03E-01 = 2.26E+01± 2.99E-01 2.29E+01± 2.55E-01 = 2.29E+01± 2.87E-01 2.25E+01± 2.31E-01 + 2.24E+01± 1.68E-01
F15 3.32E+02± 9.57E+01 + 3.16E+02± 9.97E+01 3.96E+02± 2.83E+01 + 3.62E+02± 8.30E+01 3.65E+02± 7.97E+01 = 3.41E+02± 8.73E+01
F16 8.54E+01± 8.91E+00 + 6.93E+01± 1.61E+01 8.70E+01± 7.40E+01 + 6.55E+01± 4.34E+01 8.64E+01± 9.91E+00 + 7.81E+01± 9.28E+00
F17 1.75E+02± 1.26E+01 + 1.32E+02± 6.16E+01 1.55E+02± 9.78E+01 + 1.09E+02± 8.99E+01 1.99E+02± 1.54E+01 + 1.89E+02± 5.05E+01
F18 9.25E+02± 2.93E+00 – 9.31E+02± 4.18E+00 8.96E+02± 4.88E+01 – 9.05E+02± 4.32E+01 9.42E+02± 3.82E+01 = 9.48E+02± 2.37E+01
F19 9.25E+02± 3.10E+00 – 9.30E+02± 4.58E+00 8.94E+02± 5.07E+01 – 9.03E+02± 4.57E+01 9.46E+02± 3.95E+01 + 9.48E+02± 1.49E+01
F20 9.25E+02± 3.26E+00 – 9.30E+02± 4.69E+00 8.99E+02± 4.71E+01 – 9.07E+02± 4.35E+01 9.43E+02± 3.88E+01 = 9.46E+02± 2.42E+01
F21 5.00E+02± 0.00E+00 = 5.00E+02± 0.00E+00 5.00E+02± 0.00E+00 = 5.00E+02± 0.00E+00 5.46E+02± 1.65E+02 + 5.20E+02± 1.04E+02
F22 9.43E+02± 1.26E+01 + 9.40E+02± 1.11E+01 9.59E+02± 1.11E+01 + 9.57E+02± 1.19E+01 9.75E+02± 8.38E+00 + 9.67E+02± 1.01E+01
F23 5.39E+02± 1.67E-05 – 5.39E+02± 7.98E-03 5.39E+02± 1.27E-02 = 5.39E+02± 2.34E-02 5.91E+02± 1.79E+02 = 5.85E+02± 1.63E+02
F24 2.00E+02± 0.00E+00 = 2.00E+02± 0.00E+00 2.00E+02± 0.00E+00 = 2.00E+02± 0.00E+00 2.00E+02± 0.00E+00 = 2.00E+02± 0.00E+00
F25 2.14E+02± 6.08E-01 = 2.14E+02± 8.89E-01 2.14E+02± 4.62E-01 + 2.13E+02± 3.63E-01 2.16E+02± 8.10E-01 + 2.14E+02± 5.92E-01

w/t/l 15/5/5 – 15/6/4 – 17/8/0 –

Prob JADE rank-JADE CoDE rank-CoDE DEGL rank-DEGL
F01⋆ 1.73E-12± 2.24E-12 + 9.02E-14± 1.02E-13 5.09E+00± 2.68E+00 + 2.56E-02± 1.36E-02 5.36E-01± 3.05E-01 + 5.25E-02± 6.47E-02
F02 1.04E-26± 4.22E-27 + 7.03E-27± 3.23E-27 2.37E-08± 3.43E-08 + 1.81E-12± 3.81E-12 1.06E-11± 1.38E-11 + 4.33E-15± 4.98E-15
F03 1.54E+04± 7.61E+03 = 1.46E+04± 5.95E+03 1.83E+05± 7.17E+04 + 1.08E+05± 4.98E+04 2.43E+05± 8.27E+04 + 1.97E+05± 7.32E+04
F04 1.94E+00± 6.06E+00 + 9.22E-01± 2.52E+00 5.81E+02± 4.49E+02 + 2.34E+02± 4.19E+02 7.56E-03± 1.01E-02 + 6.67E-04± 1.84E-03
F05 1.86E+03± 4.32E+02 = 1.87E+03± 3.61E+02 3.45E+03± 5.34E+02 = 3.38E+03± 5.54E+02 2.61E+03± 5.92E+02 + 2.22E+03± 3.90E+02
F06 2.13E+00± 6.66E+00 + 1.04E+00± 1.77E+00 1.13E+00± 2.07E+00 = 1.28E+00± 1.87E+00 2.33E+03± 3.70E+03 + 3.40E+02± 7.46E+02
F07 3.55E-03± 6.53E-03 = 4.97E-03± 7.23E-03 5.90E-03± 1.04E-02 + 4.43E-03± 8.38E-03 8.65E+02± 1.53E+02 + 6.40E+02± 1.19E+02
F08 2.11E+01± 2.23E-01 = 2.10E+01± 3.21E-01 2.11E+01± 4.41E-02 = 2.11E+01± 3.59E-02 2.11E+01± 3.17E-02 = 2.11E+01± 4.37E-02
F09⋆ 7.44E+01± 5.36E+00 + 7.08E+01± 5.18E+00 3.99E+02± 6.54E+01 + 3.53E+02± 5.43E+01 3.87E+02± 1.74E+01 = 3.86E+02± 1.83E+01
F10 6.15E+01± 9.23E+00 + 5.49E+01± 8.55E+00 1.05E+02± 2.12E+01 – 1.16E+02± 2.37E+01 3.33E+02± 6.60E+01 + 2.82E+02± 1.13E+02
F11 5.16E+01± 2.41E+00 = 5.19E+01± 2.50E+00 2.84E+01± 4.95E+00 – 3.26E+01± 4.98E+00 7.21E+01± 1.82E+00 + 7.09E+01± 6.93E+00
F12 1.66E+04± 2.04E+04 + 1.43E+04± 1.60E+04 7.31E+03± 6.04E+03 + 5.21E+03± 7.44E+03 4.16E+04± 3.73E+04 + 3.21E+04± 3.05E+04
F13 2.70E+00± 1.61E-01 – 2.74E+00± 1.40E-01 4.79E+00± 1.55E+00 + 3.60E+00± 7.89E-01 2.28E+01± 5.26E+00 = 2.16E+01± 6.20E+00
F14 2.16E+01± 4.75E-01 = 2.17E+01± 4.03E-01 2.19E+01± 6.22E-01 = 2.19E+01± 4.80E-01 2.24E+01± 2.59E-01 = 2.23E+01± 2.97E-01
F15 3.02E+02± 9.76E+01 = 3.24E+02± 9.60E+01 3.92E+02± 3.96E+01 + 3.52E+02± 8.63E+01 3.36E+02± 8.78E+01 + 3.29E+02± 9.40E+01
F16 6.35E+01± 5.58E+01 = 6.17E+01± 3.46E+01 7.55E+01± 1.45E+01 – 8.54E+01± 2.29E+01 2.35E+02± 9.17E+01 + 1.55E+02± 1.21E+02
F17 1.16E+02± 4.95E+01 + 1.07E+02± 3.25E+01 7.27E+01± 2.25E+01 – 7.94E+01± 1.48E+01 2.88E+02± 4.86E+01 + 2.74E+02± 6.29E+01
F18 9.31E+02± 3.50E+01 = 9.33E+02± 2.85E+01 9.33E+02± 2.85E+01 = 9.32E+02± 2.89E+01 9.16E+02± 4.59E+01 = 9.22E+02± 2.50E+01
F19 9.39E+02± 1.04E+01 + 9.31E+02± 2.78E+01 9.31E+02± 2.78E+01 = 9.32E+02± 2.93E+01 9.26E+02± 3.32E+01 = 9.26E+02± 2.97E+01
F20 9.37E+02± 1.12E+01 + 9.32E+02± 2.05E+01 9.32E+02± 2.05E+01 = 9.31E+02± 2.87E+01 9.29E+02± 2.75E+01 = 9.25E+02± 3.15E+01
F21 5.18E+02± 7.20E+01 = 5.18E+02± 7.20E+01 5.00E+02± 0.00E+00 = 5.00E+02± 0.00E+00 5.27E+02± 9.61E+01 + 5.24E+02± 9.76E+01
F22 9.44E+02± 1.24E+01 + 9.39E+02± 1.16E+01 9.52E+02± 2.48E+01 + 9.30E+02± 1.64E+01 9.78E+02± 1.03E+01 = 9.74E+02± 1.11E+01
F23 5.53E+02± 6.90E+01 + 5.46E+02± 4.94E+01 5.39E+02± 3.53E-03 = 5.39E+02± 6.64E-03 6.36E+02± 1.76E+02 + 5.82E+02± 1.16E+02
F24 2.00E+02± 0.00E+00 = 2.00E+02± 0.00E+00 2.00E+02± 0.00E+00 = 2.00E+02± 0.00E+00 2.09E+02± 1.96E+01 + 2.02E+02± 6.45E+00
F25 2.14E+02± 5.58E-01 = 2.14E+02± 5.92E-01 2.14E+02± 3.65E-01 = 2.14E+02± 5.92E-01 9.98E+02± 3.94E+02 + 7.56E+02± 4.72E+02

w/t/l 12/12/1 – 10/11/4 – 17/8/0 –

⋆ indicates that when several algorithms obtain the global optimum, the intermediate results are reported atNFFEs = 50, 000.
“+”, “–”, and “=” indicate our approach is respectively better than, worse than, or similar to its competitor according to the Wilcoxon signed-rank test atα = 0.05.

TABLE V
RESULTS OF THEMULTIPLE-PROBLEM WILCOXON’ S TEST FOR

ADVANCED DE VARIANTS FOR FUNCTIONSF01 - F25AT D = 30.

Algorithm R+ R− p-value atα = 0.05 atα = 0.1

rank-jDE vs jDE 202 74 5.22E-02 = +
rank-ODE vs ODE 227 49 5.41E-03 + +

rank-SaDE vs SaDE 223 53 8.26E-03 + +
rank-JADE vs JADE 178 98 2.34E-01 = =
rank-CoDE vs CoDE 176 100 2.59E-01 = =
rank-DEGL vs DEGL 235 65 1.38E-02 + +

are used for DE with two difference vectors, rank-jDE signif-
icantly improves jDE in the majority of the test functions in
the three cases. rank-jDE is significantly better than jDE in
20, 12, and10 functions for “DE/rand/2/bin”, “DE/current-to-
best/2/bin”, and “DE/rand-to-best/2/bin”, respectively. It only
respectively loses in1, 4, and3 out of 25 functions.

With respect to the features of the benchmark functions,
from the results shown in Table II, we can observe that:

TABLE VI
RESULTS OF THEMULTIPLE-PROBLEM WILCOXON’ S TEST FOR

ADVANCED DE VARIANTS FOR FUNCTIONSF01 - F25AT D = 50.

Algorithm R+ R− p-value atα = 0.05 atα = 0.1

rank-jDE vs jDE 203 73 4.84E-02 + +
rank-ODE vs ODE 227 49 5.41E-03 + +

rank-SaDE vs SaDE 265 35 4.94E-04 + +
rank-JADE vs JADE 200 76 6.05E-02 = +
rank-CoDE vs CoDE 190 86 1.19E-01 = =
rank-DEGL vs DEGL 307 18 1.51E-05 + +

• For the unimodal functions (F01 - F05), regardless of the
mutation operator used in jDE, the ranking-based jDE
variants consistently obtain better results than the non-
ranking-based jDE variants. In25 out of 30 cases, rank-
jDEs significantly outperform non-rank-jDEs, and in the
rest5 cases there are no significant differences between
rank-jDEs and their corresponding non-rank-jDEs. The
reason is that the ranking-based mutation operator in-
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TABLE VII
AVERAGE RANKINGS OF ALL DE VARIANTS BY THE FRIEDMAN TEST

FOR ALL FUNCTIONS.

D = 30 D = 50

Algorithm Ranking Algorithm Ranking
jDE 8.34 jDE 6.38

rank-jDE 6.60 rank-jDE 5.44
ODE 8.06 ODE 7.46

rank-ODE 6.76 rank-ODE 5.64
SaDE 7.08 SaDE 8.76

rank-SaDE 5.70 rank-SaDE 7.02
JADE 5.10 JADE 4.56

rank-JADE 4.76 rank-JADE 4.04
CoDE 5.64 CoDE 6.42

rank-CoDE 4.80 rank-CoDE 5.28
DEGL 7.84 DEGL 9.06

rank-DEGL 7.32 rank-DEGL 7.94

creases the selection pressure on better solutions in the
population, and hence, it can accelerate the original jDE
method when solving the unimodal functions.

• For the basic multimodal functions (F06 - F12), the
algorithm with over-exploitation may lead to trap into
local optima. In our proposed ranking-based mutation
operators, the solutions are selected proportionally to their
selection probabilities; in this way, it can avoid over-
exploiting the better solutions in the mutation. Therefore,
our proposed ranking-based DE can improve the exploita-
tion ability without deteriorating the exploration ability of
the original DE method seriously. The results in Table II
support this intuition. In the most of the cases (25 out
of 42), the rank-jDEs still surpass non-rank-jDEs. While
in the rest17 cases, rank-jDEs provide similar results
compared with their corresponding non-rank-jDEs.

• For the two expanded multimodal functions, there are
no significant differences between rank-jDEs and their
corresponding non-rank-jDEs in F14 for all mutation
operators. However, in F13 ranking-based jDEs win in
“DE/rand/1/bin” and “DE/rand/2/bin”, tie in “DE/current-
to-best/2/bin” and “DE/rand-to-best/2/bin”, but lose in
“DE/current-to-best/1/bin” and “DE/rand-to-best/1/bin”
compared with their corresponding non-ranking-based
jDEs. These further confirm that for the mutation opera-
tors with good exploration ability our method is able to
balance the exploitation and exploration ability of DE,
and hence, it can improve its performance. However,
for the mutation operators with good exploitation abil-
ity (such as “DE/current-to-best/1/bin” and “DE/rand-to-
best/1/bin”), the ranking-based mutation operators may
slightly lead to over-exploitation when solving expanded
multimodal functions.

• For the hybrid composition functions (F15 - F25), these
functions are very difficult to solve for almost all existing
optimizers. In all66 cases, rank-jDEs win in22 cases, tie
in 33, but lose in11 cases3 compared with non-rank-jDEs.
Similar to the results for expanded functions, rank-jDEs
perform better when the mutation operators have good
exploration ability. However, if the mutation operators are

3By carefully looking at the results, we can see that in three functions
(F18, F19, and F20), rank-jDEs lose in8 cases compared with non-rank-
jDEs. Indeed, these three functions have the same function but with different
parameter settings [31].

more exploitative, the ranking-based mutation operators
may cause the algorithm over-exploitation, and thus they
are not beneficial to the significant improvement of non-
rank-jDEs for composition functions. To sum up, rank-
jDEs still provide the better results in overall compared
with non-rank-jDEs.

In general, based on the results and analysis we can see
that our proposed ranking-based mutation operators are able
to enhance the exploitation ability. jDE with the ranking-
based mutation operators improves the performance of the
jDE algorithm, especially for the DE mutation operators with
good exploration ability. The ranking-based jDEs are capable
of surpassing the non-ranking-based jDEs in the unimodal and
basic multimodal functions. In the more complex functions,
such as expanded and/or composition multimodal functions,
the rank-jDEs still slightly enhance the performance of the
non-rank-jDEs. In the next section, we will test the influence
of the ranking-based mutation on other advanced DE variants.

C. Effect on Advanced DE Variants

In order to better understand the effectiveness of the pro-
posed ranking-based mutation operators, in this section, we in-
corporate the ranking-based mutation operators into some ad-
vanced DE variants. They are jDE [32], ODE [33], SaDE [18],
JADE [25], CoDE [22], and DEGL [15], all of them obtained
very promising results. jDE, SaDE, and JADE are adaptive
DE variants, where the parameter adaptation are implemented.
Note that in this work, for JADE the archive is employed
for both JADE and rank-JADE. In ODE, the opposition-based
learning is used for population initialization and jumping. In
both SaDE and CoDE, ensemble of the multiple mutation
strategies are presented. DEGL uses the local version and
global version of “DE/current-to-best/1/bin”, and a parameter
w is used to balance the influence of the two operators. In the
above DE variants, when more than one strategies are adopted,
the ranking-based vector selection technique is implemented
for all of the strategies. For example, in DEGL, the ranking-
based vector selection technique is used for both the local
version and global version of “DE/current-to-best/1/bin”. To
make a fair comparison between the advanced DEs and their
corresponding ranking-based DEs, all parameters are kept the
same as used in their original literature. The parameter settings
are tabulated in Table I. The error values of all DE variants
are respectively reported in Tables III and IV for functions
F01 - F25 atD = 30 andD = 50. All results are averaged
over50 independent runs. The better results compared between
ranking-based DE and non-ranking-based DE are highlighted
in boldface. The Wilcoxon’s test is also used to compare
the results between two algorithms. In addition, the multiple-
problem statistical analysis based on the Wilcoxon’s test,as
similar done in [35], [36], between ranking-based DE and non-
ranking-based DE is reported for all functions in Tables V
and VI, respectively. Moreover, according to the Friedman test,
the final rankings of all DE variants for all functions are shown
in Table VII. Note that the Friedman test, which is used to
obtain the rankings of different algorithms for all problems,
is calculated by the KEEL software [37]. In Table VII, the
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TABLE VIII
COMPARISON ON THEERRORVALUES FOR JDE VARIANTS WITH DIFFERENTPROBABILITY CALCULATION MODELS FORFUNCTIONSF01 - F25AT

D = 30.

Prob jDE rank-jDE-q rank-jDE-s rank-jDE
F01⋆ 7.37E+00± 3.02E+00 + 6.46E-03± 3.97E-03 – 4.36E-02± 2.35E-02 – 8.93E-02± 4.02E-02
F02 1.08E-05± 1.54E-05 + 1.32E-14± 1.91E-14 – 7.55E-12± 2.00E-11 – 1.44E-11± 2.64E-11
F03 1.89E+05± 1.04E+05 + 9.97E+04± 8.66E+04 = 1.18E+05± 6.56E+04 + 8.12E+04± 3.87E+04
F04 2.98E-01± 5.78E-01 + 8.26E-04± 4.13E-03 – 6.56E-04± 1.30E-03 = 7.98E-04± 1.65E-03
F05 1.10E+03± 4.44E+02 = 1.12E+03± 5.22E+02 = 9.58E+02± 4.29E+02 = 1.11E+03± 5.67E+02
F06 2.46E+01± 2.57E+01 + 1.36E+00± 1.91E+00 = 9.20E-01± 1.63E+00 = 5.74E-01± 1.37E+00
F07 1.31E-02± 9.30E-03 + 1.25E-02± 1.18E-02 = 1.00E-02± 9.20E-03 = 9.75E-03± 8.92E-03
F08 2.09E+01± 4.94E-02 = 2.09E+01± 4.71E-02 = 2.09E+01± 4.57E-02 = 2.09E+01± 4.98E-02
F09⋆ 7.64E+01± 8.36E+00 + 5.57E+01± 6.59E+00 – 6.11E+01± 9.91E+00 – 6.42E+01± 9.08E+00
F10 5.86E+01± 1.05E+01 + 3.44E+01± 9.63E+00 – 4.22E+01± 1.06E+01 – 4.71E+01± 9.42E+00
F11 2.80E+01± 1.74E+00 = 2.61E+01± 5.28E+00 – 2.79E+01± 1.95E+00 = 2.79E+01± 2.29E+00
F12 1.16E+04± 8.08E+03 + 1.76E+03± 2.04E+03 = 1.64E+03± 2.46E+03 = 1.65E+03± 1.80E+03
F13 1.70E+00± 1.43E-01 + 1.55E+00± 2.12E-01 = 1.55E+00± 1.76E-01 – 1.60E+00± 1.26E-01
F14 1.30E+01± 2.00E-01 = 1.30E+01± 2.12E-01 = 1.29E+01± 2.62E-01 = 1.30E+01± 2.05E-01
F15 3.40E+02± 1.09E+02 = 3.78E+02± 6.48E+01 = 3.64E+02± 5.63E+01 = 3.66E+02± 5.58E+01
F16 7.56E+01± 8.99E+00 + 5.91E+01± 1.85E+01 – 6.34E+01± 1.63E+01 = 6.12E+01± 9.00E+00
F17 1.33E+02± 1.43E+01 + 7.83E+01± 3.55E+01 – 8.94E+01± 3.19E+01 – 1.06E+02± 3.81E+01
F18 9.07E+02± 1.45E+00 = 9.09E+02± 2.81E+00 + 9.08E+02± 2.17E+00 = 9.08E+02± 2.28E+00
F19 9.06E+02± 1.72E+00 – 9.09E+02± 2.03E+00 = 9.08E+02± 1.92E+00 = 9.08E+02± 1.90E+00
F20 9.06E+02± 1.68E+00 – 9.09E+02± 2.61E+00 + 9.08E+02± 2.22E+00 = 9.08E+02± 1.87E+00
F21 5.00E+02± 0.00E+00 = 5.00E+02± 0.00E+00 = 5.00E+02± 0.00E+00 = 5.00E+02± 0.00E+00
F22 9.04E+02± 1.03E+01 + 8.99E+02± 1.27E+01 = 8.99E+02± 9.50E+00 = 8.97E+02± 1.16E+01
F23 5.34E+02± 2.19E-04 = 5.34E+02± 1.20E-03 = 5.34E+02± 2.77E-04 = 5.34E+02± 1.20E-03
F24 2.00E+02± 0.00E+00 = 2.00E+02± 0.00E+00 = 2.00E+02± 0.00E+00 = 2.00E+02± 0.00E+00
F25 2.10E+02± 3.33E-01 + 2.09E+02± 3.01E-01 = 2.09E+02± 2.63E-01 = 2.09E+02± 2.76E-01

w/t/l 14/9/2 2/15/8 1/18/6 –

⋆ indicates that when several algorithms obtain the global optimum, the intermediate results are reported atNFFEs = 20, 000.
“+”, “–”, and “=” indicate our approach is respectively better than, worse than, or similar to its competitor according to the Wilcoxon signed-
rank test atα = 0.05.

overall best and the second best results within all DE variants
are highlighted ingrey boldface andboldface, respectively.

TABLE IX
RESULTS OF THEMULTIPLE-PROBLEM WILCOXON’ S TEST FOR

RANK-JDE VARIANTS WITH DIFFERENTPROBABILITY CALCULATION

MODELS FORFUNCTIONSF01 - F25AT D = 30.

Algorithm R+ R− p-value atα = 0.05 atα = 0.1

rank-jDE vs jDE 202 74 5.22E-02 = +
rank-jDE vs rank-jDE-q 164 112 4.45E-01 = =
rank-jDE vs rank-jDE-s 109 167 3.93E-01 = =

For all functions atD = 30, Table III shows that in the
majority of the test functions the ranking-based DE methods
provide significantly better results compared with their corre-
sponding non-ranking-based DE methods. For example, rank-
JADE wins in 11 functions, ties in14 functions compared
with JADE. There is no function that JADE can significantly
outperform rank-JADE. Additionally, according to the results
of multiple-problem statistical analysis shown in Table V we
can see that ranking-based DEs consistently get higherR+

values thanR− values in all cases compared with the non-
ranking-based DEs. This means that the ranking-based DE is
better than its original DE for all functions. For the Wilcoxon’s
test atα = 0.05 in three cases (rank-ODE vs ODE, rank-SaDE
vs SaDE, and rank-DEGL vs DEGL) there are significant
differences for all problems between ranking-based DE and
non-ranking-based DE. Atα = 0.1 there are four cases (rank-
jDE vs jDE, rank-ODE vs ODE, rank-SaDE vs SaDE, and
rank-DEGL vs DEGL), where the significant differences are
observed. This indicates that ranking-based DE is significantly
better than its corresponding non-ranking-based DE based on
the multiple-problem statistical analysis in these four cases at
α = 0.1. With respect to the rankings of different algorithms
by the Friedman test, Table VII clearly shows that all rank-
DEs consistently obtain better rankings compared with their

corresponding non-rank-DEs. Overall, rank-JADE gets the first
ranking, followed by rank-CoDE for all functions atD = 30.

TABLE XI
RESULTS OF THEMULTIPLE-PROBLEM WILCOXON’ S TEST FOR JDE

VARIANTS COMPARED WITH OUR PROPOSED RANK-JDE METHOD FOR

FUNCTIONSF01 - F25AT D = 30.

Algorithm R+ R− p-value atα = 0.05 atα = 0.1

rank-jDE vs jDE 202 74 5.22E-02 = +
rank-jDE vs rank-jDE1 193 83 9.80E-02 = +
rank-jDE vs rank-jDE2 191 85 1.11E-01 = =

From Tables IV and VI, similar to the results for all
functions at D = 30, it is clear that ranking-based DE
approaches also consistently outperform their non-ranking-
based DE methods in the majority of the test functions
at D = 50. rank-jDE, rank-ODE, rank-SaDE, rank-JADE,
rank-CoDE, and rank-DEGL significantly improve jDE, ODE,
SaDE, JADE, CoDE, and DEGL in15, 15, 17, 12, 9, and 16
out of 25 functions, respectively. Also, with respect to the
multiple-problem analysis DE based on ranking-based muta-
tion operators obtains significantly better results in4 cases at
α = 0.05 and in 5 cases atα = 0.1. Moreover, considering
the final rankings of all algorithms in Table VII, we can see
that rank-JADE obtains the overall best ranking, followed by
JADE and rank-CoDE for all functions atD = 50. Again,
all rank-DEs get the better final rankings compared with their
corresponding non-rank-DEs according to the Friedman test.

Overall, from results shown in Tables III - VI, we can
conclude that our proposed ranking-based mutation operators
are also capable of improving the performance of the recently
presented advanced DE variants.

D. Influence of Different Probability Calculation Models

In the previous experiments, we verified the effectiveness of
our proposed ranking-based mutation operators in various DE
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TABLE X
COMPARISON ON THEERRORVALUES FOR JDE VARIANTS WITH DIFFERENTVECTORSELECTION METHODS FORFUNCTIONSF01 - F25AT D = 30.

Prob jDE rank-jDE1 rank-jDE2 rank-jDE
F01⋆ 7.37E+00± 3.02E+00 + 1.42E-01± 6.36E-02 + 5.61E-02± 2.60E-02 – 8.93E-02± 4.02E-02
F02 1.08E-05± 1.54E-05 + 1.22E-10± 1.86E-10 + 4.78E-10± 1.05E-09 + 1.44E-11± 2.64E-11
F03 1.89E+05± 1.04E+05 + 9.10E+04± 4.55E+04 = 1.10E+05± 5.43E+04 + 8.12E+04± 3.87E+04
F04 2.98E-01± 5.78E-01 + 4.09E-03± 9.52E-03 + 1.79E-01± 5.23E-01 + 7.98E-04± 1.65E-03
F05 1.10E+03± 4.44E+02 = 1.11E+03± 4.42E+02 = 1.60E+03± 4.72E+02 + 1.11E+03± 5.67E+02
F06 2.46E+01± 2.57E+01 + 2.31E+00± 2.43E+00 + 8.45E+00± 1.72E+01 + 5.74E-01± 1.37E+00
F07 1.31E-02± 9.30E-03 + 1.15E-02± 8.52E-03 = 1.85E-02± 1.21E-02 + 9.75E-03± 8.92E-03
F08 2.09E+01± 4.94E-02 = 2.09E+01± 4.45E-02 = 2.09E+01± 6.07E-02 = 2.09E+01± 4.98E-02
F09⋆ 7.64E+01± 8.36E+00 + 6.57E+01± 9.89E+00 + 6.03E+01± 1.02E+01 – 6.42E+01± 9.08E+00
F10 5.86E+01± 1.05E+01 + 4.43E+01± 1.02E+01 = 3.99E+01± 1.22E+01 – 4.71E+01± 9.42E+00
F11 2.80E+01± 1.74E+00 = 2.80E+01± 1.63E+00 = 2.81E+01± 2.81E+00 = 2.79E+01± 2.29E+00
F12 1.16E+04± 8.08E+03 + 2.43E+03± 4.16E+03 = 1.91E+03± 2.54E+03 = 1.65E+03± 1.80E+03
F13 1.70E+00± 1.43E-01 + 1.58E+00± 1.43E-01 = 1.57E+00± 1.75E-01 = 1.60E+00± 1.26E-01
F14 1.30E+01± 2.00E-01 = 1.31E+01± 1.83E-01 = 1.30E+01± 2.34E-01 = 1.30E+01± 2.05E-01
F15 3.40E+02± 1.09E+02 = 3.60E+02± 7.59E+01 = 3.84E+02± 6.18E+01 + 3.66E+02± 5.58E+01
F16 7.56E+01± 8.99E+00 + 6.25E+01± 1.12E+01 = 6.03E+01± 1.78E+01 = 6.12E+01± 9.00E+00
F17 1.33E+02± 1.43E+01 + 1.11E+02± 2.21E+01 = 9.00E+01± 3.29E+01 – 1.06E+02± 3.81E+01
F18 9.07E+02± 1.45E+00 = 9.06E+02± 1.55E+01 = 9.10E+02± 2.79E+00 + 9.08E+02± 2.28E+00
F19 9.06E+02± 1.72E+00 – 9.08E+02± 2.17E+00 = 9.10E+02± 2.49E+00 + 9.08E+02± 1.90E+00
F20 9.06E+02± 1.68E+00 – 9.09E+02± 2.08E+00 = 9.10E+02± 2.45E+00 + 9.08E+02± 1.87E+00
F21 5.00E+02± 0.00E+00 = 5.00E+02± 0.00E+00 = 5.00E+02± 0.00E+00 = 5.00E+02± 0.00E+00
F22 9.04E+02± 1.03E+01 + 9.00E+02± 1.25E+01 + 9.03E+02± 1.10E+01 + 8.97E+02± 1.16E+01
F23 5.34E+02± 2.19E-04 = 5.34E+02± 3.56E-04 = 5.34E+02± 3.35E-04 = 5.34E+02± 1.20E-03
F24 2.00E+02± 0.00E+00 = 2.00E+02± 0.00E+00 = 2.00E+02± 0.00E+00 = 2.00E+02± 0.00E+00
F25 2.10E+02± 3.33E-01 + 2.09E+02± 3.01E-01 = 2.10E+02± 3.64E-01 + 2.09E+02± 2.76E-01

w/t/l 14/9/2 6/19/0 12/9/4 –

⋆ indicates that when several algorithms obtain the global optimum, the intermediate results are reported atNFFEs = 20, 000.
“+”, “–”, and “=” indicate our approach is respectively better than, worse than, or similar to its competitor according to the Wilcoxon signed-
rank test atα = 0.05.

variants. The linear model is used as an illustration to calculate
the selection probabilities according to the rankings. Actually,
other models for calculating the selection probabilities can also
be used in our proposed ranking-based mutation operators.
Similar to the models presented in [29], in this section, two
models,i.e., quadratic model and sinusoidal modal, are adopt-
ed to evaluate the influence of different probability calculation
models to rank-jDE. The quadratic model is as follows:

pi =

(

Ri

Np

)2

(11)

The sinusoidal model is formulated as:

pi = 0.5 ·

(

1.0− cos

(

Ri · π

Np

))

(12)

rank-jDE with the quadratic model is namely rank-jDE-q, and
that with the sinusoidal modal is referred to as rank-jDE-s.
For all compared algorithms, the parameter settings are used
as described in Table I. The errors values are reported in
Table VIII for all functions atD = 30. The overall best
and the second best results among the four jDE variants
are respectively highlighted ingrey boldface andboldface.
In addition, the results of the multiple-problem analysis are
shown in Table IX. According the results we can see that
rank-jDE-s obtains the overall best results among the four
jDE methods, and all of these three rank-jDE methods get
better results than jDE for all functions. The results also
indicate that the linear model in the ranking-based mutation
operators is a reasonable choice, but not the optimal one. It
is worth pointing out that this experiment is not to seek the
optimal probability calculation model, but only to evaluate
the influence of different models. In the future work, we
will comprehensively test different probability models inthe
ranking-based mutation operators.

E. Comparison on Vector Selection

In Section III-A, we mentioned that in our proposed
ranking-based mutation operators only the base vector and the
terminal point are chosen based on their rankings. In order
to evaluate the influence of other different vector selection
methods on the performance of DE, in this section, rank-jDE is
compared with jDE, rank-jDE1, and rank-jDE2. In rank-jDE1,
only the base vector is selected based on the ranking, while
other vectors in the mutation are selected randomly as used in
the original jDE method. In rank-jDE2, all vectors (including
the starting point) are selected based on their rankings. All the
parameter settings are kept the same as described in Table I.
The results for all functions atD = 30 are reported in Table X,
and the results of the multiple-problem analysis are tabulated
in Table XI. The overall best and the second best results among
the four jDE variants are highlighted ingrey boldface and
boldface, respectively.

According to the error values in Table X, thep-value
computed by Iman-Daveport test, which is used to check
the differences between all algorithms for all functions, is
2.61E − 02 for all functions atD = 30. It means that there
are significant differences between the compared algorithms
for all functions atα = 0.05. rank-jDE wins in14, 6, and12
out of 25 functions compared with jDE, rank-jDE1, and rank-
jDE2, respectively. Compared with rank-jDE1, in19 functions
there are no significant differences between rank-jDE and
rank-jDE1. There is no function that rank-jDE1 wins rank-
jDE. In rank-jDE2, since all vectors are chosen based on
the rankings, it is the most exploitative method among the
four jDE variants. In some relatively simple functions (e.g.
F01, F09, F10), rank-jDE2 obtains significantly better results
than rank-jDE, however, it loses in12 functions. In the rest
9 functions both rank-jDE2 and rank-jDE get similar error
values.

Based on the results of the multiple-problem analysis shown
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TABLE XII
COMPARISON ON THEERRORVALUES OF JDE AND RANK -JDE WITH DIFFERENTPOPULATION SIZE FOR FUNCTIONSF01 - F25AT D = 30.

Prob Np = 50 Np = 150 Np = 200

jDE rank-jDE jDE rank-jDE jDE rank-jDE
F01⋆ 4.10E-04± 3.09E-04 + 2.08E-07± 1.99E-07 1.93E+02± 4.15E+01 + 1.24E+01± 3.76E+00 9.10E+02± 1.57E+02 + 1.22E+02± 2.92E+01
F02 5.49E-10± 8.42E-10 + 6.80E-17± 2.20E-16 4.49E-03± 5.84E-03 + 5.16E-08± 1.29E-07 1.77E-01± 1.69E-01 + 4.99E-06± 5.90E-06
F03 1.34E+05± 7.17E+04 + 8.20E+04± 6.12E+04 2.20E+05± 1.03E+05 + 1.44E+05± 9.75E+04 2.87E+05± 1.33E+05 + 1.48E+05± 7.76E+04
F04 8.38E-01± 3.29E+00 + 5.97E-01± 3.13E+00 3.07E+00± 7.46E+00 + 3.52E-03± 5.92E-03 1.81E+01± 2.46E+01 + 3.16E-02± 5.33E-02
F05 1.45E+03± 4.83E+02 = 1.61E+03± 3.81E+02 8.46E+02± 3.93E+02 = 7.89E+02± 3.55E+02 9.66E+02± 4.60E+02 + 6.29E+02± 3.57E+02
F06 1.51E+00± 1.95E+00 + 7.43E-01± 1.51E+00 2.40E+01± 1.98E+01 + 8.93E+00± 1.45E+01 2.79E+01± 2.05E+01 + 2.41E+01± 2.45E+01
F07 1.60E-02± 1.13E-02 = 1.65E-02± 1.16E-02 9.16E-03± 5.49E-03 = 9.46E-03± 7.05E-03 9.36E-03± 5.99E-03 + 7.69E-03± 6.34E-03
F08 2.09E+01± 4.56E-02 = 2.09E+01± 4.63E-02 2.09E+01± 6.45E-02 = 2.09E+01± 5.43E-02 2.09E+01± 5.66E-02 = 2.09E+01± 5.14E-02
F09⋆ 2.84E+01± 5.30E+00 + 1.86E+01± 4.18E+00 1.18E+02± 1.07E+01 + 1.03E+02± 9.08E+00 1.44E+02± 9.90E+00 + 1.25E+02± 1.32E+01
F10 4.06E+01± 9.35E+00 + 3.76E+01± 8.30E+00 7.21E+01± 1.09E+01 + 6.07E+01± 1.01E+01 8.34E+01± 1.07E+01 + 7.16E+01± 1.17E+01
F11 2.67E+01± 1.76E+00 + 2.47E+01± 3.70E+00 2.95E+01± 1.26E+00 = 2.93E+01± 1.62E+00 2.97E+01± 1.28E+00 = 3.00E+01± 1.21E+00
F12 2.87E+03± 4.01E+03 + 1.70E+03± 2.15E+03 2.21E+04± 8.45E+03 + 2.23E+03± 3.66E+03 3.07E+04± 8.80E+03 + 5.27E+03± 8.11E+03
F13 1.25E+00± 1.48E-01 = 1.23E+00± 2.23E-01 1.98E+00± 1.97E-01 + 1.94E+00± 1.36E-01 2.33E+00± 1.87E-01 + 2.26E+00± 2.10E-01
F14 1.28E+01± 2.56E-01 = 1.28E+01± 2.11E-01 1.31E+01± 2.51E-01 + 1.30E+01± 2.17E-01 1.32E+01± 1.54E-01 = 1.31E+01± 2.02E-01
F15 3.47E+02± 9.41E+01 = 3.51E+02± 8.44E+01 3.50E+02± 1.04E+02 = 3.74E+02± 4.87E+01 3.09E+02± 1.44E+02 – 3.70E+02± 5.05E+01
F16 6.51E+01± 2.27E+01 = 7.04E+01± 2.87E+01 8.93E+01± 9.05E+00 + 7.33E+01± 1.17E+01 1.06E+02± 1.17E+01 + 8.90E+01± 1.13E+01
F17 1.05E+02± 3.36E+01 + 7.99E+01± 5.54E+01 1.53E+02± 1.78E+01 + 1.35E+02± 1.53E+01 1.68E+02± 1.65E+01 + 1.50E+02± 1.49E+01
F18 9.09E+02± 2.47E+00 – 9.09E+02± 1.62E+01 9.07E+02± 1.53E+00 = 9.06E+02± 1.77E+00 9.07E+02± 1.68E+00 + 9.06E+02± 1.80E+00
F19 9.08E+02± 2.42E+00 – 9.11E+02± 2.96E+00 9.06E+02± 1.30E+00 = 9.07E+02± 1.66E+00 9.07E+02± 1.36E+00 + 9.06E+02± 1.74E+00
F20 9.08E+02± 2.45E+00 – 9.12E+02± 3.62E+00 9.06E+02± 1.30E+00 = 9.07E+02± 1.74E+00 9.06E+02± 1.44E+00 = 9.06E+02± 1.38E+00
F21 5.00E+02± 0.00E+00 = 5.00E+02± 0.00E+00 5.00E+02± 0.00E+00 = 5.00E+02± 0.00E+00 5.00E+02± 0.00E+00 = 5.00E+02± 0.00E+00
F22 9.02E+02± 1.12E+01 = 9.05E+02± 1.52E+01 9.06E+02± 9.63E+00 + 8.99E+02± 1.07E+01 9.10E+02± 7.36E+00 + 9.00E+02± 9.28E+00
F23 5.42E+02± 5.70E+01 + 5.34E+02± 5.45E-03 5.34E+02± 1.12E-04 + 5.34E+02± 2.20E-04 5.34E+02± 2.58E-06 + 5.34E+02± 2.23E-04
F24 2.00E+02± 0.00E+00 = 2.00E+02± 0.00E+00 2.00E+02± 0.00E+00 = 2.00E+02± 0.00E+00 2.00E+02± 0.00E+00 = 2.00E+02± 0.00E+00
F25 2.10E+02± 5.12E-01 = 2.10E+02± 6.24E-01 2.10E+02± 2.90E-01 + 2.09E+02± 2.59E-01 2.10E+02± 3.71E-01 + 2.09E+02± 2.46E-01

w/t/l 11/11/3 – 15/10/0 – 18/6/1 –

⋆ indicates that when several algorithms obtain the global optimum, the intermediate results are reported atNFFEs = 20, 000.
“+”, “–”, and “=” indicate our approach is respectively better than, worse than, or similar to its competitor according to the Wilcoxon signed-rank test atα = 0.05.

TABLE XIII
COMPARISON ON THEERRORVALUES OF JADE AND RANK -JADEWITH DIFFERENTPOPULATION SIZE FOR FUNCTIONSF01 - F25AT D = 30.

Prob Np = 50 Np = 150 Np = 200

JADE rank-JADE JADE rank-JADE JADE rank-JADE
F01⋆ 1.72E-10± 2.40E-10 + 3.15E-11± 6.78E-11 3.46E-01± 9.08E-02 + 1.66E-01± 4.58E-02 7.86E+00± 2.16E+00 + 3.84E+00± 8.79E-01
F02 5.13E-28± 2.10E-28 + 4.67E-28± 3.72E-28 3.04E-28± 1.18E-28 + 2.15E-28± 7.69E-29 2.67E-28± 7.80E-29 + 1.77E-28± 7.33E-29
F03 4.52E+03± 3.34E+03 = 5.21E+03± 4.53E+03 4.39E+03± 5.50E+03 = 4.05E+03± 3.94E+03 3.33E+02± 8.67E+02 – 6.06E+02± 1.06E+03
F04 1.15E+00± 7.91E+00 = 1.11E+00± 7.70E+00 3.01E-21± 9.25E-21 + 1.17E-22± 6.91E-22 4.62E-27± 1.00E-26 + 6.29E-28± 4.42E-28
F05 2.48E+02± 4.35E+02 = 2.07E+02± 1.99E+02 4.23E-03± 1.34E-02 + 1.56E-04± 3.08E-04 4.73E-03± 9.23E-03 + 3.88E-04± 9.64E-04
F06 1.30E+01± 3.13E+01 = 1.30E+01± 3.13E+01 8.93E+00± 2.68E+01 + 3.46E+00± 1.71E+01 4.11E+00± 9.32E+00 + 6.07E-01± 3.76E+00
F07 1.23E-02± 1.10E-02 = 1.07E-02± 1.02E-02 9.36E-03± 8.40E-03 + 3.84E-03± 5.34E-03 6.80E-03± 5.23E-03 + 1.53E-03± 3.79E-03
F08 2.09E+01± 2.23E-01 = 2.09E+01± 1.23E-01 2.09E+01± 4.26E-02 = 2.09E+01± 4.72E-02 2.09E+01± 5.20E-02 = 2.09E+01± 4.18E-02
F09⋆ 2.24E+01± 2.58E+00 + 2.06E+01± 2.43E+00 1.31E+02± 7.79E+00 + 1.26E+02± 1.02E+01 1.58E+02± 1.15E+01 + 1.53E+02± 1.06E+01
F10 3.65E+01± 1.00E+01 + 3.35E+01± 7.59E+00 3.34E+01± 5.32E+00 + 2.95E+01± 4.86E+00 3.89E+01± 7.03E+00 = 3.84E+01± 4.98E+00
F11 2.68E+01± 1.83E+00 = 2.65E+01± 1.67E+00 2.57E+01± 1.32E+00 = 2.56E+01± 1.50E+00 2.66E+01± 1.60E+00 + 2.58E+01± 1.44E+00
F12 3.49E+03± 2.89E+03 + 2.68E+03± 3.03E+03 1.05E+04± 4.98E+03 + 7.67E+03± 6.25E+03 1.31E+04± 6.07E+03 + 8.23E+03± 5.77E+03
F13 1.19E+00± 1.47E-01 = 1.24E+00± 1.22E-01 1.86E+00± 1.33E-01 = 1.85E+00± 1.21E-01 2.19E+00± 1.48E-01 = 2.20E+00± 1.33E-01
F14 1.24E+01± 2.95E-01 = 1.23E+01± 3.86E-01 1.23E+01± 3.00E-01 = 1.23E+01± 3.01E-01 1.24E+01± 2.00E-01 = 1.23E+01± 2.77E-01
F15 3.56E+02± 9.72E+01 = 3.38E+02± 1.09E+02 3.69E+02± 7.89E+01 = 3.58E+02± 8.59E+01 3.60E+02± 8.30E+01 = 3.52E+02± 5.80E+01
F16 1.50E+02± 1.57E+02 = 1.49E+02± 1.57E+02 6.30E+01± 5.03E+01 + 6.20E+01± 5.39E+01 6.62E+01± 2.20E+01 + 5.95E+01± 1.35E+01
F17 1.63E+02± 1.53E+02 = 1.87E+02± 1.72E+02 1.05E+02± 5.39E+01 + 9.46E+01± 5.00E+01 1.11E+02± 4.70E+01 = 1.09E+02± 5.11E+01
F18 8.98E+02± 4.01E+01 = 9.03E+02± 3.09E+01 8.92E+02± 4.07E+01 = 9.06E+02± 1.54E+01 9.00E+02± 2.98E+01 = 9.06E+02± 1.54E+01
F19 9.03E+02± 3.50E+01 + 8.95E+02± 4.19E+01 9.02E+02± 2.62E+01 + 9.01E+02± 2.60E+01 9.05E+02± 2.17E+01 = 9.08E+02± 1.92E+00
F20 9.02E+02± 3.46E+01 = 8.93E+02± 4.41E+01 9.02E+02± 2.62E+01 = 9.04E+02± 2.15E+01 9.07E+02± 1.55E+01 + 9.01E+02± 2.59E+01
F21 5.00E+02± 0.00E+00 = 5.00E+02± 0.00E+00 5.00E+02± 0.00E+00 = 5.00E+02± 0.00E+00 5.00E+02± 0.00E+00 = 5.00E+02± 0.00E+00
F22 9.08E+02± 1.95E+01 + 9.02E+02± 1.59E+01 8.95E+02± 8.78E+00 = 8.93E+02± 1.24E+01 8.96E+02± 8.52E+00 = 8.94E+02± 8.34E+00
F23 5.86E+02± 1.45E+02 + 5.50E+02± 7.97E+01 2.00E+02± 0.00E+00 = 2.00E+02± 0.00E+00 5.34E+02± 8.45E-05 + 5.34E+02± 6.23E-05
F24 2.00E+02± 0.00E+00 = 2.00E+02± 0.00E+00 5.34E+02± 6.73E-05 + 5.34E+02± 1.69E-04 2.00E+02± 0.00E+00 = 2.00E+02± 0.00E+00
F25 2.34E+02± 1.38E+02 + 2.10E+02± 4.63E-01 2.09E+02± 9.55E-02 = 2.09E+02± 7.33E-02 2.09E+02± 6.90E-02 = 2.09E+02± 6.83E-02

w/t/l 9/16/0 – 13/12/0 – 12/12/1 –

⋆ indicates that when several algorithms obtain the global optimum, the intermediate results are reported atNFFEs = 20, 000.
“+”, “–”, and “=” indicate our approach is respectively better than, worse than, or similar to its competitor according to the Wilcoxon signed-rank test atα = 0.05.

in Table XI, it is clear that rank-jDE consistently provide
better results than jDE, rank-jDE1, and rank-jDE2. For all
cases, rank-jDE obtains betterR+ values thanR− values for
all functions. In addition, atα = 0.1, rank-jDE significantly
improves the performance of jDE and rank-jDE1, respective-
ly. Therefore, the above results confirm that our proposed
ranking-based mutation operator is a reasonable method.

F. Influence of the Population Size

In our proposed ranking-based mutation operators, we use
the simplest linear model to calculate the selection probabil-
ities of different individual as shown in Equation (10). One
of the advantages of this technique is that it does not add any

new parameter to DE, however, it is worth mentioning that the
selection probability is related to the population size. Ifthe
population sizeNp is small, all of the selection probabilities
are increased, vice versa. In the previous experiments, for
all DE variants the population size is set to as used in their
corresponding literature as described in Table I. In this section,
we set differentNp values to evaluate the influence to our
approach. To save the space, we only select jDE and JADE
for illustration. For both algorithms,Np is set to 50, 150,
and 200. All other parameters are set the same as shown in
Table I. The results of jDE and JADE are respectively reported
in Tables XII and XIII for all functions atD = 30.

From Tables XII and XIII, we can see that for both jDE



12

TABLE XIV
COMPARISON ON THEERRORVALUES BETWEEN ADVANCED DE AND ITS CORRESPONDINGRANKING -BASEDDE VARIANT FOR FUNCTIONSf01 - f13

AT D = 100.

Prob jDE rank-jDE ODE rank-ODE SaDE rank-SaDE
f01 8.98E-08± 2.17E-08 + 9.28E-14± 3.37E-14 3.66E-06± 2.72E-06 + 4.14E-09± 4.19E-09 7.65E-12± 2.58E-12 + 5.45E-18± 3.00E-18
f02 3.85E-05± 5.90E-06 + 1.64E-08± 4.09E-09 1.09E-01± 3.67E-02 + 2.10E-02± 8.74E-03 7.09E-07± 1.28E-07 + 8.93E-10± 1.81E-10
f03 7.96E+04± 2.27E+04 + 6.44E+03± 6.33E+03 1.74E+04± 5.14E+03 + 1.52E+04± 6.35E+03 1.02E+01± 3.86E+00 + 1.67E+00± 8.56E-01
f04 1.25E+01± 6.53E-01 + 3.56E+00± 4.49E-01 4.77E-10± 6.09E-10 + 7.01E-11± 6.83E-11 7.81E-01± 2.56E-01 – 1.03E+00± 3.21E-01
f05 1.00E+02± 1.64E+01 = 1.05E+02± 2.46E+01 9.50E+01± 6.51E-01 + 9.03E+01± 7.11E-01 9.02E+01± 2.56E+00 + 8.57E+01± 1.51E+01
f06 0.00E+00± 0.00E+00 = 0.00E+00± 0.00E+00 0.00E+00± 0.00E+00 = 0.00E+00± 0.00E+00 0.00E+00± 0.00E+00 = 0.00E+00± 0.00E+00
f07 4.56E-02± 5.90E-03 + 2.41E-02± 3.72E-03 4.92E-03± 1.33E-03 + 4.55E-03± 1.17E-03 1.12E-02± 1.63E-03 + 8.69E-03± 1.61E-03
f08 2.63E+03± 3.65E+02 + 2.45E+02± 1.27E+02 3.26E+04± 4.23E+02 + 3.25E+04± 5.10E+02 1.28E+04± 3.97E+02 + 1.14E+04± 4.47E+02
f09 1.22E+02± 1.06E+01 + 9.72E+01± 8.59E+00 5.19E+02± 1.58E+02 = 5.14E+02± 1.90E+02 2.76E+02± 8.65E+00 + 2.49E+02± 1.00E+01
f10 3.95E-05± 5.90E-06 + 3.83E-08± 6.83E-09 8.98E-04± 4.96E-04 + 3.38E-05± 1.75E-05 3.20E-07± 7.00E-08 + 3.09E-10± 7.13E-11
f11 5.73E-08± 1.89E-08 + 5.95E-14± 2.61E-14 1.36E-03± 4.17E-03 + 1.48E-04± 1.05E-03 1.61E-11± 6.21E-11 + 2.29E-19± 2.78E-19
f12 1.95E-08± 6.48E-09 + 1.29E-14± 6.45E-15 3.02E-08± 2.95E-08 + 3.32E-11± 3.68E-11 2.68E-14± 1.17E-14 + 2.13E-20± 1.16E-20
f13 7.84E-05± 5.34E-05 + 9.08E-12± 5.24E-12 2.94E-03± 1.25E-02 + 9.21E-08± 1.14E-07 6.28E-11± 6.23E-11 + 1.37E-17± 9.24E-18

w/t/l 11/2/0 – 11/2/0 – 11/1/1 –

Prob JADE rank-JADE CoDE rank-CoDE DEGL rank-DEGL
f01 2.09E-37± 4.19E-37 + 2.58E-42± 3.21E-42 1.23E+04± 1.97E+03 + 6.23E+03± 1.09E+03 1.15E+02± 4.66E+01 + 6.54E+01± 3.26E+01
f02 5.84E-19± 5.41E-19 + 2.23E-21± 1.75E-21 1.23E+02± 9.36E+00 + 1.08E+02± 9.10E+00 4.27E+00± 1.16E+00 + 2.82E+00± 8.42E-01
f03 5.41E-03± 2.60E-03 + 2.51E-03± 1.24E-03 5.26E+04± 9.62E+03 + 2.80E+04± 7.07E+03 6.02E-01± 9.03E-01 + 4.17E-02± 4.01E-02
f04 2.16E+00± 3.45E-01 + 1.88E+00± 2.62E-01 4.65E+01± 3.79E+00 + 3.99E+01± 3.48E+00 1.11E+01± 1.67E+00 = 1.07E+01± 1.39E+00
f05 7.17E+01± 1.52E+01 + 6.14E+01± 2.34E+00 5.25E+06± 1.61E+06 + 1.75E+06± 5.71E+05 1.08E+04± 6.90E+03 + 5.56E+03± 5.08E+03
f06 0.00E+00± 0.00E+00 = 0.00E+00± 0.00E+00 1.16E+04± 1.63E+03 + 6.66E+03± 1.09E+03 2.23E+02± 8.58E+01 + 1.36E+02± 5.14E+01
f07 2.78E-03± 5.17E-04 + 2.46E-03± 5.36E-04 6.40E+00± 2.08E+00 + 2.71E+00± 8.68E-01 1.01E-02± 1.95E-03 + 7.77E-03± 1.67E-03
f08 6.30E+03± 2.82E+02 + 5.97E+03± 2.70E+02 2.29E+04± 5.23E+02 + 2.28E+04± 3.27E+02 3.31E+04± 4.59E+02 = 3.29E+04± 5.33E+02
f09 1.01E+02± 4.95E+00 + 9.78E+01± 4.74E+00 8.10E+02± 1.58E+01 + 7.99E+02± 1.61E+01 9.92E+01± 9.23E+01 = 8.30E+01± 1.51E+01
f10 7.55E-15± 0.00E+00 = 7.55E-15± 0.00E+00 1.19E+01± 4.74E-01 + 1.02E+01± 5.81E-01 3.14E+00± 3.03E-01 + 2.73E+00± 3.20E-01
f11 2.96E-04± 1.46E-03 = 5.42E-20± 0.00E+00 1.11E+02± 1.77E+01 + 5.70E+01± 9.84E+00 2.03E+00± 4.19E-01 + 1.59E+00± 2.93E-01
f12 4.71E-33± 0.00E+00 = 4.71E-33± 0.00E+00 4.03E+05± 3.76E+05 + 1.52E+04± 3.06E+04 2.36E+00± 7.26E-01 + 2.09E+00± 7.24E-01
f13 1.27E-30± 8.72E-30 + 1.42E-32± 3.03E-33 5.46E+06± 3.12E+06 + 8.83E+05± 6.54E+05 3.08E+02± 8.45E+01 + 2.43E+02± 8.75E+01

w/t/l 9/4/0 – 13/0/0 – 10/3/0 –

“+”, “–”, and “=” indicate our approach is respectively better than, worse than, or similar to its competitor according to the Wilcoxon signed-rank test atα = 0.05.

TABLE XV
COMPARISON ON THEERRORVALUES BETWEEN ADVANCED DE AND ITS CORRESPONDINGRANKING -BASEDDE VARIANT FOR FUNCTIONSf01 - f13

AT D = 200.

Prob jDE rank-jDE ODE rank-ODE SaDE rank-SaDE
f01 5.09E-03± 6.92E-04 + 5.39E-07± 9.57E-08 1.95E-01± 1.05E-01 + 3.11E-03± 1.40E-03 6.72E-06± 1.67E-06 + 2.32E-10± 8.61E-11
f02 3.19E-02± 3.19E-03 + 1.82E-04± 1.77E-05 2.18E+00± 5.81E-01 + 8.59E-01± 2.52E-01 5.15E-04± 6.09E-05 + 2.92E-06± 3.96E-07
f03 5.16E+05± 4.65E+04 + 3.68E+05± 1.19E+05 7.40E+04± 2.21E+04 = 7.17E+04± 2.04E+04 1.73E+02± 5.73E+01 + 1.05E+02± 2.65E+01
f04 4.79E+01± 9.08E-01 + 3.05E+01± 1.00E+00 4.38E-08± 5.29E-08 + 1.14E-08± 9.05E-09 3.66E+00± 4.18E-01 = 3.65E+00± 3.58E-01
f05 2.67E+02± 4.03E+01 + 2.16E+02± 3.12E+01 1.97E+02± 1.58E+00 + 1.95E+02± 9.44E-01 2.45E+02± 4.19E+01 + 2.10E+02± 2.99E+01
f06 0.00E+00± 0.00E+00 = 0.00E+00± 0.00E+00 8.08E+00± 9.66E+00 + 2.58E+00± 3.01E+00 0.00E+00± 0.00E+00 = 0.00E+00± 0.00E+00
f07 1.32E-01± 1.08E-02 + 6.06E-02± 8.23E-03 1.28E-02± 3.80E-03 + 1.09E-02± 2.48E-03 2.92E-02± 5.37E-03 + 2.22E-02± 2.82E-03
f08 2.57E+04± 1.12E+03 + 2.29E+04± 8.56E+02 7.03E+04± 7.65E+02 = 7.03E+04± 6.34E+02 4.16E+04± 6.63E+02 + 4.01E+04± 7.13E+02
f09 6.31E+02± 2.32E+01 + 5.66E+02± 2.86E+01 9.67E+02± 5.15E+02 = 9.62E+02± 6.18E+02 9.03E+02± 1.68E+01 + 8.41E+02± 2.29E+01
f10 6.66E-03± 4.53E-04 + 6.61E-05± 6.67E-06 2.76E-01± 1.75E-01 + 2.93E-02± 2.65E-02 2.05E-01± 4.17E-01 + 1.86E-06± 1.13E-06
f11 1.62E-03± 2.56E-04 + 1.61E-07± 2.99E-08 9.34E-02± 9.12E-02 + 5.89E-03± 1.04E-02 8.90E-04± 2.85E-03 + 4.93E-04± 2.49E-03
f12 5.01E-03± 1.33E-03 + 2.44E-07± 8.56E-08 1.28E-04± 1.09E-04 + 2.38E-06± 2.07E-06 3.11E-04± 2.20E-03 + 6.22E-06± 3.08E-05
f13 9.03E+00± 1.39E+00 + 2.60E-04± 1.01E-04 5.28E+00± 3.91E+00 + 6.43E-01± 1.10E+00 5.19E-04± 2.17E-03 + 9.00E-06± 3.77E-05

w/t/l 12/1/0 – 10/3/0 – 11/2/0 –

Prob JADE rank-JADE CoDE rank-CoDE DEGL rank-DEGL
f01 1.65E-24± 1.32E-24 + 4.88E-30± 6.49E-30 5.99E+04± 6.23E+03 + 4.81E+04± 7.26E+03 1.99E+03± 3.98E+02 + 1.43E+03± 3.63E+02
f02 1.15E-11± 7.76E-12 + 5.36E-14± 5.60E-14 1.22E+12± 6.46E+12 + 6.16E+07± 3.60E+08 3.27E+01± 3.96E+00 + 2.67E+01± 3.65E+00
f03 9.17E+00± 3.06E+00 + 7.46E+00± 2.16E+00 3.26E+05± 4.52E+04 + 2.58E+05± 3.82E+04 8.19E+02± 1.75E+02 + 4.53E+02± 1.44E+02
f04 4.71E+00± 4.06E-01 + 4.33E+00± 3.76E-01 6.30E+01± 3.36E+00 + 5.81E+01± 4.16E+00 1.64E+01± 1.44E+00 = 1.62E+01± 1.51E+00
f05 1.95E+02± 2.79E+01 + 1.76E+02± 1.59E+01 2.88E+07± 8.66E+06 – 4.96E+07± 1.20E+07 2.33E+05± 7.79E+04 + 1.39E+05± 3.98E+04
f06 0.00E+00± 0.00E+00 = 0.00E+00± 0.00E+00 6.38E+04± 7.41E+03 + 4.56E+04± 7.32E+03 2.25E+03± 4.10E+02 + 1.71E+03± 3.62E+02
f07 6.98E-03± 1.09E-03 + 5.21E-03± 8.33E-04 1.44E+02± 3.29E+01 + 8.52E+01± 1.73E+01 2.45E-02± 4.32E-03 + 1.88E-02± 2.69E-03
f08 3.31E+04± 6.04E+02 + 3.27E+04± 6.23E+02 5.67E+04± 6.58E+02 = 5.66E+04± 5.71E+02 7.11E+04± 8.01E+02 = 7.12E+04± 6.51E+02
f09 5.61E+02± 1.44E+01 + 5.57E+02± 1.47E+01 2.11E+03± 3.31E+01 = 2.11E+03± 3.07E+01 2.20E+02± 2.46E+01 + 2.06E+02± 2.73E+01
f10 1.76E-02± 1.24E-01 + 1.46E-14± 5.02E-16 1.54E+01± 4.88E-01 + 1.44E+01± 6.05E-01 5.24E+00± 3.72E-01 + 4.84E+00± 3.92E-01
f11 4.93E-04± 1.99E-03 + 3.94E-04± 1.95E-03 5.40E+02± 5.61E+01 + 4.33E+02± 6.53E+01 1.89E+01± 3.58E+00 + 1.39E+01± 3.26E+00
f12 1.20E-26± 3.76E-26 + 1.30E-28± 5.36E-28 2.23E+07± 1.06E+07 + 9.01E+06± 6.32E+06 6.39E+00± 1.16E+00 + 5.47E+00± 1.00E+00
f13 7.06E-03± 3.47E-02 + 7.01E-03± 3.41E-02 9.45E+07± 3.57E+07 + 5.14E+07± 2.33E+07 2.82E+03± 4.55E+03 + 1.05E+03± 1.22E+03

w/t/l 12/1/0 – 10/2/1 – 11/2/0 –

“+”, “–”, and “=” indicate our approach is respectively better than, worse than, or similar to its competitor according to the Wilcoxon signed-rank test atα = 0.05.

and JADE our proposed ranking-based mutation operators
enhances their performance with different population size.
For jDE, rank-jDE provides significantly better results in
11, 15, and 18 out of 25 functions forNp = 50, 150, and
200, respectively. Additionally, rank-JADE respectively wins
in 9, 13, 12 functions forNp = 50, 150, 200 compared with
JADE. Generally, when the population size is large, DE is
more explorative, and our proposed ranking-based mutation
operators are able to provide much better results.

G. Scalability Study

In the above experiments, all results are reported for func-
tions F01 - F25 presented in CEC-2005 competition [31] at
D = 30 and/orD = 50, since these functions are defined
up to D = 50. In this section, we choose another test suite
presented in [38] to conduct the scalability study. In [38],23
benchmark functions are presented and the first13 functions
f01 - f13 are scalable. Thus, these13 functions are selected for
the scalability study, and the dimensions are scaled atD = 100
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TABLE XVI
COMPARISON ON THEERRORVALUES FOR JDE VARIANTS WITH DIFFERENTMUTATION OPERATORS FORFUNCTIONSF01 - F25AT D = 30.

Prob jDE jDERL jRDDE rank-jDE
F01⋆ 7.37E+00± 3.02E+00 + 1.68E-02± 2.52E-02 – 1.25E-02± 6.67E-03 – 8.93E-02± 4.02E-02
F02 1.08E-05± 1.54E-05 + 1.67E-11± 2.43E-11 = 3.17E-04± 1.94E-03 + 1.44E-11± 2.64E-11
F03 1.89E+05± 1.04E+05 + 1.12E+05± 6.12E+04 + 4.89E+06± 3.01E+06 + 8.12E+04± 3.87E+04
F04 2.98E-01± 5.78E-01 + 3.39E-03± 4.80E-03 + 8.26E+00± 3.48E+01 + 7.98E-04± 1.65E-03
F05 1.10E+03± 4.44E+02 = 1.51E+03± 4.32E+02 + 1.32E+03± 6.20E+02 + 1.11E+03± 5.67E+02
F06 2.46E+01± 2.57E+01 + 5.46E+00± 1.40E+01 + 6.43E+00± 1.12E+01 + 5.74E-01± 1.37E+00
F07 1.31E-02± 9.30E-03 + 1.72E-02± 1.52E-02 + 3.94E-03± 6.48E-03 – 9.75E-03± 8.92E-03
F08 2.09E+01± 4.94E-02 = 2.10E+01± 4.76E-02 = 2.10E+01± 4.57E-02 + 2.09E+01± 4.98E-02
F09⋆ 7.64E+01± 8.36E+00 + 6.08E+01± 9.36E+00 – 5.50E+01± 6.93E+00 – 6.42E+01± 9.08E+00
F10 5.86E+01± 1.05E+01 + 4.19E+01± 7.98E+00 – 4.00E+01± 9.50E+00 – 4.71E+01± 9.42E+00
F11 2.80E+01± 1.74E+00 = 2.75E+01± 1.98E+00 = 2.78E+01± 1.87E+00 = 2.79E+01± 2.29E+00
F12 1.16E+04± 8.08E+03 + 1.94E+03± 2.38E+03 = 5.29E+03± 5.18E+03 + 1.65E+03± 1.80E+03
F13 1.70E+00± 1.43E-01 + 1.54E+00± 1.83E-01 – 1.56E+00± 1.71E-01 = 1.60E+00± 1.26E-01
F14 1.30E+01± 2.00E-01 = 1.30E+01± 2.35E-01 = 1.30E+01± 2.40E-01 = 1.30E+01± 2.05E-01
F15 3.40E+02± 1.09E+02 = 3.69E+02± 8.36E+01 = 3.33E+02± 6.91E+01 – 3.66E+02± 5.58E+01
F16 7.56E+01± 8.99E+00 + 6.16E+01± 1.77E+01 = 6.63E+01± 1.36E+01 + 6.12E+01± 9.00E+00
F17 1.33E+02± 1.43E+01 + 9.35E+01± 3.94E+01 = 1.17E+02± 5.88E+01 + 1.06E+02± 3.81E+01
F18 9.07E+02± 1.45E+00 = 9.10E+02± 2.30E+00 + 9.07E+02± 1.43E+00 – 9.08E+02± 2.28E+00
F19 9.06E+02± 1.72E+00 – 9.03E+02± 2.63E+01 + 9.07E+02± 1.96E+00 – 9.08E+02± 1.90E+00
F20 9.06E+02± 1.68E+00 – 9.03E+02± 2.64E+01 + 9.06E+02± 1.49E+00 – 9.08E+02± 1.87E+00
F21 5.00E+02± 0.00E+00 = 5.00E+02± 0.00E+00 = 5.00E+02± 0.00E+00 = 5.00E+02± 0.00E+00
F22 9.04E+02± 1.03E+01 + 9.03E+02± 1.18E+01 + 8.98E+02± 1.15E+01 = 8.97E+02± 1.16E+01
F23 5.34E+02± 2.19E-04 = 5.34E+02± 3.58E-04 = 5.42E+02± 5.70E+01 = 5.34E+02± 1.20E-03
F24 2.00E+02± 0.00E+00 = 2.00E+02± 0.00E+00 = 2.00E+02± 0.00E+00 = 2.00E+02± 0.00E+00
F25 2.10E+02± 3.33E-01 + 2.10E+02± 3.91E-01 + 2.10E+02± 4.16E-01 + 2.09E+02± 2.76E-01

w/t/l 14/9/2 10/11/4 10/7/8 –

⋆ indicates that when several algorithms obtain the global optimum, the intermediate results are reported atNFFEs = 20, 000.
“+”, “–”, and “=” indicate our approach is respectively better than, worse than, or similar to its competitor according to the Wilcoxon signed-
rank test atα = 0.05.

andD = 200. In the 13 functions,f01 - f07 are unimodal4,
while the rest6 functions (f08 - f13) are multimodal with
many local optima. More details for these functions can
be referred to [38]. For higher dimension problems, larger
population is always required. Therefore, in this section,we
set Np = 4 · D for all algorithms. Note that this setting
may not be the optimal choice for all algorithms, however,
we only evaluate the improved performance of our presented
ranking-based mutation operators, but not try to obtain thebest
results for the problems. The MaxNFFEs are set asD ·5, 000
for all problems. All other parameters are kept unchanged as
described in Table I.

The results are respectively shown in Tables XIV and XV
at D = 100 andD = 200. From the results it is clear that
the ranking-based DE approaches consistently get significantly
better results than their corresponding non-ranking-based DE
approaches in the majority of the test functions at both
D = 100 andD = 200. Thus, we can expect that the proposed
ranking-based mutation operators can also be effective in
high-dimensional problems. We will verify our expectationin
our near future work for the large-scale problems, such as
presented in the special issue of Soft Computing [40].

H. Compared with Other Mutation Operators

In Section II-B, we mentioned that there are other new mu-
tation operators, which are based on different vector selection
techniques, such as DERL [24], Pro-DE [26], role differenti-
ation based DE (referred to as RDDE in this work) [27]. In
this section, we compare our proposed rank-DE with DERL
and RDDE. We do not compare it with Pro-DE, since it is too
time-consuming. In order to make a fair comparison, rank-DE,
DERL, and RDDE are all utilized the parameter adaptation

4In [39], the authors pointed out that the extended rosenbrock function f05
are actually multimodal whenD > 3.

presented in jDE [32]. The three methods are referred to as
rank-jDE, jDERL, and jRDDE, respectively. In addition, for
all the three methodsNp = 100 is used. All other parameters
are kept the same as used in their original literature. For
example, for jRDDE,NP = NL = NC = 40. The results,
averaged over50 independent runs, are tabulated in Table XVI.
The overall best and the second best results are respectively
highlighted in grey boldface andboldface. In addition, the
results of multiple-problem analysis based on the Wilcoxon’s
test are shown in Table XVII.

TABLE XVII
RESULTS OF THEMULTIPLE-PROBLEM WILCOXON’ S TEST FOR JDE

VARIANTS WITH DIFFERENTMUTATION OPERATORS FORFUNCTIONS

F01 - F25AT D = 30.

Algorithm R+ R− p-value atα = 0.05 atα = 0.1

rank-jDE vs jDE 202 74 5.22E-02 = +
rank-jDE vs jDERL 158 118 5.60E-01 = =
rank-jDE vs jRDDE 169 107 3.60E-01 = =

The results in Table XVI indicate that in the majority of the
test functions rank-jDE obtains significantly better results than
jDERL. Compared with jDERL, rank-jDE wins in10 function-
s, ties in14 functions, but only loses in4 functions. Compared
with jRDDE, both rank-jDE and jRDDE obtain similar results.
rank-jDE wins in10 functions, ties in7 functions, and loses in
8 functions. Among the four jDE variants, rank-jDE obtains
the best results in9 functions. According to the results of
the multiple-problem analysis shown in Table XVII, we can
see that rank-jDE gets higherR+ values thanR− values,
which means that rank-jDE obtains the overall better results
compared with jDE, jDERL, and jRDDE.

I. Comparison in Real-world Application Problems

In the previous experiments, we have verified the effec-
tiveness of our proposed ranking-based mutation operatorsin



14

TABLE XVIII
COMPARISON ON THEERRORVALUES FORADVANCED DE VARIANTS FOR REAL-WORLD APPLICATIONPROBLEMS.

Prob Max NFFEs jDE rank-jDE ODE rank-ODE SaDE rank-SaDE

P1
20 000 9.91E+02± 5.67E+02 + 3.05E+01±7.26E+01 4.32E+01± 2.93E+01 + 6.39E-01±4.18E-01 4.17E-01± 1.03E+00 + 1.39E-02±9.17E-02

150 000 0.00E+00± 0.00E+00 0.00E+00± 0.00E+00 0.00E+00± 0.00E+00 0.00E+00± 0.00E+00 0.00E+00± 0.00E+00 0.00E+00± 0.00E+00

P2
20 000 1.75E+01± 2.33E+00 + 1.49E+01±2.27E+00 1.15E+01± 7.23E+00 + 5.38E+00±6.33E+00 1.21E+01± 3.61E+00 + 7.00E+00±5.09E+00

150 000 2.68E-01± 3.76E-01 0.00E+00±0.00E+00 1.35E+00±3.65E+00 2.88E+00± 5.05E+00 7.86E-02± 1.62E-01 2.17E-04±1.53E-03
P3,D = 10 150 000 8.84E-01± 9.29E-02 + 8.25E-01±1.50E-01 7.15E-01±1.54E-01+ 7.29E-01± 1.59E-01 8.00E-01± 1.27E-01 + 7.08E-01±1.63E-01
P3,D = 20 300 000 1.84E+00± 1.10E-01 + 1.81E+00±8.95E-02 1.11E+00±1.31E-01– 1.19E+00± 1.61E-01 1.80E+00± 8.96E-02 = 1.77E+00±1.28E-01

P4
20 000 1.51E+02± 5.46E+01 + 1.86E+01±1.05E+01 3.42E+01± 9.26E+00 + 5.14E+00±1.45E+00 5.65E-01± 8.08E-01 = 2.99E-01±9.38E-01

150 000 2.24E-07± 6.95E-07 8.52E-08±4.97E-07 7.08E-08± 3.76E-08 1.17E-14±1.12E-14 1.78E-14± 1.12E-13 1.05E-14±7.38E-14
P5,D = 9 150 000 3.91E-07± 3.64E-07 + 2.20E-07±3.61E-07 3.33E-07± 3.65E-07 + 2.90E-07±3.58E-07 3.48E-07± 3.65E-07 = 3.33E-07±3.65E-07

P5,D = 25 300 000 1.10E-03± 1.22E-03 + 6.50E-04±8.98E-04 1.79E-03± 1.29E-03 + 7.20E-04±9.07E-04 7.31E-04± 1.05E-03 + 3.87E-04±6.49E-04
w/t/l 7/0/0 – 6/0/1 – 4/3/0 –

Prob Max NFFEs JADE rank-JADE CoDE rank-CoDE DEGL rank-DEGL

P1
20 000 8.18E-02± 1.61E-01 + 9.82E-03±2.15E-02 5.45E-01± 6.89E-01 + 2.98E-03±1.77E-02 2.73E-01± 1.17E+00 + 2.50E-02±9.98E-02

150 000 0.00E+00± 0.00E+00 0.00E+00± 0.00E+00 0.00E+00± 0.00E+00 0.00E+00± 0.00E+00 2.95E-02± 1.38E-01 6.10E-04±3.20E-03

P2
20 000 1.60E+01± 2.08E+00 + 1.43E+01±3.51E+00 1.34E+01± 2.74E+00 + 1.20E+01±3.10E+00 1.25E+01± 7.08E+00 + 1.01E+01±7.00E+00

150 000 2.28E-01± 2.68E-01 = 1.84E-01±6.98E-01 1.77E-04±1.18E-03 4.38E-01± 2.17E+00 1.01E+01± 6.79E+00 9.01E+00±6.98E+00
P3,D = 10 150 000 8.37E-01±8.43E-02= 8.51E-01± 7.81E-02 6.25E-01±1.19E-01= 6.40E-01± 1.47E-01 7.59E-01±2.29E-01= 8.07E-01± 2.62E-01
P3,D = 20 300 000 1.68E+00± 8.85E-02 = 1.68E+00± 7.16E-02 1.16E+00± 1.45E-01 = 1.16E+00± 1.69E-01 2.41E+00± 1.29E-01 = 2.40E+00±8.03E-02

P4
20 000 2.21E+00± 3.01E+00 + 1.48E+00±2.15E+00 2.53E+00± 2.14E+00 = 1.33E+00± 8.78E+00 3.45E-01± 6.37E-01 + 2.28E-01±6.38E-01

150 000 0.00E+00± 0.00E+00 0.00E+00± 0.00E+00 6.86E-14± 3.69E-13 7.15E-15±4.96E-14 1.05E-03± 4.68E-03 4.11E-05±1.96E-04
P5,D = 9 150 000 8.89E-06± 4.25E-05 + 3.19E-07±3.63E-07 3.48E-07±3.65E-07= 3.77E-07± 3.65E-07 4.21E-04± 2.96E-03 + 4.19E-04±2.96E-03

P5,D = 25 300 000 3.70E-03± 2.25E-03 + 9.62E-04±1.62E-03 8.75E-04± 1.14E-03 + 4.81E-04±7.19E-04 7.12E-04± 8.97E-04 + 5.11E-04±1.62E-04
w/t/l 5/2/0 – 3/4/0 – 5/2/0 –

“+”, “–”, and “=” indicate our approach is respectively better than, worse than, or similar to its competitor according to the Wilcoxon signed-rank test atα = 0.05.

different DE variants via benchmark functions. In this section,
we evaluate the potential of our approach for real-world
application problems. Five real-world problems are chosen
from the literature: P1) Chebychev polynomial fitting problem
(D = 9) [4]; P2) frequency modulation sound parameter
identification (D = 6) [41]; P3) spread spectrum radar poly-
phase code design problem (D = 10 and D = 20) [15];
P4) systems of linear equations problem (D = 10) [41]; and
P5) optimization of geophysical potential field data inversion
(D = 9 and D = 25) [42]. For all the DE variants the
parameter settings are used as shown in Table I. The maximal
NFFEs for all problems are tabulated in the second column
of Table XVIII. The results, which are averaged over50
independent runs, are shown in Table XVIII. The better results
are highlighted inboldface compared between the ranking-
based DE and its corresponding non-ranking-based DE. Sim-
ilar to the methods used in [25], theintermediateresults
are also reported for the problems where several algorithms
can obtain the global optimum of these problem. In these
cases, the Wilcoxon signed-rank test is only compared with
the intermediate results.

From the results shown in Table XVIII, we can see that the
ranking-based DE is capable of obtaining significantly better
results in the majority of the test cases compared with its
corresponding non-ranking-based DE. Only in1 case (P3 at
D = 20), ODE outperforms rank-ODE significantly. In the
rest41 cases, ranking-based DEs provide significantly better,
or competitive, results compared with non-ranking-based DEs.
Therefore, the results in Table XVIII indicate that the ranking-
based mutation operators can be an effective alternative for the
real-world problems, due to their simplicity and effectiveness.

J. Discussions

Inspired by the natural phenomenon, in this work, we
present the ranking-based mutation operators for the dif-
ferential evolution algorithm. In the ranking-based mutation
operators good solutions will obtain higher selection proba-
bilities, and hence, they have more chance to propagate the
offspring. In this way, the exploitation ability of DE can be
enhanced. Experiments have been extensively conducted on25

benchmark functions and five real-world application problems.
From the experimental results and analysis, we can draw the
following summaries.

• When the DE operators have good exploration ability,
our proposed ranking-based mutation operators are very
efficient. They are capable of balancing the exploration
and exploitation abilities for the DE algorithm. It can be
observed from the results where the explorative operator
is used in DE, such as jDE with “DE/rand/1”, jDE with
“DE/rand/2”, jDE with “DE/rand-to-best/2”, DEGL, etc.

• On the other hand, when the DE operators utilize the
best-so-far solution (xbest) and only have one differ-
ence vector, they are more exploitative. In this situa-
tion, the ranking-based mutation operators may be over-
exploitative and lead to premature convergence to the
local optima in the multimodal problems. However, since
the exploitative operators in DE (such as “DE/best/1”,
“DE/current-to-best/1”) are more suitable to unimodal
problems, our proposed ranking-based mutation operators
are also useful when solving unimodal problems [43]
(see for example the results of “DE/current-to-best/1” in
Table II).

• In order to calculate the selection probabilities for the in-
dividuals, different models can be used. In this work, the
simplest linear model is selected as the illustration, and
two other models (i.e., quadratic model and sinusoidal
modal) are also compared in Section IV-D. The results
show that rank-jDE with the three models improve the
performance the original jDE algorithm. We believe that
other different models can also be used in the ranking-
based mutation operators, we will verify it in our near
future work.

• Generally, the ranking-based mutation operators are very
simple and generic. They can be easily incorporated into
most of DE variants and improve their performance.

V. CONCLUSIONS ANDFUTURE WORK

In the nature, good species always contain more useful
information, and hence, they are more likely to be selected to
propagate offspring. Inspired by this common phenomenon,
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in this paper, we propose simple, yet effective ranking-based
mutation operators for the DE algorithm. The simplest linear
model is selected as the illustration to assign the probabili-
ties for the individuals in the population according to their
rankings, which are measured by the fitness of individual. In
the ranking-based mutation operators, the base vector and the
terminal point are proportionally chosen based on the selection
probability. The proposed ranking-based mutation operators
do not add any new parameters and also do not significantly
increase the overall complexity of DE any more.

Experiments have been conducted through the benchmark
functions and five real-world problems. Through evaluating
the effectiveness of our approach with different mutation op-
erators, advanced DE variants, probability calculation models,
vector selection methods, population size, scalability study,
and other mutation operators based on different vector selec-
tion techniques, the results confirm that our presented ranking-
based mutation operators are able to enhance the exploitation
ability and improve the performance of different DE variants.

Stochastic ranking presented in [44] has been proven to
be an efficient constraint-handling technique, another future
direction is integrating the stochastic ranking into the DEmu-
tation operators for constrained optimization problems. Large-
scale continuous optimization gets more attention recently,
some DE variants obtained very promising results, see for
example [45], [46], [47], [48]. Thus, in our near future work,
we will combine the ranking-based mutation operators with
the above-mentioned DEs for the large-scale problems.

The source code of our proposed rank-jDE can be obtained
from the first author upon request.
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