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Strategies for Numerical Optimization
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Abstract— Differential evolution (DE) is a simple yet efficient
evolutionary algorithm for global numerical optimization , which
has been widely used in many areas. However, the choice of
the best mutation strategy is difficult for a specific problem. To
alleviate this drawback and enhance the performance of DE, in
this paper, we present a family of improved DE that attempts to
adaptively choose a more suitable strategy for a problem at hand.
In addition, in our proposed strategy adaptation mechanism
(SaM) different parameter adaptation methods of DE can be
used for different strategies. In order to test the efficiency of
our approach, we combine our proposed SaM with JADE, which
is a recently proposed DE variant, for numerical optimization.
Twenty widely used scalable benchmark problems are chosen
from the literature as the test suit. Experimental results verify
our expectation that SaM is able to adaptively determine a more
suitable strategy for a specific problem. Compared with other
state-of-the-art DE variants, our approach performs better, or at
least comparably, in terms of the quality of the final solutions and
the convergence rate. Finally, we validate the powerful capability
of our approach by solving two real-world optimization problems.

Index Terms— Differential evolution; strategy adaptation; pa-
rameter adaptation; numerical optimization; real-world p rob-
lems.

I. I NTRODUCTION

OVER THE LAST few decades, evolutionary algorithms
(EAs) have received much attention regarding their po-

tential as global optimization techniques [1]. Inspired bythe
mechanisms of natural evolution and survival of the fittest,
EAs utilize a collective learning process of a population of
individuals. Offspring are generated using randomized oper-
ations such as mutation and recombination. According to a
fitness measure, the selection process favors better individuals
to reproduce more often than those that are relatively worse.

Differential evolution (DE), proposed by Storn and
Price [2], is a simple yet powerful EA with the generate-
and-test feature for global optimization. In DE, the mutation
operator is based on the distribution of solutions in the current
population. New candidates are created by combining the
parent solution and the mutant. A candidate replaces the parent
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only if it has better fitness value. In [2], Price and Storn gave
the working principle of DE with single mutation strategy.
Later on, they suggested ten different mutation strategies
in [3], [4]. Among DE’s advantages are its simple structure,
ease of use, speed, and robustness. These advantages give
it many real-world applications, such as data mining [5],
[6], pattern recognition, digital filter design, neural network
training, etc. [3], [7], [8]. Most recently, DE has also beenused
for the global permutation-based combinatorial problems [9].

Although DE has been widely used in many fields, it
has been shown to have certain weaknesses. One of these
weaknesses is that choosing the best among different mu-
tation strategies available for DE is not easy for a specific
problem [10], [11]. To the best of our knowledge, there is a
little work to improve DE with the adaptive strategy method.
Xie and Zhang [12] presented a swarm algorithm framework
(SWAF), where a neural network is used to adaptively update
the weights on some strategies of DE based on their previous
success rates. In [13], Zamudaet al. set fixed selection prob-
ability for each strategy. Then, a uniform randomly generated
parameterrs is used to determine which mutation strategy will
be selected. Qinet al. [10], [11] proposed a variant of DE,
namely SaDE. In SaDE, it implements different strategies and
updates their weights in the search based on their previous
success rate1.

In order to select a more suitable strategy adaptively for
a specific problem and further enhance the performance of
DE, in this paper, we describe a family of DE variants,
in which a simple strategy adaptation mechanism (SaM) is
implemented for each variant. Additionally, in our proposed
SaM different parameter adaptation methods proposed in the
DE literature can be used for different strategies. In orderto
evaluate the performance of our approach, SaM is combined
with JADE [15], [16], which is a recent DE variant and obtains
good results in numerical optimization. Experimental results
indicate that our proposed SaM is able to adaptively determine
a more suitable strategy at different stages of evolution process
for a specific problem.

The rest of this paper is organized as follows. Section II
briefly describes the DE algorithms and some of its variants.
Our proposed approach is presented in detail in Section III.
In Section IV, we verify our approach through20 benchmark
functions and two real-world problems. Moreover, the experi-
mental results are compared with several other DE approaches
in this section. Section V is devoted to conclusions.

1In jDE-2 [14], the strategy adaptation method is also used, however, it
only adopts the method proposed in [10].
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II. D IFFERENTIAL EVOLUTION AND ITS VARIANTS

In this work, we consider the following numerical optimiza-
tion problem:

Minimize f(x), x ∈ S, (1)

whereS ⊆ R
D is a compact set,x = [x1, x2, · · · , xD]T , and

D is the dimension of the decision variables. Generally, for
each variablexi it satisfies a boundary constraint

Li ≤ xi ≤ Ui, i = 1, 2, · · · , D. (2)

Recently, using EAs to solve the global optimization has
been very active, producing different kinds of EA for optimiza-
tion in the continuous domain, such as genetic algorithms [17],
evolution strategy [18], evolutionary programming [19], par-
ticle swarm optimization (PSO) [20], immune clonal algo-
rithm [21], differential evolution [2], etc.

A. Differential Evolution

The DE algorithm [2] is a simple EA for global numerical
optimization. It creates new candidate solutions by combining
the parent individual and several other individuals of the same
population. A candidate replaces the parent only if it has better
fitness value. The pseudo-code of the original DE algorithm
is shown in Algorithm 1. WhereD is the number of decision
variables;NP is the population size;F is the mutation scaling
factor; CR is the crossover rate;xi,j is the j-th variable of
the solutionxi; ui is the offspring.rndint(1, D) is a uni-
formly distributed random integer number between1 andD.
rndrealj [0, 1) is a uniformly distributed random real number
in [0, 1), generated anew for each value ofj. Many mutation
strategies to create a candidate are available. In Algorithm 1,
the classic “DE/rand/1/bin” strategy is illustrated (see lines 6
- 13 of Algorithm 1). More details on “DE/rand/1/bin” and
other DE strategies can be found in [3] and [4]. In [3], the
vectorxi is referred to astarget vector. The vectorsxr1 , vi,
and ui are named asbase vector, mutant vector, and trial
vector, respectively.

From Algorithm 1, we can see that there are only three
control parameters in DE. These areNP , F and CR. As
for the terminal conditions, we can either fix the maximum
number of fitness function evaluations (NFFEs)Max NFFEs
or the precision of a desired solutionVTR (value to reach).

In DE, many schemes have been proposed [3], [4] that use
different mutation strategies and/or recombination operations
in the reproduction stage. In order to distinguish among its
schemes, the notation “DE/a/b/c” is used, where “DE” denotes
the DE algorithm; “a” specifies the vector to be mutated; “b”
is the number of difference vectors used; and “c” denotes
the crossover scheme,binomial or exponential. In line 9 of
Algorithm 1, the mutation strategy is called “DE/rand/1”,
which is a classic strategy of DE [3]. Other well-known
mutation strategies are listed as follows.

1) “DE/best/1”:

vi = xbest + F ·
(

xr2 − xr3

)

(3)

2) “DE/best/2”:

vi = xbest + F ·
(

xr2 − xr3

)

+ F ·
(

xr4 − xr5

)

(4)

Algorithm 1 The DE algorithm with DE/rand/1/bin strategy
1: Generate the initial population
2: Evaluate the fitness for each individual
3: while The halting criterion is not satisfieddo
4: for i = 1 to NP do
5: Select uniform randomlyr1 6= r2 6= r3 6= i
6: jrand = rndint(1, D)
7: for j = 1 to D do
8: if rndrealj [0, 1) < CR or j == jrand then
9: ui,j = vi,j = xr1,j + F ·

(

xr2,j − xr3,j

)

10: else
11: ui,j = xi,j

12: end if
13: end for
14: end for
15: for i = 1 to NP do
16: Evaluate the offspringui

17: if f(ui) is better thanor equal tof(xi) then
18: Replacexi with ui

19: end if
20: end for
21: end while

3) “DE/rand/2”:

vi = xr1 + F ·
(

xr2 − xr3

)

+ F ·
(

xr4 − xr5

)

(5)

4) “DE/current-to-best/1”2:

vi = xi + F ·
(

xbest − xi

)

+ F ·
(

xr2 − xr3

)

(6)

where xbest represents the best individual in the current
generation,r1, r2, r3, r4, and r5 ∈ {1, · · · , NP}, and r1 6=
r2 6= r3 6= r4 6= r5 6= i.

Generally, different strategy has different characteristics and
is suitable for a set of problems. For example:

• The “DE/rand/1/bin” strategy is a classic DE strategy,
which is usually less greedy, slower convergence speed,
and more reliable than the strategies based on the best-
so-far solution. Hence, this strategy is more suitable for
multi-modal problems. It has been widely used in the DE
literature [2], [23], [6], [24], [25], etc.

• The best-so-far solution based strategies such as
“DE/best/1”, “DE/current-to-best/1”, always converge
faster and are more suitable for unimodal functions [26],
[11]. In addition, the “DE/best/1” strategy was succeeded
in solving some design problems, e.g., the digital design
problems [27] and the optimal design of shell-and-tube
heat exchangers [28].

• As stated in [11], the strategies based on the two differ-
ence vectors, e.g., “DE/rand/2”, are able to provide better
perturbation than the one difference vector based strategy.
However, the performance of the two difference vectors
based strategies needs to be further investigated.

B. Some Variants of DE

In the DE literature, there are many improved variants.
In this section, we only briefly describe three of them, i.e.,
jDE [23], SaDE [11], and JADE [15], [16], since these
methods show good performance and we will compare them
with our approach in this work.

2“DE/current-to-best” is also referred to as “DE/target-to-best/” [3], [22].
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1) The jDE method: In jDE [23], the parametersCRi

and Fi are encoded in each individualXi (i.e., Xi =
〈xi, CRi, Fi〉). They are updated as follows:

Fi =

{

rndreali[0.1, 1], rndreal[0, 1] < τ1
Fi, otherwise

(7)

CRi =

{

rndreali[0, 1], rndreal[0, 1] < τ2
CRi, otherwise

(8)

whererndreal[a, b] is a uniformly distributed random number
betweena andb. τ1 = 0.1 andτ2 = 0.1 indicate probabilities
to adjust factorsFi andCRi. The newly generatedFi andCRi

are obtained before the mutation and crossover operations.
Therefore, they influence the following recombination and
selection. The method has been proved efficient based on some
benchmark experimental results [23].

2) The SaDE method:Qin et al. [11] proposed the SaDE
method, in which four strategies (“DE/rand/1/bin”, “DE/rand-
to-best/2/bin”, “DE/rand/2/bin”, and “DE/current-to-rand/1”)
are adaptively selected based on their previous experiences of
generating promising solutions. In addition, the crossover rates
CRi are also adaptively changed according to its previous
experiences.

Denotepk, k = 1, 2, · · · ,K as the probability of applying
the k-th strategy, whereK is the total number of strategies
in the strategy pool.pk is initialized as1/K. The stochastic
universal selection method is used to select the strategy for
each target vector based on the probabilitypk. pk is updated
afterLP generations in the following manner:

pk =
Sk,G

∑K
k=1 Sk,G

(9)

where

Sk,G =

∑G−1
g=G−LP nsk,g

∑G−1
g=G−LP nsk,g +

∑G−1
g=G−LP nfk,g

+ ǫ (10)

where G(G > LP ) is the generation counter;nsk,g and
nfk,g are the respective numbers of the offspring vectors
generated by thek-th strategy that survive or fail in the
selection operation in the lastLP generations;Sk,G is the
success rate of the trial vector generated by thek-th strategy
and successfully entering the next generation;ǫ is a small
constant value to avoid the possible null success rates.

In SaDE, the mutation factorsFi are independently gener-
ated at each generation as follows:

Fi = rndni(0.5, 0.3) (11)

where rndni(0.5, 0.3) means a random number generated
anew for thei-th target vector based on a normal distribution
with mean0.5 and standard deviation0.3.

The crossover rates of thek-th strategyCRi,k are also
independently generated at each generation according to

CRi,k = rndni(CRmk, 0.1) (12)

and truncated to[0, 1]. WhereCRmk is initialized as0.5.
DenoteCRMemoryk as the memory to store theCR values
with respect to thek-th strategy that generated trial vectors
successfully entering the next generation with the previousLP

generations. AfterLP generations, the median value saved
in CRMemoryk is calculated to overwriteCRmk at each
generation. Through experiments, they concluded that SaDE
is effective in obtaining high quality solutions.

3) The JADE method: Recently, Zhang and Sander-
son [15], [16] proposed a DE variant, namely JADE, which
obtains very competitive results when solving some uncon-
strained benchmark problems and real-world problems. In
JADE, the authors originally implemented two mutation strate-
gies in [15], i.e., “DE/current-to-pbest” without archive and
“DE/current-to-pbest” with archive:

1) “DE/current-to-pbest/1 (without archive)”:

vi = xi + Fi ·
(

x
p
best − xi

)

+ Fi ·
(

xr2 − xr3

)

(13)

2) “DE/current-to-pbest/1 (with archive)”:

vi = xi + Fi ·
(

x
p
best − xi

)

+ Fi ·
(

xr2 − x̃r3

)

(14)

In the latter one, an archive,A, is used to store the inferior
solutions recently explored in the evolutionary search. Where
the x

p
best is a pbest solution, which is randomly selected as

one of the top100p% solutions with p ∈ (0, 1]. xi, xr2 ,
and x

p
best are chosen from the current populationP; x̃r3

is randomly chosen from the union,P ∪ A, of the archive
and current population. Later on, in order to solve the large
scale problems and further increase the population diversity,
the same authors proposed other two strategies, “DE/rand-to-
pbest” without archive and “DE/rand-to-pbest” with archive,
in the following manner [16]:

3) “DE/rand-to-pbest/1 (without archive)”:

vi = xr1 + Fi ·
(

x
p
best − xr1

)

+ Fi ·
(

xr2 − xr3

)

(15)

4) “DE/rand-to-pbest/1 (with archive)”:

vi = xr1 + Fi ·
(

x
p
best − xr1

)

+ Fi ·
(

xr2 − x̃r3

)

(16)

At each generation, for each target vector the crossover rate
CRi is independently generated as follows:

CRi = rndni(µCR, 0.1) (17)

and truncated to the interval[0, 1]. WhereµCR is the mean
value to generateCRi. It is updated as follows:

µCR = (1− c) · µCR + c ·meanA(SCR) (18)

wherec is a constant in[0, 1]; meanA(·) is the usual arithmetic
mean operation; andSCR is the set of all successful crossover
ratesCRi at generationg.

In order to maintain the population diversity, for each target
vector the mutation factorFi is independently calculated as:

Fi = rndci(µF , 0.1) (19)

and then truncated to be1.0 if Fi > 1.0 or regenerated ifFi ≤
0. rndci(µF , 0.1) is a random number generated according to
the Cauchy distribution with location parameterµF and scale
parameter0.1. The location parameterµF is updated in the
following manner:

µF = (1− c) · µF + c ·meanL(SF ) (20)
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whereSF is the set of all successful mutation factorsFi at
generationg; andmeanL(·) is the Lehmer mean:

meanL(SF ) =

∑|SF |
i=1 F 2

i
∑|SF |

i=1 Fi

(21)

III. O UR APPROACH

In this section we describe a family of improved DE variants
in detail, which implement the strategy adaptation mechanisms
(SaMs) for DE, such that they can adaptively choose a more
suitable strategy for a specific problem at hand. First, we
describe the motivations of this work. Second, three SaMs are
presented in detail. Finally, one of the SaMs combined with
the JADE method is algorithmically illustrated.

A. Motivations

In the DE algorithm, there are many mutation strategies,
however, choosing the best among different mutation strategies
available for DE is not easy for a specific problem [10], [11].
Until now, no single mutation strategy has turned out to be
best for all problems which, of course, doesn’t come as a
surprise with regard to the No Free Lunch theorems [29].
To have a better choice of DE’s strategies, Feoktistov and
Janaqi [30] introduced a generalization of DE’s strategies.
Their approach leaded to a new universal formula of differ-
entiation. In [31], Iorio and Li proposed a rotation-invariant
strategy “DE/current-to-rand/1” to solve the rotated multi-
objective optimization problems. Qin and Suganthan [10]
proposed a self-adaptive DE algorithm. The aim of their
work was to allow DE to switch between two schemes:
“DE/rand/1/bin” and “DE/best/2/bin” and also to adapt the
F and CR values. Mezura-Monteset al. [26] presented an
empirical comparison of the generation schemes of DE. Ali
and Fatti [32] proposed a point generation scheme that uses
an approximation to the probability distribution of trial points
in DE. Recently, Qinet al. [11] extended their previous
work [10]. In their proposed SaDE approach, four mutation
strategies were adopted. DifferentCR values were also used
for different strategies. Inspired by the idea of PSO, in [22],
Das et al. proposed a hybrid mutation strategy, where the
global and local manners of the “DE/target-to-best/1/bin”are
implemented. In [15], [16], Zhang and Sanderson presented
four mutation strategies, in which the high-quality solutions
in the current population and/or the archived inferior solutions
recently explored can be used to guide the search.

Adaptation or self-adaptation is highly beneficial for adjust-
ing control parameters and operators, especially when done
without any user interaction [14]. Two good reviews related
to the operator and parameter adaptation of EAs can be
found in [33] and [34]. Besides the parameter and operator
adaptation in EAs, the adaptation of multiple methods is also
efficient. Recently, using the adaptive multiple methods for
population evolution has become popular. Ong and Keane [35]
proposed an adaptive memetic algorithm, in which a local
search (LS) method can be adaptively chosen from the LS
pool to locally improve the solutions at runtime. In [35], the
reward, which is measured using the relative improvements

contributed by the LS to each solution, is adopted to decide
which LS method will be selected for the following local
improvement. SaDE [10], [11] implements adaptive multi-
strategies in the DE framework for global optimization. Vrugt
et al. [36] proposed a self-adaptive multimethod search for
global optimization. In [36], multiple different search al-
gorithms are run concurrently and a self-adaptive learning
strategy is implemented to automatically adjust the numberof
offspring of different algorithms generated at each generation.

To the best of our knowledge, among many variants of DE,
the study on using multiple-strategies in DE is scarce. In [12],
the authors adopted a neural network to update the weights
of different strategies of DE. In [13], Zamudaet al. used
the uniform selection method to choose the strategy, where a
fixed selection probability for each strategy is used. SaDE [11]
implements different strategies and updates their weight in
the search based on their previous success rate. However, the
strategy adaptation method proposed in SaDE is relatively
complex to implement. Based on these considerations, we
propose three simple approaches to implement the strategy
adaptation for DE in the following section. Our approach is
different from the previous multiple methods used in EAs.

B. Strategy Adaptation Mechanisms

In our proposed method, for thei-th individual Xi, a
strategy parameter,ηi ∈ [0, 1), is used to control the selection
of the strategy. Suppose that we haveK strategies in the
strategy pool, for thei-th target vector its mutation strategy
(Si = {1, 2, · · · ,K}) is obtained as:

Si = ⌊ηi ×K⌋+ 1 (22)

For example, ifK = 4 and ηi ∈ [0, 0.25), thenSi = 1. It
means that, ifXi is the target vector, then the first strategy in
the pool will be selected to generate the mutant vector.

To implement the strategy adaptation, we need to address
two questions: First, which mutation strategies should be
chosen to form the strategy pool? Second, how do we update
the strategy parameterηi?

As mentioned above, there are many strategies of DE, and
different strategy has different characteristics. However, there
is no theoretical study on the choice of the optimal pool size
and the selection of strategies to form the strategy pool until
now [11]. In order to select different mutation strategies to
form the strategy pool, in this work, we choose four strategies
proposed in [15] and [16] to form the strategy pool (i.e., 1.
“DE/current-to-pbest” without archive; 2. “DE/rand-to-pbest”
without archive; 3. “DE/current-to-pbest” with archive; and
4. “DE/rand-to-pbest” with archive). These strategies have
been introduced in Section II-B. The reasons for choosing
these strategies are two-fold. First, they have obtained good
performance individually as shown in [15] and [16]. Second,
the two strategies without archive converge faster and are
more suitable to the low-dimensional problems; on the other
hand, the strategies with archive can provide higher population
diversity, and hence, they are more suitable to the high-
dimensional problems. Note that other strategies can also be
possible to be chosen into the pool, these4 strategies can be
treated as instances used as test-bed for the integration method.



5

In order to address the second question, sinceηi is a
real parameter, many techniques are possible to handle this
parameter. In this work, we introduce two adaptive approaches
to update the strategy parameterηi as follows:

1) The First Approach:This method is inspired by the idea
of parameter adaptation of JADE proposed in [15], [16]. At
each generationg, for the i-th solution the strategy parameter
ηi is independently generated in the following manner:

ηi =

{

rndni(µs, 1/6), if g = 1
rndni(µs, 0.1), otherwise

(23)

whererndni(µs, 0.1) indicates a normal distribution of mean
µs and standard deviation0.1. If ηi /∈ [0, 1), then it is truncated
to [0, 1). At the first generationg = 1, the standard deviation is
1/6 to ensure that the initialηi is generated in the range[0, 1).
If g > 1, the standard deviation is set to be0.1 in the similar
way done in [11] and [15]. The reason is that too large standard
deviation makes the adaptation not function efficiently [16].

DenoteHs as the set of all successful strategy parameters
ηi’s at generationg. The meanµs is initialized to be0.5 and
then updated at the end of each generation as follows:

µs = (1− c)× µs + c×meanA(Hs) (24)

where c is a positive constant in[0, 1] andmeanA(·) is the
usual arithmetic mean operation. Ifc = 0, no adaptation of
strategies takes place. Ifc = 1, only the instant mean value
of Hs is active. For other cases0 < c < 1, both the previous
µs and the mean value ofHs are active. It means that both
the previous strategy value and the current successful strategy
values affect the strategy selection in the next generation.

2) The Second Approach:Inspired by the parameter self-
adaptation proposed in jDE [23], this approach calculates as:

ηi =

{

rndreal[0, 1), rndreal[0, 1] < δ
ηi, otherwise

(25)

whererndreal[a, b) is a uniformly distributed random number
generated in[a, b). δ ∈ [0, 1] indicates the probability to adjust
the strategy parameterηi; δ = 0.1 is used in this work.

3) The Uniform Approach:When showing the superiority
of the adaptive methods, it is necessary to compare them with
the uniform approach, i.e., at each generation a strategy is
uniformly selected from the pool for each target vector. The
uniform approach can be views as a baseline. The strategy
parameterηi in the uniform approach is calculated as:

ηi = rndreali[0, 1) (26)

Note that according to the classification of parameter control
methods used in EAs [34], the first and the second approaches
are the adaptive methods. The principle of these two methods
is “Better control parameter values tend to generate individuals
that are more likely to survive and thus these values should
be propagated.” [15]. The third method presented here is only
a baseline to compare with the adaptive methods.

C. Handling Boundary Constraint of Variables

After using the mutation strategy of DE to generate a new
solution, if one or more of the variables in the new solution

Algorithm 2 JADE with Strategy Adaptation Mechanism
1: Initialize the populationP randomly
2: Evaluate the fitness for each individual inP
3: SetµCR = 0.5;µF = 0.5;µs = 0.5;A = φ; g = 1;K = 4
4: while The halting criterion is not satisfieddo
5: SCR = φ;SF = φ;Hs = φ ⇐
6: for i = 1 to NP do
7: Generateηi according to Eqn. (23) ⇐
8: Calculate the strategy indexSi = ⌊ηi ×K⌋+ 1 ⇐
9: Randomly choosexp

best as one of the100p% best solutions
10: GenerateCRi using Eqn. (17)
11: if Si == 2 or Si == 4 then
12: Fi = rndni(µF , 0.1) ⇐
13: else
14: Fi = rndci(µF , 0.1)
15: end if
16: if Si == 1 or Si == 2 then
17: Selectr1, r2, r3 from P randomlyr1 6= r2 6= r3 6= i
18: else ifSi == 3 or Si == 4 then
19: Selectr1, r2 from P randomlyr1 6= r2 6= i; and select

r3 from P ∪A

20: end if
21: jrand = rndint(1, D)
22: for j = 1 to D do
23: if rndrealj [0, 1) < CR or j == jrand then
24: if Si == 1 then
25: ui,j = xi,j + Fi

(

xp

best,j
− xi,j

)

+ Fi

(

xr2,j − xr3,j

)

26: else ifSi == 2 then
27: ui,j = xr1,j +Fi

(

xp

best,j
− xr1,j

)

+Fi

(

xr2,j − xr3,j

)

28: else ifSi == 3 then
29: ui,j = xi,j + Fi

(

xp

best,j
− xi,j

)

+ Fi

(

xr2,j − x̃r3,j

)

30: else ifSi == 4 then
31: ui,j = xr1,j +Fi

(

xp

best,j
− xr1,j

)

+Fi

(

xr2,j − x̃r3,j

)

32: end if
33: else
34: ui,j = xi,j

35: end if
36: end for
37: end for
38: for i = 1 to NP do
39: Evaluate the offspringui

40: if f(ui) is better thanor equal tof(xi) then
41: Update the archiveA with the inferior solutionxi

42: CRi → SCR;Fi → SF ; ηi → Hs ⇐
43: Replacexi with ui

44: end if
45: end for
46: Update theµCR, µF , andµs ⇐
47: g = g + 1
48: end while

are beyond their boundaries, i.e.xi /∈ [Li, Ui], the following
repair rule is applied:

xi =

{

Li + rndreali[0, 1]× (Ui − Li), if xi < Li

Ui − rndreali[0, 1]× (Ui − Li), if xi > Ui
(27)

whererndreali[0, 1] is uniformly distributed random number
from [0,1] in thei-th dimension.

D. DE with Strategy Adaptation

To make the description clearer, the pseudo-code of the
proposed DE with the first SaM is shown in Algorithm 2.
In this work, the parameter adaptation mechanism proposed
in JADE [15] is used. To this point of view, this approach can
be regarded as an improved JADE variant. Modified steps with
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TABLE I

THE 16 BENCHMARK FUNCTIONS USED IN OUR EXPERIMENTAL STUDY, WHERED IS THE NUMBER OF VARIABLES ANDS ⊆ R
D . EACH OF THEM HAS A

GLOBAL MINIMUM VALUE OF 0. A DETAIL DESCRIPTION OF ALL FUNCTIONS CAN BE FOUND IN[19] AND [37].

Name Test Functions S

Sphere f01 =
∑

D
i=1 x2

i [−100, 100]D

Schwefel 2.22 f02 =
∑D

i=1 |xi|+
∏D

i=1 |xi| [−10, 10]D

Schwefel 1.2 f03 =
∑

D
i=1 (

∑

i
j=1 xj)

2 [−100, 100]D

Schwefel 2.21 f04 = maxi{|xi|, 1 ≤ i ≤ D} [−100, 100]D

Rosenbrock f05 =
∑D−1

i=1 [100(xi+1 − x2
i )

2 + (xi − 1)2] [−30, 30]D

Step f06 =
∑D−1

i=1 (⌊xi + 0.5⌋)2 [−100, 100]D

Quartic f07 =
∑D

i=1 x4
i + random[0, 1) [−1.28, 1.28]D

Schwefel 2.26 f08 =
∑

D
i=1 (−xi sin(

√

|xi|)) + 418.98288727243369 × D [−500, 500]D

Rastrigin f09 =
∑D

i=1 (x2
i − 10 cos(2πxi) + 10) [−5.12, 5.12]D

Ackley f10 = −20 exp(−0.2
√

1
D

∑

D
i=1 x2

i
) − exp( 1

D

∑

D
i=1 cos(2πxi)) + 20 + exp(1) [−32, 32]D

Griewank f11 = 1
4000

∑

D
i=1 x2

i −
∏

D
i=1 cos(

xi√
i
) + 1 [−600, 600]D

Penalized 1
f12 = π

D
{10 sin2(πyi) +

∑D−1
i=1 (yi − 1)2 · [1 + 10 sin2(πyi+1)] + (yD − 1)2}

+
∑D

i=1 u(xi, 10, 100, 4)
[−50, 50]D

Penalized 2
f13 = 1

10 {sin
2(3πx1) +

∑D−1
i=1 (xi − 1)2[1 + sin2(3πxi+1)] + (xD − 1)2[1 + sin2(2πxD)]}

+
∑D

i=1 u(xi, 5, 100, 4)
[−50, 50]D

Neumaier 3 f14 =
∑

D
i=1 (xi − 1)2 +

∑

D
i=2 xixi−1 + D(D+4)(D−1)

6 [−D2, D2]D

Salomon f15 = 1 − cos(2π ‖ x ‖) + 0.1 ‖ x ‖, where‖ x ‖=
∑

D
i=1 xi [−100, 100]D

Alpine f16 =
∑D

i=1 |xi sin xi + 0.1xi| [−10, 10]D

respect to JADE are marked with a left arrow “⇐”. Our ap-
proach is referred to as SaJADE, i.e., theStrategyadaptation-
basedJADE method. It is worth pointing out that our proposed
SaM can also be used in other DE variants. Moreover, in
our proposed SaM, different parameter adaptation methods
of DE can be adopted for different strategies according to
their characteristics. For example, in Algorithm 2, we can see
that for the “DE/rand-to-pbest” strategies the mutation factor
Fi = rndni(µF , 0.1). The reason is that “DE/rand-to-pbest”
can provide higher population diversity, the relatively small Fi

values are able to obtain faster convergence rate for the low-
and moderate-dimensional problems. The mean value ofµF

is also updated as Eqn. (20).

Compared with the variants of DE proposed in [12], [13],
and [11], where the multi-strategies of DE are also used,
the main differences between our proposed SaMs and these
variants are as follows:

• Our SaMs are controlled by one single strategy parameter
η, which is a real parameter. It can be adjusted adaptively.
Other parameter adaptation techniques in EAs are also
possible to be used to update the strategy parameterη.

• Compared with SWAF [12], the weights of strategies are
updated by the neural network based on the previous
successful rates. This approach is relatively complex to
implement. Also, there are some parameters of the neural
network that need to be fine-tuned.

• In [13], Zamudaet al. presented a multiple-strategies
DE variant. However, for each strategy they only used
the pre-defined selection probability; and then a uniform
randomly generated parameterrs is used to determine
which strategy will be selected. Thus, this method is not
a strategy adaptation approach.

• In SaDE [11], each strategy has its own probability, which
is updated by Eqns (9) and (10) according to previous
experiences. It is relatively complex to implement.

• In general, our proposed three approaches are different
from the above-mentioned variants. They are very simple
and easy to implement.

On the complexity of SaJADE shown in Algorithm 2, our
algorithm does not increase the overall complexity with respect
to JADE. The additional complexity of SaJADE is the parame-
ter adaptation ofηi, which takesO(NP ) operations. Since the
total complexity of JADE isO(G·NP ·(D+log (NP ))) [16],
whereG is the maximal number of generations, SaJADE has
the same total complexity ofO(G ·NP · (D+ log (NP ))). In
general, the population sizeNP is set to be the proportional to
the problem dimensionD in the DE literature. Thus, the total
complexity of SaJADE isO(G ·D2), which is the same as the
classic DE algorithm, JADE, and many other DE variants.

IV. EXPERIMENTAL RESULTS

In order to verify the performance of our proposed SaM,
twenty scalable benchmark functions are chosen from the
literature as the test suit. Functionsf01 − f13 are chosen
from [19]. Functionsf14−f16 are selected from [37]. The rest
four functions (F06, F07, F09, andF10) are selected from [38].
For functionsf01 − f16, they are briefly described in Table I.
For functions F06, F07, F09, and F10, they can be found
in [38]. A more detailed description of these functions can
be found in [19], [37], [25], and [38].

Functionsf01 − f04 are unimodal. The Rosenbrock’s func-
tion f05 is a multi-modal function whenD > 3 [39]. Function
f06 is the step function, which has one minimum and is dis-
continuous. Functionf07 is a noisy quartic function. Functions
f08−f16 are multi-modal functions where the number of local
minima increases exponentially with the problem dimension.
They appear to be the most difficult class of problems for many
optimization algorithms. FunctionsF06, F07, F09, andF10 are
multi-modal. FunctionF09 are separable, and the remaining3
functions are non-separable. The shifted and/or rotated features
make these4 functions very difficult to solve.
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A. Experimental Setup

In the experiments, we first compare the performance of
different strategy adaptation methods proposed in SectionIII-
B. Hence two approaches combined with JADE are imple-
mented: SaJADE1 with the first SaM and SaJADE2 with
the second SaM. We also implement the strategy adaptation
method with learning periodLP = 50 proposed in [11]
into JADE, namely SaJADE3. In addition, JADE with the
uniform strategy selection (Eqn. (26)) is implemented, namely
Uniform-JADE, as a baseline. In Uniform-JADE, the four
strategies used in SaJADE are also adopted. Secondly, we
compare the performance of SaJADE (with the first SaM) with
those of jDE [23], SaDE [11], JADE-wo, and JADE-w [15]
directly, where JADE-wo means JADE without archive and
JADE-w means JADE with archive; both algorithms adopt the
“DE/current-to-pbest” strategy [16]. For all experiments, we
use the following parameters unless a change is mentioned3.

• Dimension of each function:D = 30 andD = 100;
• Population size:NP = 100, if D = 30; NP = 400, if

D = 100 [15], [16];
• µCR = 0.5, µF = 0.5, andµs = 0.5 [15], [16];
• c = 0.1 andp = 0.05 [15], [16];
• Value to reach: For functionsf01 − f06 and f08 − f16,

VTR = 10−8; for functionsf07, F06, F07, F09, andF10,
VTR = 10−2 [38], [15];

• Max NFFEs4: If D = 30: For f01, f06, f10, f12, andf13,
Max NFFEs = 150, 000; for f03 − f05, Max NFFEs =
500, 000; for f02 and f11, Max NFFEs =200, 000; for
f07 − f09, f14 − f16, and F06 − F10, Max NFFEs =
300, 000. If D = 100: For all functions MaxNFFEs =
1, 000, 000 (i.e., D × 10, 000) [38].

Moreover, in our experiments, each function is optimized
over 50 independent runs5. We also use the same set of
initial random populations to evaluate different algorithms in
a similar way done in [24].

B. Performance Criteria

Five performance criteria are selected from the litera-
ture [38], [25] to evaluate the performance of the algorithms.
These criteria are described as follows.

• Error [38]: The error of a solutionx is defined asf(x)−
f(x∗), wherex∗ is the global minimum of the function.
The minimum error is recorded when the MaxNFFEs is
reached in50 runs. The average and standard deviation
of the error values are calculated as well.

• NFFEs [38]: The NFFEs is also recorded when the VTR
is reached. The average and standard deviation of the
NFFEs values are calculated.

• Successful rate (Sr) [38]: The successful run of an algo-
rithm indicates that the algorithm can result in a function

3For jDE and SaDE, some specific parameters (e.g.,τ1, τ2 in jDE andLP
in SaDE) are set as in [23] and [11], respectively.

4The MaxNFFEs for functionsf01−f13 are mainly set as in [19], except
for f05, f08, andf09, they are less than the values in [19], since SaJADE is
able to obtain the global optimum of these functions within the MaxNFFEs.
For functionsF06 − F10, the MaxNFFEs are set as in [38].

5All the algorithms are implemented in standard C++. The source code
may be obtained from the authors upon request.

value no worse than the VTR before the MaxNFFEs
condition terminates the trial. The successful rateSr is
calculated as the number of successful runs divided by
the total number of runs.

• Convergence graphs[38]: The convergence graphs show
the median error performance of the best solution over
the total runs, in the respective experiments.

• Acceleration rate (AR) [25]: This criterion is used to
compare the convergence speeds between our approach
and other algorithms. It is defined as follows:AR =
NFFEsother

NFFEsSaJADE
, whereAR > 1 indicates our approach is

faster than its competitor.

C. Comparison on Different Strategy Adaptation Methods

In this section, the performance of SaJADE1, SaJADE2,
SaJADE3, and Uniform-JADE is compared to show the su-
periority of the adaptive strategy selection methods. The
parameters for all algorithms are the same as described in
Section IV-A. The results of all functions atD = 30 are
tabulated in Table II. The best and the second best results
are highlighted inboldface and italic, respectively. Since for
most of the functions the four algorithms can solve them, the
NFFEs are used to compare them. Except for functionsf15 and
F10, the error values of the final solutions are used, because
no algorithm can solve the two functions.

From Table II, we can see that SaJADE1 (JADE with the
first SaM) obtains the overall best results. It ranks1 on
17 out of 20 functions in terms of the NFFEs. In addition,
SaJADE1 is able to provide the greatest overall successful rate
(
∑

Sr = 17.48). The SaJADE3 method obtains the second
overall best results with respect to the NFFEs, followed by
SaJADE2. Furthermore, Table II also indicates that all of the
three SaJADE methods is better than Uniform-JADE. This
confirms the superiority of the strategy adaptation approaches.

Since SaJADE1 outperforms all other strategy adaptation
methods, in the following sections, we only compare the
results of SaJADE1 (referred to as SaJADE because of no
confusion) with those of other DE variants.

D. Comparison of SaJADE with Other DE Variants

In this section we compare the performance of SaJADE
with that of jDE, SaDE, JADE-wo, and JADE-w in terms
of three aspects: i) the quality of the final solutions; ii) the
convergence speed; and iii) the success rateSr. The parameters
of all algorithms are used as mentioned in Section IV-A. For
all test functions, the dimensions ofD = 30 andD = 100 are
used. In addition, JADE-wo and JADE-w with the “DE/rand-
to-pbest/1” strategy (referred to as rJADE-wo and rJADE-w,
respectively) are also tested on all problems. However, due
to the tight space limitation, we do not report the results but
only show the convergence curves in Figure 1 on the selected
functions. The paired Wilcoxon signed-rank test atα = 0.05 is
adopted to compare the significance between two algorithms.
The Wilcoxon’s test is a non-parametric statistical hypothesis
test, which can be used as an alternative to the pairedt-
test when the results cannot be assumed to be normally
distributed [40]. There are two reasons to use the Wilcoxon’s



8

TABLE II

THE PERFORMANCE COMPARISON OF DIFFERENT STRATEGY ADAPTATION METHODS FOR ALL FUNCTIONS ATD = 30.

F
SaJADE1 SaJADE2 SaJADE3 Uniform-JADE

Mean Std Sr Mean Std Sr Mean Std Sr Mean Std Sr

f01 2.40E+04 5.55E+02 1.00 2.88E+04 8.83E+02 1.00 2.82E+04 7.21E+02 1.00 2.89E+04 8.04E+02 1.00
f02 3.90E+04 1.44E+03 1.00 5.01E+04 2.46E+03 1.00 4.91E+04 2.07E+03 1.00 5.10E+04 2.10E+03 1.00
f03 7.88E+04 3.63E+03 1.00 8.79E+04 4.27E+03 1.00 8.97E+04 4.59E+03 1.00 8.94E+04 5.09E+03 1.00
f04 2.09E+05 8.25E+03 1.00 2.88E+05 6.38E+03 1.00 2.86E+05 6.95E+03 1.00 2.89E+05 6.35E+03 1.00
f05 1.18E+05 3.61E+03 1.00 1.26E+05 5.08E+03 0.98 1.26E+05 3.70E+03 0.98 1.27E+05 3.72E+03 0.92
f06 9.20E+03 2.25E+02 1.00 1.07E+04 3.94E+02 1.00 1.05E+04 3.26E+02 1.00 1.06E+04 3.85E+02 1.00
f07 2.26E+04 4.59E+03 1.00 2.61E+04 5.55E+03 1.00 2.71E+04 6.07E+03 1.00 2.65E+04 4.89E+03 1.00
f08 1.01E+05 3.98E+03 1.00 1.06E+05 2.11E+03 1.00 1.04E+05 2.54E+03 1.00 1.07E+05 2.05E+03 1.00
f09 1.27E+05 4.16E+03 1.00 1.32E+05 2.29E+03 1.00 1.31E+05 2.40E+03 1.00 1.31E+05 2.74E+03 1.00
f10 3.61E+04 8.47E+02 1.00 4.45E+04 1.21E+03 1.00 4.41E+04 1.51E+03 1.00 4.47E+04 1.71E+03 1.00
f11 2.51E+04 7.64E+02 1.00 3.07E+04 1.40E+03 1.00 3.03E+04 3.10E+03 1.00 3.02E+04 9.57E+02 1.00
f12 2.17E+04 7.32E+02 1.00 2.63E+04 1.24E+03 1.00 2.60E+04 1.18E+03 1.00 2.65E+04 9.63E+02 1.00
f13 2.55E+04 1.07E+03 1.00 3.32E+04 2.04E+03 1.00 3.19E+04 1.80E+03 1.00 3.17E+04 1.69E+03 1.00
f14 2.18E+05 2.05E+04 1.00 2.15E+05 2.50E+04 1.00 2.23E+05 2.74E+04 1.00 2.25E+05 2.46E+04 1.00
f15

⋆ 1.76E-01 4.28E-02 0.00 1.60E-01 4.95E-02 0.00 1.74E-01 4.43E-02 0.00 1.77E-01 4.43E-02 0.00
f16 1.51E+05 7.01E+04 0.72 2.89E+05 0.00E+00 0.02 2.34E+05 2.82E+04 0.06 2.54E+05 5.40E+04 0.10
F06 1.04E+05 7.97E+03 0.96 1.13E+05 8.37E+03 0.86 1.12E+05 8.56E+03 0.92 1.15E+05 7.44E+03 0.80
F07 3.29E+04 4.02E+03 0.80 3.57E+04 4.74E+03 0.74 3.57E+04 5.29E+03 0.80 3.63E+04 4.74E+03 0.74
F09 1.04E+05 2.76E+03 1.00 1.06E+05 2.42E+03 1.00 1.05E+05 2.29E+03 1.00 1.07E+05 2.24E+03 1.00
F10

⋆ 2.66E+01 4.44E+00 0.00 2.68E+01 5.20E+00 0.00 3.11E+01 5.60E+00 0.00 3.19E+01 5.99E+00 0.00
∑

Sr 17.48 16.60 16.76 16.56

⋆ indicates that the error values of the final solutions are used, since no algorithm can solve the corresponding problem within the MaxNFFEs.

TABLE III

MEAN AND STANDARD DEVIATION OF THE ERROR VALUES OF THE BEST-SO-FAR SOLUTIONS OVER50 INDEPENDENT RUNS FOR ALL TEST FUNCTIONS

AT D = 30.

F Max NFFEs jDE JADE-wo JADE-w SaDE SaJADE
f01 150,000 1.46E-28± 1.78E-28† 9.93E-62± 5.34E-61† 2.69E-56± 1.41E-55† 3.42E-37± 3.63E-37† 1.10E-79± 7.52E-79
f02 200,000 9.02E-24± 6.01E-24† 5.53E-28± 3.16E-27† 3.18E-25± 2.05E-24† 3.51E-25± 2.74E-25† 1.35E-47± 7.53E-47
f03 500,000 1.16E-13± 1.73E-13† 1.93E-56± 7.02E-56† 6.11E-81± 1.62E-80‡ 1.54E-14± 4.56E-14† 1.17E-77± 3.39E-77
f04 500,000 2.44E-14± 1.65E-13† 1.34E-09± 5.71E-10† 5.29E-14± 2.05E-14† 6.39E-27± 8.27E-27‡ 1.26E-19± 1.35E-19
f05 500,000 1.04E-03± 1.37E-03† 4.78E-01± 1.31E+00† 1.59E-01± 7.89E-01 7.98E-02± 5.64E-01† 1.60E-30± 6.32E-30
f06 10,000 6.13E+02± 1.72E+02† 3.12E+00± 1.54E+00† 5.62E+00± 1.87E+00† 5.07E+01± 1.34E+01† 0.00E+00± 0.00E+00

150,000 0.00E+00± 0.00E+00 0.00E+00± 0.00E+00 0.00E+00± 0.00E+00 0.00E+00± 0.00E+00 0.00E+00± 0.00E+00
f07 300,000 3.35E-03± 8.68E-04† 6.59E-04± 2.43E-04† 6.14E-04± 2.55E-04† 2.06E-03± 5.21E-04† 4.10E-04± 1.48E-04
f08 100,000 1.70E-10± 1.71E-10‡ 4.14E-05± 2.37E-05† 2.62E-04± 3.59E-04† 1.13E-08± 1.08E-08‡ 6.83E-07± 2.70E-06

300,000 0.00E+00± 0.00E+00 0.00E+00± 0.00E+00 0.00E+00± 0.00E+00 0.00E+00± 0.00E+00 0.00E+00± 0.00E+00
f09 100,000 3.32E-04± 6.39E-04‡ 2.68E-03± 1.90E-03‡ 1.33E-01± 9.74E-02 2.43E+00± 1.60E+00† 1.54E-01± 2.25E-01

300,000 0.00E+00± 0.00E+00 0.00E+00± 0.00E+00 0.00E+00± 0.00E+00 0.00E+00± 0.00E+00 0.00E+00± 0.00E+00
f10 50,000 2.37E-04± 7.10E-05† 1.10E-09± 7.45E-10† 3.35E-09± 2.84E-09† 3.81E-06± 8.26E-07† 1.12E-12± 1.07E-12

150,000 8.26E-15± 1.32E-15 4.14E-15± 0.00E+00 4.14E-15± 0.00E+00 4.14E-15± 0.00E+00 4.14E-15± 0.00E+00
f11 50,000 7.29E-06± 1.05E-05† 1.44E-14± 7.05E-14† 1.57E-08± 1.09E-07† 2.52E-09± 1.24E-08† 0.00E+00± 0.00E+00

200,000 0.00E+00± 0.00E+00 0.00E+00± 0.00E+00 0.00E+00± 0.00E+00 0.00E+00± 0.00E+00 0.00E+00± 0.00E+00
f12 50,000 7.03E-08± 5.74E-08† 1.84E-17± 4.52E-17† 1.67E-15± 1.02E-14† 8.25E-12± 5.12E-12† 2.10E-23± 6.89E-23

150,000 5.99E-30± 5.87E-30 1.57E-32± 0.00E+00 1.57E-32± 0.00E+00 1.57E-32± 0.00E+00 1.57E-32± 0.00E+00
f13 50,000 1.80E-05± 1.42E-05† 3.16E-13± 9.79E-13† 1.87E-10± 1.09E-09† 1.93E-09± 1.53E-09† 3.83E-21± 1.56E-20

150,000 1.80E-27± 2.62E-27 1.35E-32± 0.00E+00 1.35E-32± 0.00E+00 1.35E-32± 0.00E+00 1.35E-32± 0.00E+00
f14 300,000 7.31E-01± 1.19E+00† 1.72E-03± 3.05E-03† 1.68E-09± 1.97E-09‡ 1.25E+02± 2.68E+02† 2.88E-09± 2.43E-09
f15 300,000 1.98E-01± 1.41E-02† 2.02E-01± 1.41E-02† 2.00E-01± 1.63E-02† 1.56E-01± 5.01E-02 1.76E-01± 4.28E-02
f16 300,000 6.08E-10± 8.36E-10 2.61E-06± 1.21E-06† 2.78E-05± 8.43E-06† 2.94E-06± 3.47E-06† 1.44E-07± 4.92E-07
F06 300,000 2.93E+01± 2.79E+01† 7.00E+00± 1.87E+01† 2.56E+00± 6.22E+00 1.68E+01± 2.60E+01† 1.59E-01± 7.89E-01
F07 300,000 1.17E-02± 9.90E-03 1.57E-02± 1.13E-02† 5.96E-03± 7.39E-03‡ 1.54E-02± 9.60E-03† 1.04E-02± 8.48E-03
F09 100,000 1.30E-05± 3.17E-05‡ 2.87E-03± 1.82E-03‡ 1.35E+00± 6.08E-01† 1.46E+00± 1.02E+00† 1.13E-01± 1.60E-01

300,000 0.00E+00± 0.00E+00 0.00E+00± 0.00E+00 0.00E+00± 0.00E+00 0.00E+00± 0.00E+00 0.00E+00± 0.00E+00
F10 300,000 5.54E+01± 9.44E+00† 2.88E+01± 5.33E+00† 2.82E+01± 5.32E+00 7.57E+01± 1.02E+01† 2.66E+01± 4.44E+00

w/t/l 15/2/3 18/0/2 13/4/3 17/1/2 –

† indicates SaJADE is significantly better than its competitor by the Wilcoxon signed-rank test atα = 0.05.
‡ means that the corresponding algorithm is better than our proposed SaJADE method.

test: i) Although thet-test, one of the parametric statistical
test, is popular in evolutionary computing [19], [22], however,
recent studies indicate that the parametric statistical analy-
sis is not appreciate especially when tackling the multiple-
problem results [41], [42], [43], [44]. ii) The Wilcoxon’s test
is employed since this test is included in well-known software
packages (e.g., SPSS, SAR, OriginPro, Matlab, etc.).

1) Comparison on the Quality of the Final Solutions:For
all test functions, the mean and standard deviation of the error

values of the best-so-far solutions over50 independent runs
are respectively summarized in Tables III and IV atD = 30
and D = 100. Similar to the methods used in [15], the
intermediate results are also reported for the functions where
several algorithms can obtain the global optimum of these
functions. In these cases, the Wilcoxon signed-rank test is
only compared with the intermediate results. In the last row
of each table, according to the Wilcoxon’s test, the results
are summarized as “w/t/l”, which means that SaJADE wins
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TABLE IV

MEAN AND STANDARD DEVIATION OF THE ERROR VALUES OF THE BEST-SO-FAR SOLUTIONS OVER50 INDEPENDENT RUNS FOR ALL TEST FUNCTIONS

AT D = 100.

F Max NFFEs jDE JADE-wo JADE-w SaDE SaJADE
f01 1,000,000 2.09E-20± 9.27E-21† 5.13E-62± 4.82E-62† 1.21E-85± 2.27E-85† 1.09E-27± 6.65E-28† 1.62E-92± 2.92E-92
f02 1,000,000 1.82E-12± 4.30E-13† 5.19E-36± 7.12E-36† 9.20E-42± 2.96E-41† 1.09E-15± 2.10E-16† 4.03E-51± 1.41E-50
f03 1,000,000 7.47E+03± 7.43E+03† 6.85E-03± 5.87E-03† 4.79E-05± 4.63E-05 4.96E+00± 1.61E+00† 5.06E-05± 5.74E-05
f04 1,000,000 1.60E+00± 1.34E-01† 1.62E-01± 3.05E-02† 3.09E-03± 3.90E-03 1.90E-01± 1.80E-01† 2.42E-03± 3.73E-03
f05 1,000,000 9.20E+01± 1.41E+01† 4.96E+01± 1.15E+01† 2.77E+01± 6.81E+00† 8.49E+01± 1.04E+01† 2.45E+01± 1.43E+00
f06 40,000 3.18E+04± 2.52E+03† 1.14E+02± 1.42E+01† 1.25E+02± 1.40E+01† 1.59E+03± 1.70E+02† 4.19E+01± 5.27E+00

1,000,000 0.00E+00± 0.00E+00 0.00E+00± 0.00E+00 0.00E+00± 0.00E+00 0.00E+00± 0.00E+00 0.00E+00± 0.00E+00
f07 1,000,000 2.08E-02± 2.88E-03† 2.04E-03± 4.28E-04† 1.60E-03± 3.33E-04† 6.85E-03± 1.34E-03† 8.59E-04± 1.39E-04
f08 1,000,000 2.81E-08± 2.30E-08‡ 3.94E+03± 2.75E+02‡ 9.11E+03± 4.18E+02 1.89E+01± 3.51E+01‡ 9.04E+03± 3.88E+02
f09 1,000,000 6.01E+00± 2.36E+00‡ 1.03E+02± 3.95E+00‡ 1.82E+02± 8.44E+00† 1.05E+02± 4.84E+00‡ 1.67E+02± 7.59E+00
f10 200,000 4.20E-01± 5.34E-02† 7.79E-06± 1.89E-06† 4.05E-07± 1.06E-07† 5.98E-03± 6.95E-04† 7.28E-09± 3.49E-09

1,000,000 1.73E-11± 3.15E-12 7.69E-15± 0.00E+00 7.84E-15± 7.03E-16 1.05E-14± 1.76E-15 7.69E-15± 0.00E+00
f11 200,000 9.25E-01± 5.88E-02† 8.87E-04± 3.22E-03† 3.54E-10± 2.34E-09† 3.84E-03± 8.15E-03† 2.39E-15± 2.80E-15

1,000,000 0.00E+00± 0.00E+00 8.87E-04± 3.25E-03 0.00E+00± 0.00E+00 2.96E-04± 1.46E-03 0.00E+00± 0.00E+00
f12 200,000 1.44E+00± 3.11E-01† 2.38E-11± 1.20E-11† 4.62E-14± 3.70E-13† 8.96E-06± 2.10E-06† 1.66E-17± 1.48E-17

1,000,000 4.47E-21± 1.90E-21 4.71E-33± 0.00E+00 4.71E-33± 0.00E+00 6.75E-30± 4.63E-30 4.71E-33± 0.00E+00
f13 200,000 6.04E+01± 1.10E+01† 2.83E-08± 3.48E-08† 1.13E-10± 1.58E-10† 7.81E-03± 3.27E-03† 7.24E-15± 1.01E-14

1,000,000 1.91E-17± 1.08E-17 1.35E-32± 0.00E+00 1.35E-32± 0.00E+00 5.56E-27± 5.23E-27 1.35E-32± 0.00E+00
f14 1,000,000 2.07E+05± 4.46E+04† 1.51E+05± 1.98E+04† 7.90E+04± 1.43E+04 1.69E+05± 1.39E+04† 8.20E+04± 1.47E+04
f15 1,000,000 3.80E-01± 3.93E-02† 3.28E-01± 4.54E-02† 2.98E-01± 1.41E-02† 3.60E-01± 4.93E-02† 2.66E-01± 4.79E-02
f16 1,000,000 4.78E-03± 4.63E-04† 1.12E-11± 5.08E-11† 9.55E-05± 3.98E-04† 5.78E-03± 1.71E-03† 1.84E-23± 1.30E-22
F06 1,000,000 8.90E+01± 4.16E-01† 1.26E+02± 2.92E+01† 3.60E+01± 2.78E+01 1.85E+02± 4.26E+01† 3.14E+01± 2.83E+01
F07 1,000,000 6.68E-01± 1.33E-01† 1.90E-01± 2.83E-01 8.50E-02± 4.50E-01 2.81E-01± 3.50E-01† 7.29E-02± 2.04E-01
F09 1,000,000 1.37E-01± 1.26E-01‡ 1.13E+02± 5.72E+00‡ 2.00E+02± 6.26E+00† 1.07E+02± 5.24E+00‡ 1.77E+02± 7.07E+00
F10 1,000,000 4.76E+02± 2.71E+01† 4.22E+02± 1.52E+01‡ 4.67E+02± 2.93E+01† 5.31E+02± 2.31E+01† 4.51E+02± 1.73E+01

w/t/l 17/0/3 15/1/4 14/6/0 17/0/3 –

† indicates SaJADE is significantly better than its competitor by the Wilcoxon signed-rank test atα = 0.05.
‡ means that the corresponding algorithm is better than our proposed SaJADE method.

in w functions, ties int functions, and loses inl functions,
compared with its competitors.

From Table III, it is clear that our approach is able to obtain
consistently better error values of the best-so-far solutions
than its competitors. SaJADE significantly outperforms jDE,
JADE-wo, JADE-w, and SaDE on15, 18, 13, and17 out of 20
functions, respectively. For functionsf08, f09, andF09, jDE
is significantly better than SaJADE. SaJADE is worse than
JADE-wo for2 functions, JADE-w for3 functions, and SaDE
for 2 functions.

For the functions atD = 100, according to Table IV, a
similar conclusion to SaJADE can be drawn about the error
values of jDE, JADE-wo, JADE-w, and SaDE, i.e., on the
majority of the functions, our approach performs significantly
better than other DE variants.

In general, the SaJADE approach is able to provide the
overall highest quality of the final solution among other DE
variants for functions atD = 30 andD = 100. Our proposed
strategy adaptation can enhance the performance of JADE in
terms of the quality of the final solution.

2) Multiple-problem Statistical Analysis:In Tables II
and III, only the single-problem statistical analysis by the
Wilcoxon signed-rank test is used. As stated in [44], the
multiple-problem statistical analysis is also important to check
the behavior of the stochastic algorithms. In this part, we
present the results of the multiple-problem Wilcoxon signed-
rank test atα = 0.05 in Table V. Note that when several algo-
rithms can obtain the global optimum of a specific function,
only the mean values of the intermediate results are considered
from Tables II and III; otherwise, the mean values of the final
solutions are used. Hence, there are overall40 functions (20

TABLE V

MULTI -PROBLEM STATISTICAL ANALYSIS BY THE WILCOXON

SIGNED-RANK TEST AT α = 0.05 (SAJADETO ITS COMPETITORS).

R+ R− p-value significant
jDE 656 164 6.38E-04 Yes

JADE-wo 624 196 3.36E-03 Yes
JADE-w 702 118 3.30E-05 Yes
SaDE 679 141 1.60E-04 Yes

functions atD = 30 and 20 functions atD = 100) to make
the multiple-problem statistical analysis. From Table V, it is
clear that SaJADE obtains higherR+ values thanR− values
in all cases. According to thep-value, we can see that SaJADE
is significantly better than other DE variants, since in all cases
the p-values are less than0.05. The results reconfirm that the
overall performance of SaJADE is better than other compared
DE variants in terms of the quality of the final solutions.

3) Comparison on the Convergence Speed and Successful
Rate: Besides the quality of the final solutions, the conver-
gence velocity and successful rateSr are also very impor-
tant to measure the performance of an algorithm. Tables VI
and VIII respectively summarize the mean and standard de-
viation of the NFFEs of the successful runs atD = 30 and
D = 100. In addition, the successful rateSr is also shown in
these two tables (within parentheses). Moreover, in TablesVII
and IX the AR values are tabulated for the functions that
have been solved by several algorithms. Some representative
convergence graphs of jDE, JADE-wo, JADE-w, rJADE-wo,
rJADE-w, SaDE, and SaJADE are shown in Figure 1.

From Tables VI and VIII, we can see that SaJADE requires
the overall lowest NFFEs to reach theV TR on the majority of
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TABLE VII

THE AR VALUES AT D = 30 (SAJADETO ITS COMPETITORS).

F jDE JADE-wo JADE-w SaDE
f01 2.46 1.21 1.26 1.82
f02 2.08 1.30 1.41 1.84
f03 4.52 1.29 0.99 3.95
f04 1.40 2.16 1.48 0.81
f05 3.95 1.30 1.04 2.38
f06 2.42 1.18 1.25 1.72
f07 4.66 1.23 1.32 2.38
f08 0.90 1.20 1.17 0.99
f09 0.92 1.04 1.13 1.07
f10 2.48 1.26 1.31 1.90
f11 2.47 1.28 1.37 1.83
f12 2.46 1.27 1.34 1.79
f13 2.52 1.38 1.48 1.85
f14 NA NA 0.96 NA
f16 1.69 NA NA 1.88
F06 2.44 1.29 1.05 2.37
F07 3.08 1.37 1.06 3.08
F09 0.80 0.92 1.11 1.05
Avg 2.1671 1.1544 1.0988 1.7247

TABLE IX

THE AR VALUES AT D = 100 (SAJADE TO ITS COMPETITORS).

F jDE JADE-wo JADE-w SaDE
f01 4.01 1.46 1.22 2.74
f02 3.66 1.40 1.28 2.85
f06 4.04 2.03 1.23 2.26
f07 NA 1.44 1.34 4.32
f10 3.98 1.47 1.21 2.90
f11 3.93 1.44 1.23 2.71
f12 4.57 1.41 1.23 2.60
f13 4.76 1.49 1.25 2.78
f16 NA 1.13 0.96 NA
F07 NA 1.61 0.97 3.04
Avg 3.5714 1.3320 1.0610 2.6411

the functions compared with other DE variants. SaJADE also
obtains the greatest overall successful rate,

∑

Sr = 17.48
at D = 30 and

∑

Sr = 9.90 at D = 100. Furthermore,
Tables VII and IX show that SaJADE converges faster than
its competitors, especially for functions atD = 100. For
example, compared with JADE-wo in Table IX, the AR value
is 1.3320, which indicates that SaJADE is on average33.2%
faster than JADE-wo for these functions. Although for the
successful functions atD = 100 the AR value of SaJADE
to JADE-w is 1.0610, however, for8 out of 10 functions in
Table IX the AR values are greater than1.20, which means
that SaJADE is about20% faster than JADE-w for these
functions. Additionally, Figure 1 shows that SaJADE is able
to provide faster convergence speed than other DE variants on
the majority of the functions.

4) Compared with Reported Results:A further comparative
study of SaJADE to the reported results of recent advance
EAs is also provided here. The results are shown in Table X.
The results of the adaptive LEP and Best Lévy algorithms are
obtained from Table III in [45], JADE-wo and JADE-w from
Table 4.10 in [16], and jDE from Table III in [23]. The results
in Table X indicate the superior performance of SaJADE in
terms of the quality of the final solutions. SaJADE obtains the
best results on7 out of 9 functions. On the rest2 functions,
SaJADE provides the second best results.

E. Analysis of Strategy Adaptation

In our proposed SaJADE method, the strategy adaptation
mechanism (SaM) is integrated into JADE to adaptively de-
termine a more suitable strategy at different stages of evolution
process for these different problems at hand. In order to inves-
tigate the adaptation characteristics of SaJADE, the evolution
trend of the parameterµs is plotted on the selected function
in Figure 2 with the mean curves and error bars. The error
bars are the standard deviations ofµs over 50 independent
runs. They can clearly show the evolution trend ofµs. For
the clarity, there are only20 error bars plotted for each figure.
This is a sample average standard deviation over all runs. The
evolutions ofµCR andµF are also plotted in this figure. In
addition, the error values of all function atD = 30 are shown
in Table XI for JADE-wo, JADE-w, rJADE-wo, rJADE-w, and
SaJADE. When several algorithms obtain the global optimum
of a function, only the intermediate results are reported.

According to the results shown in Tables III, IV, and XI,
from Figure 2 we can see that theµs can adaptively adjust
with respect to the chosen problems, which means that our
proposed SaM can choose a more suitable strategy for these
different problems adaptively. For example, for functionf01
at D = 30, JADE without archive is better than JADE
with archive, hence theµs tends to lower values as shown
in Figure 2 (a). However, whenD = 100 for f01, JADE-
w shows better performance than JADE-wo, in this caseµs

obtains higher values in Figure 2 (b). Similar conclusions can
also be drawn aboutµs on other functions from Figure 2.
In addition, Figure 2 indicates that SaJADE is also able
to maintain the adaptation of parametersµCR and µF as
shown in JADE [15], [16]. Moreover, Table XI indicates that
on the majority of the functions SaJADE obtains the best
results compared with JADE methods. This is because of the
cooperation among the different strategies in SaJADE.

By carefully looking at the results shown in Figure 2, we
can observe that theµs values are most varied between0.3
and0.7. It means that Strategy 1 and Strategy 4 have seldom
chances to be executed. For example, in Figure 1 (i) JADE
with Strategy 4, i.e., rJADE-w, is able to provide the best
result among four JADE methods, so ideally theµs values
in Figure 2 (f) should be greater than0.8, not around0.6.
With respect to this phenomenon, this may be because the four
strategies used in our approach perform very similarly: Allof
them are likely to generate the promising offspring and lead
to a successful update, i.e., the trial vector generated by the
strategy is better than its target vector [16]. Thus, theµs values
are almost around the initial value0.5. However, if some of
the strategies in the pool are very poor for a problem, the first
SaM can still pursuit the better strategy, unrelated to the order
of the strategies in the pool. In order to verify this expectation,
we select four different strategies as the pool in Algorithm2
to optimize functionf01 at D = 30. The four strategies are:
1) “DE/best/1/bin”, 2) “DE/rand/2/bin”, 3) “DE/rand/3/bin”,
and 4) “DE/rand/4/bin”. The initial values ofµs are set to be
0.1, 0.5, and0.9, respectively. All other parameters are kept
unchanged as mentioned in Section IV-A. In addition, JADE
with each of the above strategy is also tested onf01. All results
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TABLE VI

NFFES REQUIRED TO OBTAIN ACCURACY LEVELS LESS THANV TR FOR ALL FUNCTIONS ATD = 30. “NA” INDICATES THE ACCURACY LEVEL IS NOT

OBTAINED AFTER MAX NFFES. THE SUCCESSFUL RATESr IS SHOWN IN THE PARENTHESES.

F jDE JADE-wo JADE-w SaDE SaJADE
f01 5.89E+04± 1.15E+03 (1.00) 2.90E+04± 8.72E+02(1.00) 3.03E+04± 8.54E+02 (1.00) 4.35E+04± 6.06E+02 (1.00) 2.40E+04± 5.55E+02(1.00)
f02 8.12E+04± 1.27E+03 (1.00) 5.08E+04± 2.49E+03(1.00) 5.48E+04± 2.89E+03 (1.00) 7.19E+04± 9.36E+02 (1.00) 3.90E+04± 1.44E+03(1.00)
f03 3.56E+05± 1.58E+04 (1.00) 1.02E+05± 4.60E+03 (1.00) 7.78E+04± 3.88E+03(1.00) 3.11E+05± 2.09E+04 (1.00) 7.88E+04± 3.63E+03(1.00)
f04 2.93E+05± 1.39E+04 (1.00) 4.50E+05± 1.06E+04 (1.00) 3.08E+05± 5.18E+03 (1.00) 1.68E+05± 4.82E+03(1.00) 2.09E+05± 8.25E+03(1.00)
f05 4.66E+05± 0.00E+00 (0.02) 1.53E+05± 5.50E+03 (0.88) 1.22E+05± 5.43E+03(0.96) 2.81E+05± 1.10E+04 (0.88) 1.18E+05± 3.61E+03(1.00)
f06 2.22E+04± 8.48E+02 (1.00) 1.09E+04± 4.14E+02(1.00) 1.15E+04± 3.73E+02 (1.00) 1.58E+04± 4.66E+02 (1.00) 9.20E+03± 2.25E+02(1.00)
f07 1.06E+05± 2.59E+04 (1.00) 2.79E+04± 5.86E+03(1.00) 2.99E+04± 7.48E+03 (1.00) 5.40E+04± 1.15E+04 (1.00) 2.26E+04± 4.59E+03(1.00)
f08 9.09E+04± 2.05E+03(1.00) 1.21E+05± 1.91E+03 (1.00) 1.17E+05± 2.21E+03 (1.00) 9.94E+04± 1.97E+03(1.00) 1.01E+05± 3.98E+03 (1.00)
f09 1.17E+05± 3.84E+03(1.00) 1.32E+05± 2.06E+03 (1.00) 1.43E+05± 1.93E+03 (1.00) 1.35E+05± 3.22E+03 (1.00) 1.27E+05± 4.16E+03(1.00)
f10 8.95E+04± 1.50E+03 (1.00) 4.54E+04± 1.17E+03(1.00) 4.72E+04± 1.58E+03 (1.00) 6.85E+04± 8.06E+02 (1.00) 3.61E+04± 8.47E+02(1.00)
f11 6.20E+04± 2.01E+03 (1.00) 3.20E+04± 1.96E+03(1.00) 3.44E+04± 5.12E+03 (1.00) 4.58E+04± 1.47E+03 (1.00) 2.51E+04± 7.64E+02(1.00)
f12 5.34E+04± 1.30E+03 (1.00) 2.74E+04± 1.11E+03(1.00) 2.91E+04± 1.39E+03 (1.00) 3.89E+04± 7.64E+02 (1.00) 2.17E+04± 7.32E+02(1.00)
f13 6.43E+04± 1.59E+03 (1.00) 3.51E+04± 1.99E+03(1.00) 3.76E+04± 3.26E+03 (1.00) 4.71E+04± 1.10E+03 (1.00) 2.55E+04± 1.07E+03(1.00)
f14 NA ± NA (0.00) NA ± NA (0.00) 2.10E+05± 2.41E+04(1.00) NA ± NA (0.00) 2.18E+05± 2.05E+04(1.00)
f15 NA ± NA (0.00) NA ± NA (0.00) NA ± NA (0.00) NA ± NA (0.00) NA ± NA (0.00)
f16 2.55E+05± 1.79E+04(1.00) NA ± NA (0.00) NA ± NA (0.00) 2.84E+05± 0.00E+00 (0.02) 1.51E+05± 7.01E+04(0.72)
F06 2.53E+05± 0.00E+00 (0.02) 1.33E+05± 1.11E+04 (0.74) 1.09E+05± 6.15E+03(0.84) 2.46E+05± 1.49E+04 (0.28) 1.04E+05± 7.97E+03(0.96)
F07 1.01E+05± 1.66E+04 (0.66) 4.52E+04± 5.76E+03 (0.56) 3.49E+04± 2.14E+04(0.80) 1.02E+05± 1.44E+04 (0.62) 3.29E+04± 4.02E+03(0.80)
F09 8.34E+04± 3.69E+03(1.00) 9.60E+04± 1.85E+03(1.00) 1.15E+05± 2.09E+03 (1.00) 1.10E+05± 2.76E+03 (1.00) 1.04E+05± 2.76E+03 (1.00)
F10 NA ± NA (0.00) NA ± NA (0.00) NA ± NA (0.00) NA ± NA (0.00) NA ± NA (0.00)
∑

Sr 14.70 15.18 16.60 14.80 17.48

TABLE VIII

NFFES REQUIRED TO OBTAIN ACCURACY LEVELS LESS THANV TR FOR ALL FUNCTIONS ATD = 100. “NA” INDICATES THE ACCURACY LEVEL IS NOT

OBTAINED AFTER MAX NFFES. THE SUCCESSFUL RATESr IS SHOWN IN THE PARENTHESES.

F jDE JADE-wo JADE-w SaDE SaJADE
f01 5.38E+05± 5.12E+03 (1.00) 1.96E+05± 3.46E+03 (1.00) 1.64E+05± 2.61E+03(1.00) 3.67E+05± 4.84E+03 (1.00) 1.34E+05± 2.82E+03(1.00)
f02 7.45E+05± 5.74E+03 (1.00) 2.85E+05± 3.80E+03 (1.00) 2.61E+05± 3.97E+03(1.00) 5.80E+05± 5.09E+03 (1.00) 2.03E+05± 2.21E+03(1.00)
f06 2.04E+05± 3.30E+03 (1.00) 1.03E+05± 8.58E+04 (1.00) 6.23E+04± 4.68E+03(1.00) 1.14E+05± 3.14E+03 (1.00) 5.05E+04± 8.58E+02(1.00)
f07 NA ± NA (0.00) 2.09E+05± 3.09E+04 (1.00) 1.94E+05± 2.66E+04(1.00) 6.27E+05± 1.03E+05 (0.98) 1.45E+05± 2.04E+04(1.00)
f10 7.82E+05± 5.45E+03 (1.00) 2.88E+05± 4.04E+03 (1.00) 2.37E+05± 2.81E+03(1.00) 5.69E+05± 6.21E+03 (1.00) 1.97E+05± 3.77E+03(1.00)
f11 5.30E+05± 6.46E+03 (1.00) 1.95E+05± 6.33E+03 (0.92) 1.66E+05± 6.39E+03(1.00) 3.65E+05± 1.60E+04 (0.96) 1.35E+05± 2.55E+03(1.00)
f12 5.11E+05± 6.17E+03 (1.00) 1.58E+05± 3.65E+03 (1.00) 1.38E+05± 2.48E+03(1.00) 2.91E+05± 3.64E+03 (1.00) 1.12E+05± 1.94E+03(1.00)
f13 6.53E+05± 1.01E+04 (1.00) 2.05E+05± 1.56E+04 (1.00) 1.71E+05± 4.11E+03(1.00) 3.82E+05± 6.64E+03 (1.00) 1.37E+05± 3.77E+03(1.00)
f16 NA ± NA (0.00) 3.92E+05± 1.55E+05 (1.00) 3.34E+05± 4.89E+04(0.86) NA ± NA (0.00) 3.47E+05± 1.03E+05(1.00)
F07 NA ± NA (0.00) 2.90E+05± 1.69E+04 (0.82) 1.75E+05± 4.40E+03(0.80) 5.47E+05± 2.43E+04 (0.78) 1.80E+05± 4.08E+03(0.88)
F08 NA ± NA (0.00) NA ± NA (0.00) NA ± NA (0.00) NA ± NA (0.00) 9.50E+05± 0.00E+00 (0.02)
F09 9.98E+05± 0.00E+00 (0.02) NA ± NA (0.00) NA ± NA (0.00) NA ± NA (0.00) NA ± NA (0.00)
∑

Sr 7.02 9.74 9.66 8.72 9.90

TABLE X

COMPARATIVE STUDY OF SAJADE TO THE REPORTED RESULTS OF RECENT ADVANCEEAS. FOR EACH FUNCTION, THE FIRST COLUMN SHOWS THE

MEAN VALUES ; THE SECOND COLUMN IS THE STANDARD DEVIATION(IN PARENTHESIS).

F Max NFFEs SaJADE JADE-wo JADE-w jDE Adaptive LEP Best Lévy

f01 150,000
1.10E-79 1.8E-60 1.3E-54 1.1E-28 6.32E-04 6.59E-04

(7.52E-79) (8.4E-60) (9.2E-54) (1.0E-28) (7.6E-05) (6.4E-05)

f03 150,000
2.95E-20 2.8E-15 8.5E-22 0.090075 0.041850 30.628906

(6.99E-20) (8.2E-15) (3.6E-21) (0.080178) (0.059696) (22.113122)

f05 150,000
2.48E-15 3.2E-01 5.6E-01 3.1E-15 43.40 57.75

(1.70E-14) (1.1E+00) (1.4E+00) (8.3E-15) (31.52) (41.60)

f08 150,000
0.00E+00 4.7E+00 2.4E+00 0.0E+00a 1100.3a 670.6a

(0.00E+00) (2.3E+01) (1.7E+01) (7.3E-12) (58.2) (52.2)

f09 150,000
8.87E-14 1.4E-11 3.8E-11 1.5E-15 5.85 12.50

(2.51E-13) (1.0E-11) (2.0-11) (4.8E-15) (2.07) 2.29

f10 150,000
4.14E-15 4.4E-15 4.4E-15 7.7E-15 1.9E-02 3.1E-02

(0.00E+00) (0.0E+00) (0.0E+00) (1.4E-15) (1.0E-03) (2.0E-03)

f11 150,000
0.00E+00 0.0E+00 2.0E-04 0.0E+00 2.4E-02 1.8E-02

(0.00E+00) (0.0E+00) (1.4E-03) (0.0E+00) (2.8E-02) (1.7E-02)

f12 150,000
1.57E-32 1.6E-32 1.6E-32 6.6E-30 6.0E-06 3.0E-05

(0.00E+00) (5.5E-48) (5.5E-48) (7.9E-30) (1.0E-06) (4.0E-06)

f13 150,000
1.35E-32 1.3E-32 1.3E-32 5.0E-29 9.8E-05 2.6E-04

(0.00E+00) (1.1E-47) (1.1E-47) (1.4E-15) (1.2E-05) (3.0E-05)

a indicates the error value is used based on the reported results.

are averaged over50 independent runs. The convergence graph
and the evolution trend ofµs are shown in Figure 3.

Figure 3 indicates that for different initial values ofµs,
the strategy parameterµs can still converge to around0.15.

It means that the first strategy “DE/best/1/bin” is always
selected after some generations. The reason is that for the
unimodal Sphere functionf01, the first strategy can provide the
successful update all the time; while the other three strategies



12

0 5 10 15

x 10
4

10
−80

10
−60

10
−40

10
−20

10
0

10
20

NFFEs

E
rr

or
 (

lo
g)

f 01, D=30

jDE
JADE−wo
JADE−w
rJADE−wo
rJADE−w
SaDE
SaJADE

(a)

0 1 2 3 4 5

x 10
5

10
−30

10
−25

10
−20

10
−15

10
−10

10
−5

10
0

10
5

10
10

NFFEs

E
rr

or
 (

lo
g)

f 05, D=30

jDE
JADE−wo
JADE−w
rJADE−wo
rJADE−w
SaDE
SaJADE

(b)

0 5 10 15

x 10
4

10
−40

10
−30

10
−20

10
−10

10
0

10
10

NFFEs

E
rr

or
 (

lo
g)

f 12, D=30

jDE
JADE−wo
JADE−w
rJADE−wo
rJADE−w
SaDE
SaJADE

(c)

0 2 4 6 8 10 12 14 16 18

x 10
4

10
−20

10
−15

10
−10

10
−5

10
0

10
5

NFFEs

E
rr

or
 (

lo
g)

F09, D=30

jDE
JADE−wo
JADE−w
rJADE−wo
rJADE−w
SaDE
SaJADE

(d)

0 2 4 6 8 10

x 10
5

10
−60

10
−40

10
−20

10
0

10
20

10
40

10
60

NFFEs

E
rr

or
 (

lo
g)

f 02, D=100

jDE
JADE−wo
JADE−w
rJADE−wo
rJADE−w
SaDE
SaJADE

(e)

0 2 4 6 8 10

x 10
5

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

NFFEs

E
rr

or
 (

lo
g)

f 03, D=100

jDE
JADE−wo
JADE−w
rJADE−wo
rJADE−w
SaDE
SaJADE

(f)

0 2 4 6 8 10

x 10
5

10
−15

10
−10

10
−5

10
0

10
5

NFFEs

E
rr

or
 (

lo
g)

f 10, D=100

jDE
JADE−wo
JADE−w
SaDE
SSaJADE

(g)

0 2 4 6 8 10

x 10
5

10
−40

10
−30

10
−20

10
−10

10
0

10
10

NFFEs

E
rr

or
 (

lo
g)

f 12, D=100

jDE
JADE−wo
JADE−w
rJADE−wo
rJADE−w
SaDE
SaJADE

(h)

0 2 4 6 8 10

x 10
5

10
−60

10
−50

10
−40

10
−30

10
−20

10
−10

10
0

10
10

NFFEs

E
rr

or
 (

lo
g)

f 16, D=100

jDE
JADE−wo
JADE−w
rJADE−wo
rJADE−w
SaDE
SaJADE

(i)

Fig. 1. Convergence graph of jDE, JADE-wo, JADE-w, rJADE-wo, rJADE-w, SaDE and SaJADE on the selected functions. (a)f01 (D = 30). (b) f05
(D = 30). (c) f12 (D = 30). (d) F09 (D = 30). (e) f02 (D = 100). (f) f03 (D = 100). (g) f10 (D = 100). (h) f12 (D = 100). (i) f16 (D = 100).

TABLE XI

ERROR VALUES ATD = 30 FOR ANALYSIS OF STRATEGY ADAPTATION OFSAJADE.

F NFFEs JADE-wo JADE-w rJADE-wo rJADE-w SaJADE
f01 150,000 9.93E-62± 5.34E-61† 2.69E-56± 1.41E-55† 4.92E-61± 2.18E-60† 1.62E-53± 1.14E-52† 1.10E-79± 7.52E-79
f02 200,000 5.53E-28± 3.16E-27† 3.18E-25± 2.05E-24† 9.41E-31± 4.79E-30† 7.55E-28± 3.25E-27† 1.35E-47± 7.53E-47
f03 500,000 1.93E-56± 7.02E-56† 6.11E-81± 1.62E-80‡ 6.18E-01± 2.14E+00† 1.71E+00± 4.04E+00† 1.17E-77± 3.39E-77
f04 500,000 1.34E-09± 5.71E-10† 5.29E-14± 2.05E-14† 6.33E-16± 3.25E-16† 1.32E-15± 6.69E-16† 1.26E-19± 1.35E-19
f05 500,000 4.78E-01± 1.31E+00† 1.59E-01± 7.89E-01 2.85E-29± 6.09E-29† 1.48E-01± 1.05E+00† 1.60E-30± 6.32E-30
f06 10,000 3.12E+00± 1.54E+00† 5.62E+00± 1.87E+00† 1.00E-01± 3.00E-01† 1.18E+00± 1.03E+00† 0.00E+00± 0.00E+00
f07 300,000 6.59E-04± 2.43E-04† 6.14E-04± 2.55E-04† 4.58E-04± 2.04E-04 4.90E-04± 1.98E-04† 4.10E-04± 1.48E-04
f08 100,000 4.14E-05± 2.37E-05† 2.62E-04± 3.59E-04† 2.50E-09± 4.13E-09‡ 5.44E-09± 5.67E-09‡ 6.83E-07± 2.70E-06
f09 100,000 2.68E-03± 1.90E-03‡ 1.33E-01± 9.74E-02 4.76E-03± 4.38E-03‡ 8.95E-03± 9.64E-03‡ 1.54E-01± 2.25E-01
f10 50,000 1.10E-09± 7.45E-10† 3.35E-09± 2.84E-09† 1.38E-10± 2.44E-10† 4.97E-10± 5.35E-10† 1.12E-12± 1.07E-12
f11 50,000 1.44E-14± 7.05E-14† 1.57E-08± 1.09E-07† 6.66E-18± 4.66E-17† 7.55E-17± 5.28E-16† 0.00E+00± 0.00E+00
f12 50,000 1.84E-17± 4.52E-17† 1.67E-15± 1.02E-14† 7.15E-20± 1.98E-19† 1.60E-18± 4.85E-18† 2.10E-23± 6.89E-23
f13 50,000 3.16E-13± 9.79E-13† 1.87E-10± 1.09E-09† 2.36E-17± 5.45E-17† 2.55E-15± 9.71E-15† 3.83E-21± 1.56E-20
f14 300,000 1.72E-03± 3.05E-03† 1.68E-09± 1.97E-09‡ 1.63E-02± 7.01E-02† 8.15E-09± 1.74E-09† 2.88E-09± 2.43E-09
f15 300,000 2.02E-01± 1.41E-02† 2.00E-01± 1.63E-12† 1.58E-01± 4.94E-02 2.52E-01± 5.04E-02† 1.76E-01± 4.28E-02
f16 300,000 2.61E-06± 1.21E-06† 2.78E-05± 8.43E-06† 1.53E-07± 5.24E-07 1.57E-07± 4.00E-07 1.44E-07± 4.92E-07
F06 300,000 7.00E+00± 1.87E+01† 2.56E+00± 6.22E+00 2.21E+00± 1.12E+01† 3.49E+00± 1.53E+01† 1.59E-01± 7.89E-01
F07 300,000 1.57E-02± 1.13E-02† 5.96E-03± 7.39E-03‡ 1.29E-02± 1.02E-02 4.83E-03± 6.19E-03‡ 1.04E-02± 8.48E-03
F09 100,000 2.87E-03± 1.82E-03‡ 1.35E+00± 6.08E-01† 3.69E-03± 3.61E-03‡ 3.55E-03± 4.98E-03‡ 1.13E-01± 1.60E-01
F10 300,000 2.88E+01± 5.33E+00† 2.82E+01± 5.32E+00 4.01E+01± 2.23E+01† 4.25E+01± 2.10E+01† 2.66E+01± 4.44E+00

w/t/l 18/0/2 13/4/3 13/4/3 15/1/4 –

† indicates SaJADE is significantly better than its competitor by the Wilcoxon signed-rand test atα = 0.05.
‡ means that the corresponding algorithm is better than our proposed SaJADE method.
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Fig. 2. Adaptation characteristics ofµCR, µF , andµs on the selected functions. (a)f01 (D = 30). (b) f01 (D = 100). (c) f03 (D = 30). (d) f14
(D = 30). (e) f12 (D = 30). (f) f12 (D = 100).
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Fig. 3. Analysis of the adaptation characteristics ofµs with different initial values on the functionf01 at D = 30. (a) Convergence graph of JADE with
different strategies and SaJADE with different initial values ofµs. (b) The evolution trend ofµs in SaJADE with different initial values.
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Fig. 4. Convergence graph of jDE, JADE-wo, JADE-w, rJADE-wo, rJADE-w, SaDE and SaJADE on the real-world problems. (a) System of linear equations.
(b) Chebychev polynomial fitness problem atD = 9. (c) Chebychev polynomial fitness problem atD = 17.
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TABLE XII

MEAN AND STANDARD DEVIATION OF THE FINAL VALUES OF THE BEST-SO-FAR SOLUTIONS OVER50 INDEPENDENT RUNS FOR THE LINEAR EQUATIONS

PROBLEM AND THE CHEBYCHEV POLYNOMIAL FITTING PROBLEM.

Prob Max NFFEs jDE JADE-wo JADE-w SaDE SSaJADE
LES 300,000 1.53E+05± 1.90E+04 6.54E+04± 2.15E+03 7.40E+04± 2.30E+03 8.75E+04± 3.28E+04 6.09E+04± 3.24E+03

CPF(D = 9) 100,000 7.33E+04± 9.08E+03 3.29E+04± 1.49E+03 3.33E+04± 1.35E+03 4.57E+04± 4.41E+03 3.10E+04± 1.22E+03

CPF(D = 17)⋆ 300,000 3.34E+04± 4.50E+04 4.24E+02± 6.36E+02 3.44E+02± 2.77E+02 2.50E+04± 3.82E+04 2.61E+02± 3.32E+02

⋆ indicates that the error values of the final solutions are used, since no algorithm can solve the corresponding problem within the MaxNFFEs.

perform badly (as shown in Figure 3 (a)) because of the high
diversity generated by these strategies. From this experiment,
we can see that the first SaM is still able to adaptively
determine a more suitable strategy for the problem at hand.
The influence of the order of strategies is not very significant
on the performance of our approach. However, Figure 3 (b)
indicates that if the initial value ofµs is far away from the best
strategy, the first SaM might need a relative long run to pursuit
the best strategy, and hence, deteriorates the performance.
The reason might be that when we update the mean value
of Hs in Eqn. (24), we only consider the successful strategy
parameterηi. We don’t consider the fitness improvement of the
successful strategy, which may also affect the performanceof
our approach. We leave this work in our future work.

F. Analysis of the Simplicity

In [35], Ong and Keane stated that the simplicity of an
algorithm is also very important. The simplicity means easeof
implementation and a minimum numbers of control parameters
of the algorithm [35]. As described in Section III-B, we can
see that our proposed three SaMs are all very simple and easy
to be implemented. They don’t increase the complexity of the
original DE algorithm. Compared with JADE [15], the first
SaM introduce one additional parameterµs, this parameter is
insensitive for different problems6. Similar to the parameter
adaptation in jDE [23], in the second SaM, the parameterδ is
easily set as theτ1 andτ2.

G. Comparison on Two Real-World Problems

In this section, two real-world problems are used to evaluate
the capability of solving the real-world problems of our ap-
proach. The two problems are the systems of linear equations
problem (LES, for short) [46] and the Chebychev polynomial
fitting problem (CPF, for short) [3]. The LES problem is
defined atD = 10. The CPF problem is defined atD = 9 and
D = 17. Both of the two problems have the minimal values of
0. Since we don’t make any modifications of these problems,
we omit to describe them. More details can be found in [46]
and [3]. These two real-world problems have been widely used
in the EA literature, for example, in [47], [48], and [49].

We use SaJADE, jDE, JADE-wo, JADE-w, and SaDE to
optimize the two problems. Note that in this experiment our
purpose is only to test the potential of solving the real-world
problems of SaJADE. Table XII shows the mean and standard

6Experiments on the effect of the initial values ofµs are not reported due
to the tight space limitation. Interested readers can contact the authors for
more details.

deviation of the final results of the best-so-far solutions over
50 runs. The MaxNFFEs for each problem are shown in
column 2 of this table. Since for the LES problem and the
CPF problem atD = 9 all of the algorithms can obtain
the optimal value, in Table XII the NFFEs are reported in
the second and third columns. The error values of CPF at
D = 17 are reported in the fourth column. From Table XII,
it is clear that SaJADE provides consistently the best results
among the five DE variants. Additionally, some representative
convergence graphs are shown in Figure 4. The convergence
curves of rJADE-wo and rJADE-w are also plotted in Figure 4.
It can be seen that SaJADE obtains the fastest convergence
speed compared with other DE variants.

H. Discussion

The DE algorithm is an efficient and versatile population-
based, direct search algorithm for global optimization, which
has been widely used in many scientific fields. In the original
DE algorithm and many DE variants, there are many mutation
strategies available. However, the choice of the best mutation
strategy is difficult for a specific problem. In the previous
DE variants, the study on the adaptive strategies of DE is
scarce [12], [13], and [11]. Due to these considerations, inthis
work, we propose a family of improved DE variants, which use
several simple methods to implement the strategy adaptation.
Experiments have been conducted on20 benchmark problems
and two real-world problems. From the experimental results
we can summarize that:

1) Among three different strategy adaptation methods, our
proposed first method combined with JADE obtains the
overall best performance as shown in Section IV-C.
Moreover, all of the strategy adaptation methods is able
to provide the better results than the uniform strategy
selection method.

2) According to the experimental results shown in Sec-
tion IV-E, we can see that the first SaM is able to
adaptively select a more suitable strategy for a specific
problem. In addition, all of the proposed SaMs are very
simple and ease of implementation.

3) The proposed SaJADE method (JADE combined with our
proposed first SaM) provides better, or highly competi-
tive, results compared with other DE variants considered
in this work not only for the benchmark problems, but for
two real-world problems. Moreover, SaJADE is able to
enhance the performance of JADE in terms of the quality
of the final solutions and the convergence speed.

4) Although SaJADE shows good overall performance, it
maybe still be trapped in the local optima occasionally,
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e.g., forf16 andF06 atD = 30. The reason might be the
rapid decrease of the population diversity. The possible
improvement of SaJADE is the population restart method
as proposed in [50] or [51]. However, this is beyond the
scope of this work, we leave it in our future work.

V. CONCLUSIONS ANDFUTURE WORK

In this paper, we describe a family of improved DE variants,
where two simple strategy adaptation mechanisms (SaMs)
have been implemented to adaptively select a more suitable
strategy with respect to the chosen problems. In the proposed
SaM, a strategy parameterη is used control the selection of
different strategies.η ∈ [0, 1) is a real number, thus there are
possible many methods that can be used to update it. In this
work, two methods inspired by the ideas from the parameter
adaptation in the DE literature are presented to update the
parameterη. Our proposed SaMs are combined with JADE,
which is a recently proposed DE variants, for the numer-
ical optimization. Experiments have been conducted on20
benchmark problems and two real-world problems. The results
verify our expectation that SaM is able to adaptively determine
a more suitable strategy for a specific problem. Compared
with other state-of-the-art DE variants, our approach performs
better, or highly comparably, in terms of the quality of the final
solutions and the convergence rate. Furthermore, SaJADE is
able to enhance the performance of JADE.

Possible direction for the future work includes adopting the
population restart method to further improve the reliability of
SaJADE. In addition, we will also investigate other parameter
adaptive methods of EAs, e.g., the adaptation methods pro-
posed in evolution strategy, to handle the strategy parameter.
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