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Abstract— Differential evolution (DE) is a simple yet efficient only if it has better fitness value. In [2], Price and Storneyav
evolutionary glgorlthm for global numerical optimization, whllch the working principle of DE with single mutation strategy.
has been widely used in many areas. However, the choice of| giay on, they suggested ten different mutation strategies

the best mutation strategy is difficult for a specific problem To . ) . .
alleviate this drawback and enhance the performance of DE,ni in [3], [4]. Among DE's advantages are its simple structure,

this paper, we present a family of improved DE that attempts o €ase of use, speed, and robustness. These advantages give
adaptively choose a more suitable strategy for a problem aténd. it many real-world applications, such as data mining [5],

In addition, in our proposed strategy adaptation mechanism [6], pattern recognition, digital filter design, neural wetk

(SaM) different parameter adaptation methods of DE can be training, etc. [3], [7], [8]. Most recently, DE has also beesed

used for different strategies. In order to test the efficieng of . . .
our approach, we combine our proposed SaM with JADE, which for the global permutation-based combinatorial problegjs [

is a recently proposed DE variant, for numerical optimization. Although DE has been widely used in many fields, it
Twenty widely used scalable benchmark problems are chosen has been shown to have certain weaknesses. One of these
from the literature as the test suit. Experimental results \erify  \yeaknesses is that choosing the best among different mu-

our expectation that SaM is able to adaptively determine a me . . . . o
suitable strategy for a specific problem. Compared with othe tation strategies available for DE is not easy for a specific

state-of-the-art DE variants, our approach performs bette, or at ~ Problem [10], [11]. To the best of our knowledge, there is a
least comparably, in terms of the quality of the final solutims and  little work to improve DE with the adaptive strategy method.
the convergence rate. Finally, we validate the powerful cagvility ~ Xie and Zhang [12] presented a swarm algorithm framework
of our approach by solving two real-world optimization problems. (SWAF), where a neural network is used to adaptively update
the weights on some strategies of DE based on their previous
Index Terms— Differential evolution; strategy adaptation; pa-  success rates. In [13], Zamudaal. set fixed selection prob-
rameter adaptation; numerical optimization; real-world p rob- ability for each strategy. Then, a uniform randomly gerextat
lems. parameter is used to determine which mutation strategy will
be selected. Qiret al. [10], [11] proposed a variant of DE,
|. INTRODUCTION namely SaDE. In SaDE, it implements different strategieb an

, ) updates their weights in the search based on their previous
O VER THE LAST few decades, evolutionary algor'thm%uccess rafe

(EAs) have received much attention regarding their po- In order to select a more suitable strategy adaptively for

tential as global optimization techniques [1]. Inspiredthg e
; . . ; specific problem and further enhance the performance of
mechanisms of natural evolution and survival of the fitte . : : : .

d E, in this paper, we describe a family of DE variants,

EAs utilize a collective learning process of a population . . . . :
individuals. Offspring are generated using randomizedopén which a simple strategy adaptation mechanism (SaM) is

. . oS : implemented for each variant. Additionally, in our propdse
ations such as mutation and recombination. According to . . .
. . .2 "~ SaM different parameter adaptation methods proposed in the
fithess measure, the selection process favors better dudilg

) DE literature can be used for different strategies. In otder
to reproduce more often than those that are relatively worse . .
valuate the performance of our approach, SaM is combined

plﬁerent_lal ev_olutlon (DE), proposed_ by Storn anc{/evith JADE [15], [16], which is a recent DE variant and obtains
Price [2], is a simple yet powerful EA with the generate-

d-test feature f lobal optimizati In DE. th @t good results in numerical optimization. Experimental fessu
and-test feature for global opimization. in LUk, the MWl ., yieqte that our proposed SaM is able to adaptively detegmi
operator is based on the distribution of solutions in theemnitr

. . o more suitable strategy at different stages of evolutiocgss
population. New candidates are created by combining the 9y g Al

. . f a specific problem.
parent solution and the mutant. A candidate replaces trenpar P P . . . .
The rest of this paper is organized as follows. Section Il
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Il. DIFFERENTIAL EVOLUTION AND ITS VARIANTS

Algorithm 1 The DE algorithm with DE/rand/1/bin strategy

In this work, we consider the following numerical optimiza-
tion problem:

1: Generate the initial population
2: Evaluate the fitness for each individual
3: while The halting criterion is not satisfiedio

C e 4: for :=1to NP do
Minimize  f(x), X €5, @ 5: Select uniform randomly # ro # r3 # i
whereS C R” is a compact setx = [z, 22,--- ,2p|’, and 6 Jrana = rndint(1, D)

D is the dimension of the decision variables. Generally, fogf
each variabler; it satisfies a boundary constraint 9

Recently, using EAs to solve the global optimization ha¥:
been very active, producing different kinds of EA for optia 13
. . . . . . 14:
tion in the continuous domain, such as genetic algorithriik [1 15.
evolution strategy [18], evolutionary programming [19hrp 1.
ticle swarm optimization (PSO) [20], immune clonal algo47:

for j =1to D do
if rndreal;[0,1) < CR Or j == jrqana then
Uiyj = Vi = Tryj + F - (Tryj — Trg,j)
else
ui,]‘ = m,j
end if
end for
end for
for i=1to NP do
Evaluate the offspringu;
if f(u,) is better tharor equal tof(x;) then

rithm [21], differential evolution [2], etc. 18: Replacex; with u;
19: end if
. . . 20:  end for
A. Differential Evolution 21+ end while

The DE algorithm [2] is a simple EA for global humerical
optimization. It creates new candidate solutions by coimigin
the parent individual and several other individuals of tame
population. A candidate replaces the parent only if it hatebe
fitness value. The pseudo-code of the original DE algorithm

3) “DE/rand/2™:

V; = X’r‘1 + F . (sz — xr?’) + F . (xr4 - XT5) (5)

is shown in Algorithm 1. Wheré is the number of decision 4) “DE/current-to-best/%*

variables;N P is the population sizef" is the mutation scaling
factor; CR is the crossover ratey; ; is the j-th variable of

v, =x;+F - (xbest — xi) + F- (xr2 — xm) (6)

the solutionx;; u; is the offspring.rndint(1, D) is a uni- where x;.5; represents the best individual in the current

formly distributed random integer number betweleand D.

generation;,re, 73,74, andrs € {1,--- , NP}, andr; #

rndreal;[0, 1) is a uniformly distributed random real numbef2 Fr3FTAF s F A

n [0,1), generated anew for each valuejofMany mutation
strategies to create a candidate are available. In Algarith
the classic “DE/rand/1/bin” strategy is illustrated (sew$ 6 .
- 13 of Algorithm 1). More details on “DE/rand/1/bin” and
other DE strategies can be found in [3] and [4]. In [3], the
vectorx; is referred to agarget vector The vectors,,, v;,
and u; are named adase vectar mutant vector and trial
vector, respectively.

From Algorithm 1, we can see that there are only three®
control parameters in DE. These aMéeP, F' and CR. As
for the terminal conditions, we can either fix the maximum
number of fithess function evaluations (NFFB4ax NFFEs
or the precision of a desired solutidMR (value to reach).

In DE, many schemes have been proposed [3], [4] that use
different mutation strategies and/or recombination ofi@na
in the reproduction stage. In order to distinguish among its e
schemes, the notation “DE/a/b/c” is used, where “DE” desiote
the DE algorithm; “a” specifies the vector to be mutated; “b”
is the number of difference vectors used; and “c” denotes
the crossover scheméjnomial or exponential In line 9 of
Algorithm 1, the mutation strategy is called “DE/rand/1”,

Generally, different strategy has different charactesstnd
is suitable for a set of problems. For example:

The “DE/rand/1/bin” strategy is a classic DE strategy,
which is usually less greedy, slower convergence speed,
and more reliable than the strategies based on the best-
so-far solution. Hence, this strategy is more suitable for
multi-modal problems. It has been widely used in the DE
literature [2], [23], [6], [24], [25], etc.

The best-so-far solution based strategies such as
“DE/best/1”, “DElcurrent-to-best/1”, always converge
faster and are more suitable for unimodal functions [26],
[11]. In addition, the “DE/best/1” strategy was succeeded
in solving some design problems, e.g., the digital design
problems [27] and the optimal design of shell-and-tube
heat exchangers [28].

As stated in [11], the strategies based on the two differ-
ence vectors, e.g., “DE/rand/2”, are able to provide better
perturbation than the one difference vector based strategy
However, the performance of the two difference vectors
based strategies needs to be further investigated.

which is a classic strategy of DE [3]. Other well-knowrB- Some Variants of DE

mutation strategies are listed as follows.
1) “DE/best/1™:
Vi = Xpest + F- (Xr2 - XT3) (3)
2) “DE/best/2":

Vi = Xpest + F- (Xr2 - XT‘3) + F- (Xr4 - xrs) (4)

In the DE literature, there are many improved variants.

In this section, we only briefly describe three of them, i.e.,
jDE [23], SaDE [11], and JADE [15], [16], since these
methods show good performance and we will compare them
with our approach in this work.

2“DE/current-to-best” is also referred to as “DE/targesest/” [3], [22].



1) The jDE method:In jDE [23], the parameters’R; generations. AfterL P generations, the median value saved
and F; are encoded in each individuaX; (i.e., X; = in CRMemory, is calculated to overwrit€CRm; at each
(x;, CR;, F;)). They are updated as follows: generation. Through experiments, they concluded that SaDE

is effective in obtaining high quality solutions.
F; —{ ?dreall[o'l’l]’ gtlﬁ;fj\}i[soél] <7 @) 3) The JADE method: Recently, Zhang and Sander-
! son [15], [16] proposed a DE variant, namely JADE, which
obtains very competitive results when solving some uncon-
strained benchmark problems and real-world problems. In

whererndreal[a, b] is a uniformly distributed random number‘]ADE’ the authors originally implemented two mutationtstia

betweerns andb. 71 = 0.1 and7, = 0.1 indicate probabilities gies in [15], i.e., “DE/current-tpbest” without archive and

to adjust factord’; andC R;. The newly generateH; andCR; DE/f‘:urrent-tOp best” with archwe: .
are obtained before the mutation and crossover operations) ‘DE/current-topbest/1 (without archive)™:

CR. — rndreal;[0,1], rndreal[0, 1] < 72
‘| CR;, otherwise

(8)

There_fore, they influence the following r_e_combination and vi=xi+ B (xh, — %)+ Fiv (X, — X0y)  (13)
selection. The method has been proved efficient based on some ©s :
benchmark experimental results [23]. 2) “DElcurrent-topbest/1 (with archive)”:

2) The SaDE methodQin et al. [11] proposed the SaDE » 5
method, in which four strategies (“DE/rand/1/bin”, “DEfch Vi=Xi+ Fi - (Xpoq = %Xi) + Fie (%, = %) (14)

to-best/2/bin”, “DE/rand/2/bin”, and “DE/current-tosid/1”) | the latter one, an archive), is used to store the inferior

are adaptively selected based on their previous expeseasice so|ytions recently explored in the evolutionary search evéth
generating promising solutions. In addition, the crosseat®s o xP_ . is apbest solution, which is randomly selected as
CR; are also adaptively changed according to its previoys,e O?S the topl00p% solutions withp € (0,1]. xi, Xr,,
experiences. - _and x}_, are chosen from the current populati@ %,
Denotepy, k = 1,2,---, K as the probability of applying js randomly chosen from the uniol® U A, of the archive
the -th strategy, wheréy’ is the total number of strategiesyng current population. Later on, in order to solve the large
in the strategy poolp; is initialized as1/K. The stochastic scaje problems and further increase the population diyersi
universal selection method is used to select the strategy fRe same authors proposed other two strategies, “DE/i@nd-t
each target vector based on the probabiity p;, is updated pest” without archive and “DE/rand-tabest” with archive,

after LP generations in the following manner: in the following manner [16]:
__ Ske 3) “DE/rand-topbest/1 (without archive)”:
Pr = S g 9)
k=1 k.G vi =Xy, + F;- (xi’est — xh) + F; - (XT2 — XTS) (15)
where
G-1 4) “DE/rand-topbest/1 (with archive)”:
Sk o= Zg:G—LP TLSk_’g +e (10) » _
7 Z?:_C{‘—LP nSk,g + Z?:_ClJ—LP Nfr.q Vi =X, + F;- (Xbest - xm) + F; - (xrz - xra) (16)

where G(G > LP) is the generation countens;, and At each generation, for each target vector the crossover rat
nfr, are the respective numbers of the offspring vectofsf: iS independently generated as follows:

genergted by thek—th strategy that survive Qr fa|ll in the CR; = mdn; (uor, 0.1) (17)
selection operation in the ladtP generations;Sy ¢ is the

success rate of the trial vector generated byktHh strategy and truncated to the intervdd, 1]. Where o is the mean
and successfully entering the next generatieris a small value to generat€'R;. It is updated as follows:

constant value to avoid the possible null success rates.

In SaDE, the mutation factorB; are independently gener- per = (1 —¢) - pcr + c-meana(Scr) (18)
ated at each generation as follows: wherec is a constant if0, 1]; mean 4 (-) is the usual arithmetic
F, = rndn;(0.5,0.3) (11) mean operation; anfic i is the set of all successful crossover

ratesC'R; at generationy.
where rndn;(0.5,0.3) means a random number generated |n order to maintain the population diversity, for each &rg

anew for thei-th target vector based on a normal distributiogector the mutation factoF; is independently calculated as:
with mean0.5 and standard deviatioh.3.

The crossover rates of the-th strategyCR;; are also F; = mdc;(pr,0.1) (19)

independently generated at each generation according to and then truncated to B0 if F; > 1.0 or regenerated if; <

CR; = rndn;(CRmy, 0.1) (12) 0. rndc;(pr,0.1) is a random number generated according to
the Cauchy distribution with location parameter and scale

and truncated tdo0, 1]. Where CRmy, is initialized as0.5. parametei.1. The location parameter is updated in the
DenoteCRMemory;, as the memory to store thé R values following manner:

with respect to the:-th strategy that generated trial vectors
successfully entering the next generation with the previod urp=(1—c¢) pp+c-meang(Sg) (20)



where Sr is the set of all successful mutation factdrs at contributed by the LS to each solution, is adopted to decide

generatiory; andmeany(-) is the Lehmer mean: which LS method will be selected for the following local
1rl oo improvement. SaDE [10], [11] implements adaptive multi-

meany,(Sp) = 2 Fi (21) strategies in the DE framework for global optimization. ¥ru
Z‘iiﬁ‘ F; et al. [36] proposed a self-adaptive multimethod search for

global optimization. In [36], multiple different search-al
I11. OUR APPROACH gorithms are run concurrently and a self-adaptive learning

sStrategy is implemented to automatically adjust the nunolber
in detail, which implement the strategy adaptation mecsrasi ©ffSPring of different algorithms generated at each getiena

(SaMs) for DE, such that they can adaptively choose a more!© the best of our knowledge, among many variants of DE,
suitable strategy for a specific problem at hand. First, W€ Study on using multiple-strategies in DE is scarce. &j,[1
describe the motivations of this work. Second, three Sans 41€ @uthors adopted a neural network to update the weights

presented in detail. Finally, one of the SaMs combined wifyf different strategies of DE. In [13], Zamudet al. used
the JADE method is algorithmically illustrated. the uniform selection method to choose the strategy, where a

fixed selection probability for each strategy is used. SaDi [
o implements different strategies and updates their weight i
A. Motivations the search based on their previous success rate. Howeger, th
In the DE algorithm, there are many mutation strategiestrategy adaptation method proposed in SaDE is relatively
however, choosing the best among different mutation gfieée complex to implement. Based on these considerations, we
available for DE is not easy for a specific problem [10], [11]propose three simple approaches to implement the strategy
Until now, no single mutation strategy has turned out to kedaptation for DE in the following section. Our approach is
best for all problems which, of course, doesn’'t come asdifferent from the previous multiple methods used in EAs.
surprise with regard to the No Free Lunch theorems [29].
To have a better choice of DE’s strategies, Feoktistov aid Strategy Adaptation Mechanisms

Janaqgi [30] introduced a generalization of DE's strategies In our proposed method, for théth individual X;, a
Their approach leaded to a new universal formula of diffestrategy parameten; e [0,1), is used to control the selection
entiation. In [31], lorio and Li proposed a rotation-invamt of the strategy. Suppose that we haif strategies in the
strategy “DE/current-to-rand/1” to solve the rotated rmultstrategy pool, for the-th target vector its mutation strategy
objective optimization problems. Qin and Suganthan [1Q}; — {1,2,---,K}) is obtained as:
proposed a self-adaptive DE algorithm. The aim of their
work was to allow DE to switch between two schemes: Si= |ni x K] +1 (22)
“DE/rand/1/bin” and “DE/best/2/bin” and also to adapt th¢&or example, if K = 4 andn; € [0,0.25), thenS; = 1. It
F and C'R values. Mezura-Montest al. [26] presented an means that, ifX; is the target vector, then the first strategy in
empirical comparison of the generation schemes of DE. Ahe pool will be selected to generate the mutant vector.
and Fatti [32] proposed a point generation scheme that use3o implement the strategy adaptation, we need to address
an approximation to the probability distribution of triabipts two questions: First, which mutation strategies should be
in DE. Recently, Qinet al [11] extended their previous chosen to form the strategy pool? Second, how do we update
work [10]. In their proposed SaDE approach, four mutatiothe strategy parameteg?
strategies were adopted. Differefitk values were also used As mentioned above, there are many strategies of DE, and
for different strategies. Inspired by the idea of PSO, in][22different strategy has different characteristics. Howgetreere
Das et al. proposed a hybrid mutation strategy, where thie no theoretical study on the choice of the optimal pool size
global and local manners of the “DE/target-to-best/1/@ré and the selection of strategies to form the strategy poal unt
implemented. In [15], [16], Zhang and Sanderson presentedw [11]. In order to select different mutation strategies t
four mutation strategies, in which the high-quality sadas form the strategy pool, in this work, we choose four straggi
in the current population and/or the archived inferior tiolus proposed in [15] and [16] to form the strategy pool (i.e., 1.
recently explored can be used to guide the search. “DE/current-topbest” without archive; 2. “DE/rand-tpbest”
Adaptation or self-adaptation is highly beneficial for adju without archive; 3. “DE/current-tpbest” with archive; and
ing control parameters and operators, especially when dahe“DE/rand-topbest” with archive). These strategies have
without any user interaction [14]. Two good reviews relatedeen introduced in Section [I-B. The reasons for choosing
to the operator and parameter adaptation of EAs can these strategies are two-fold. First, they have obtainemtgo
found in [33] and [34]. Besides the parameter and operafeerformance individually as shown in [15] and [16]. Second,
adaptation in EAs, the adaptation of multiple methods is althe two strategies without archive converge faster and are
efficient. Recently, using the adaptive multiple methods fanore suitable to the low-dimensional problems; on the other
population evolution has become popular. Ong and Keane [3&nd, the strategies with archive can provide higher pdjonla
proposed an adaptive memetic algorithm, in which a locdlversity, and hence, they are more suitable to the high-
search (LS) method can be adaptively chosen from the ld8nensional problems. Note that other strategies can aso b
pool to locally improve the solutions at runtime. In [35]gth possible to be chosen into the pool, thesstrategies can be
reward, which is measured using the relative improvemeriteated as instances used as test-bed for the integratitnode

In this section we describe a family of improved DE varian



In order to address the second question, singces a Algorithm 2 JADE with Strategy Adaptation Mechanism

real parameter, many techniques are possible to handle thisInitialize the populationP randomly
parameter. In this work, we introduce two adaptive appreach 2 Evaluate the fitness for each individual i

to update the strategy parametgras follows:

7; is independently generated in the following manner:

[ mdni(ps,1/6), if g=1 (23) 10:
* 7\ rndn;(ps,0.1), otherwise i;

whererndn;(us,0.1) indicates a normal distribution of mean13:
15 and standard deviatidnl. If n; ¢ [0, 1), then it is truncated 1%

to [0, 1). At the first generatiog = 1, the standard deviation is 15

deviation makes the adaptation not function efficiently][16
Denote H, as the set of all successful strategy paramet

7;'s at generatiory. The mearyu, is initialized to be0.5 and 5.
then updated at the end of each generation as follows:  23:

24:

ps = (1 —¢) X ps + ¢ x mean (Hy) (24) 2s:

26:

wherec is a positive constant ifi0, 1] and mean(-) is the 27:
28:

usual arithmetic mean operation. df= 0, no adaptation of

| rndreal(0,1), rndreall0,1] <0 30-
= { Mis otherwise (25) 40
41:

whererndreal[a, b) is a uniformly distributed random numbera2:
generated iffa, b). 0 € [0, 1] indicates the probability to adjust 43:
the strategy parametey; 6 = 0.1 is used in this work. a4:

3) The Uniform ApproachWhen showing the superiority igj
of the adaptive methods, it is necessary to compare them with

9:

16:
1/6 to ensure that the initia}; is generated in the rang@, 1). 7.

If ¢ > 1, the standard deviation is set to b4 in the similar 1s:
way done in [11] and [15]. The reason is that too large stahdak®:

. ! 29:
strategies takes place. ¢f= 1, only the instant mean value 3.

of H, is active. For other casébs< ¢ < 1, both the previous 31
ps and the mean value dff, are active. It means that both3%
the previous strategy value and the current successfukgira gi;
values affect the strategy selection in the next generation 3.

2) The Second Approachnspired by the parameter self-3e6:
adaptation proposed in jDE [23], this approach calculages ag;i

3: Setpucr =0.5;ur =05, us = 0.5, A =¢;9g =1, K =4
. . . . . 4: while The halting criterion is not satisfiedio
1) The First ApproachThis method is inspired by the idea 5.

of parameter adaptation of JADE proposed in [15], [16]. Ats:
each generatiop, for thei-th solution the strategy parameter 7:

Scr=¢;5r = ¢; Hs = ¢ =
for i=1to NP do
Generaten); according to Eqn. (23) =
Calculate the strategy inde% = | x K| +1 =

Randomly choos&?, ., as one of the 00p% best solutions
GenerateC'R; using Eqn. (17)
if S; ==2or S; == 4 then

F;, = rndni(,uF, 0.1) =
else

Fi = rndci(,up, 01)
end if

if S;==1o0rS; ==2then
Selectry, r2, r3 from P randomlyry # r2 # r3 £ 4
else if S; == 3 or S; == 4 then
Selectry, r2 from P randomlyry # r2 # 4; and select
rz fromPUA
end if
Jrand = rndint(1, D)
for j =1to D do
if rndreal;[0,1) < CR Or j == jrana then
if S; ==1 then
wig = xig+ Fi@), ;= i) + Fi(2ryj — 2rg.j)
else if S; == 2 then
Wij = Tpy,j + Fy (1€est,j = @ry3) + Fi(Trg,i — Try.5)
else if S; == 3 then
wig =i+ Fi(@], = i) + Fi(2ryi — Trgj)
else if S; == 4 then
Ui = Try,j+ Fi(zgcst,j =@y j) T Fi(2ry.j — rg.5)
end if
else
ui,]‘ = m,j
end if
end for
end for
fori=1to NP do
Evaluate the offspring;
if f(u,) is better tharor equal tof(x;) then
Update the archive\ with the inferior solutionx;
ORi%SCR;FZ’—)SF;m—)HS =
Replacex; with u;
end if
end for
Update theucr, ir, and us =
g=g+1

the uniform approach, i.e., at each generation a strategy4s end while

uniformly selected from the pool for each target vector. The

uniform approach can be views as a baseline. The strategy

are beyond their boundaries, i®; ¢ [L;,U;], the following
repair rule is applied:

parameter; in the uniform approach is calculated as:
7; = rndreal; [0, 1) (26)

Note that according to the classification of parameter cbntr

methods used in EAs [34], the first and the second approaches

Ti =

L; + rndreal; [0, (Ui — Ly),

1] X |f T, < Ll
U; — rndreal; [0, 1] x (U; — L;),

if x; > U; (27)

are the adaptive methods. The principle of these two methodgererndreal; [0, 1] is uniformly distributed random number
is “Better control parameter values tend to generate iddais from [0,1] in thei-th dimension.

that are more likely to survive and thus these values should

be propagated.” [15]. The third method presented here ¥ o} pE with Strategy Adaptation

a baseline to compare with the adaptive methods.

To make the description clearer, the pseudo-code of the

proposed DE with the first SaM is shown in Algorithm 2.

C. Handling Boundary Constraint of Variables

In this work, the parameter adaptation mechanism proposed

After using the mutation strategy of DE to generate a new JADE [15] is used. To this point of view, this approach can
solution, if one or more of the variables in the new solutiohe regarded as an improved JADE variant. Modified steps with



TABLE |
THE 16 BENCHMARK FUNCTIONS USED IN OUR EXPERIMENTAL STUDYWHERE D IS THE NUMBER OF VARIABLES AND S C RP. EACH OF THEM HAS A
GLOBAL MINIMUM VALUE OF 0. A DETAIL DESCRIPTION OF ALL FUNCTIONS CAN BE FOUND IN[19] AND [37].

Name Test Functions S
Sphere for = >0 F [—100, 100]P
Schwefel 2.22| foo = S0 | |os| + [12, |24 [—10,10]7
Schwefel 1.2 | fos = > 17, (i %5)° [~100, 100]7
Schwefel 2.21| fo. = mdxl{|ml| 1<i< D} [—100, 100]P
Rosenbrock | fos = >27 T [100(ziy1 — 22) + (z; — 1)?] [—30,30]7
Step fos = 21:1 (\_ml +0.5])2 [—100, 100]P
Quartic for = .2 |z + random[0, 1) [—1.28,1.28]7
Schwefel 2.26| fos = >0 | (=, sin(y/[z])) + 418.98288727243369 x D [—500, 500]”
Rastrigin foo = >0 (a7 — 10 Cos(27rml) +10) [—5.12,5.12]7
Ackley fi0 = —20exp(—0. 2\/D s 1) — cxp( 2?:1 cos(2mx;)) + 20 + exp(1) [—32, 32]D
Griewank i1 = 1095 o 7 — 112, cos(\[) +1 [—600, 600]”

i fiz = F{10sin’(rys) + X7, (ys — 17 - [1+ 10sin® (ryst1)] + (yp — 1)7} _ D
Penalized 1 +Z?:1 w(zs, 10,100, 4) [—50, 50]

’ fiz = 1—10{sin2(37rm1) + E{il] x; — 1)%[1 +sin?(3nzi+1)] + (zp — 1)?[1 + sin” 27z p)]} - D
Penalized 2 3P (., 5,100, 4) [—50, 50]
Neumaier 3 fia =32 (@i =12+ 3P mmyy + ZFDDD [-D?, D?)P
Salomon fis =1—cos2m ||z |]) + 0.1 z ||, where|| z ||= 2?:1 T, [—100, 100]P
Alpine fi6 = Zfil |z;sinx; + 0.1z, [—10, 10]]')

respect to JADE are marked with a left arrow=". Our ap- « In general, our proposed three approaches are different
proach is referred to as SaJADE, i.e., Bieategyadaptation- from the above-mentioned variants. They are very simple

basedJADE method. It is worth pointing out that our proposed  and easy to implement.

SaM can also be used in other DE variants. Moreover, inOn the complexity of SaJADE shown in Algorithm 2, our
our proposed SaM, different parameter adaptation methaggorithm does not increase the overall complexity witlpees

of DE can be adopted for different strategies according to JADE. The additional complexity of SaJADE is the parame-
their characteristics. For example, in Algorithm 2, we cea s ter adaptation ofy;, which takesO(N P) operations. Since the
that for the “DE/rand-tgpbest” strategies the mutation factorotal complexity of JADE isO(G- NP - (D +log (N P))) [16],

F; = rndn,(ur,0.1). The reason is that “DE/rand-tbest” where( is the maximal number of generations, SaJADE has
can provide higher population diversity, the relativelyadni;  the same total complexity @d(G - NP - (D +log (N P))). In
values are able to obtain faster convergence rate for the layeneral, the population siz€ P is set to be the proportional to
and moderate-dimensional problems. The mean valugrof the problem dimensio® in the DE literature. Thus, the total
is also updated as Eqn. (20). complexity of SaJADE i€)(G - D?), which is the same as the

Compared with the variants of DE proposed in [12], [13Elassic DE algorithm, JADE, and many other DE variants.
and [11], where the multi-strategies of DE are also used,

the main differences between our proposed SaMs and these IV. EXPERIMENTAL RESULTS
variants are as follows: In order to verify the performance of our proposed SaM,

twenty scalable benchmark functions are chosen from the

« Our SaMs are controlled by one single strategy parametierature as the test suit. Functiorfg; — fi3 are chosen
71, which is a real parameter. It can be adjusted adaptivefsom [19]. Functionsfi4 — f1¢ are selected from [37]. The rest
Other parameter adaptation techniques in EAs are afeur functions ¢yg, Fo7, Fog, andFyg) are selected from [38].
possible to be used to update the strategy parameter For functionsfy; — f16, they are briefly described in Table I.

« Compared with SWAF [12], the weights of strategies aréor functions Fyg, Foz, Fog, and Fig, they can be found
updated by the neural network based on the previoirs [38]. A more detailed description of these functions can
successful rates. This approach is relatively complex be found in [19], [37], [25], and [38].
implement. Also, there are some parameters of the neuraFunctionsfy; — fo4 are unimodal. The Rosenbrock’s func-
network that need to be fine-tuned. tion fos is @ multi-modal function whe > 3 [39]. Function

o In [13], Zamudaet al. presented a multiple-strategiesfys is the step function, which has one minimum and is dis-
DE variant. However, for each strategy they only usecbntinuous. Functiorfy7 is a noisy quartic function. Functions
the pre-defined selection probability; and then a uniforrfys — f16 are multi-modal functions where the number of local
randomly generated parametey is used to determine minima increases exponentially with the problem dimension
which strategy will be selected. Thus, this method is ndthey appear to be the most difficult class of problems for many
a strategy adaptation approach. optimization algorithms. Function&yg, o7, Fog, and g are

« In SaDE [11], each strategy has its own probability, whicmulti-modal. Functionfyy are separable, and the remainihg
is updated by Eqns (9) and (10) according to previodsnctions are non-separable. The shifted and/or rotatadfes
experiences. It is relatively complex to implement. make thesel functions very difficult to solve.



A. Experimental Setup value no worse than the VTR before the MEkFES

In the experiments, we first compare the performance of condition terminates the trial. The successful rS);_eis
different strategy adaptation methods proposed in Settion calculated as the number of successful runs divided by
B. Hence two approaches combined with JADE are imple- the total number of runs.
mented: SaJADE1 with the first SaM and SaJADE2 with * Convergence graph438]: The convergence graphs show
the second SaM. We also implement the strategy adaptation the median error performance of the best solution over

method with learning period.P = 50 proposed in [11] the total runs, in the respective experiments.

into JADE, namely SaJADE3. In addition, JADE with the ° Acceleration rate (AR) [25]: This criterion is used to
uniform strategy selection (Eqgn. (26)) is implemented, elgm compare the convergence speeds between our approach
Uniform-JADE, as a baseline. In Uniform-JADE, the four ~ and other algorithms. It is defined as followdR —

. . NFFEsqther 1 1 1
strategies used in SaJADE are also adopted. Secondly, we Nrrmss roo;» Where AR > 1 indicates our approach is

compare the performance of SaJADE (with the first SaMm) with ~ faster than its competitor.

those of |DE [23], SaDE [11], JADE-wo, and JADE-w [15]

directly, where JADE-wo means JADE without archive an@. Comparison on Different Strategy Adaptation Methods
JADE-w means JADE with archive; both algorithms adopt the | this section, the performance of SaJADE1, SaJADE2,
“DE/current-topbest” strategy [16]. For all experiments, wesaJADE3, and Uniform-JADE is compared to show the su-
use the following parameters unless a change is menﬁonei"ﬁeriority of the adaptive strategy selection methods. The

« Dimension of each functiond = 30 and D = 100; parameters for all algorithms are the same as described in
« Population sizeNP = 100, if D = 30; NP = 400, if Section IV-A. The results of all functions @ = 30 are

D =100 [15], [16]; tabulated in Table Il. The best and the second best results
e pcr = 0.5, ur = 0.5, and ps = 0.5 [15], [16]; are highlighted inboldface anditalic, respectively. Since for
e ¢=0.1 andp = 0.05 [15], [16]; most of the functions the four algorithms can solve them, the

« Value to reach: For functiongo: — fos and fos — fi6, NFFEs are used to compare them. Except for functigpsind
VTR = 10~%; for functions for, Fos, For, Fog, and Fio,  Fy,, the error values of the final solutions are used, because
VTR = 1072 [38], [15]; no algorithm can solve the two functions.

« MaxNFFES: If D = 30: For foi, fos, f10, f12, and fi, From Table Il, we can see that SaJADE1 (JADE with the
Max NFFEs =150,000; for fos — fos, MaxNFFEs = first SaM) obtains the overall best results. It rankson
500, 000; for fo2 and f11, Max NFFEs =200,000; for 17 out of 20 functions in terms of the NFFEs. In addition,
for — foo, fi14 — fi6, and Fos — F19, MaxNFFEs = SaJADEL is able to provide the greatest overall succesatil r
300,000. If D = 100: For all functions MaxNFFEs = (36, = 17.48). The SaJADE3 method obtains the second
1,000,000 (i.e., D x 10,000) [38]. overall best results with respect to the NFFEs, followed by

Moreover, in our experiments, each function is optimize8aJADEZ2. Furthermore, Table Il also indicates that all ef th

over 50 independent rufs We also use the same set othree SaJADE methods is better than Uniform-JADE. This
initial random populations to evaluate different algamithin confirms the superiority of the strategy adaptation apgresc

a similar way done in [24]. Since SaJADEL outperforms all other strategy adaptation
methods, in the following sections, we only compare the
B. Performance Criteria results of SaJADEL (referred to as SaJADE because of no

Five performance criteria are selected from the liter&ONfusion) with those of other DE variants.

ture [38], [25] to evaluate the performance of the algorghm
These criteria are described as follows. D. Comparison of SaJADE with Other DE Variants

o Error [38]: The error of a solutiox is defined ag (x) — In this section we compare the performance of SaJADE
f(x*), wherex* is the global minimum of the function. with that of jDE, SaDE, JADE-wo, and JADE-w in terms
The minimum error is recorded when the MBYEFES is of three aspects: i) the quality of the final solutions; iigth
reached in50 runs. The average and standard deviaticzonvergence speed; and iii) the success$atfd he parameters
of the error values are calculated as well. of all algorithms are used as mentioned in Section IV-A. For

o NFFEs[38]: The NFFEs is also recorded when the VTRall test functions, the dimensions &f = 30 and D = 100 are
is reached. The average and standard deviation of thged. In addition, JADE-wo and JADE-w with the “DE/rand-
NFFEs values are calculated. to-pbest/1” strategy (referred to as rJADE-wo and rJADE-w,

o Successful rate §,) [38]: The successful run of an algo-respectively) are also tested on all problems. However, due
rithm indicates that the algorithm can result in a functioto the tight space limitation, we do not report the results bu

3For |DE and SaDE, some specific parameters (e in [DE andL.P only §how the convergence curves in Figure 1 on the sglected

in SaDE) are set as in [23] and [11], respectively. functions. The paired Wllcqxop_3|gned-ranktes¢yat 0.05 is

4The MaxNFFEs for functionsfo; — f15 are mainly set as in [19], except adopted to compare the significance between two algorithms.

for fos, fos, and foo, they are less than the values in [19], since SaJADE i§he Wilcoxon's test is a non-parametric statistical hygsth
ﬁg'reffj?]g?;ﬁg}%zefg?;' t‘;‘;“m‘;)TN‘Jgggis:réuggi";gsir‘]"’ig”g']a. MaxNFFES. test, which can be used as an alternative to the paired

SAll the algorithms are implemented in standard C++. The sewode test when the results cannot be assumed to be normally

may be obtained from the authors upon request. distributed [40]. There are two reasons to use the Wilcaxon’



TABLE Il
THE PERFORMANCE COMPARISON OF DIFFERENT STRATEGY ADAPTATNOMETHODS FOR ALL FUNCTIONS ATD = 30.

E SaJADEL SaJADE?2 SaJADE3 Uniform-JADE
Mean Std S, Mean Std S, Mean Std S, Mean Std S,
fo1 2.40E+04 | 5.55E+02 [ 1.00 | 2.88E+04 | 8.83E+02 | 1.00 | 2.82E+04 | 7.21E+02 | 1.00 [ 2.89E+04 | 8.04E+02 | 1.00
foz2 3.90E+04 | 1.44E+03 | 1.00 | 5.01E+04 | 2.46E+03 | 1.00 | 4.91E+04 | 2.07E+03 | 1.00 | 5.10E+04 | 2.10E+03 | 1.00
fos 7.88E+04 | 3.63E+03 | 1.00 | 8.79E+04 | 4.27E+03 | 1.00 | 8.97E+04 | 4.59E+03 | 1.00 | 8.94E+04 | 5.09E+03 | 1.00
foa 2.09E+05 | 8.25E+03 | 1.00 | 2.88E+05 | 6.38E+03 | 1.00 | 2.86E+05 | 6.95E+03 | 1.00 | 2.89E+05 | 6.35E+03 | 1.00
fos 1.18E+05 | 3.61E+03 | 1.00 | 1.26E+05 | 5.08E+03 | 0.98 | 1.26E+05 | 3.70E+03 | 0.98 | 1.27E+05 | 3.72E+03 | 0.92
foe 9.20E+03 | 2.25E+02 | 1.00 | 1.07E+04 | 3.94E+02 | 1.00 | 1.05E+04 | 3.26E+02 | 1.00 | 1.06E+04 | 3.85E+02 | 1.00
for 2.26E+04 | 4.59E+03 | 1.00 | 2.61E+04 | 5.55E+03 | 1.00 | 2.71E+04 | 6.07E+03 | 1.00 | 2.65E+04 | 4.89E+03 | 1.00
fos 1.01E+05 | 3.98E+03 [ 1.00 | 1.06E+05 | 2.11IE+03 [ 1.00 | 1.04E+05 | 2.54E+03 | 1.00 | 1.07E+05 | 2.05E+03 | 1.00
foo 1.27E+05 | 4.16E+03 | 1.00 | 1.32E+05| 2.29E+03 | 1.00 | 1.31E+05 | 2.40E+03 | 1.00 | 1.31E+05 | 2.74E+03 | 1.00
fi0 3.61E+04 | 8.47E+02 | 1.00 | 4.45E+04 | 1.21E+03 | 1.00 | 4.41E+04 | 1.51E+03 | 1.00 | 4.47E+04 | 1.71E+03 | 1.00
fi1 2.51E+04 | 7.64E+02 | 1.00 | 3.07E+04 | 1.40E+03 | 1.00 | 3.03E+04 | 3.10E+03 | 1.00 | 3.02E+04 | 9.57E+02 | 1.00
fi2 2.17E+04 | 7.32E+02 | 1.00 | 2.63E+04 | 1.24E+03 | 1.00 | 2.60E+04 | 1.18E+03 | 1.00 | 2.65E+04 | 9.63E+02 | 1.00
fis 2.55E+04 | 1.07E+03 | 1.00 | 3.32E+04 | 2.04E+03 | 1.00 | 3.19E+04 | 1.80E+03 | 1.00 | 3.17E+04 | 1.69E+03 | 1.00
f1a 2.18E+05 | 2.05E+04 | 1.00 | 2.15E+05 | 2.50E+04 | 1.00 | 2.23E+05 | 2.74E+04 | 1.00 | 2.25E+05 | 2.46E+04 | 1.00
fis” 1.76E-01 4.28E-02 | 0.00 1.60E-01 4.95E-02 | 0.00 1.74E-01 4.43E-02 | 0.00 1.77E-01 4.43E-02 | 0.00
fie 1.51E+05 | 7.01E+04 | 0.72 | 2.89E+05 | 0.00E+00 | 0.02 | 2.34E+05 | 2.82E+04 | 0.06 | 2.54E+05 | 5.40E+04 | 0.10
Foe 1.04E+05 | 7.97E+03 | 0.96 1.13E+05 | 8.37E+03 | 0.86 | 1.12E+05 | 8.56E+03 | 0.92 1.15E+05 | 7.44E+03 | 0.80
For 3.29E+04 | 4.02E+03 | 0.80 | 3.57E+04 | 4.74E+03 | 0.74 | 3.57E+04 | 5.29E+03 | 0.80 | 3.63E+04 | 4.74E+03 | 0.74
Foo 1.04E+05 | 2.76E+03 | 1.00 | 1.06E+05 | 2.42E+03 | 1.00 | 1.05E+05 | 2.29E+03 | 1.00 | 1.07E+05 | 2.24E+03 | 1.00
Fio* 2.66E+01 | 4.44E+00 | 0.00 | 2.68E+01 | 5.20E+00 | 0.00 | 3.11E+01 | 5.60E+00 | 0.00 | 3.19E+01 | 5.99E+00 | 0.00
> S 17.48 16.60 16.76 16.56
* indicates that the error values of the final solutions arelusice no algorithm can solve the corresponding problethinvthe MaxNFFEs.
TABLE Il
MEAN AND STANDARD DEVIATION OF THE ERROR VALUES OF THE BESTSO-FAR SOLUTIONS OVER50 INDEPENDENT RUNS FOR ALL TEST FUNCTIONS
AT D = 30.
F Max_NFFEs DE JADE-wo JADE-w SaDE SaJADE
fo1 150,000 1.46E-28+ 1.78E-28 9.93E-62+ 5.34E-61 2.69E-56+ 1.41E-58 3.42E-37+ 3.63E-37 1.10E-79+ 7.52E-79
foz2 200,000 | 9.02E-24+ 6.01E-24 5.53E-28+ 3.16E-27 3.18E-25+ 2.05E-24 3.51E-25+ 2.74E-25 1.35E-47+ 7.53E-47
fos 500,000 1.16E-13+ 1.73E-13 1.93E-56+ 7.02E-56 6.11E-81+ 1.62E-80 1.54E-14+ 4.56E-14 1.17E-77+ 3.39E-77
foa 500,000 | 2.44E-14+ 1.65E-13 1.34E-09+ 5.71E-10 5.29E-14+ 2.05E-14 6.39E-27+ 8.27E-27 1.26E-19+ 1.35E-19
fos 500,000 | 1.04E-03+ 1.37E-03 | 4.78E-01+ 1.31E+00 | 1.59E-01+ 7.89E-01 7.98E-02+ 5.64E-01 | 1.60E-30+ 6.32E-30
fos 10,000 | 6.13E+024 1.72E+0J | 3.12E+004 1.54E+00 | 5.62E+00+ 1.87E+00 | 5.07E+01+ 1.34E+01 | 0.00E+00-+ 0.00E+00
150,000 | 0.00E+00+ 0.00E+00 | 0.00E+00+ 0.00E+00 | 0.00E+00+ 0.00E+00 | 0.00E+00+ 0.00E+00 | 0.00E+00+4 0.00E+00
for 300,000 | 3.35E-03+4 8.68E-04 | 6.59E-044 2.43E-04 6.14E-04+ 2.55E-04 | 2.06E-03+ 5.21E-04 | 4.10E-04+ 1.48E-04
fos 100,000 | 1.70E-10+ 1.71E-1G | 4.14E-05+ 2.37E-08 2.62E-04+ 3.59E-04 1.13E-08+ 1.08E-08 | 6.83E-07+ 2.70E-06
300,000 | 0.00E+00+ 0.00E+00 | 0.00E+00+ 0.00E+00 | 0.00E+00+ 0.00E+00 | 0.00E+004 0.00E+00 | 0.00E+004- 0.00E+00
foo 100,000 | 3.32E-04+ 6.39E-04 | 2.68E-03+ 1.90E-03 1.33E-014 9.74E-02 | 2.43E+00+ 1.60E+00 | 1.54E-01+ 2.25E-01
300,000 | 0.00E+00+ 0.00E+00 | 0.00E+00+= 0.00E+00 | 0.00E+00+ 0.00E+00 | 0.00E+004 0.00E+00 | 0.00E+004- 0.00E+00
f1o 50,000 | 2.37E-04+ 7.10E-08 1.10E-094 7.45E-10 3.35E-09+ 2.84E-09 | 3.81E-06+ 8.26E-07 | 1.12E-12+ 1.07E-12
150,000 | 8.26E-15+ 1.32E-15 | 4.14E-15+ 0.00E+00 | 4.14E-15+ 0.00E+00 | 4.14E-15+ 0.00E+00 | 4.14E-15+ 0.00E+00
f11 50,000 | 7.29E-06+ 1.05E-05 1.44E-144 7.05E-14 1.57E-08+ 1.09E-07 | 2.52E-09+ 1.24E-08 | 0.00E+00+ 0.00E+00
200,000 | 0.00E+00+ 0.00E+00 | 0.00E+00+ 0.00E+00 | 0.00E+00+4 0.00E+00 | 0.00E+00+ 0.00E+00 | 0.00E+00+ 0.00E+00
fi2 50,000 | 7.03E-08+ 5.74E-08 1.84E-174 4.52E-17 1.67E-15+ 1.02E-14 | 8.25E-124 5.12E-1Z | 2.10E-23+ 6.89E-23
150,000 | 5.99E-30+ 5.87E-30 1.57E-324+ 0.00E+00 1.57E-32+ 0.00E+00 1.57E-32+ 0.00E+00 1.57E-324+ 0.00E+00
f13 50,000 1.80E-05+ 1.42E-05 3.16E-13+ 9.79E-13 1.87E-10+ 1.09E-09 1.93E-09+ 1.53E-09 3.83E-21+ 1.56E-20
150,000 1.80E-27+ 2.62E-27 1.35E-32+ 0.00E+00 1.35E-32+ 0.00E+00 1.35E-32+ 0.00E+00 1.35E-32+ 0.00E+00
f1a 300,000 | 7.31E-01+ 1.19E+00 1.72E-03+ 3.05E-03 1.68E-09+ 1.97E-09 1.25E+02+ 2.68E+02 | 2.88E-09+ 2.43E-09
fis 300,000 1.98E-01+ 1.41E-02 2.02E-01+ 1.41E-02 2.00E-01+ 1.63E-02 1.56E-01+ 5.01E-02 1.76E-01+ 4.28E-02
fie 300,000 | 6.08E-10+ 8.36E-10 2.61E-06+ 1.21E-06 2.78E-05+ 8.43E-06 2.94E-06+ 3.47E-06 1.44E-07+ 4.92E-07
Foe 300,000 | 2.93E+01+ 2.79E+01 | 7.00E+00+ 1.87E+0T | 2.56E+00+ 6.22E+00 | 1.68E+01+ 2.60E+0f | 1.59E-01+ 7.89E-01
For 300,000 1.17E-02+ 9.90E-03 1.57E-02+ 1.13E-02 5.96E-03-+ 7.39E-03 1.54E-02+ 9.60E-03 1.04E-02+ 8.48E-03
Fog 100,000 | 1.30E-05+ 3.17E-05 2.87E-03+ 1.82E-03 1.35E+00+ 6.08E-0f | 1.46E+00+ 1.02E+00 | 1.13E-01+ 1.60E-01
300,000 | 0.00E+00+ 0.00E+00 | 0.00E+00+= 0.00E+00 | 0.00E+00+ 0.00E+00 | 0.00E+004 0.00E+00 | 0.00E+004- 0.00E+00
Fio 300,000 | 5.54E+01+ 9.44E+00 | 2.88E+01+ 5.33E+00 | 2.82E+01+ 5.32E+00 | 7.57E+01+ 1.02E+01 | 2.66E+01+ 4.44E+00
w/t]l 15/2/3 18/0/2 13/4/3 17/1]2 -

" indicates SaJADE is significantly better than its competitp the Wilcoxon signed-rank test at = 0.05.
* means that the corresponding algorithm is better than apgsed SaJADE method.

test: i) Although thet-test, one of the parametric statisticalalues of the best-so-far solutions ovér independent runs
test, is popular in evolutionary computing [19], [22], hoxee are respectively summarized in Tables Il and IVIat= 30
recent studies indicate that the parametric statisticalyan and D = 100. Similar to the methods used in [15], the
sis is not appreciate especially when tackling the mukiplintermediate results are also reported for the functionsrerh
problem results [41], [42], [43], [44]. ii) The Wilcoxon'sst several algorithms can obtain the global optimum of these
is employed since this test is included in well-known sofeva functions. In these cases, the Wilcoxon signed-rank test is
packages (e.g., SPSS, SAR, OriginPro, Matlab, etc.). only compared with the intermediate results. In the last row
1) Comparison on the Quality of the Final Solutionsor ©0f each table, according to the Wilcoxon's test, the results
all test functions, the mean and standard deviation of ther erare summarized asw/t/l”, which means that SaJADE wins



MEAN AND STANDARD DEVIATION OF THE ERROR VALUES OF THE BESTSO-FAR SOLUTIONS OVER50 INDEPENDENT RUNS FOR ALL TEST FUNCTIONS

TABLE IV

AT D = 100.
F Max_NFFEs jDE JADE-wo JADE-w SaDE SaJADE

fo1 1,000,000 | 2.09E-20+ 9.27E-21 5.13E-62+ 4.82E-62 1.21E-85+ 2.27E-88 1.09E-27+ 6.65E-28 1.62E-924 2.92E-92
foz2 1,000,000 | 1.82E-12+ 4.30E-13 5.19E-36+ 7.12E-36 9.20E-42+ 2.96E-41 1.09E-15+ 2.10E-16 4.03E-51+ 1.41E-50
fos 1,000,000 | 7.47E+03+ 7.43E+03 | 6.85E-03+ 5.87E-03 4.79E-05+ 4.63E-05 | 4.96E+00+ 1.61E+00 | 5.06E-05+ 5.74E-05
foa 1,000,000 | 1.60E+00+ 1.34E-01 | 1.62E-01+ 3.05E-02 3.09E-03+ 3.90E-03 1.90E-01+ 1.80E-01 2.42E-03+ 3.73E-03
fos 1,000,000 | 9.20E+01+ 1.41E+0f | 4.96E+01+ 1.15E+01 | 2.77E+01+ 6.81E+00° | 8.49E+01+ 1.04E+01 | 2.45E+01+ 1.43E+00
foe 40,000 | 3.18E+04+4 2.52E+03 | 1.14E+02+ 1.42E+01 | 1.25E+024+ 1.40E+01 | 1.59E+03+4 1.70E+0Z | 4.19E+01+ 5.27E+00

1,000,000 | 0.00E+00+ 0.00E+00 | 0.00E+00+ 0.00E+00 | 0.00E+00+ 0.00E+00 | 0.00E+00+ 0.00E+00 | 0.00E+00+ 0.00E+00
for 1,000,000 | 2.08E-02-+ 2.88E-03 2.04E-03+ 4.28E-04 1.60E-03+ 3.33E-04 6.85E-03+ 1.34E-03 8.59E-04+ 1.39E-04
fos 1,000,000 | 2.81E-08+ 2.30E-0& 3.94E+03+ 2.75E+02 | 9.11E+03+ 4.18E+02 | 1.89E+01+ 3.51E+0T | 9.04E+03+ 3.88E+02
foo 1,000,000 | 6.01E+00+ 2.36E+00 | 1.03E+02+4 3.95E+00° | 1.82E+02+ 8.44E+00 | 1.05E+02+ 4.84E+00 | 1.67E+02+ 7.59E+00
fi0 200,000 4.20E-01+ 5.34E-02 7.79E-06+ 1.89E-06 4.05E-07+ 1.06E-07 5.98E-03+ 6.95E-04 7.28E-09+ 3.49E-09

1,000,000 | 1.73E-11+ 3.15E-12 7.69E-15+ 0.00E+00 7.84E-15+ 7.03E-16 1.05E-14+ 1.76E-15 7.69E-15+ 0.00E+00
f11 200,000 9.25E-01+ 5.88E-02 8.87E-04+ 3.22E-03 3.54E-10+ 2.34E-09 3.84E-03+ 8.15E-03 2.39E-15+ 2.80E-15

1,000,000 | 0.00E+00+4 0.00E+00 8.87E-04+ 3.25E-03 0.00E+00-+ 0.00E+00 2.96E-04+ 1.46E-03 0.00E+00+ 0.00E+00
fi2 200,000 | 1.44E+00+ 3.11E-01 2.38E-11+ 1.20E-11 4.62E-14+ 3.70E-13 8.96E-06+ 2.10E-06 1.66E-17+ 1.48E-17

1,000,000 | 4.47E-21+ 1.90E-21 4.71E-33+ 0.00E+00 | 4.71E-33+ 0.00E+00 6.75E-30+ 4.63E-30 4.71E-33+ 0.00E+00
fis 200,000 | 6.04E+01+ 1.10E+01 2.83E-08+ 3.48E-08 1.13E-10+ 1.58E-10 7.81E-03+ 3.27E-03 7.24E-15+ 1.01E-14

1,000,000 | 1.91E-17+ 1.08E-17 1.35E-32+ 0.00E+00 | 1.35E-32+ 0.00E+00 5.56E-27+ 5.23E-27 1.35E-32+ 0.00E+00
fia 1,000,000 | 2.07E+05+ 4.46E+04 | 1.51E+05+ 1.98E+04 | 7.90E+04+ 1.43E+04 | 1.69E+05+ 1.39E+04 | 8.20E+04+ 1.47E+04
fis 1,000,000 | 3.80E-01-+ 3.93E-03 3.28E-01+ 4.54E-02 2.98E-01+ 1.41E-0Z 3.60E-01+ 4.93E-0Z 2.66E-01+ 4.79E-02
fie 1,000,000 | 4.78E-03+ 4.63E-04 1.12E-11+ 5.08E-11 9.55E-05+ 3.98E-04 5.78E-03+ 1.71E-03 1.84E-23+ 1.30E-22
Foe 1,000,000 | 8.90E+01+ 4.16E-0f | 1.26E+02+ 2.92E+0f | 3.60E+01+ 2.78E+01 | 1.85E+02+ 4.26E+0T | 3.14E+01+ 2.83E+01
For 1,000,000 | 6.68E-01+ 1.33E-01 1.90E-01+ 2.83E-01 8.50E-02+ 4.50E-01 2.81E-01+ 3.50E-01 7.29E-02+ 2.04E-01
Fog 1,000,000 | 1.37E-01+ 1.26E-0F | 1.13E+02+4 5.72E+006 | 2.00E+02+ 6.26E+00 | 1.07E+02+ 5.24E+00° | 1.77E+02+ 7.07E+00
Fio 1,000,000 | 4.76E+02+ 2.71E+01 | 4.22E+02+ 1.52E+0%F | 4.67E+02+ 2.93E+01 | 5.31E+02+ 2.31E+01 | 4.51E+02+ 1.73E+01

w/t]l 17/0/3 15/1/4 14/6/0 17/0/3 —
T indicates SaJADE is significantly better than its competitp the Wilcoxon signed-rank test at = 0.05.
¥ means that the corresponding algorithm is better than apgsed SaJADE method.
TABLE V

in w functions, ties int functions, and loses in functions,
compared with its competitors.

From Table 111, it is clear that our approach is able to obtain
consistently better error values of the best-so-far smhsti

MULTI-PROBLEM STATISTICAL ANALYSIS BY THE WILCOXON
SIGNED-RANK TEST AT « = 0.05 (SAJADETO ITS COMPETITORS.

; A Sl > RT [ R~ [ p-value [ significant
than its competitors. SaJADE significantly outperforms jDE JDE 656 | 164 | 6.38E-04 Yes
JADE-wo | 624 196 | 3.36E-03 Yes
JADE_—wo, JADE-w, and SaDE ohf_i, 18,13, and17 out o_f20 e B Voo
functions, respectively. For functiongys, foo, and Fyg, jDE SaDE | 679 | 141 | 1.60E-04 Yes

is significantly better than SaJADE. SaJADE is worse than
JADE-wo for2 functions, JADE-w for3 functions, and SaDE

for 2 functions. functions atD = 30 and 20 functions atD = 100) to make

For the functions atD = 100, according to Table 1V, a the multiple-problem statistical analysis. From Table Visi
similar conclusion to SaJADE can be drawn about the errglear that SaJADE obtains high&* values thankR~ values
values of |DE, JADE-wo, JADE-w, and SaDE, i.e., on thé all cases. According to thevalue, we can see that SaJADE
majority of the functions, our approach performs signiftban is significantly better than other DE variants, since in ales
better than other DE variants. the p-values are less than05. The results reconfirm that the

In general, the SaJADE approach is able to provide thwerall performance of SaJADE is better than other compared
overall highest quality of the final solution among other DIBE variants in terms of the quality of the final solutions.
variants for functions abD = 30 and D = 100. Our proposed  3) Comparison on the Convergence Speed and Successful
strategy adaptation can enhance the performance of JADERate: Besides the quality of the final solutions, the conver-
terms of the quality of the final solution. gence velocity and successful rate are also very impor-

2) Multiple-problem Statistical Analysis:In Tables 1l tant to measure the performance of an algorithm. Tables VI
and IlIl, only the single-problem statistical analysis by thand VIII respectively summarize the mean and standard de-
Wilcoxon signed-rank test is used. As stated in [44], th@ation of the NFFEs of the successful runs/at= 30 and
multiple-problem statistical analysis is also importantheck D = 100. In addition, the successful rat. is also shown in
the behavior of the stochastic algorithms. In this part, wibese two tables (within parentheses). Moreover, in Tallles
present the results of the multiple-problem Wilcoxon siineand IX the AR values are tabulated for the functions that
rank test atv = 0.05 in Table V. Note that when several algo-have been solved by several algorithms. Some representativ
rithms can obtain the global optimum of a specific functiorgonvergence graphs of jDE, JADE-wo, JADE-w, rJADE-wo,
only the mean values of the intermediate results are coregiderJADE-w, SaDE, and SaJADE are shown in Figure 1.
from Tables Il and Ill; otherwise, the mean values of the final From Tables VI and VIII, we can see that SaJADE requires
solutions are used. Hence, there are ovef@alfunctions Q0 the overall lowest NFFEs to reach the'R on the majority of
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TABLE VI

THE AR VALUES AT D = 30 (SAJADETO ITS COMPETITORS. E. Analysis of Strategy Adaptation

In our proposed SaJADE method, the strategy adaptation

F JDE JADE-wo | JADE-w SaDE

For T 246 o1 76 | 182 mechanism (SaM) is integrated into JADE to adaptively de-
foz | 2.08 1.30 1.41 1.84 termine a more suitable strategy at different stages oluieol

;32 ‘1‘:2(2) ﬁg (1):32 g:gi’ process for these different problems at hand. In order tesnv
fos | 3.95 1.30 1.04 2.38 tigate the adaptation characteristics of SaJADE, the &eolu
Joo | Zee | 1z | 13 | 2% trend of the parametar, is plotted on the selected function
fos | 0.90 120 117 0.99 in Figure 2 with the mean curves and error bars. The error
foo ) 2% | 126 = bars are the standard deviations /af over 50 independent
fu | 247 1.28 1.37 1.83 runs. They can clearly show the evolution trendgaf For

ﬁi 2o v el B the clarity, there are onlg0 error bars plotted for each figure.
fia | NA NA 0.96 NA This is a sample average standard deviation over all runs. Th
{%z e ey oy evolutions of ucr and up are also plotted in this figure. In
For | 3.08 1.37 1.06 3.08 addition, the error values of all function &t = 30 are shown
e in Table XI for JADE-wo, JADE-w, rJADE-wo, rJADE-w, and

SaJADE. When several algorithms obtain the global optimum
of a function, only the intermediate results are reported.

TABLE IX According to the results shown in Tables IlI, IV, and XI,
THE AR VALUES AT D = 100 (SAJADETO ITS COMPETITORS. from Figure 2 we can see that the can adaptively adjust
with respect to the chosen problems, which means that our
F jDE__[ JADE-wo | JADE-w | SaDE proposed SaM can choose a more suitable strategy for these
ool ses | Ta0 | 1o | G different problems adaptively. For example, for functifin
fos | 4.04 2.03 1.23 2.26 at D = 30, JADE without archive is better than JADE
fi NA 1.44 1.34 4.32 : ;
ff; 358 — 57 T yv|th_arch|ve, hence the:, tends to lower values as shown
fin | 393 1.44 1.23 2.71 in Figure 2 (a). However, whe = 100 for fy;, JADE-
Bl ase | 1% 123 2% w shows better performance than JADE-wo, in this case
Fi6 NA 1.13 0.96 NA obtains higher values in Figure 2 (b). Similar conclusioas c
F NA 1.61 0.97 3.04 i H
A\‘/’; —_— also be drawn abouts on other functions from Figure 2.

In addition, Figure 2 indicates that SaJADE is also able
to maintain the adaptation of parametgrsr and pup as

shown in JADE [15], [16]. Moreover, Table Xl indicates that
on the majority of the functions SaJADE obtains the best

the functions compared with other DE variants. SaJADE al?gsults compared with JADE methods. This is because of the

obtains the greatest overall successful rgt¢s, = 17.48 ; . C
r t the diff t strat SaJADE.
at D = 30 and .S, = 9.90 at D = 100. Furthermore, cooperation among fhe ditierent srategies in >a

Tables VII and IX show that SaJADE converges faster than By garefull;ghlotcﬂt(rl]ng at lthe results sr;own. '?j Iglgture efé we
its competitors, especially for functions @ = 100. For can observe that thg, values areé most varied betwe
example, compared with JADE-wo in Table IX, the AR valugnd0‘7' It means that Strategy 1 and Str_ateg_y 4 have_ seldom
is 1.3320, which indicates that SaJADE is on averaje2% chances to be executed. For example, in Figure 1 (i) JADE

faster than JADE-wo for these functions. Although for thglIth Strategy 4, i.e., JADE-w, is able_to provide the best
successful functions ab = 100 the AR value of SaJADE result among four JADE methods, so ideally th values

to JADE-w is 1.0610, however, for8 out of 10 functions in |n.F|gure 2 (N ShOUId be greater t_ha(n& hot around0.6.
Table IX the AR values are greater thar0, which means With respect to this phenomenon, this may be because the four

that SaJADE is abouf0% faster than JADE-w for these strategies used in our approach perform very similarly:dAll

functions. Additionally, Figure 1 shows that SaJADE is ablg1em are likely to gen_erate the _promising offspring and lead
to a successful update.e., the trial vector generated by the

to provide faster convergence speed than other DE variants 8 X .
the majority of the functions. strategy is better than |t§ t_a.rget vector [16]. Thus_,/xlgwalues
are almost around the initial value5. However, if some of
4) Compared with Reported Resuli:further comparative the strategies in the pool are very poor for a problem, the firs
study of SaJADE to the reported results of recent advanSaM can still pursuit the better strategy, unrelated to tiueio
EAs is also provided here. The results are shown in Table &f the strategies in the pool. In order to verify this exptota
The results of the adaptive LEP and Best Lévy algorithms ane select four different strategies as the pool in AlgoritAm
obtained from Table Il in [45], JADE-wo and JADE-w fromto optimize functionfy; at D = 30. The four strategies are:
Table 4.10 in [16], and jDE from Table Il in [23]. The resultsl) “DE/best/1/bin”, 2) “DE/rand/2/bin”, 3) “DE/rand/3/bf,
in Table X indicate the superior performance of SaJADE iand 4) “DE/rand/4/bin”. The initial values qf; are set to be
terms of the quality of the final solutions. SaJADE obtaires tH).1, 0.5, and 0.9, respectively. All other parameters are kept
best results orr out of 9 functions. On the res? functions, unchanged as mentioned in Section IV-A. In addition, JADE
SaJADE provides the second best results. with each of the above strategy is also tested@n All results
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NFFES REQUIRED TO OBTAIN ACCURACY LEVELS LESS THANVT' R FOR ALL FUNCTIONS AT D = 30. “NA” INDICATES THE ACCURACY LEVEL IS NOT
OBTAINED AFTER MAX_NFFES. THE SUCCESSFUL RATES. IS SHOWN IN THE PARENTHESES

F DE JADE-wo JADE-wW SaDE SaJADE
For | 5.80E+04L 1.I5E+03 (1.00) | 2.90E+04L 8.72E+02(1.00) | 3.03E+04L 8.54E+02 (1.00) | 4.35E+04L 6.06E+02 (1.00) | 2.40E+04L 5.55E+02(1.00)
for | 8.12E+04+ 1.27E+03 (1.00) | 5.08E+04- 2.49E+03(1.00) | 5.48E+04-+ 2.89E+03 (1.00) | 7.19E+044 9.36E+02 (1.00) | 3.90E+04- 1.44E+03(1.00)
fos | 3.56E+05:+ 1.58E+04 (1.00) | 1.02E+05+ 4.60E+03 (1.00) | 7.78E+04-+ 3.88E+03(1.00) | 3.11E+05+ 2.09E+04 (1.00) | 7.88E+04+ 3.63E+03(1.00)
fos | 2.93E+05+ 1.39E+04 (1.00) | 4.50E+05+ 1.06E+04 (1.00) | 3.08E+05:+ 5.18E+03 (1.00) | 1.68E+05-+ 4.82E+03(1.00) | 2.09E+05+ 8.25E+03(1.00)
fos | 4.66E+05+ 0.00E+00 (0.02) | 1.53E+05-+ 5.50E+03 (0.88) | 1.22E+05-+ 5.43E+03(0.96) | 2.81E+054 1.10E+04 (0.88) | 1.18E+05-+ 3.61E+03(1.00)
fos | 2.22E+04+ 8.48E+02 (1.00) | 1.09E+04-+ 4.14E+02(1.00) | 1.15E+04-+ 3.73E+02 (1.00) | 1.58E+044 4.66E+02 (1.00) | 9.20E+03 2.25E+02(1.00)
for | 1.0BE+054 2.59E+04 (1.00) | 2.79E+04- 5.86E+03(1.00) | 2.99E+04-+ 7.48E+03 (1.00) | 5.40E+04+ 1.15E+04 (1.00) | 2.26E+04- 4.59E+03(1.00)
fos | 9.09E+04L 2.05E+03(1.00) | L.ZIE+05E 1.01E+03 (1.00)| 1.17E+05E 2.21E+03 (1.00)| 9.94E+04L 1.07E+03(1.00) | L1.01E+05L 3.98E+03 (1.00)
foo | 1.17E+05+ 3.84E+03(1.00) | 1.32E+05% 2.06E+03 (1.00) | 1.43E+05:+ 1.93E+03 (1.00) | 1.35E+05+ 3.22E+03 (1.00) | 1.27E+05+ 4.16E+03(1.00)
fio | 8.95E+04- 1.50E+03 (1.00) | 4.54E+04+ 1.17E+03(1.00) | 4.72E+04+ 1.58E+03 (1.00) | 6.85E+04- 8.06E+02 (1.00) | 3.61E+04- 8.47E+02(1.00)
f11 | 6.20E+04- 2.01E+03 (1.00) | 3.20E+04+ 1.96E+03(1.00) | 3.44E+04-+ 5.12E+03 (1.00) | 4.58E+04- 1.47E+03 (1.00) | 2.51E+04- 7.64E+02(1.00)
fi2 | 5.34E+044 1.30E+03 (1.00) | 2.74E+04- 1.11E+03(1.00) | 2.91E+04-+ 1.39E+03 (1.00) | 3.89E+044 7.64E+02 (1.00) | 2.17E+04- 7.32E+02(1.00)
Fis | 6.43E+04+ 1.59E+03 (1.00) | 3.51E+04- 1.99E+03(1.00) | 3.76E+04-+ 3.26E+03 (1.00) | 4.71E+044 1.10E+03 (1.00) | 2.55E+04- 1.07E+03(1.00)
fia NA -+ NA (0.00) NA £ NA (0.00) 2.10E+05- 2.41E+04(1.00) NA £ NA (0.00) 2.18E+05+ 2.05E+04(1.00)
fis NA -+ NA (0.00) NA - NA (0.00) NA £ NA (0.00) NA £ NA (0.00) NA £ NA (0.00)
fi6 | 2.55E+05- 1.79E+04(1.00) NA £ NA (0.00) NA £ NA (0.00) 2.84E+054 0.00E+00 (0.02) | 1.51E+05+ 7.01E+04(0.72)
Fos | 2.53E+05L 0.00E+00 (0.02) | 1.33E+05L 1.11E+04 (0.74)| 1.09E+05L 6.15E+03(0.84) | 2.46E+05L 1.49E+04 (0.28) | 1.04E+05L 7.97E+03(0.96)
For | 1.01E+05+ 1.66E+04 (0.66) | 4.52E+04-+ 5.76E+03 (0.56) | 3.49E+04+4 2.14E+04(0.80) | 1.02E+05+ 1.44E+04 (0.62) | 3.29E+04-+ 4.02E+03(0.80)
Foo | 8.34E+04- 3.69E+03(1.00) | 9.60E+04+ 1.85E+03(1.00) | 1.15E+054 2.09E+03 (1.00) | 1.10E+05+ 2.76E+03 (1.00) | 1.04E+05+ 2.76E+03 (1.00)
Fio NA + NA (0.00) NA + NA (0.00) NA + NA (0.00) NA + NA (0.00) NA + NA (0.00)
S5, 14.70 15.18 16.60 14.80 17.48
TABLE VIII

NFFES REQUIRED TO OBTAIN ACCURACY LEVELS LESS THANVT R FOR ALL FUNCTIONS AT D = 100. “NA” INDICATES THE ACCURACY LEVEL IS NOT
OBTAINED AFTER MAX_NFFES. THE SUCCESSFUL RATES)- IS SHOWN IN THE PARENTHESES

F JDE JADE-wo JADE-wW SaDE SaJADE
Jor | 5.38E+05+ 5.12E+03 (1.00)| 1.96E+05E 3.46E+03 (1.00)| 1.64E+05+ 2.61E+03(1.00) | 3.67E+05+ 4.84E+03 (1.00)| 1.34E+05L 2.82E+03(1.00)
fo | 7.45E+054+ 5.74E+03 (1.00)| 2.85E+05+ 3.80E+03 (1.00)| 2.61E+05+ 3.97E+03(1.00) | 5.80E+05+ 5.09E+03 (1.00)| 2.03E+05+ 2.21E+03(1.00)
fos | 2.04E+05+ 3.30E+03 (1.00)| 1.03E+05:+ 8.58E+04 (1.00)| 6.23E+044 4.68E+03(1.00) | 1.14E+05+ 3.14E+03 (1.00)| 5.05E+04- 8.58E+02(1.00)
for NA + NA (0.00) 2.09E+05+ 3.09E+04 (1.00)| 1.94E+05-+ 2.66E+04(1.00) | 6.27E+05+ 1.03E+05 (0.98)| 1.45E+05-+ 2.04E+04(1.00)
fio | 7.82E+05L 5.45E+03 (1.00)| 2.88E+05L 4.04E+03 (1.00)| 2.37E+05L 2.81E+03(1.00) | 5.69E+05L 6.21E+03 (1.00)| 1.97E+05L 3.77E+03(1.00)
f11 | 5.30E+05+ 6.46E+03 (1.00)| 1.95E+05:+ 6.33E+03 (0.92)| 1.66E+054 6.39E+03(1.00) | 3.65E+05+ 1.60E+04 (0.96)| 1.35E+05:+ 2.55E+03(1.00)
fi2 | 5.11E+05+ 6.17E+03 (1.00)| 1.58E+05+ 3.65E+03 (1.00)| 1.38E+05+ 2.48E+03(1.00) | 2.91E+05+ 3.64E+03 (1.00)| 1.12E+05-+ 1.94E+03(1.00)
fis | 6.53E+05+ 1.01E+04 (1.00)| 2.05E+05+ 1.56E+04 (1.00)| 1.71E+05+ 4.11E+03(1.00) | 3.82E+05+ 6.64E+03 (1.00)| 1.37E+05-+ 3.77E+03(1.00)
fi6 NA £ NA (0.00) 3.92E+054 1.55E+05 (1.00)| 3.34E+05-+ 4.89E+04(0.86) NA £ NA (0.00) 3.47E+05+ 1.03E+05(1.00)
For NA £ NA (0.00) 2.90E+05+ 1.60E+04 (0.82)| 1.75E+05+ 4.40E+03(0.80) | 5.47E+05E 2.43E+04 (0.78)| 1.80E+05+ 4.08E+03(0.89)
Fos NA £ NA (0.00) NA £ NA (0.00) NA £ NA (0.00) NA £ NA (0.00) 9.50E+052 0.00E+00 (0.02)
Foo | 9.98E+05: 0.00E+00 (0.02) NA £ NA (0.00) NA £ NA (0.00) NA + NA (0.00) NA £ NA (0.00)
S, 7.02 9.74 9.66 8.72 9.90
TABLE X

COMPARATIVE STUDY OF SAJADE TO THE REPORTED RESULTS OF RECENT ADVANCEAS. FOR EACH FUNCTION THE FIRST COLUMN SHOWS THE
MEAN VALUES; THE SECOND COLUMN IS THE STANDARD DEVIATION(IN PARENTHESIS).

F Max_NFFEs SaJADE JADE-wo JADE-w DE Adaptive LEP | Best Lévy
P 150000 | LIOE-79 1.8E-60 1.3E-54 1.1E-28 6.32E-04 6.50E-04
01 ' (7.52E-79) | (8.4E-60) | (9.2E-54) | (1.0E-28) (7.6E-05) (6.4E-05)
P 150000 | 2-95E-20 2.8E-15 8.5E-22 0.090075 0.041850 30.628906
03 ' (6.99E-20) | (8.2E-15) | (3.6E-21) | (0.080178) | (0.059696) | (22.113122)
o 150000 | 2-48E-15 3.2E-01 5.6E-01 3.1E-15 43.40 57.75
> ' (1.70E-14) | (1.1E+00) | (1.4E+00) | (8.3E-15) (31.52) (41.60)
P 150.000 | O-00E+00 |~ £7E+00 |~ 2.4E+00 | 0.0E+00" 1100.3 670.6
08 ' (0.00E+00) | (2.3E+01) | (1.7E+01) | (7.3E-12) (58.2) (52.2)
P 150000 | B-B7E14 1.4E-11 3.8E-11 15E-15 5.85 12.50
09 ' (2.51E-13) | (1.0E-11) | (2.0-11) (4.8E-15) (2.07) 2.29
P 150000 | 4-T4E-I5 4.4E-15 4.4E-15 7.7E-15 1.9E-02 3.1E-02
10 ' (0.00E+00) | (0.0E+00) | (0.0E+00) | (1.4E-15) (1.0E-03) (2.0E-03)
P 150.000 | O-00E+00 |~ 0.0E+00 2.0E-04 0.0E+00 2.4E-02 1.8E-02
1 ' (0.00E+00) | (0.0E+00) | (1.4E-03) | (0.0E+00) (2.8E-02) (1.7E-02)
P 150000 | L57E-32 1.6E-32 1.6E-32 6.6E-30 6.0E-06 3.0E-05
12 ' (0.00E+00) | (5.5E-48) | (5.5E-48) | (7.9E-30) (1.0E-06) (4.0E-06)
P 150000 | L-35E-32 1.3E-32 1.3E-32 5.0E-29 9.8E-05 2.6E-04
13 ' (0.00E+00) | (1.1E-47) | (1.1E-47) | (1.4E-15) (1.2E-05) (3.0E-05)

“ indicates the error value is used based on the reportedsesul

are averaged oveéX) independent runs. The convergence gragh means that the first strategy “DE/best/1/bin” is always
and the evolution trend gf, are shown in Figure 3. selected after some generations. The reason is that for the

Figure 3 indicates that for different initial values pf, Unimodal Sphere functiof,, the first strategy can provide the
the strategy parameter, can still converge to around.15. Successful update all the time; while the other three grede
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F NFFEs JADE-Wo JADE-w rJADE-Wo rJADE-W SaJADE
for | 150,000 | 9.93E-62+ 5.34E-61 | 2.69E-56+ 1.41E-55 | 4.92E-61+ 2.18E-60 | 1.62E-53+ 1.14E-53 | 1.10E-79+ 7.52E-79
foz | 200,000 | 5.53E-28+ 3.16E-27 | 3.18E-25+ 2.05E-24 | 9.41E-31+ 4.79E-30 | 7.55E-28+ 3.25E-27 | 1.35E-47-+ 7.53E-47
fos | 500,000 | 1.93E-56+ 7.02E-56 | 6.11E-81+ 1.62E-8G | 6.18E-01+ 2.14E+00 | 1.71E+00+ 4.04E+00 | 1.17E-77+ 3.39E-77
foa | 500,000 | 1.34E-09+ 5.71E-1C | 5.29E-14+ 2.05E-14 | 6.33E-16+ 3.25E-16 | 1.32E-15+ 6.69E-16 | 1.26E-19+ 1.35E-19
fos | 500,000 | 4.78E-01+ 1.31E+00 | 1.59E-01+ 7.89E-01 | 2.85E-29+ 6.09E-29 | 1.48E-01+ 1.05E+00 | 1.60E-30-+ 6.32E-30
fos 10,000 | 3.12E+00+ 1.54E+00 | 5.62E+00+ 1.87E+00 | 1.00E-01+ 3.00E-0f | 1.18E+00+ 1.03E+00 | 0.00E+00+ 0.00E+00
for | 300,000 | 6.59E-04+ 2.43E-04 | 6.14E-04- 2.55E-04 | 4.58E-04+ 2.04E-04 | 4.90E-04+ 1.98E-04 | 4.10E-04+ 1.48E-04
fos | 100,000 | 4.14E-05+ 2.37E-08 | 2.62E-04+ 3.59E-04 | 2.50E-09+ 4.13E-05 | 5.44E-09+ 5.67E-09 | 6.83E-07+ 2.70E-06
foo | 100,000 | 2.68E-03+ 1.90E-03 | 1.33E-01+ 9.74E-02 | 4.76E-03+ 4.38E-03 | 8.95E-03+ 9.64E-03 | 1.54E-01+ 2.25E-01
fio | 50,000 | 1.10E-09+ 7.45E-1C | 3.35E-09+ 2.84E-09 | 1.38E-10+ 2.44E-10 | 4.97E-10+ 5.35E-10 | 1.12E-12-+ 1.07E-12
fi1 50,000 | 1.44E-14-+ 7.05E-14 | 1.57E-08+ 1.09E-07 | 6.66E-18+ 4.66E-17 | 7.55E-17+ 5.28E-16 | 0.00E+00+ 0.00E+00
fi2 50,000 | 1.84E-17+ 4.52E-17 | 1.67E-15+ 1.02E-14 | 7.15E-204 1.98E-19 | 1.60E-18+ 4.85E-1§ | 2.10E-23+ 6.89E-23
fis 50,000 | 3.16E-13+ 9.79E-13 | 1.87E-10+ 1.09E-0§ | 2.36E-17+4 5.45E-17 | 2.55E-15+ 9.71E-15 | 3.83E-21+4 1.56E-20
fia | 300,000 | 1.72E-03+ 3.05E-03 | 1.68E-09+ 1.97E-0 | 1.63E-02+ 7.01E-07 | 8.15E-09+ 1.74E-09 | 2.88E-09-+ 2.43E-09
fis | 300,000 | 2.02E-01+ 1.41E-0 | 2.00E-01+ 1.63E-12 | 1.58E-01+ 4.94E-02 | 2.52E-01+ 5.04E-03 | 1.76E-01-+ 4.28E-02
fi6 | 300,000 | 2.61E-06+ 1.21E-06 | 2.78E-05+ 8.43E-06 | 1.53E-07+ 5.24E-07 | 1.57E-07+ 4.00E-07 | 1.44E-07-+ 4.92E-07
Fos | 300,000 | 7.00E+00+ 1.87E+01 | 2.56E+00+ 6.22E+00 | 2.21E+00+ 1.12E+0T | 3.49E+00+ 1.53E+01 | 1.59E-01+ 7.89E-01
Fo7 | 300,000 | 1.57E-02+ 1.13E-0J | 5.96E-03+ 7.39E-03 | 1.29E-024 1.02E-02 | 4.83E-03+ 6.19E-03 | 1.04E-024 8.48E-03
Foe | 100,000 | 2.87E-03+ 1.82E-03 | 1.35E+00+ 6.08E-0f | 3.69E-03+ 3.61E-03 | 3.55E-03+ 4.98E-03 | 1.13E-014 1.60E-01
Fio | 300,000 | 2.88E+01-+ 5.33E+00 | 2.82E+01+ 5.32E+00 | 4.01E+01+ 2.23E+0f | 4.25E+01+ 2.10E+01 | 2.66E+01+ 4.44E+00
w/t]l 18/0/2 13/4/3 13/4/3 15/1/4 -

T indicates SaJADE is significantly better than its competitp the Wilcoxon signed-rand test at= 0.05.
* means that the corresponding algorithm is better than apagsed SaJADE method.

12

Convergence graph of jDE, JADE-wo, JADE-w, rJADE;w@\DE-w, SaDE and SaJADE on the selected functions.f@a)(D = 30). (b) fos
(D = 30). (€) f12 (D = 30). (d) Foo (D = 30). (€) foz (D = 100). (f) fos (D = 100). (9) f10 (D = 100). (h) f12 (D = 100). (i) f16 (D = 100).
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Fig. 3. Analysis of the adaptation characteristicsu@fwith different initial values on the functiorfo; at D = 30. (a) Convergence graph of JADE with
different strategies and SaJADE with different initial we$ of us. (b) The evolution trend ofis in SaJADE with different initial values.
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TABLE Xl
MEAN AND STANDARD DEVIATION OF THE FINAL VALUES OF THE BESFSO-FAR SOLUTIONS OVER50 INDEPENDENT RUNS FOR THE LINEAR EQUATIONS
PROBLEM AND THE CHEBYCHEV POLYNOMIAL FITTING PROBLEM.

Prob Max_NFFEs DE JADE-wo JADE-w SaDE SSaJADE
LES 300,000 | 1.53E+05+ 1.90E+04 | 6.54E+04+ 2.15E+03 | 7.40E+04+ 2.30E+03 | 8.75E+04+ 3.28E+04 | 6.09E+04+ 3.24E+03
CPF(D =9) 100,000 | 7.33E+04+ 9.08E+03 | 3.29E+04+ 1.49E+03 | 3.33E+04+ 1.35E+03 | 4.57E+04+ 4.41E+03 | 3.10E+04+ 1.22E+03
| CPFD = 17)* | 300,000 | 3.34E+04+ 4.50E+04 | 4.24E+02+ 6.36E+02 | 3.44E+02+ 2.77E+02 | 2.50E+04+ 3.82E+04 | 2.61E+02+ 3.32E+02 |

* indicates that the error values of the final solutions arelusice no algorithm can solve the corresponding problethinvihe MaxNFFEs.

perform badly (as shown in Figure 3 (a)) because of the higleviation of the final results of the best-so-far solutiomsro
diversity generated by these strategies. From this exgetim 50 runs. The MaxNFFEs for each problem are shown in
we can see that the first SaM is still able to adaptivelsolumn 2 of this table. Since for the LES problem and the
determine a more suitable strategy for the problem at har@PF problem atD = 9 all of the algorithms can obtain
The influence of the order of strategies is not very significathe optimal value, in Table XII the NFFEs are reported in
on the performance of our approach. However, Figure 3 (th)le second and third columns. The error values of CPF at
indicates that if the initial value qi, is far away from the best D = 17 are reported in the fourth column. From Table XIlI,
strategy, the first SaM might need a relative long run to gursit is clear that SaJADE provides consistently the best tesul
the best strategy, and hence, deteriorates the performameeong the five DE variants. Additionally, some represeveati
The reason might be that when we update the mean vak@nvergence graphs are shown in Figure 4. The convergence
of H, in Eqn. (24), we only consider the successful strategyrves of rJADE-wo and rJADE-w are also plotted in Figure 4.
parameter);. We don't consider the fitness improvement of thé& can be seen that SaJADE obtains the fastest convergence
successful strategy, which may also affect the performafhcespeed compared with other DE variants.

our approach. We leave this work in our future work.

H. Discussion
F. Analysis of the Simplicity The DE algorithm is an efficient and versatile population-

In [35], Ong and Keane stated that the simplicity of aRased, direct search algorithm for global optimizationjalth
algorithm is also very important. The simplicity means eafse has been widely used in many scientific fields. In the original
implementation and a minimum numbers of control parametd?& algorithm and many DE variants, there are many mutation
of the algorithm [35]. As described in Section 11I-B, we carstrategies available. However, the choice of the best noutat
see that our proposed three SaMs are all very simple and eggtegy is difficult for a specific problem. In the previous
to be implemented. They don't increase the complexity of tHeéE variants, the study on the adaptive strategies of DE is
original DE algorithm. Compared with JADE [15], the firstscarce [12], [13], and [11]. Due to these considerationtis
SaM introduce one additional parametey; this parameter is Work, we propose a family of improved DE variants, which use

insensitive for different problerfis Similar to the parameter Several simple methods to implement the strategy adaptatio
adaptation in jDE [23], in the second SaM, the paramétisr EXperiments have been conducted2tnbenchmark problems

easily set as the, and . and two real-wo_rld problems. From the experimental results
we can summarize that:

1) Among three different strategy adaptation methods, our
proposed first method combined with JADE obtains the
In this section, two real-world problems are used to evaluat  gyerall best performance as shown in Section IV-C.
the capability of solving the real-world problems of our ap-  poreover, all of the strategy adaptation methods is able
proach. The two problems are the systems of linear equations g provide the better results than the uniform strategy
problem (LES, for short) [46] and the Chebychev polynomial  gelection method.

fitting problem (CPF, for short) [3]. The LES problem is ) aAccording to the experimental results shown in Sec-
defined atD = 10. The CPF problem is defined & = 9 and tion IV-E, we can see that the first SaM is able to
D = 17. Both of the two problems have the minimal values of adaptively select a more suitable strategy for a specific
0. Since we don’'t make any modifications of these problems, problem. In addition, all of the proposed SaMs are very
we omit to describe them. More details can be found in [46] simple and ease of implementation.
and [3]. These two real-world problems have been widely useg) The proposed SaJADE method (JADE combined with our
in the EA literature, for example, in [47], [48], and [49]. proposed first SaM) provides better, or highly competi-
We use SaJADE, |DE, JADE-wo, JADE-w, and SaDE to  tjye results compared with other DE variants considered
optimize the two problems. Note that in this experiment our jn this work not only for the benchmark problems, but for

purpose is only to test the potential of solving the realldor o real-world problems. Moreover, SaJADE is able to
problems of SaJADE. Table XII shows the mean and standard ennhance the performance of JADE in terms of the quality

6 . - of the final solutions and the convergence speed.
Experiments on the effect of the initial values jof are not reported due 4) Alth h SaJADE sh d I H .
to the tight space limitation. Interested readers can corttee authors for ) Although Sa shows good overall performance, It

more details. maybe still be trapped in the local optima occasionally,

G. Comparison on Two Real-World Problems



e.g., for f14 and Fyg at D = 30. The reason might be the [9]
rapid decrease of the population diversity. The possible
improvement of SaJADE is the population restart meth gb]
as proposed in [50] or [51]. However, this is beyond the

scope of this work, we leave it in our future work. (1]

V. CONCLUSIONS ANDFUTURE WORK (2]

In this paper, we describe a family of improved DE variants,
where two simple strategy adaptation mechanisms (Sal\f)%
have been implemented to adaptively select a more suita
strategy with respect to the chosen problems. In the prapose
SaM, a strategy parametgris used control the selection of 14]
different strategiesy € [0, 1) is a real number, thus there aré
possible many methods that can be used to update it. In this
work, two methods inspired by the ideas from the paramel[érr’]
adaptation in the DE literature are presented to update the
parametem. Our proposed SaMs are combined with JADH}6]
which is a recently proposed DE variants, for the nume[rl—7]
ical optimization. Experiments have been conducted26n
benchmark problems and two real-world problems. The result
verify our expectation that SaM is able to adaptively deteem (18]
a more suitable strategy for a specific problem. Comparggd,
with other state-of-the-art DE variants, our approachqrent
better, or highly comparably, in terms of the quality of theafi [20)
solutions and the convergence rate. Furthermore, SaJADE is
able to enhance the performance of JADE.

Possible direction for the future work includes adopting tH21]
population restart method to further improve the reliapitf
SaJADE. In addition, we will also investigate other paramet[22]
adaptive methods of EAs, e.g., the adaptation methods pro-
posed in evolution strategy, to handle the strategy pamety3
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