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Adaptive Ranking Mutation Operator based
Differential Evolution for Constrained Optimization

Wenyin Gong, Zhihua Cai, and Dingwen Liang

Abstract—Differential evolution (DE) is a powerful evolu-
tionary algorithm (EA) for numerical optimization. Combin ing
with the constraint-handling techniques, recently, DE hasbeen
successfully used for the constrained optimization problems
(COPs). In this paper, we propose the Adaptive Ranking Mu-
tation OperatoR (ARMOR) for DE when solving the COPs. The
ARMOR is expected to make DE converge faster and achieve
feasible solutions faster. In ARMOR, the solutions are adaptively
ranked according to the situation of the current population. More
specifically, the population is classified into three situations, i.e.,
infeasible situation, semi-feasible situation, and feasible situation.
In the infeasible situation, the solutions are ranked only based
on their constraint violations; in the semi-feasible situation, they
are ranked according to the transformed fitness; while in the
feasible situation, the objective function value is used toassign
ranks to different solutions. In addition, the selection probability
of each solution is calculated differently in different situations.
The ARMOR is simple, and it can be easily combined with most
of constrained DE (CDE) variants. As illustrations, we integrate
our approach into three representative CDE variants to evaluate
its performance. 24 benchmark functions presented in CEC 2006
and 18 benchmark functions presented in CEC 2010 are chosen
as the test suite. Experimental results verify our expectation that
the ARMOR is able to accelerate the original CDE variants in
the majority of test cases. Additionally, ARMOR-based CDE is
able to provide highly competitive results compared with other
state-of-the-art EAs.

Index Terms—Differential evolution, adaptive ranking muta-
tion operator (ARMOR), constrained optimization.

I. I NTRODUCTION

M OST OF the real-world optimization problems in sci-
ence and engineering involve a number of inequal-

ity and/or equality constraints, which modify the shape of
the search space. These problems can be viewed as con-
strained optimization problems (COPs). Evolutionary algo-
rithms (EAs) [1] have been successfully used for solving opti-
mization problems. Although the original versions of EAs lack
a mechanism to tackle constraints, coupled with constraint-
handling techniques, nowadays, EAs get success when solving
the COPs [2], [3], [4].

Differential evolution (DE), which was firstly proposed by
Storn and Price [5], is one of the most powerful evolutionary
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algorithms for global numerical optimization. The advantages
of DE are its ease of use, simple structure, speed, efficacy, and
robustness [6], [7]. Recently, DE has obtained many successful
applications in diverse domains [8], [7], [9].

In the DE algorithm, the core operator is thedifferential
mutation, and generally, the parents in the mutation are always
randomly chosen from the current population. Since the parent
vectors in the mutation are selected randomly, it may lead
DE to be good at exploring the search space and locating
the region of global minimum, but be slow at exploitation
of the solutions [10]. In this paper, we modify our previous
proposed ranking-based mutation operator [11] and use it for
solving the COPs. The Adaptive Ranking Mutation OperatoR
(ARMOR) for DE is proposed, where the population is adap-
tively ranked according to its current situation. In different
situations, different criteria are used to sort the population.
Additionally, different methods are used to calculate the selec-
tion probabilities in different situations. The major advantages
of ARMOR are its simplicity and generality, which makes
it be easily combined with most of constrained DE (CDE)
variants. As illustrations, three representative CDEs arechosen
to combine with ARMOR to evaluate its performance. We
choose24 benchmark functions presented in CEC 2006 [12]
and 18 benchmark functions presented in CEC 2010 [13] as
the test suite. Experimental results verify our expectation that
the ARMOR is able to accelerate these CDE variants in the
majority of test cases.

The main contributions of this paper are as follows:

• The ARMOR, which is the core contribution of this
paper, is proposed in DE for the COPs to balance the
exploitation and exploration abilities of the algorithm.

• Our proposed ARMOR is integrated into three repre-
sentative CDE variants (i.e., ECHT-DE [14], (µ + λ)-
CDE [15], and DSS-MDE [16]) to verify its performance.
Experimental results indicate that the ARMOR can make
the CDE variants converge faster and achieve feasible
solutions faster.

• Comprehensive experiments are conducted through
benchmark functions.

The rest of this paper is organized as follows. Section II
briefly introduces the constrained optimization problems and
the original DE algorithm. In Section III, we describe some
related constraint-handling techniques and representative CDE
methods. In the next section, Section IV, our proposed AR-
MOR is presented in detail. In Section V, the comprehensive
experiments are performed using benchmark functions to
evaluate the performance of our approach. In the last section,



2

Section VI draws the conclusions from this work and points
out the possible future work.

II. PRELIMINARIES

In this section, we first briefly introduce the constrained
optimization problems (COPs) used in this work. Then, the
original differential evolution algorithm is briefly described.

A. Constrained Optimization Problems

Without loss of generality, in this work, we consider the
constrained minimization problem, which can be formalized
a pair (S, f) , whereS ⊆ R

n is a bounded set onRn and
f : S → R is an n-dimensional real-valued function. The
minimization COP can be formulated as

min f(x), x = [x1, · · · , xn]
T ∈ R

n (1)

subject to
{

gj(x) ≤ 0, j = 1, · · · , q

hj(x) = 0, j = q + 1, · · · ,m
(2)

wherex is the vector of solution,xi is thei-th (i ∈ {1, . . . , n})
decision variable ofx, q is the number of inequality con-
straints, andm − q is the number of equality constraints (in
both cases, constraints could be linear or nonlinear). Generally,
for each variablexi it satisfies a constrained boundary,i.e.,
xi ∈ [li, ui].

The feasible regionF ⊆ S is defined by them inequality
and/or equality constraints. Any pointx ∈ F is called a
feasible solution; otherwise, it is an infeasible solution. For
an inequality constraint which satisfiesgj(x) = 0 (j ∈
{1, · · · , q}) at a given pointx ∈ F , we will say it isactiveat
x. Obviously, all the equality constraints are considered active
at all points in feasible regionF .

In the evolutionary constrained optimization, the equality
constraints are always converted into inequality constraints

|hj(x)| − δ ≤ 0 (3)

wherej ∈ {q+1, · · · ,m} andδ is a positive tolerance value.
The distance of a solutionx from the j-th constraint can be
constructed as

Gj(x) =

{

max {0, gj(x)}, 1 ≤ j ≤ q

max {0, |hj(x)| − δ}, q + 1 ≤ j ≤ m
(4)

Then, the distance of the solutionx from the boundaries of
the feasible set, which also reflects the degree of its constraint
violation, can be denoted as

G(x) =

m
∑

j=1

Gj(x) (5)

B. Differential Evolution

The DE algorithm is initially proposed for the unconstrained
numerical optimization problems [5]. The main procedure of
DE is briefly described in the following subsections.

1) Initialization: The DE population consists ofµ vectors,
initially, it is generated at random. For example, for thej-th
variable of thei-th vectorxi it is initialized as follows:

xi,j = lj + rndreal(0, 1) · (uj − lj) (6)

where i = 1, · · · , µ, j = 1, · · · , n, and rndreal(0, 1) is a
uniformly distributed random real number in(0, 1).

2) Mutation: After initialization, the mutation operation is
applied to generate the mutant vectorvi for each target vector
xi in the current population. The classical mutation strategy
is “DE/rand/1”:

vi = xr1 + F · (xr2 − xr3) (7)

whereF ∈ (0, 1+) is the mutation scaling factor,r1, r2, r3 ∈
{1, · · · , µ} are mutually different integers randomly generated,
andr1 6= r2 6= r3 6= i.

3) Crossover: In order to diversify the current population,
following mutation, DE employs the crossover operator to
produce the trial vectorui betweenxi and vi. The most
commonly used operator is thebinomialor uniformcrossover
performed on each component as follows:

ui,j =

{

vi,j , if (rndreal(0, 1) < Cr or j == jrand)

xi,j , otherwise
(8)

whereCr is the crossover rate andjrand is a randomly gen-
erated integer within{1, n}. Note that the notation “a == b”
indicatesa is equal tob.

4) Selection:Finally, to keep the population size constant in
the following generations, the selection operation is employed
to determine whether the trial or the target vector survives
to the next generation. In DE, theone-to-one tournament
selectionfor unconstrained optimization problems is used:

xi =

{

ui, if f(ui) ≤ f(xi)

xi, otherwise
(9)

wheref(x) is the objective function to be optimized.

III. R ELATED WORK

A. Constraint-handling Techniques

Originally, EAs lack a mechanism to deal with the con-
straints for the COPs. In order to solve the COPs using EAs,
the constraint-handling techniques are required. Nowadays,
there exists a number of constraint-handling techniques. Coel-
lo [3] provided a comprehensive survey of the most popular
constraint-handling techniques currently used within EAsand
grouped them into five categories: 1) penalty functions; 2)
special representations and operators; 3) repair algorithms; 4)
separate objective and constraints; and 5) hybrid methods.
Most recently, Mezura-Montes and Coello [4] reviewed and
analyzed the most relevant types of constraint-handling tech-
niques that have been used with nature-inspired algorithms. In
this subsection, we describe two techniques that will be used
in this work to implement the fitness transformation.
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ffinal(xi) =











f ′(xi), for feasible solution

v(xi), if there is no feasible solution
√

f ′(xi)2 + v(xi)2 + [(1− ϕ) · v(xi) + rf · f ′(xi)], otherwise

(14)

1) Improved Adaptive Trade-off Model:The improved
adaptive trade-off model (IATM) was proposed by Wang and
Cai [15], which is the improved version of ATM [17]. In
IATM, the population contains three situations,i.e., infeasible
situation, semi-feasible situation, and feasible situation.

In the infeasible situation, the solutions are ranked based
on their constraint violations in ascending order. Then, toget
the next population, the first half (µ/2) solutions are selected
from the topµ/2 solutions of the ranked population to steer
the population to feasibility, while the otherµ/2 solutions are
randomly chosen from the rest solutions to promote diversity.

In the semi-feasible situation, the population contains both
feasible and infeasible solutions. The population is now divid-
ed into the feasible group (Z1) and the infeasible group (Z2)
based on the feasibility of each solution. Then, the objective
function valuef(xi) of the solutionxi is converted into

f ′(xi) =

{

f(xi), i ∈ Z1

max {ϕ · f(xbest) + (1 − ϕ) · f(xworst), f(xi)}, i ∈ Z2

(10)

where ϕ is the feasibility ratio of the last population, and
xbest andxworst are the best and worst solutions in the feasible
groupZ1, respectively. After obtaining the converted objective
function value of each solution, it is then normalized as

fnor(xi) =

f ′(xi)− min
j∈Z1∪Z2

f ′(xj)

max
j∈Z1∪Z2

f ′(xj)− min
j∈Z1∪Z2

f ′(xj)
(11)

If we use Equation (5) to calculate the constraint violationof
each solution, then the normalized constraint violation can be
evaluated as

Gnor(xi) =











0, i ∈ Z1
G(xi)−min

j∈Z2

G(xj)

max
j∈Z2

G(xj)−min
j∈Z2

G(xj)
, i ∈ Z2

(12)

Then, the final fitness function is obtained as follows

ffinal(xi) = fnor(xi) +Gnor(xi) (13)

Afterward,µ solutions with the smallestffinal are selected for
the next population.

In the feasible situation, since all solutions are feasiblein the
population, COPs can be viewed as unconstrained optimization
problems. Therefore,µ solutions with the smallest objective
function values are chosen for the next population.

2) Adaptive Penalty Formulation:Tessema and Yen pro-
posed an adaptive penalty function for solving the COPs
in [18]. In order to exploit infeasible individuals with low
objective function value and low constraint violation, in this
technique, the number of feasible solutions in the current
population is used to determine the penalty value assigned
to infeasible solutions.

In [18], for each solutionxi, a final fitness value is evaluated
as shown in Equation (14), whereϕ is the feasible ratio of the
current population.

f ′(xi), which is the normalized fitness value ofxi (i =
1, · · · , µ), is formulated as:

f ′(xi) =

f(xi)− min
j=1,µ

f(xj)

max
j=1,µ

f(xj)− min
j=1,µ

f(xj)
(15)

v(xi) is the constraint violation that is calculated as the sum
of the normalized violation of each constraint divided by the
total number of constraints:

v(xi) =
1

m

m
∑

j=1

Gj(xi)

Gmax,j
(16)

whereGj(xi) is calculated by Equation (4), and

Gmax,j = max
k∈{1,µ}

Gj(xk).

As mentioned-above, we can see that the adaptive penal-
ty formulation method is parameter-less and favors slightly
infeasible solutions with a good objective function value.

B. Constrained DEs

Combining with the constraint-handling techniques, the DE
algorithm has been successfully used for solving the COPs.
We will briefly discuss some representative CDEs as follows.

Storn [19] proposed the constraint adaptation with DE
(CADE) for the COPs, which is a multi-member DE.
Lampinen presented a Pareto dominance-based constraint-
handling method to handle nonlinear constraint functions [20].
Mezura-Monteset al. proposed a multi-member diversity-
based DE (MDDE) for the COPs in [21], [22]. Similar to
CADE, in MDDE each target parent is allowed to gener-
ate more than one offspring. In addition, Deb’s feasibility
rules [23] and a diversity mechanism are adopted to handle
the constraints in MDDE. In CEC 2006 competition on
constrained real parameter optimization [12], several CDE
variants were presented and some of them get the front
ranks. For example,εDE [24], proposed by Takahama and
Sakai, ranks the first in this competition. InεDE, the ε
constrained method is used to handle the constraints. In [25],
Mezura-Monteset al. presented a modified DE (MDE) for the
COPs. In MDE, a modified mutation operator is presented.
Additionally, a dynamic diversity mechanism is added into
MDE to maintain infeasible solutions located in promising
areas of the search space. In [26], Huanget al. proposed an
extended SaDE method for the COPs, where the replacement
criterion was modified for tackling constraints. Brestet al.
presented a self-adaptive DE variant to solve COPs [27], where
three DE mutation operators are used and the parameters of
Cr andF are self-adaptively updated. Huanget al. proposed
a co-evolution mechanism based DE for the COPs [28], in
which a co-evolution model is presented and DE is used to
perform evolutionary search in spaces of both solutions and
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penalty factors. Zhanget al. proposed a dynamic stochastic
ranking-based multi-member DE (DSS-MDE) [16], where the
comparison probabilityPf decreases dynamically following
the evolution process. Ali and Kajee-Bagdadi presented local
exploration-based DE for solving COPs, where a periodic local
exploration technique is incorporated into DE [29]. In [30],
Mezura-Montes and Palomeque-Ortiz proposed a modified
DE for the COPs, where the parameters related to DE and
the constraint-handling mechanism are deterministicallyand
self-adaptively controlled. To provide some insights about the
behavior of DE variants for solving COPs, Mezura-Montes
et al. presented an empirical study on CDE in [31]. Since no
single constraint-handling technique is able to outperform all
others on every problem, Mallipeddi and Suganthan proposed
an ensemble of constraint handling techniques (ECHT) to
solve COPs [32], in which each constraint-handling technique
has its own subpopulation. Elsayedet al. presented the ISDE-
L method [33], where multiple search operators, constraint
handling techniques, and a local search procedure are used.
Wang and Cai proposed a (µ + λ)-CDE for the COPs [15].
In (µ + λ)-CDE, three different DE mutation strategies are
used to generate three offspring for each target parent; addi-
tionally, the IATM is proposed to handle constraints. In [34],
Elsayedet al. proposed the SAMSDE method, in which the
population is divided into a number of sub-populations and
a self-adaptive learning process is used to adjust the sub-
population sizes based on their success [34]. Very recently,
Wang and Cai presented the CMODE method [35], in which
DE is combined with multiobjective optimization to deal with
COPs. Mohamed and Sabry proposed a novel constrained
optimization based on modified DE algorithm (COMDE) [36],
where a new directed mutation strategy is presented and a
modified constraint-handling technique is employed to handle
constraints. In [37], Elsayedet al. presented an improved DE
algorithm (ISAMODE-CMA) that adopts a mix of different
DE mutation operators. Moreover, in order to enhance the
local search ability of the algorithm, the CMA-ES [38] is pe-
riodically applied. In ISAMODE-CMA, the dynamic penalty
constraint-handling technique is used to tackle constraints of
a problem. Elsayedet al. proposed an adaptive DE variant
in [39] for the COPs, where the best combination of the scaling
factorF , the crossover rateCr, and the population sizeµ are
adaptively selected based on an adaptive mechanism. In [40],
two self-adaptive DE algorithms are presented for the COPs,
where a heuristic mixing of operators is incorporated.

As briefly reviewed above, different CDE variants have
been proposed for the COPs in the DE literature. To obtain
promising results, different techniques are integrated into DE.
For example,εDE [24] combined with the gradient-based mu-
tation; ECHT-DE [32] integrated different constraint-handling
techniques into DE; ISAMODE-CMA [37] adopted mixed DE
mutations and CMA-ES procedure. Generally, combining DE
with other techniques is effective to enhance its performance;
however, they are usually more complicated than the original
DE algorithm. Based on this consideration, we will present the
ARMOR technique in DE for the COPs. Unlike the previous
techniques, the proposed ARMOR is simple, and it does
not destroy the DE structure and not increase DE overall

complexity significantly.

IV. ARMOR: A DAPTIVE RANKING MUTATION OPERATOR

In this section, we will introduce our proposed ARMOR for
the DE algorithm in detail. The core idea behind our proposed
ARMOR is elucidated from four aspects.

A. Motivations

In DE, the core operator is thedifferential mutationoperator.
Through the mutation operator, themutantvector is generated.
Generally, the parents in the mutation operator are chosen
randomly from the current population. For example, in the
classical “DE/rand/1” mutation, three parent vectorsxr1 , xr2 ,
and xr3 are selected randomly from the current population.
The indexesr1, r2, and r3 satisfy r1, r2, r3 ∈ {1, µ} and
r1 6= r2 6= r3 6= i [5]. However, since all parents are
chosen randomly, it may lead the DE algorithm to be good
at exploring the search space and locating the region of global
minimum, but be slow at exploitation of the solutions [10].
On the other hand, in the nature, good species always contain
more useful information, and hence, they are more likely to be
selected to propagate offspring. Therefore, based on the above
motivations, in this work, we present the ARMOR technique
for DE to utilize the better solutions to guide the search. In
this way, the exploitation ability of DE can be enhanced, and
hence its convergence speed is able to be accelerated.

B. Adaptive Ranking Technique

In ARMOR, we first need to rank the population. Suppose
that the population is sorted from the best to the worst based
on acriterion, then the ranking ofxi is assigned as follows:

Ri = µ− i+ 1, i = 1, 2, · · · , µ (17)

According to Equation (17), the best individual in the current
population will obtain the highest ranking.

In order to make the ranking-based mutation operator in DE
be suitable for the COPs, we modify our previous proposed
ranking technique [11], which is only based on the objective
function value for unconstrained optimization problems. In this
work, when solving the COPs, the population is adaptively
ranked according to the situation of the current population.
As mentioned in [15], the population may experience three
situations,i.e., i) infeasible situation, where the population is
entirely composed of infeasible solutions; ii) semi-infeasible
situation, where the population consists of both feasible and
infeasible solutions; and iii) feasible situation, where the pop-
ulation contains feasible solutions only. In different situations,
the population is ranked as follows.

1) Ranking in Infeasible Situation:In the infeasible situa-
tion, the population contains only infeasible solutions. In this
situation, we sort the population according to the constraint
violations (e.g., G(x) in Equation (5)) in ascending order. The
objective function values are not considered at all. Finally, the
population is ranked as

G(x1) ≤ G(x2) ≤ · · · ≤ G(xµ) (18)
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2) Ranking in Semi-feasible Situation:As suggested
in [15], in the semi-feasible situation, some important feasible
individuals (those with small objective function values) and
infeasible individuals (those with small objective function val-
ues and slight constraint violations) should be obtained more
considerations. Therefore, in order to balance the influence of
objective function value and constraint violation,fitness trans-
formation techniques (such as the methods presented in [41],
[18], [15], etc) could be a good choice. As illustrations, in
this work, we adopt the adaptive fitness transformation (AFT)
method (Equation (13)) proposed in [15] and adaptive penalty
formulation (APF) method (Equation (14)) proposed in [18] to
calculate the final transformed fitness valueffinal(xi) of each
individual. Afterwards, the population is sorted according to
ffinal(xi) in ascending order. In this way, the individuals that
have lower final transformed fitness values will obtain higher
rankings based on Equation (17). Finally, the population is
ranked as

ffinal(x1) ≤ ffinal(x2) ≤ · · · ≤ ffinal(xµ) (19)

3) Ranking in Feasible Situation:In this situation, all
individuals in the population are feasible, and the COPs can
be treated as unconstrained optimization problems. Thus, we
only need to rank the population according to the objective
function valuef(xi) of each individual in ascending order,
i.e., the population is ranked as

f(x1) ≤ f(x2) ≤ · · · ≤ f(xµ) (20)

To sum up, in ARMOR the current population is adaptively
ranked based on the following three criteria:

1) constraint violations in the infeasible situation,
2) transformed fitness values in the semi-feasible situation,
3) objective function values in the feasible situation.

C. Selection Probability Calculation

After obtaining the ranking of each solutionxi, we then
calculate its selection probabilitypi. Different from the method
presented in [11] for unconstrained optimization problems, in
this work, the selection probability is calculated according
to the situation of the current population for the COPs. In
different situations, different methods are used to calculate
the selection probability. For example, the probabilitiescan
be calculated as follows:

• In the infeasible situation:

pi = 0.5 ·

[

1.0− cos

(

Ri

µ
· π

)]

(21)

• In the semi-feasible situation:

pi = 0.5 ·

[

1.0− cos

(

Ri

µ
· π

)]

(22)

• In the feasible situation:

pi =
arccos

(

1.0− 2.0 · Ri

µ

)

π
(23)

wherei = 1, · · · , µ.
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Fig. 1. Relation between the selection probability and the ranking of solution
for different models. The population sizeµ = 50 is used.

1) Explanations:In the infeasible and semi-feasible situa-
tions, the cosine model (see Equations (21) and (22)) is used
to calculated the selection probability of each solution; while
in the feasible situation, the inverse function of Equation(21),
i.e., arccosine model, is employed for probability calculation.
The relation between the selection probability and the ranking
of each individual for the two models is plotted in Fig. 1.

As shown in Fig. 1, letR1(R2) be the ranking of solution
x1(x2) andR2 > R1, then we can get thatp3−p1 > p4−p2.
It means that for the two solutions there are larger probability
differences in the cosine model than those in the arccosine
model. Therefore, in the cosine model the selection on better
solutions will be more dominant than the selection on worse
solutions. On the other hand, in the arccosine model, better
solutions will less dominate the worse ones due to their smaller
probability differences.

Based on the analysis, in the infeasible situation, since all
solutions are infeasible, the solutions with small constraint
violations should get more chance to be selected to steer
the population towards feasibility. In order to get the feasible
solutions faster we use the cosine model to calculate the se-
lection probabilities. In this way, better solutions with smaller
constraint violations will more dominate the worse ones.

In the semi-feasible situation, some important feasible in-
dividuals and important infeasible individuals are assigned
higher rankings, since these individuals contain more useful in-
formation: On the one hand, the important feasible individuals
with small objective functions are able to guide the algorithm
to find the global optimum; on the other hand, the important
infeasible individuals with slight constraint violationsand
small objective function values can promote the algorithm to
find feasible solutions (especially when the proportion of the
feasible region is very small) or to obtain the optimum when
it is located exactly on the boundaries of the feasible region.
Therefore, these individuals should be paid more attention
and be more dominant than the worst ones. Based on this
consideration, we also use the cosine model to calculate the
selection probabilities as shown in Equation (22).

As mentioned-above, in the feasible situation, the COPs can
be treated as unconstrained optimization problems. In order to
maintain the diversity of the population and avoid trappinginto
the local optima, the arccosine model is employed to calculate
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the selection probabilities. In this manner, better individuals
will less dominate the worse ones.

It is worth noting that when the cosine and arccosine
models are used to calculate the selection probabilities in
different situations, no additional parameters are introduced
in the ARMOR. In addition, since the ranking is assigned
by Equation (17), the worst solution has a small selection
probability (not 0). In this way, the worst solution will not
be completely discarded in the selection process.

Algorithm 1 Ranking-based vector selection for “DE/rand/1”
1: Input : The target vector indexi
2: Output : The selected vector indexesr1, r2, r3
3: Randomly selectr1 ∈ {1, µ}; {base vector index}
4: while rndreal[0, 1) > pr1

or r1 == i do
5: Randomly selectr1 ∈ {1, µ};
6: end while
7: Randomly selectr2 ∈ {1, µ}; {terminal vector index}
8: while rndreal[0, 1) > pr2

or r2 == r1 or r2 == i do
9: Randomly selectr2 ∈ {1, µ};
10: end while
11: Randomly selectr3 ∈ {1, µ};
12: while r3 == r2 or r3 == r1 or r3 == i do
13: Randomly selectr3 ∈ {1, µ};
14: end while

D. Vector Selection

As presented in [11], after calculating the selection proba-
bility of each individual, another issue is that in the mutation
operator which vectors should be selected according to the
selection probabilities. In this work, thebasevector and the
terminal point of the difference vector are selected based on
their selection probabilities, while other vectors in the mutation
operator are selected randomly as the original DE algorithm.
For example, for the “DE/rand/1” mutation the vectors are
selected as shown in Algorithm 1. From Algorithm 1 we
can see that the vectors with higher rankings (or selection
probabilities) are more likely to be chosen as the base vector
or the terminal point in the mutation operator. Note that
in Algorithm 1 we only illustrate the vector selection for
“DE/rand/1”, for other mutation operators the vector selection
is similar to Algorithm 1.

E. Remarks

Although this work is the extension of our previous work
in [11], however, there are significant differences between
them: i) The work in [11] is only for unconstrained problems,
while this work is for constrained problems. ii) The ranking
in [11] is only based on the objective function value, while
in this work since the constraints should be considered, the
ranking is assigned based on different criteria in different
situations. And iii) the calculation of selection probability
is also different compared with [11]. In this work, different
methods are used to calculate the selection probabilities in
different situations.

This work is similar to the work presented in [42], however,
the differences between them are significant: i) In [42], the
ranking scheme classifies the solutions in the population into
different groups, but in this work the ranking technique is
used to assign rankings for the solutions based on different

criteria. And ii) in [42] different solutions are selected from
different considered groups for the crossover operator, while
in this work the selection probability is used to control the
selection of different solutions for the DE mutation.

Note that the additional complexity of the proposed AR-
MOR is population sorting and probability calculation. The
complexity of population sorting isO(µ · log (µ)), and the
complexity of probability calculation isO(µ). As analyzed
in [43], most of DE variants have the overall complexity of
O(tmax ·µ ·n), wheretmax is the maximal generations, andn
is the dimension of the problem . Therefore, when combining
our proposed ARMOR with CDEs, the ARMOR does not
significantly increase the overall complexity of CDEs. This
might make the ARMOR be easy to integrate into other DE
variants for the COPs.

In order to verify the performance of ARMOR, in the
following section, we will integrate it into three representative
CDEs, i.e., ECHT-DE [14], (µ + λ)-CDE [15], and DSS-
MDE [16]. These three CDEs are chosen due to their promis-
ing performance obtained andnearly-pureDE procedure. For
example, they do not use the memetic procedure. This can
make us focus on the effectiveness of ARMOR for the DE
algorithm.

V. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we perform comprehensive experiments to
evaluate the performance of ARMOR. Firstly, the ARMOR is
combined with ECHT-DE [14], and the method is referred
to as ECHT-ARMOR-DE. ECHT-ARMOR-DE is used to
optimize the functions presented in CEC 2006 [12] and CEC
2010 [13] to verify the enhanced performance of ARMOR.
Then, the ARMOR is integrated into (µ + λ)-CDE [15] and
DSS-MDE [16] to test the capability of ARMOR to improve
other CDEs.

A. Benchmark Functions

In this work, the benchmark functions presented in CEC
2006 [12] and CEC 2010 [13] for the competition on con-
strained optimization are selected as the test suite. In the
CEC 2006 competition, there are24 COPs. In the CEC 2010
competition, there are18 scalable COPs,D = 10 andD = 30
are evaluated in this work. Due to the tight space limitation,
we omit the details of these functions, interested readers can
refer to them in [12] and [13], respectively.

B. Parameter Settings

For ECHT-ARMOR-DE and ECHT-DE, we use the follow-
ing parameters, which are set the same as used in [14].

• population size:µ = 50;
• crossover rate:Cr ∈ (0.1, 0.9) in steps of0.1;
• scaling factor:F ∈ (0.4, 0.9) in steps of0.1;

For the functions in CEC 2006, the maximal number of
function evaluations (MaxNFEs) for all benchmark problems
are set to be240, 000 [37]. To compare the results of different
algorithms, each function is optimized over50 independent
runs. We use the same set of initial random populations
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to evaluate different algorithms,i.e., all of the compared
algorithms are started from the same initial population in each
out of50 runs. While for the functions in CEC 2010 atD = 10
and D = 30, the Max NFEs are set to be200, 000 and
600, 000 [13], respectively. For these functions, each function
is optimized over25 runs as recommended in [13].

C. Performance Criteria

In order to compare the results among different algorithms,
in this work, we adopt the following performance criteria
which have been presented in other literature.

• NFEsǫ [12]: It is used to record the number of function
evaluations in each run for finding a solution satisfying
f(x) − f(x∗) ≤ 1e − 4 andx is feasible, wherex∗ is
the known-optimal solution of a specific problem.

• Success rate(SR) [12]: It is equal to the number
of success runs over total number of runs. A success
run means that within MaxNFEs the algorithm finds a
feasible solutionx satisfyingf(x)− f(x∗) ≤ 1e− 4.

• NFEsf : It is used to record the number of function
evaluations in each run for finding a feasible solution.

• Feasible rate (FR) [13]: It equals to the number of
feasible runs over total number of runs.

• Convergence graphs[12]: The graphs show the median
error performance (f(x)− f(x∗)) of the total number of
runs.

• Acceleration rate (AR): Similar to the acceleration rate
in [44], this criterion is used to compare the convergence
speed between two algorithms. It is defined as follows:

AR =
ANFEsǫ,A/SRA

ANFEsǫ,B/SRB

(24)

whereANFEsǫ,A andSRA are respectively the average
NFEsǫ andSR values of algorithm A1. AR > 1 indicates
algorithm B converges faster than algorithm A.

D. On the Convergence Rate

Firstly, the convergence rate between ECHT-DE and ECHT-
ARMOR-DE is compared through the functions in CEC
2006. As mentioned in Section IV-B, in the semi-feasible
situation, different fitness transformation techniques can be
used to calculate the final transformed fitnessffinal(xi) for
each solutionxi. In this work, the AFT method presented
in [15] and the APF method presented in [18] are used
as illustrations. Therefore, there are two ECHT-ARMOR-DE
variants, i.e., ECHT-ARMOR-DE1 with AFT method and
ECHT-ARMOR-DE2 with APF method. For the two ECHT-
ARMOR-DE variants, the parameters used are described in
Section V-B. The NFEsǫ, SR, andAR values of ECHT-DE,
ECHT-ARMOR-DE1, and ECHT-ARMOR-DE2 are reported
in Table I2, where the overall best and the second best
NFEsǫ values are highlighted ingray boldface andboldface,

1Indeed,ANFEsǫ,A/SRA is the successful performance (SP ) of algorith-
m A as presented in [31]. It can be used to measure the speed andreliability
of an algorithm.

2Due to the tight space limitation, all of the experimental results, including
the figures and tables, are provided in the supplemental file.

respectively. Hereinafter, since for the three algorithmsthere
are no successful runs in functions g20 and g22, the results
of these functions are not reported. The convergence curves
of the selected functions are plotted in Fig. 2.

From Table I and Fig. 2, it can be observed that

• With respect to the NFEsǫ, both ECHT-ARMOR-DE1
and ECHT-ARMOR-DE2 require less NFEsǫ values than
ECHT-DE in21 out of22 test functions. Only in function
g11, ECHT-DE obtains slightly better NFEsǫ values than
those of ECHT-ARMOR-DE1 and ECHT-ARMOR-DE2.

• For SR, all of the three ECHT-DE variants can suc-
cessfully solve19 functions in all 50 runs. In function
g19, there are no successful runs obtained by ECHT-
DE, however, ECHT-ARMOR-DE1 and ECHT-ARMOR-
DE2 can successfully solve this function in50 and 49
runs, respectively. In g23, ECHT-DE getsSR = 0.72,
while both ECHT-ARMOR-DE1 and ECHT-ARMOR-
DE2 obtainSR = 1.0. In g02, ECHT-DE obtains the best
SR value, followed by ECHT-ARMOR-DE2 and ECHT-
ARMOR-DE1. The reason might be that the ARMOR
technique enhances the exploitation ability of the algo-
rithm, yet slightly decreases its exploration ability. While
for g02 it has large feasible space (ρ = 100% see [12]),
the ARMOR technique may lead to the algorithm not to
explore the large feasible space sufficiently.

• In terms of the accelerate rateAR, it is clear that
in 19 functions both ECHT-ARMOR-DE1 and ECHT-
ARMOR-DE2 consistently obtainAR > 1 compared
with ECHT-DE. The averagedAR value between ECHT-
ARMOR-DE1 and ECHT-DE is1.30, which means that
ECHT-ARMOR-DE1 performs30% faster than ECHT-
DE in overall. Also, ECHT-ARMOR-DE2 provides27%
faster than ECHT-DE in overall.

• Fig. 2 clearly shows that ECHT-ARMOR-DE1 gets the
fastest convergence rate, followed by ECHT-ARMOR-
DE2 and ECHT-DE.

To sum up, according to the above analysis, the experimen-
tal results verified one of our expectation that the ARMOR
technique is capable of accelerating the convergence rate of
EHCT-DE in the majority of test functions. It is worth noting
that the ARMOR technique can enhance the exploitation
ability of CDE variants, however, if the DE mutations are more
exploitative, it may lead to premature convergence.

E. Comparison with Other State-of-the-art EAs

In the previous section, we verified that the ARMOR
technique is able to accelerate the convergence rate of
EHCT-DE. In this section, the quality of the final solutions
obtained by ECHT-DE, ECHT-ARMOR-DE1, and ECHT-
ARMOR-DE2 is compared. In addition, they also compared
with other state-of-the-art EAs for the COPs. These algo-
rithms are AIS-ZYH [45], ISAMODE-CMA [37], SAMOD-
E [46], ECHT-EP2 [32],εDE [24], and ATMES [17]. AIS-
ZYH [45] is an artificial immune system based approach
for the COPs. SAMODE [46] is a multiple search operators
based DE, where different operators are selected adaptively.
ISAMODE-CMA [37] is an improved version of SAMODE. In
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ISAMODE-CMA, both mixed mutation operators and CMA-
ES based local search are implemented. ECHT-EP2 [32] is
evolutionary programming based on ensemble of constraint-
handling techniques.εDE [24], which gets the first ranking
in the CEC 2006 competition, is aε constrained DE with
gradient-based mutation and feasible elites. ATMES [17] is
an adaptive trade-off model based evolution strategy for the
COPs. We choose these EAs for comparisons due to their
good performance obtained. The MaxNFEs of AIS-ZYH are
350, 000, the Max NFEs of εDE are500, 000, while other8
EAs have the MaxNFEs= 240, 000.

The mean and standard deviation of the objective function
values for each algorithm are shown in Table II. “NA” means
not available. Note that the results of AIS-ZYH, ISAMODE-
CMA, SAMODE, ECHT-EP2,εDE, and ATMES are directly
obtained from their corresponding literature. In addition, for
ECHT-DE, ECHT-ARMOR-DE1, ECHT-ARMOR-DE2, AIS-
ZYH, ISAMODE-CMA, SAMODE, ECHT-EP2, andεDE,
based on the mean values in Table II in the22 functions,
the final rankings obtained by the Friedman test3 are shown
in Fig. 3. In addition, due to the importance of the multiple-
problem statistical analysis [48], we present the results of
the multiple-problem Wilcoxon signed-rank test in Table III,
where “•” means that the method in the row improves the
method of the column, and “◦” means that the method in the
column improves the method of the row. Upper diagonal of
level significance atα = 0.1, and lower diagonal level of
significance atα = 0.05.

According to the results show in Table II, it is clearly
seen that both ECHT-ARMOR-DE1 and ECHT-ARMOR-DE2
consistently obtain highly-competitive results in all functions
compared with other seven EAs. Both ECHT-ARMOR-DE1
and ECHT-ARMOR-DE2 can get the optimal solutions in20
functions in all runs.

With respect to the average rankings of different algorithms
by the Friedman test, thep-value is0.209197, which means
that there are no significant differences for the compared
algorithms in all functions. Additionally, Fig. 3 shows that εDE
gets the first ranking among eight algorithms, while ECHT-
ARMOR-DE1 and ECHT-ARMOR-DE2 obtain the second
and third ranking, respectively. AlthoughεDE is the best
one among the compared algorithms, it requires the most
Max NFEs4. In addition, inεDE the gradient-based mutation
is used to enhance its performance.

Based on the multiple-problem analysis by the Wilcoxon
test, Table III reveals that both ECHT-ARMOR-DE1 and
ECHT-ARMOR-DE2 significantly outperform AIS-ZYH and
SAMODE. εDE obtains significantly better results than AIS-
ZYH, SAMODE, and ECHT-EP2. SAMODE is the worst one,

3The statistic results of the Friedman test and the Wilcoxon test are
calculated by the KEEL software tool [47].

4To make a fair comparison between ECHT-ARMOR-DE1 andεDE, the
Max NFEs=500, 000 is used for ECHT-ARMOR-DE1. In this case, for
g02, ECHT-ARMOR-DE1 gets the mean and standard deviation values with
−0.8035440 and 2.24E − 05, respectively. For g19, ECHT-ARMOR-DE1
can obtain the optimal solution (32.65559) in all 50 runs. For other20
functions in Table II, both ECHT-ARMOR-DE1 andεDE get the global
optimal solutions in all runs. Thus, the performance of ECHT-ARMOR-DE1
can be highly-competitive to that ofεDE in the CEC 2006 test suite when
the Max NFEs=500, 000.

which has been significantly outperformed by five out of seven
methods. Additionally, Table III also shows that there are no
significant differences among ECHT-ARMOR-DE1, ECHT-
ARMOR-DE2, ECHT-DE, ISAMODE-CMA, andεDE by the
Wilcoxon test. The reason is that in the majority of the CEC
2006 functions, the six algorithms can obtain the optimal
solutions in all runs as shown in Table II.

In general, the ARMOR technique improves the perfor-
mance of ECHT-DE in terms of the quality of the final solu-
tions. The ARMOR-based ECHT-DE variants provide highly-
competitive results compared with other EAs in the CEC 2006
test suite.

Based on the results in Sections V-D and V-E, we see that
ECHT-ARMOR-DE1 gets slightly better results than ECHT-
ARMOR-DE2, in the following sections, we mainly focus on
the ECHT-ARMOR-DE1 method, and for simplicity, we use
ECHT-ARMOR-DE for short.

F. Experiments on CEC 2010 Benchmark Functions

From the experimental results on the CEC 2006 test suite,
we verified the enhanced performance of ARMOR in terms of
the quality of final solutions and the convergence rate. To bet-
ter understand the performance of ARMOR, ECHT-ARMOR-
DE is evaluated on the functions in CEC 2010 atD = 10 and
D = 30. The results of ECHT-ARMOR-DE are compared with
those of ECHT-DE as reported in [14]. In addition, ECHT-
ARMOR-DE and ECHT-DE are also compared with other
EAs, i.e., AIS-ZYH [45], εDEg5 [49], and IEMA [50]. Note
that the results of ECHT-DE, AIS-ZYH,εDEg, and IEMA are
directly retrieved from their corresponding literature.

1) Results atD = 10: Table IV reports the results of
ECHT-DE and ECHT-ARMOR-DE for the functions in CEC
2010 atD = 10, where the better mean values are high-
lighted in boldface. The comparisons among different EAs
are reported in Table V in terms of the mean values of final
solutions. Based on the mean values shown in Table V, the
average rankings of these algorithms6 by the Friedman test are
described in Fig. 4(a), and the results of the multiple-problem
analysis by the Wilcoxon test are shown in Table VI.

From Table IV, in terms of the mean results we see that
in 11 out of 18 functions ECHT-ARMOR-DE is better than
ECHT-DE. In4 functions both of them can obtain the optimal
solutions in all 25 runs. Only in two functions C08 and
C09, ECHT-DE gets better results than ECHT-ARMOR-DE.
Considering the feasible rate, in17 functions ECHT-ARMOR-
DE obtainsFR = 1.0, while ECHT-DE getsFR = 1.0 in 16
functions.

Comparison with other EAs, Table V shows that ECHT-
ARMOR-DE can obtain the first best mean values in8
functions, and in3 functions it gets the second best mean
results. According to the averaging rankings shown in Fig. 4(a)
we can see that ECHT-ARMOR-DE gets the first ranking, fol-
lowed byεDEg, AIS-ZYH, IEMA, and ECHT-DE. The results

5εDEg is aε constrained DE with gradient-based mutation, which obtains
the first overall ranking in the CEC 2010 competition [51].

6Since there are infeasible solutions in C11 and C12 for ECHT-DE, the
results of these two functions are not used for statistical analysis.
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in Table VI indicate that ECHT-ARMOR-DE is competitive
to AIS-ZYH and εDEg. ECHT-ARMOR-DE is significantly
better than ECHT-DE and IEMA by the Wilcoxon test at
α = 0.05. εDEg is significantly better than ECHT-DE and
IEMA by the Wilcoxon test atα = 0.1 and α = 0.05,
respectively.

2) Results atD = 30: For the CEC 2010 benchmark
functions atD = 30, the quality of final solutions of ECHT-DE
and ECHT-ARMOR-DE are tabulated in Table VII. Table VIII
shows the comparisons with other EAs in terms of the mean
values. Additionally, the averaging rankings by the Friedman
test and the multiple-problem analysis by the Wilcoxon test
are reported in Fig. 4(b) and Table IX7, respectively.

Similar to the results atD = 10, ECHT-ARMOR-DE can
obtain better mean results than ECHT-DE in the majority of
the test functions (11 out of 18). It is worse than ECHT-DE
in four functions (C01, C04, C10, and C17).

Table VIII shows that ECHT-ARMOR-DE gets the first best
mean values in4 functions, and the second best results in
2 functions. εDEg respectively obtains the first and second
best mean values in8 and 2 functions. For AIS-ZYH, in4
functions it gets the first best results, and in8 functions it
obtains the second best results. The average rankings shown
in Fig. 4(b) tells thatεDEg is the overall best method, followed
by AIS-ZYH, ECHT-ARMOR-DE, and ECHT-DE. According
the multiple-problem analysis by the Wilcoxon test, the results
in Table IX indicate that ECHT-ARMOR-DE,εDEg, and
AIS-ZYH significantly outperform ECHT-DE atα = 0.05.
There are no significant differences among ECHT-ARMOR-
DE, εDEg, and AIS-ZYH in terms of the Wilcoxon test.

3) Remarks:By integrating the ARMOR into ECHT-DE,
ECHT-ARMOR-DE improves the performance of ECHT-DE
in the CEC 2010 benchmark function atD = 10 andD = 30.
Especially, atD = 10 ECHT-ARMOR-DE obtains the first
average ranking by the Friedman test. The performance of
ECHT-DE and ECHT-ARMOR-DE decreases atD = 30,
however, ECHT-ARMOR-DE still gets better results than
ECHT-DE.

It is worth mentioning that the main contribution of this
work is the proposed ARMOR, not to propose a competitor.
The ARMOR is integrated into ECHT-DE to evaluate the
enhanced performance of ARMOR, and it may be useful to
improve other CDEs. We will try to verify this expectation in
the following section.

G. Discussions

In the previous sections, the performance of ARMOR is
combined with ECHT-DE, and ECHT-ARMOR-DE improves
ECHT-DE and provides competitive results compared with
other EAs in the CEC 2006 and CEC 2010 benchmark
functions. In this section, we address four other issues as
follows.

7Also, C11 and C12 are not used due to the infeasible solutionsin these
functions. In addition, IEMA is not used for statistical comparison, because
in four functions it can not find any feasible solutions in allruns.

1) ARMOR for Other CDEs:As discussed in Section III-B,
there are other CDEs for the COPs. Thus, we might be asked
that “Is the ARMOR useful to other CDEs?” In order to
answer this question, in this section, ARMOR is integrated
into two representative CDEs,i.e., (µ+λ)-CDE [15] and DSS-
MDE [16]. The two ARMOR-based variants are respectively
referred to as (µ+λ)-ARMOR-CDE and DSS-ARMOR-MDE.
For (µ+λ)-ARMOR-CDE, the parameters are set to the same
as used in [15],e.g., µ = 70, λ = 210, F = 0.8, Cr = 0.9.
For DSS-ARMOR-MDE, the population size is set to be
µ = 90, and other parameters are kept the same as used
in [16], i.e., Cr = 0.9, F = rndreal(0.3, 0.9), andno = 5.
We use a larger population size than that of DSS-MDE (µ =
50), because both DSS-MDE and DSS-ARMOR-MDE obtain
higher success rates than small population size used in the
original DSS-MDE. For both (µ+λ)-ARMOR-CDE and DSS-
ARMOR-MDE, Max NFEs=500, 000. The two algorithms are
performed over50 independent runs for each function. Note
that in ARMOR the AFT method is used to calculate the
transformed fitness in the semi-feasible situation. The results
of NFEsǫ, SR, and AR are tabulated in Table X, and the
better results are highlighted inboldface. Note that the results
of (µ+ λ)-CDE are obtained from [15] in Table 6. While for
DSS-MDE, we performed it in all functions due to the changed
population size.

Compared (µ+λ)-ARMOR-CDE with (µ+λ)-CDE, Table X
clearly shows that (µ+λ)-ARMOR-CDE requires less NFEsǫ

than (µ+λ)-CDE in the majority of test cases. In20 out of 22
functions, (µ+ λ)-ARMOR-CDE is better than (µ+ λ)-CDE
in terms of the mean NFEs values. Only in two functions
g05 and g15, (µ + λ)-CDE is slightly better than (µ + λ)-
ARMOR-CDE. In 20 functions, both (µ + λ)-ARMOR-CDE
and (µ+ λ)-CDE can solve them successfully in all runs. In
the rest two functions, (µ+ λ)-ARMOR-CDE obtains higher
SR value than (µ + λ)-CDE in g21, while it loses seriously
in g02. In terms of theAR criterion, the averageAR is 1.43,
which means that (µ+λ)-ARMOR-CDE converges43% faster
than (µ+ λ)-CDE in overall.

Comparisons on the performance between DSS-ARMOR-
MDE and DSS-MDE, from Table X, we can observe that in
all test functions DSS-ARMOR-MDE needs less mean NFEsǫ

than DSS-MDE. With respect toSR, DSS-ARMOR-MDE
performs better than DSS-MDE in two functions (g21 and
g23), while DSS-MDE wins in two functions (g02 and g13).
In the rest18 functions, both DSS-ARMOR-MDE and DSS-
MDE get theSR = 1.0. The averageSR of DSS-ARMOR-
MDE is slightly better than that of DSS-MDE. In addition,
DSS-ARMOR-MDE performs104% faster than DSS-MDE in
overall, since the averageAR = 2.04.

Therefore, from the above results and analysis, we can say
that our proposed ARMOR is of benefit to (µ+ λ)-CDE and
DSS-MDE. It accelerates their convergence speed, but does
not decrease the success rate in the majority of the functions.
Hence, the ARMOR can be similarly useful for performance
enhancement of other CDEs.

2) On the Robustness:The robustness of the proposed
ARMOR is also important to indicate its effectiveness. As
mentioned in Section IV-C, there are no additional parameters
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introduced in ARMOR; hence, to evaluate its robustness, we
will modify the parameters of DE to show how quality of
solutions changed. Since in ECHT-DE [32] bothCr andF are
adaptively controlled, in this section, we use (µ+λ)-CDE [15]
as the basis algorithm. In the DE literature for the COPs (such
as [24], [16], [15]),Cr = 0.9 has obtained very promising
results. In addition, as suggested in [31], the most usefulF
values are0.6 ≤ F ≤ 0.9. Therefore, we fixCr = 0.9; while
F = 0.7 andF = 0.9 are used in (µ+ λ)-CDE and (µ+ λ)-
ARMOR-CDE to evaluate the robustness. All other parameters
are kept the same as used in [15]. The results are reported in
Table XI.

According to the results in Table XI, we can see that
regardless of differentF values (µ + λ)-ARMOR-CDE is
able to accelerate the convergence rate of (µ + λ)-CDE in
the majority of the functions. The averagedAR value is1.33
and 1.31 for F = 0.7 and F = 0.9, respectively. Thus, we
can conclude that the ARMOR is still capable of accelerating
(µ + λ)-CDE with differentF values. And the robustness of
ARMOR is not significantly influenced by differentF settings
in (µ+ λ)-CDE.

3) Influence of Other Probability Calculation Models:
In Section IV-C, the cosine and arccosine models are used
to calculate the selection probabilities in different situations.
Other models may also be used for probability calculation. To
address this issue, the following models are used.

• In the infeasible situation:

pi =

{

1.0, 1 ≤ i < µ
2

Ri
µ

2

, µ
2 ≤ i ≤ µ

(25)

• In the semi-feasible situation:

pi =

(

Ri

µ

)2.0

, i = 1, · · · , µ (26)

• In the feasible situation:

pi =

(

Ri

µ

)0.5

, i = 1, · · · , µ (27)

The above models are also based on the considerations that: i)
In the infeasible situation, the main task is to steer the popula-
tion into feasible space. ii) In the semi-feasible situation, both
important feasible solutions and important infeasible solutions
are more dominant than the worse ones. And iii) in the feasible
situation, better solutions less dominate worse solutionsto
promote the diversity.

The ARMOR with these models are also integrated into
ECHT-DE [14], two ECHT-ARMOR-DE variants,i.e., ECHT-
ARMOR-DE3 with AFT method and ECHT-ARMOR-DE4
with APF method, are evaluated in the CEC 2006 functions.
For ECHT-ARMOR-DE3 and ECHT-ARMOR-DE4, the pa-
rameter settings are the same as described in Section V-B.
The results of NFEsǫ, SR, andAR are reported in Table XII.
All results are averaged over50 independent runs.

Like the results in Section V-D, in the majority of functions
both ECHT-ARMOR-DE3 and ECHT-ARMOR-DE4 requires
less NFEsǫ values. Moreover, they can provide higher mean
SR values than ECHT-DE. In terms of theAR values, the

averageAR are 1.26 and 1.21 for ECHT-DE vs ECHT-
ARMOR-DE3 and ECHT-DE vs ECHT-ARMOR-DE4, re-
spectively. Therefore, the above models can also accelerate
the convergence rate of ECHT-DE in overall.

4) On the NFEsf Performance:Another issue is that “Can
the ARMOR make the algorithm achieve feasible solutions
faster?” In order to answer this question, in this section, the
NFEsf , FR, andAR′ values of ECHT-DE, ECHT-ARMOR-
DE1, and ECHT-ARMOR-DE38 are compared in Table XIII.
All results are averaged over50 runs.AR′ is similar toAR
and it is calculated as

AR′ =
ANFEsf,A/FRA

ANFEsf,B/FRB

(28)

where ANFEsf,A and FRA are respectively the average
NFEsf and FR values of algorithm A.AR′ > 1 indicates
algorithm B gets feasible solution faster than algorithm A.
Note that in Table XIII, the results of g02, g04, g12, g19,
and g24 are omitted, because in these functions the feasible
solutions are obtained in the initial population. The results of
g20 are not reported in Table XIII, since the three algorithms
can not find feasible solutions in all runs.

From the results shown in Table XIII, we can observe that
ECHT-ARMOR-DE1 requires less mean NFEsf values than
ECHT-DE in 12 out of 18 functions, while it is worse than
ECHT-DE in6 functions. In function g22, there are no feasible
solutions found by ECHT-DE, however, ECHT-ARMOR-DE1
can provideFR = 0.88. AR′ = 1.11 between ECHT-DE
and ECHT-ARMOR-DE1, which means that ECHT-ARMOR-
DE1 achieves the feasible solutions11% faster than ECHT-
DE in overall. Compared the results between ECHT-DE and
ECHT-ARMOR-DE3, similar results can be obtained. ECHT-
ARMOR-DE3 wins in13 functions with respect to the mean
NFEsf values, and it gets the feasible solutions7% faster than
ECHT-DE in overall.

In general, for the two methods to calculate the selection
probabilities in ARMOR, the ARMOR-based ECHT-DE vari-
ants can achieve feasible solutions faster than ECHT-DE in the
majority of test functions. In addition, the ARMOR technique
can make ECHT-DE obtain the feasible solutions in some
functions with many active constraints, such as g22.

VI. CONCLUSIONS ANDFUTURE WORK

In order to accelerate the convergence rate and achieve
feasible solutions faster for the constrained DE methods when
solving the COPs, in this paper, we propose an adaptive
ranking mutation operator (ARMOR). In ARMOR, based on
the situation of the current population, the solutions are adap-
tively ranked. In addition, in different situations the calculation
of selection probability of each solution is different, and
different models can be used to calculate the probabilities.
The ARMOR is simple, and does not increase the overall
complexity of CDEs. It is easy to integrate into most of

8In the infeasible situation, the population is ranked only based on the
constraint violation of each individual. In this way, ECHT-ARMOR-DE1 and
ECHT-ARMOR-DE2 (also ECHT-ARMOR-DE3 and ECHT-ARMOR-DE4)
have the same NFEsf andFR values in the same function. Hence, the results
of ECHT-DE are compared with those of ECHT-ARMOR-DE1 and ECHT-
ARMOR-DE3.
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CDEs, and as illustrations, it is combined with ECHT-DE,
(µ + λ)-CDE, and DSS-MDE. Experimental results verified
our expectations that the proposed ARMOR is able to make
the CDEs converge faster and find feasible solution faster.
Additionally, ECHT-ARMOR-DE provides fairly-competitive
results compared with other state-of-the-art EAs in the CEC
2006 and CEC 2010 benchmark functions.

The ranking-based mutation operators may be useful in the
multiobjective optimization. For example, the non-dominated
sorting method [52] can be possibly used to rank solutions in
the multiobjective optimization. In our future, we will tryto
verify this expectation.
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SUPPLEMENT FILE
TABLE I

COMPARISON ON THENFESǫ VALUES OF ECHT-DE, ECHT-ARMOR-DE1,AND ECHT-ARMOR-DE2FOR THECEC 2006FUNCTIONS. ALL RESULTS
ARE AVERAGED OVER50 RUNS.

Prob ECHT-DE (1) ECHT-ARMOR-DE1 (2) ECHT-ARMOR-DE2 (3) AR AR

Mean Std SR Mean Std SR Mean Std SR (1) vs (2) (1) vs (3)
g01 1.384E+05 4.06E+03 1.00 9.739E+04 3.14E+03 1.00 1.064E+05 3.28E+03 1.00 1.42 1.30
g02 8.205E+04 6.25E+03 0.42 6.689E+04 1.41E+04 0.30 7.672E+04 3.34E+04 0.40 0.88 1.02
g03 1.161E+05 1.53E+03 1.00 1.136E+05 3.20E+03 1.00 1.149E+05 2.64E+03 1.00 1.02 1.01
g04 6.470E+04 2.43E+03 1.00 4.283E+04 1.45E+03 1.00 4.599E+04 1.75E+03 1.00 1.51 1.41
g05 1.204E+05 1.45E+03 1.00 1.195E+05 8.75E+02 1.00 1.201E+05 1.23E+03 1.00 1.01 1.00
g06 2.224E+04 1.24E+03 1.00 1.536E+04 7.04E+02 1.00 1.630E+04 6.67E+02 1.00 1.45 1.36
g07 1.088E+05 4.87E+03 1.00 6.718E+04 2.80E+03 1.00 7.013E+04 2.97E+03 1.00 1.62 1.55
g08 2.644E+03 4.15E+02 1.00 2.216E+03 3.07E+02 1.00 2.340E+03 3.77E+02 1.00 1.19 1.13
g09 4.194E+04 1.81E+03 1.00 2.902E+04 1.15E+03 1.00 3.054E+04 1.14E+03 1.00 1.44 1.37
g10 1.855E+05 7.49E+03 1.00 1.023E+05 3.75E+03 1.00 1.071E+05 3.47E+03 1.00 1.81 1.73
g11 5.820E+04 1.85E+04 1.00 6.265E+04 1.55E+04 1.00 6.272E+04 1.42E+04 1.00 0.93 0.93
g12 3.072E+03 7.83E+02 1.00 2.552E+03 5.69E+02 1.00 2.424E+03 6.06E+02 1.00 1.20 1.27
g13 1.109E+05 4.39E+03 1.00 1.092E+05 4.70E+03 1.00 1.092E+05 4.70E+03 1.00 1.01 1.01
g14 1.401E+05 6.59E+03 1.00 1.302E+05 3.33E+03 1.00 1.318E+05 3.26E+03 1.00 1.08 1.06
g15 1.083E+05 5.58E+03 1.00 1.074E+05 5.01E+03 1.00 1.076E+05 4.96E+03 1.00 1.01 1.01
g16 3.019E+04 1.37E+03 1.00 2.005E+04 1.06E+03 1.00 2.200E+04 1.04E+03 1.00 1.51 1.37
g17 1.174E+05 1.59E+03 1.00 1.167E+05 1.04E+03 1.00 1.170E+05 1.12E+03 1.00 1.01 1.00
g18 1.431E+05 2.02E+04 1.00 8.000E+04 9.28E+03 1.00 7.895E+04 1.09E+04 1.00 1.79 1.81
g19 NA NA 0.00 1.830E+05 1.60E+04 1.00 1.868E+05 1.73E+04 0.98 NA NA
g21 1.734E+05 6.82E+03 1.00 1.476E+05 1.34E+04 1.00 1.517E+05 3.10E+03 1.00 1.17 1.14
g23 2.274E+05 5.72E+03 0.72 1.706E+05 4.29E+03 1.00 1.751E+05 4.19E+03 1.00 1.85 1.80
g24 8.120E+03 7.81E+02 1.00 6.032E+03 4.97E+02 1.00 6.348E+03 5.48E+02 1.00 1.35 1.28
avg – 0.915 – 0.968 – 0.972 1.30 1.27

TABLE II
COMPARED THE QUALITY OF FINAL SOLUTIONS OF OUR APPROACH WITH OTHER STATE-OF-THE-ART EAS FOR ALL CEC 2006FUNCTIONS.

Prob Criteria ECHT-ARMOR-DE1 ECHT-ARMOR-DE2 EHCT-DE AIS-ZYH ISAMODE-CMA SAMODE ECHT-EP2 εDE ATMES

g01 Mean -15 -15 -15 -15 -15 -15 -15 -15 -15
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.60E-14

g02 Mean -0.7900342 -0.7952637 -0.7936387 -0.8021930 -0.79244 -0.79873521 -0.799822 -0.8036191 -0.790148
Std 1.23E-02 8.10E-03 1.12E-02 5.19E-10 2.80E-02 8.80E-03 1.26E-02 1.75E-08 1.30E-02

g03 Mean -1.0005 -1.0005 -1.0005 -1.0005 -1.0005 -1.0005 -1.0005 -1.0005 -1
Std 0.00E+00 0.00E+00 0.00E+00 1.77E-11 0.00E+00 0.00E+00 0.00E+00 2.96E-31 5.90E-05

g04 Mean -30665.539 -30665.539 -30665.539 -30665.539 -30665.539 -30665.5386 -30665.539 -30665.539 -30665.539
Std 0.00E+00 0.00E+00 0.00E+00 3.69E-13 0.00E+00 0.00E+00 0.00E+00 0.00E+00 7.40E-12

g05 Mean 5126.497 5126.497 5126.497 5126.498 5126.497 5126.497 5126.497 5126.497 5127.648
Std 0.00E+00 0.00E+00 0.00E+00 1.70E-02 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.80E+00

g06 Mean -6961.813875 -6961.813875 -6961.814 -6961.81385 -6961.813875 -6961.813875 -6961.814 -6961.813875 -6961.814
Std 0.00E+00 0.00E+00 0.00E+00 1.90E-12 0.00E+00 0.00E+00 0.00E+00 0.00E+00 4.60E-12

g07 Mean 24.3062 24.3062 24.3062 24.3557 24.3062 24.3096 24.3063 24.3062 24.316
Std 0.00E+00 0.00E+00 1.14E-10 8.20E-03 0.00E+00 1.59E-03 3.19E-05 2.18E-15 1.10E-02

g08 Mean -0.095825 -0.095825 -0.095825 -0.095825 -0.095825 -0.09582504 -0.095825 -0.095825 -0.095825
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.61E-08 1.23E-32 2.80E-17

g09 Mean 680.63 680.63 680.63 680.65 680.63 680.63 680.63 680.63 680.639
Std 0.00E+00 0.00E+00 0.00E+00 1.20E-08 0.00E+00 1.16E-05 0.00E+00 0.00E+00 1.00E-02

g10 Mean 7049.24802 7049.24802 7049.24802 7049.57032 7049.24802 7059.81345 7049.249 7049.24802 7250.437
Std 0.00E+00 0.00E+00 4.18E-07 4.50E-04 5.42E-06 7.86E+00 6.60E-04 4.24E-13 1.20E+02

g11 Mean 0.7499 0.7499 0.7499 0.7499 0.7499 0.7499 0.7499 0.7499 0.75
Std 0.00E+00 0.00E+00 0.00E+00 1.40E-08 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.40E-04

g12 Mean -1 -1 -1 -1 -1 -1 -1 -1 -1
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.00E-03

g13 Mean 0.05394 0.05394 0.05394 0.05394 0.05394 0.05394 0.05394 0.05394 0.05396
Std 0.00E+00 0.00E+00 0.00E+00 7.80E-10 0.00E+00 1.75E-08 1.00E-12 0.00E+00 1.30E-05

g14 Mean -47.764888 -47.764888 -47.764888 -47.764881 -47.764888 -47.68115 -47.7648 -47.764888 NA
Std 0.00E+00 0.00E+00 3.26E-13 1.00E-12 0.00E+00 4.04E-02 2.72E-05 1.39E-15 NA

g15 Mean 961.71502 961.71502 961.71502 961.71502 961.71502 961.71502 961.71502 961.71502 NA
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.01E-13 0.00E+00 NA

g16 Mean -1.905155 -1.905155 -1.905155 -1.905155 -1.905155 -1.905155 -1.905155 -1.905155 NA
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.12E-10 1.58E-30 NA

g17 Mean 8853.5397 8853.5397 8853.5397 8853.5397 8853.5397 8853.5397 8853.5397 8853.5397 NA
Std 0.00E+00 0.00E+00 0.00E+00 1.90E-09 0.00E+00 1.15E-05 2.13E-08 1.21E-27 NA

g18 Mean -0.866025 -0.866025 -0.866024 -0.866025 -0.866025 -0.866024 -0.866025 -0.866025 NA
Std 0.00E+00 0.00E+00 5.15E-06 1.30E-15 0.00E+00 7.04E-07 1.00E-09 2.18E-17 NA

g19 Mean 32.65560 32.65560 32.65654 32.65559 32.65559 32.75734 32.66230 32.65560 NA
Std 8.39E-06 1.90E-05 7.76E-04 0.00E+00 6.46E-07 6.15E-02 3.40E-03 1.26E-05 NA

g21 Mean 193.72451 193.72451 193.72451 196.72451 193.72451 193.771375 193.7438 193.72451 NA
Std 0.00E+00 0.00E+00 0.00E+00 1.10E+00 0.00E+00 1.96E-02 1.65E-02 3.34E-14 NA

g23 Mean -400.0551 -400.0551 -400.0546 -399.8743 -395.62403 -360.817656 -373.2178 -400.0551 NA
Std 2.68E-09 1.76E-08 2.18E-03 2.00E+00 7.79E+00 1.96E+01 3.37E+01 1.11E-14 NA

g24 Mean -5.508013 -5.508013 -5.508013 -5.508013 -5.508013 -5.508013 -5.508013 -5.508013 NA
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.52E-29 NA
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TABLE III
RANKS COMPUTED BY THEWILCOXON TEST FOR STATE-OF-THE-ART EAS ON CEC 2006BENCHMARK FUNCTIONS. HEREINAFTER, • = THE METHOD

IN THE ROW IMPROVES THE METHOD OF THE COLUMN. ◦ = THE METHOD IN THE COLUMN IMPROVES THE METHOD OF THE ROW. UPPER DIAGONAL OF
LEVEL SIGNIFICANCE AT α = 0.1, LOWER DIAGONAL LEVEL OF SIGNIFICANCE ATα = 0.05.

(1) (2) (3) (4) (5) (6) (7) (8)
ECHT-ARMOR-DE1 (1) - 116.0 145.5 187.0• 127.0 183.5• 170.5 116.0
ECHT-ARMOR-DE2 (2) 137.0 - 167.5 187.0• 148.0 183.5• 171.5 116.0

EHCT-DE (3) 107.5 85.5 - 173.5 128.5 173.5 165.5 85.5
AIS-ZYH (4) 66.0 66.0 79.5◦ - 87.0 139.5 108.0 50.0◦

ISAMODE-CMA (5) 126.0 105.0 124.5 166.0 - 183.5• 170.5 105.0
SAMODE (6) 69.5 69.5 79.5◦ 113.5 69.5 - 52.5◦ 52.5◦

ECHT-EP2 (7) 82.5 81.5 87.5 145.0 82.5 200.5• - 63.5◦
εDE (8) 137.0 137.0 167.5 203.0• 148.0 200.5• 189.5• -

TABLE IV
COMPARISON ON THE PERFORMANCE OFECHT-DEAND ECHT-ARMOR-DEFOR FUNCTIONS IN THECEC 2010TEST SUITE ATD = 10.

Prob ECHT-DE ECHT-ARMOR-DE
Best Median Worst Mean Std FR Best Median Worst Mean Std FR

C01 -7.4730E-01 -7.4730E-01 -7.4060E-01 -7.4700E-01 1.4E-03 1.00 -7.4730E-01 -7.4730E-01 -7.4060E-01 -7.4700E-01 1.4E-03 1.00
C02 -2.2777E+00 -2.2777E+00 -2.2612E+00 -2.2744E+00 6.7E-03 1.00 -2.2777E+00 -2.2777E+00 -2.2612E+00 -2.2770E+00 3.3E-03 1.00
C03 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0E+00 1.00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0E+00 1.00
C04 -1.0000E-05 -1.0000E-05 -1.0000E-05 -1.0000E-05 0.0E+00 1.00 -1.0000E-05 -1.0000E-05 -1.0000E-05 -1.0000E-05 0.0E+00 1.00
C05 -4.8361E+02 -4.3495E+02 -2.7057E+02 -4.1145E+02 7.6E+01 1.00 -4.8361E+02 -4.8361E+02 -4.8361E+02 -4.8361E+02 0.0E+00 1.00
C06 -5.7866E+02 -5.7866E+02 -3.6855E+02 -5.6247E+02 4.5E+01 1.00 -5.7866E+02 -5.7866E+02 -5.7866E+02 -5.7866E+02 4.0E-13 1.00
C07 0.0000E+00 0.0000E+00 3.9866E+00 1.3290E-01 7.3E-01 1.00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0E+00 1.00
C08 0.0000E+00 7.0979E+00 2.6115E+01 6.1566E+00 6.5E+00 1.00 0.0000E+00 1.0942E+01 1.0942E+01 7.5262E+00 5.0E+00 1.00
C09 0.0000E+00 0.0000E+00 4.4082E+00 1.4691E-01 8.0E-01 1.00 0.0000E+00 0.0000E+00 4.4082E+00 1.7633E-01 8.8E-01 1.00
C10 0.0000E+00 0.0000E+00 4.1727E+01 1.7117E+00 7.7E+00 1.00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0E+00 1.00
C11 -1.5000E-03 -1.5000E-03 -8.7300E-02‡ -4.4000E-03 1.6E-02 NA -1.5227E-03 -1.5227E-03 -8.7342E-02‡ -4.2716E-02 4.4E-02 0.52
C12 -1.9920E-01 -1.9920E-01 -5.5435E+02‡ -1.7187E+02 2.2E+02 NA -1.9925E-01 -1.9925E-01 -1.9925E-01 -1.9925E-01 1.6E-13 1.00
C13 -6.8429E+01 -6.3518E+01 -6.1649E+01 -6.5121E+01 2.4E+00 1.00 -6.8429E+01 -6.8429E+01 -6.2276E+01 -6.7169E+01 2.1E+00 1.00
C14 0.0000E+00 0.0000E+00 1.7191E+07 7.0242E+05 3.2E+06 1.00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0E+00 1.00
C15 0.0000E+00 1.2216E+10 1.8693E+14 2.3392E+13 5.3E+13 1.00 0.0000E+00 3.6732E+00 4.4974E+00 2.8246E+00 1.6E+00 1.00
C16 0.0000E+00 3.0437E-02 1.6351E-01 3.9327E-02 4.3E-02 1.00 0.0000E+00 0.0000E+00 2.3426E-01 2.8478E-02 5.0E-02 1.00
C17 0.0000E+00 0.0000E+00 1.0884E+00 1.1152E-01 3.3E-01 1.00 0.0000E+00 6.1630E-33 6.1630E-33 3.6978E-33 3.1E-33 1.00
C18 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0E+00 1.00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0E+00 1.00

‡ indicates the solution is infeasible.

TABLE V
COMPARED THE RESULTS OFECHT-ARMOR-DEWITH OTHER EAS FOR FUNCTIONS IN THECEC 2010TEST SUITE ATD = 10.

Prob ECHT-DE AIS-ZYH εDEg IEMA ECHT-ARMOR-DE
C01 -7.4700E-01± 1.40E-03 -7.4705E-01± 1.30E-03 -7.4704E-01± 1.32E-03 -7.4319E-01± 4.33E-03 -7.4700E-01± 1.40E-03
C02 -2.2744E+00± 6.70E-03 -2.2748E+00± 2.00E-03 -2.2588E+00± 2.38E-02 -2.2777E+00± 1.82E-07 -2.2770E+00± 3.30E-03
C03 0.0000E+00± 0.00E+00 3.7472E-09± 4.81E-04 0.0000E+00± 0.00E+00 6.2346E-07± 1.40E-06 0.0000E+00± 0.00E+00
C04 -1.0000E-05± 0.00E+00 -9.9712E-06± 4.28E-03 -9.9185E-06± 1.54E-07 -9.3702E-06± 8.99E-08 -1.0000E-05± 0.00E+00
C05 -4.1145E+02± 7.63E+01 -4.7996E+02± 6.30E+00 -4.8361E+02± 3.89E-13 -3.7916E+02± 1.79E+02 -4.8361E+02± 0.00E+00
C06 -5.6247E+02± 4.51E+01 -5.7995E+02± 7.30E-08 -5.7865E+02± 3.62E-03 -5.5147E+02± 7.36E+01 -5.7866E+02± 4.00E-13
C07 1.3290E-01± 7.28E-01 1.1735E-08± 2.70E+00 0.0000E+00± 0.00E+00 3.2569E-09± 3.39E-09 0.0000E+00± 0.00E+00
C08 6.1566E+00± 6.45E+00 4.0919E+00± 1.46E+00 6.7275E+00± 5.56E+00 4.0702E+00± 6.38E+00 7.5262E+00± 5.00E+00
C09 1.4691E-01± 8.05E-01 2.6980E+01± 7.50E+01 0.0000E+00± 0.00E+00 1.9511E+12± 5.40E+12 1.7633E-01± 8.82E-01
C10 1.7117E+00± 7.66E+00 1.6200E+03± 5.00E+02 0.0000E+00± 0.00E+00 2.5613E+12± 3.97E+12 0.0000E+00± 0.00E+00
C11 -4.4000E-03± 1.57E-02‡ -9.1995E-04± 8.23E-04 -1.5227E-03± 6.34E-11 1.5227E-03± 2.73E-08 -4.2716E-02± 4.38E-02‡

C12 -1.7187E+02± 2.21E+02‡ -4.3577E+02± 6.02E+01 -3.3673E+02± 1.78E+02 -6.4817E-01± 2.19E+00 -1.9925E-01± 1.61E-13
C13 -6.5121E+01± 2.38E+00 -6.7874E+01± 3.11-E01 -6.8429E+01± 1.02E-06 -6.8018E+01± 1.40E+00 -6.7169E+01± 2.15E+00
C14 7.0242E+05± 3.19E+06 1.2213E-04± 2.90E-08 0.0000E+00± 0.00E+00 5.6308E+01± 1.82E+02 0.0000E+00± 0.00E+00
C15 2.3392E+13± 5.30E+13 5.1855E-09± 1.10E-08 1.7990E-01± 8.81E-01 1.5753E+08± 6.04E+08 2.8246E+00± 1.63E+00
C16 3.9327E-02± 4.28E-02 9.9593E-18± 6.27E-15 3.7021E-01± 3.71E-01 3.3030E-02± 2.26E-02 2.8478E-02± 4.99E-02
C17 1.1152E-01± 3.32E-01 2.9340E+00± 2.29E+00 1.2496E-01± 1.93E-01 3.1509E-03± 1.57E-02 3.6978E-33± 3.08E-33
C18 0.0000E+00± 0.00E+00 1.6590E+00± 1.27E+00 9.6788E-19± 1.81E-18 1.6179E-14± 3.82E-14 0.0000E+00± 0.00E+00

‡ indicates that there are infeasible solutions in this function over25 independent runs.

TABLE VI
RANKS COMPUTED BY THEWILCOXON TEST FOR STATE-OF-THE-ART EAS ON CEC 2010BENCHMARK FUNCTIONS ATD = 10.

(1) (2) (3) (4) (5)
ECHT-DE (1) – 46.0 37.0◦ 63.0 22.0◦
AIS-ZYH (2) 90.0 – 50.0 98.0 52.0

εDEg (3) 99.0 86.0 – 105.0• 73.0
IEMA (4) 73.0 38.0 31.0 – 24.0◦

ECHT-ARMOR-DE (5) 114.0• 84.0 63.0 112.0• –
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TABLE VII
COMPARISON ON THE PERFORMANCE OFECHT-DEAND ECHT-ARMOR-DEFOR FUNCTIONS IN THECEC 2010TEST SUITE ATD = 30.

Prob ECHT-DE ECHT-ARMOR-DE
Best Median Worst Mean Std FR Best Median Worst Mean Std FR

C01 -8.2170E-01 -8.0120E-01 -7.5570E-01 -7.9940E-01 1.79E-02 1.00 -8.1806E-01 -8.0029E-01 -7.3601E-01 -7.8992E-01 2.51E-02 1.00
C02 -2.2251E+00 -2.0662E+00 -1.3511E+00 -1.9943E+00 2.10E-01 1.00 -2.2607E+00 -2.1900E+00 -1.9746E+00 -2.1706E+00 7.36E-02 1.00
C03 3.2433E-21 1.0983E+02 1.8496E+02 9.8920E+01 6.26E+01 1.00 2.5801E-24 2.8673E+01 2.8673E+01 2.6380E+01 7.94E+00 1.00
C04 -3.3015E-06 -2.9456E-06 4.6205E-01 -1.0257E-06 9.01E-02 1.00 -3.3326E-06 9.9236E-05 1.0886E+00 8.3713E-02 2.89E-01 1.00
C05 -2.1368E+02 -1.6300E+02 4.7719E+02 -1.0642E+02 1.67E+02 1.00 -4.8122E+02 -4.7647E+02 7.6414E+01 -4.3335E+02 1.46E+02 1.00
C06 -2.9572E+02 -1.4732E+02 2.6353E+02 -1.3762E+02 9.89E+01 1.00 -5.3010E+02 -5.2465E+02 1.2454E+02 -4.8931E+02 1.32E+02 1.00
C07 0.0000E+00 0.0000E+00 3.9866E+00 1.3290E-01 7.28E-01 1.00 0.0000E+00 3.4286E-26 1.1045E-24 1.0789E-25 2.20E-25 1.00
C08 0.0000E+00 0.0000E+00 5.8567E+02 3.3585E+01 1.11E+02 1.00 0.0000E+00 8.5541E-26 1.5113E+02 2.0101E+01 4.70E+01 1.00
C09 0.0000E+00 0.0000E+00 6.5710E+02 4.2441E+01 1.38E+02 1.00 0.0000E+00 2.2153E-25 1.1527E+02 4.6110E+00 2.31E+01 1.00
C10 0.0000E+00 3.1309E+01 4.7510E+02 5.3381E+01 8.83E+01 1.00 6.0209E-13 3.1309E+01 5.3332E+02 6.5536E+01 1.07E+02 1.00
C11 -4.0000E-04 -2.0000E-04 2.0400E-02‡ 2.6000E-03 6.00E-03 NA -3.9234E-04 -3.9234E-04 1.8671E-02‡ 1.1327E-03 5.28E-03 0.92
C12 -1.9930E-01 -1.9930E-01 -7.4816E+02‡ -2.5129E+01 1.37E+02 NA -1.9926E-01 -1.9926E-01 7.6343E-01 -1.6076E-01 1.93E-01 1.00
C13 -6.8429E+01 -6.4619E+01 -6.0939E+01 -6.4583E+01 1.67E+00 1.00 -6.7416E+01 -6.4908E+01 -6.0769E+01 -6.4646E+01 1.97E+00 1.00
C14 0.0000E+00 0.0000E+00 3.7101E+06 1.2368E+05 6.77E+05 1.00 1.5809E-27 4.4875E-26 1.1507E+04 6.6135E+02 2.47E+03 1.00
C15 1.9922E+09 8.5527E+10 2.3252E+12 1.9409E+11 4.35E+11 1.00 1.1716E-04 2.1603E+01 5.9937E+09 3.1316E+08 1.20E+09 1.00
C16 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.00E+00 1.00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.00E+00 1.00
C17 0.0000E+00 1.9273E-01 1.8986E+00 2.7496E-01 3.78E-01 1.00 3.3564E-16 4.2103E-01 1.2633E+00 4.0336E-01 3.51E-01 1.00
C18 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.00E+00 1.00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.00E+00 1.00

‡ indicates the solution is infeasible.

TABLE VIII
COMPARED THE RESULTS OFECHT-ARMOR-DEWITH OTHER EAS FOR FUNCTIONS IN THECEC 2010TEST SUITE ATD = 30.

Prob ECHT-DE AIS-ZYH εDEg IEMA ECHT-ARMOR-DE
C01 -7.9940E-01± 1.79E-02 -8.2011E-01± 3.25E-04 -8.2087E-01± 7.10E-04 -8.1777E-01± 4.79E-03 -7.8992E-01± 2.51E-02
C02 -1.9943E+00± 2.10E-01 -2.2125E+00± 2.84E-03 -2.1745E+00± 1.20E-02 -1.5045E+00± 2.14E+00 -2.1706E+00± 7.36E-02
C03 9.8920E+01± 6.26E+01 6.6758E+01± 4.26E+02 2.8838E+01± 8.00E-01 – 2.6380E+01± 7.94E+00
C04 -1.0257E-06± 9.01E-02 1.9761E-03± 1.61E-03 8.1630E-03± 3.06E-03 – 8.3713E-02± 2.89E-01
C05 -1.0642E+02± 1.67E+02 -4.3611E+02± 2.51E+01 -4.4955E+02± 2.89E+00 -2.7093E+02± 1.41E+00 -4.3335E+02± 1.46E+02
C06 -1.3762E+02± 9.89E+01 -4.5426E+02± 4.79E+01 -5.2791E+02± 4.74E-01 -1.3288E+02± 5.61E+02 -4.8931E+02± 1.32E+02
C07 1.3290E-01± 7.28E-01 1.0730E+00± 1.61E+00 2.6036E-15± 1.23E-15 8.4861E-10± 4.84E-10 1.0789E-25± 2.20E-25
C08 3.3585E+01± 1.11E+02 1.6531E+00± 6.41E-01 7.8315E-14± 4.85E-14 1.7703E+01± 4.08E+01 2.0101E+01± 4.70E+01
C09 4.2441E+01± 1.38E+02 1.5654E+00± 1.96E+00 1.0721E+01± 2.82E+01 2.9879E+07± 4.50E+07 4.6110E+00± 2.31E+01
C10 5.3381E+01± 8.83E+01 1.7847E+01± 1.88E+01 3.3262E+01± 4.54E-01 1.5834E+07± 1.68E+07 6.5536E+01± 1.07E+02
C11 2.6000E-03± 6.00E-03‡ -1.5790E-04± 4.67E-05 -2.8638E-04± 2.71E-05 – 1.1327E-03± 5.28E-03
C12 -2.5129E+01± 1.37E+02‡ 4.2881E-06± 4.52E-04 3.5623E+02± 2.89E+02‡ – -1.6076E-01± 1.93E-01‡

C13 -6.4583E+01± 1.67E+00 -6.6236E+01± 2.27E-01 -6.5353E+01± 5.73E+01 -6.7487E+01± 9.83E-01 -6.4646E+01± 1.97E+00
C14 1.2368E+05± 6.77E+05 8.6828E-07± 3.14E-07 3.0894E-13± 5.61E-13 6.1524E-02± 3.07E-01 6.6135E+02± 2.47E+03
C15 1.9409E+11± 4.35E+11 3.4128E+01± 3.82E+01 2.1603E+01± 1.10E-04 2.2949E+08± 4.64E+08 3.1316E+08± 1.20E+09
C16 0.0000E+00± 0.00E+00 8.2062E-02± 1.12E-01 2.1684E-21± 1.06E-20 1.6329E-03± 8.16E-03 0.0000E+00± 0.00E+00
C17 2.7496E-01± 3.78E-01 3.6051E+00± 2.54E+00 6.3265E+00± 4.99E+00 8.8397E-02± 1.51E-01 4.0336E-01± 3.51E-01
C18 0.0000E+00± 0.00E+00 4.0152E+01± 1.80E+01 8.7546E+01± 1.66E+02 4.7384E-14± 6.57E-14 0.0000E+00± 0.00E+00

‡ indicates that there are infeasible solutions in this function over25 independent runs.

TABLE IX
RANKS COMPUTED BY THEWILCOXON TEST FOR STATE-OF-THE-ART EAS ON CEC 2010BENCHMARK FUNCTIONS ATD = 30.

(1) (2) (3) (4)
ECHT-DE (1) - 27.0◦ 22.0◦ 24.5◦
AIS-ZYH (2) 109.0• - 60.0 82.0

εDEg (3) 114.0• 76.0 - 95.0
ECHT-ARMOR-DE (4) 111.5• 54.0 41.0 -
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TABLE X
INFLUENCE OFARMOR TO (µ+ λ)-CDE AND DSS-MDEIN ALL BENCHMARK FUNCTIONS. THE NFESǫ , SR, AND AR RESULTS ARE REPORTED. ALL

RESULTS ARE AVERAGED OVER50 INDEPENDENT RUNS.

Prob (µ + λ)-CDE (µ + λ)-ARMOR-CDE
AR

DSS-MDE DSS-ARMOR-MDE
ARMean Std SR Mean Std SR Mean Std SR Mean Std SR

g01 89,000.0 893.7 1.00 49,109.2 2,676.3 1.00 1.81 196,659.0 5,186.6 1.00 97,245.0 2,480.2 1.00 2.02
g02 277,379.0 7,489.7 0.96 103,954.8 10,080.5 0.58 1.61 169,979.1 12,339.6 0.64 93,802.5 9,282.4 0.48 1.36
g03 111,025.0 5,474.4 1.00 91,499.8 22,335.8 1.00 1.21 207,981.0 22,060.7 1.00 69,120.0 6,957.7 1.00 3.01
g04 30,620.0 296.5 1.00 19,478.2 847.6 1.00 1.57 73,305.0 2,073.7 1.00 44,667.0 1,562.6 1.00 1.64
g05 165,079.0 78.3 1.00 165,235.0 225.5 1.00 1.00 64,782.0 2,378.7 1.00 29,088.0 996.6 1.00 2.23
g06 11,032.0 158.1 1.00 8,852.2 490.6 1.00 1.25 25,398.0 1,070.2 1.00 15,813.0 525.5 1.00 1.61
g07 141,038.0 1,177.3 1.00 77,602.0 3,654.6 1.00 1.82 171,423.0 6,752.6 1.00 89,496.0 3,123.6 1.00 1.92
g08 2,010.0 62.1 1.00 1,636.6 272.4 1.00 1.23 4,563.0 682.8 1.00 3,141.0 438.7 1.00 1.45
g09 39,953.0 466.7 1.00 28,831.6 1,733.2 1.00 1.39 59,616.0 2,091.1 1.00 32,949.0 1,404.0 1.00 1.81
g10 188,725.0 1,945.9 1.00 94,750.6 5,013.0 1.00 1.99 256,455.0 12,864.6 1.00 127,998.0 5,273.4 1.00 2.00
g11 79,475.0 3,214.4 1.00 78,122.8 14,321.2 1.00 1.02 26,118.0 7,315.2 1.00 8,064.0 2,481.5 1.00 3.24
g12 4,908.0 219.1 1.00 4,131.4 917.4 1.00 1.19 4,545.0 1,210.4 1.00 3,825.0 976.0 1.00 1.19
g13 148,237.0 380.9 1.00 146,805.4 2,616.0 1.00 1.01 77,922.0 16,135.1 1.00 48,310.0 40,194.5 0.90 1.45
g14 176,671.0 697.5 1.00 170,703.4 3,689.9 1.00 1.03 286,848.0 9,003.9 1.00 160,938.0 7,599.4 1.00 1.78
g15 130,622.0 2,276.8 1.00 134,344.0 13,350.4 1.00 0.97 47,376.0 2,576.0 1.00 18,027.0 1,181.9 1.00 2.63
g16 19,154.0 231.4 1.00 12,707.8 812.4 1.00 1.51 38,853.0 1,867.6 1.00 23,931.0 1,194.0 1.00 1.62
g17 183,962.0 535.3 1.00 170,535.4 673.2 1.00 1.08 103,734.0 10,994.0 1.00 93,222.0 43,174.0 1.00 1.11
g18 215,068.0 6,770.8 1.00 73,645.6 9,800.9 1.00 2.92 190,935.0 11,554.7 1.00 95,319.0 7,405.9 1.00 2.00
g19 268,374.0 3,178.6 1.00 123,995.2 6,145.9 1.00 2.16 385,794.0 13,514.3 1.00 208,179.0 16,856.6 1.00 1.85
g21 209,896.0 1,151.1 0.92 192,138.6 4,465.7 0.98 1.16 198,980.6 8,054.9 0.96 95,002.5 13,796.7 0.98 2.14
g23 263,695.0 2,096.2 1.00 205,609.6 4,235.1 1.00 1.28 464,537.4 29,660.9 0.38 239,121.0 41,365.4 1.00 5.11
g24 5,059.0 84.2 1.00 3,854.2 286.2 1.00 1.31 11196 1022.3 1.00 6858.0 588.9 1.00 1.63
avg – 0.99 – 0.98 1.43 – 0.95 – 0.97 2.04

TABLE XI
ON THE ROBUSTNESS OFARMOR TO (µ+ λ)-CDE WITH DIFFERENTF VALUES IN ALL BENCHMARK FUNCTIONS. THE NFESǫ , SR, AND AR

RESULTS ARE REPORTED. ALL RESULTS ARE AVERAGED OVER50 INDEPENDENT RUNS.

Prob
F = 0.7, Cr = 0.9 F = 0.9, Cr = 0.9

(µ + λ)-CDE (µ + λ)-ARMOR-CDE
AR

(µ + λ)-CDE (µ + λ)-ARMOR-CDE
ARMean Std SR Mean Std SR Mean Std SR Mean Std SR

g01 57,715.0 2,699.4 1.00 37,874.2 1,717.3 1.00 1.52 110,101.6 5,804.8 1.00 65,405.2 3,182.2 1.00 1.68
g02 110,626.5 11,284.8 0.74 59,500.0 7,949.9 0.48 1.21 250,282.3 21,290.2 0.78 135,377.5 13,903.2 0.56 1.33
g03 62,137.6 13,323.8 1.00 60,365.2 14,130.9 1.00 1.03 135,608.2 39,116.5 1.00 115,297.0 31,331.6 1.00 1.18
g04 26,076.4 1,264.5 1.00 18,289.6 1,088.8 1.00 1.43 32,519.2 1,443.3 1.00 22,775.2 1,157.7 1.00 1.43
g05 165,592.0 334.1 1.00 165,671.8 1,339.0 1.00 1.00 164,651.2 379.6 1.00 164,042.2 615.8 1.00 1.00
g06 10,200.4 440.0 1.00 8,197.0 394.0 1.00 1.24 11,775.4 673.2 1.00 10,074.4 644.5 1.00 1.17
g07 82,461.4 5,190.4 1.00 53,809.0 3,509.2 1.00 1.53 197,898.4 10,933.1 1.00 117,875.8 6,665.3 1.00 1.68
g08 1,792.0 268.3 1.00 1,540.0 224.5 1.00 1.16 2,136.4 312.8 1.00 1,687.0 345.3 1.00 1.27
g09 28,197.4 1,384.8 1.00 20,834.8 1,005.5 1.00 1.35 57,043.0 3,429.8 1.00 41,515.6 2,205.7 1.00 1.37
g10 NA NA 0.00 172,912.4 135,380.0 0.68 NA 227,227.0 10,175.6 1.00 140,186.2 8,647.6 1.00 1.62
g11 74,851.0 15,790.3 1.00 73,557.4 13,074.6 1.00 1.02 83,137.6 18,846.3 1.00 82,231.2 1,029.7 1.00 1.01
g12 4,799.2 1,088.5 1.00 3,921.4 908.6 1.00 1.22 4,286.8 891.8 1.00 3,505.6 752.7 1.00 1.22
g13 145,852.0 3,453.0 1.00 143,764.6 3,624.4 1.00 1.01 147,099.4 2,201.3 1.00 142,139.2 4,512.8 1.00 1.03
g14 169,514.8 4,572.9 1.00 167,234.2 3,096.4 1.00 1.01 188,129.2 4,194.7 1.00 180,434.8 10,629.5 1.00 1.04
g15 126,716.8 9,819.8 1.00 113,432.2 11,834.4 1.00 1.12 141,110.2 7,286.3 1.00 120,328.6 10,598.6 1.00 1.17
g16 15,072.4 1,025.4 1.00 11,103.4 551.9 1.00 1.36 21,137.2 1,476.1 1.00 15,089.2 1,142.6 1.00 1.40
g17 170,753.8 743.7 1.00 170,417.8 615.8 1.00 1.00 168,884.8 1,336.0 1.00 168,494.2 1,232.9 1.00 1.00
g18 86,669.8 12,945.1 1.00 46,446.4 5,000.4 1.00 1.87 185,080.0 23,037.5 1.00 97,539.4 12,953.4 1.00 1.90
g19 125,427.4 6,384.4 1.00 80,155.6 5,063.5 1.00 1.56 338,665.6 13,775.0 1.00 185,966.2 9,905.3 1.00 1.82
g21 239,855.0 107,912.4 0.12 184,525.0 3,367.7 0.28 3.03 216,785.5 6,734.3 0.94 196,390.0 3,847.6 0.94 1.10
g23 210,065.8 3,884.4 1.00 201,968.2 22,026.7 1.00 1.04 274,430.8 12,279.3 1.00 230,011.6 6,849.2 1.00 1.19
g24 4,774.0 422.1 1.00 3,795.4 284.0 1.00 1.26 5248.6 454.2 1.00 4446.4 394.3 1.00 1.18
avg – 0.90 – 0.93 1.33 – 0.99 – 0.98 1.31
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TABLE XII
INFLUENCE OF DIFFERENT MODELS INARMOR. THE NFESǫ VALUES OF ECHT-DE, ECHT-ARMOR-DE3,AND ECHT-ARMOR-DE4FOR THECEC

2006FUNCTIONS ARE REPORTED.

Prob ECHT-DE (1) ECHT-ARMOR-DE3 (2) ECHT-ARMOR-DE4 (3) AR AR

Mean Std SR Mean Std SR Mean Std SR (1) vs (2) (1) vs (3)
g01 1.384E+05 4.06E+03 1.00 1.011E+05 3.91E+03 1.00 1.130E+05 3.50E+03 1.00 1.37 1.22
g02 8.205E+04 6.25E+03 0.42 6.509E+04 8.91E+03 0.26 7.411E+04 2.34E+04 0.30 0.78 0.79
g03 1.161E+05 1.53E+03 1.00 1.137E+05 2.53E+03 1.00 1.150E+05 2.46E+03 1.00 1.02 1.01
g04 6.470E+04 2.43E+03 1.00 4.450E+04 1.32E+03 1.00 4.946E+04 1.44E+03 1.00 1.45 1.31
g05 1.204E+05 1.45E+03 1.00 1.196E+05 6.85E+02 1.00 1.204E+05 1.27E+03 1.00 1.01 1.00
g06 2.224E+04 1.24E+03 1.00 1.549E+04 7.53E+02 1.00 1.722E+04 7.64E+02 1.00 1.44 1.29
g07 1.088E+05 4.87E+03 1.00 7.144E+04 3.18E+03 1.00 7.645E+04 3.42E+03 1.00 1.52 1.42
g08 2.644E+03 4.15E+02 1.00 2.172E+03 2.80E+02 1.00 2.328E+03 4.17E+02 1.00 1.22 1.14
g09 4.194E+04 1.81E+03 1.00 2.956E+04 1.09E+03 1.00 3.268E+04 1.48E+03 1.00 1.42 1.28
g10 1.855E+05 7.49E+03 1.00 1.109E+05 4.18E+03 1.00 1.203E+05 5.02E+03 1.00 1.67 1.54
g11 5.820E+04 1.85E+04 1.00 6.264E+04 1.11E+04 1.00 6.178E+04 1.34E+04 1.00 0.93 0.94
g12 3.072E+03 7.83E+02 1.00 2.588E+03 5.63E+02 1.00 2.316E+03 5.38E+02 1.00 1.19 1.33
g13 1.109E+05 4.39E+03 1.00 1.090E+05 4.76E+03 1.00 1.090E+05 4.76E+03 1.00 1.02 1.02
g14 1.401E+05 6.59E+03 1.00 1.293E+05 3.06E+03 1.00 1.317E+05 3.48E+03 1.00 1.08 1.06
g15 1.083E+05 5.58E+03 1.00 1.057E+05 7.51E+03 1.00 1.074E+05 7.56E+03 1.00 1.03 1.01
g16 3.019E+04 1.37E+03 1.00 2.055E+04 9.11E+02 1.00 2.329E+04 1.19E+03 1.00 1.47 1.30
g17 1.174E+05 1.59E+03 1.00 1.168E+05 9.70E+02 1.00 1.171E+05 1.06E+03 1.00 1.00 1.00
g18 1.431E+05 2.02E+04 1.00 9.254E+04 1.26E+04 1.00 8.807E+04 1.05E+04 1.00 1.55 1.63
g19 NA NA 0.00 1.863E+05 1.34E+04 1.00 2.016E+05 1.41E+04 1.00 NA NA
g21 1.734E+05 6.82E+03 1.00 1.468E+05 2.57E+03 1.00 1.564E+05 3.05E+03 1.00 1.18 1.11
g23 2.274E+05 5.72E+03 0.72 1.719E+05 6.00E+03 1.00 1.799E+05 5.70E+03 1.00 1.84 1.76
g24 8.120E+03 7.81E+02 1.00 6.132E+03 3.78E+02 1.00 6.556E+03 6.01E+02 1.00 1.32 1.24
avg – 0.915 – 0.966 – 0.968 1.26 1.21

TABLE XIII
COMPARISON ON THENFESf VALUES OF ECHT-DE, ECHT-ARMOR-DE1,AND ECHT-ARMOR-DE3FOR THECEC 2006FUNCTIONS.

Prob ECHT-DE (1) ECHT-ARMOR-DE1 (2) AR′ ECHT-ARMOR-DE3 (3) AR′

Mean Std FR Mean Std FR (1) vs (2) Mean Std FR (1) vs (3)
g01 3.292E+03 6.14E+02 1.00 2.352E+03 3.99E+02 1.00 1.40 2.720E+03 4.64E+02 1.00 1.21
g03 4.296E+04 1.00E+04 1.00 4.375E+04 1.01E+04 1.00 0.98 4.426E+04 1.09E+04 1.00 0.97
g05 1.160E+05 2.33E+03 1.00 1.165E+05 2.11E+03 1.00 1.00 1.160E+05 2.79E+03 1.00 1.00
g06 1.448E+03 3.25E+02 1.00 1.104E+03 2.56E+02 1.00 1.31 1.168E+03 2.47E+02 1.00 1.24
g07 2.412E+03 5.35E+02 1.00 1.936E+03 3.91E+02 1.00 1.25 2.232E+03 4.49E+02 1.00 1.08
g08 2.440E+02 1.09E+02 1.00 2.360E+02 7.76E+01 1.00 1.03 2.400E+02 9.04E+01 1.00 1.02
g09 2.960E+02 1.35E+02 1.00 2.800E+02 1.07E+02 1.00 1.06 2.920E+02 1.29E+02 1.00 1.01
g10 2.480E+03 5.92E+02 1.00 1.920E+03 3.59E+02 1.00 1.29 2.040E+03 3.81E+02 1.00 1.22
g11 2.248E+04 1.35E+04 1.00 2.090E+04 1.15E+04 1.00 1.08 2.082E+04 1.14E+04 1.00 1.08
g13 1.109E+05 4.39E+03 1.00 1.092E+05 4.70E+03 1.00 1.01 1.090E+05 4.76E+03 1.00 1.02
g14 1.109E+05 6.80E+03 1.00 1.136E+05 4.79E+03 1.00 0.98 1.122E+05 6.07E+03 1.00 0.99
g15 1.033E+05 6.46E+03 1.00 1.010E+05 6.33E+03 1.00 1.02 9.962E+04 7.84E+03 1.00 1.04
g16 1.236E+03 4.38E+02 1.00 1.028E+03 3.18E+02 1.00 1.20 1.088E+03 3.86E+02 1.00 1.14
g17 1.116E+05 3.05E+03 1.00 1.129E+05 2.44E+03 1.00 0.99 1.132E+05 2.45E+03 1.00 0.99
g18 7.568E+03 6.94E+02 1.00 5.416E+03 5.83E+02 1.00 1.40 6.232E+03 7.68E+02 1.00 1.21
g21 1.095E+05 5.52E+03 1.00 1.131E+05 3.01E+03 1.00 0.97 1.127E+05 4.15E+03 1.00 0.97
g22 NA NA 0.00 2.183E+05 1.12E+04 0.88 NA 2.273E+05 9.15E+03 0.30 NA
g23 1.061E+05 2.69E+03 1.00 1.076E+05 4.25E+03 1.00 0.99 1.060E+05 3.38E+03 1.00 1.00
avg – 0.944 – 0.993 1.11 – 0.961 1.07



6

0 0.5 1 1.5 2

x 10
5

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

NFFEs

E
rr

or
 (

lo
g)

g 01

 

 
ECHT−DE
ECHT−ARMOR−DE−1
ECHT−ARMOR−DE−2

(a)

0 0.5 1 1.5 2

x 10
5

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

NFFEs

E
rr

or
 (

lo
g)

g 07

 

 
ECHT−DE
ECHT−ARMOR−DE−1
ECHT−ARMOR−DE−2

(b)

0 5 10 15

x 10
4

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

NFFEs

E
rr

or
 (

lo
g)

g 13

 

 
ECHT−DE
ECHT−ARMOR−DE−1
ECHT−ARMOR−DE−2

(c)

0 1 2 3 4 5 6 7 8

x 10
4

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

NFFEs

E
rr

or
 (

lo
g)

g 16

 

 
ECHT−DE
ECHT−ARMOR−DE−1
ECHT−ARMOR−DE−2

(d)

0 0.5 1 1.5 2

x 10
5

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

NFFEs

E
rr

or
 (

lo
g)

g 18

 

 
ECHT−DE
ECHT−ARMOR−DE−1
ECHT−ARMOR−DE−2

(e)

0 0.5 1 1.5 2

x 10
5

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

NFFEs

E
rr

or
 (

lo
g)

g 23

 

 
ECHT−DE
ECHT−ARMOR−DE−1
ECHT−ARMOR−DE−2

(f)

Fig. 2. Convergence graphs of ECHT-DE, ECHT-ARMOR-DE1, andECHT-ARMOR-DE2 for the selected functions in CEC 2006. (a) g01; (b) g07; (c)
g13; (d) g16; (e) g18 (f) g23.
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Fig. 4. Average rankings of different algorithms by the Friedman test for the CEC 2010 functions with respect to the mean quality of final solutions. (a)
D = 10; The p-value computed by the Friedman test is0.260226. (b) D = 30; The p-value computed by the Friedman test is0.059022.


