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Abstract—Differential evolution (DE) is a powerful evolu-
tionary algorithm (EA) for numerical optimization. Combin ing
with the constraint-handling techniques, recently, DE hasbeen
successfully used for the constrained optimization probies
(COPSs). In this paper, we propose the Adaptive Ranking Mu-
tation OperatoR (ARMOR) for DE when solving the COPs. The

ARMOR is expected to make DE converge faster and achieve

feasible solutions faster. In ARMOR, the solutions are adafively
ranked according to the situation of the current population. More
specifically, the population is classified into three situabns, i.e.,
infeasible situation, semi-feasible situation, and feasle situation.
In the infeasible situation, the solutions are ranked only lased
on their constraint violations; in the semi-feasible situgion, they
are ranked according to the transformed fitness; while in the
feasible situation, the objective function value is used t@ssign
ranks to different solutions. In addition, the selection piobability
of each solution is calculated differently in different siuations.
The ARMOR is simple, and it can be easily combined with most
of constrained DE (CDE) variants. As illustrations, we integrate
our approach into three representative CDE variants to evalate
its performance. 24 benchmark functions presented in CEC 2006
and 18 benchmark functions presented in CEC 2010 are chosen
as the test suite. Experimental results verify our expectabn that
the ARMOR is able to accelerate the original CDE variants in
the majority of test cases. Additionally, ARMOR-based CDE §
able to provide highly competitive results compared with oher
state-of-the-art EAs.

Index Terms—Differential evolution, adaptive ranking muta-
tion operator (ARMOR), constrained optimization.

I. INTRODUCTION

OST OF the real-world optimization problems in sci-

algorithms for global numerical optimization. The advayes
of DE are its ease of use, simple structure, speed, efficady, a
robustness [6], [7]. Recently, DE has obtained many sufudess
applications in diverse domains [8], [7], [9].

In the DE algorithm, the core operator is tdéferential
mutation and generally, the parents in the mutation are always
randomly chosen from the current population. Since therare
vectors in the mutation are selected randomly, it may lead
DE to be good at exploring the search space and locating
the region of global minimum, but be slow at exploitation
of the solutions [10]. In this paper, we modify our previous
proposed ranking-based mutation operator [11] and use it fo
solving the COPs. The Adaptive Ranking Mutation OperatoR
(ARMOR) for DE is proposed, where the population is adap-
tively ranked according to its current situation. In diffat
situations, different criteria are used to sort the poporat
Additionally, different methods are used to calculate thles
tion probabilities in different situations. The major adteges
of ARMOR are its simplicity and generality, which makes
it be easily combined with most of constrained DE (CDE)
variants. As illustrations, three representative CDEshosen
to combine with ARMOR to evaluate its performance. We
choose24 benchmark functions presented in CEC 2006 [12]
and 18 benchmark functions presented in CEC 2010 [13] as
the test suite. Experimental results verify our expectatiwat
the ARMOR is able to accelerate these CDE variants in the
majority of test cases.

The main contributions of this paper are as follows:

ence and engineering involve a number of inequal- « The ARMOR, which is the core contribution of this

ity and/or equality constraints, which modify the shape of

paper, is proposed in DE for the COPs to balance the

the search space. These problems can be viewed as con- exploitation and exploration abilities of the algorithm.
strained optimization problems (COPs). Evolutionary algo « Our proposed ARMOR is integrated into three repre-

rithms (EAS) [1] have been successfully used for solving-opt
mization problems. Although the original versions of EAsKa
a mechanism to tackle constraints, coupled with constraint
handling techniques, nowadays, EAs get success when golvin
the COPs [2], [3], [4].

Differential evolution (DE), which was firstly proposed by
Storn and Price [5], is one of the most powerful evolutionary

sentative CDE variantsi.¢, ECHT-DE [14], [« + ))-
CDE [15], and DSS-MDE [16]) to verify its performance.
Experimental results indicate that the ARMOR can make
the CDE variants converge faster and achieve feasible
solutions faster.

Comprehensive experiments are conducted through
benchmark functions.
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The rest of this paper is organized as follows. Section Il
briefly introduces the constrained optimization problemd a
the original DE algorithm. In Section Ill, we describe some
related constraint-handling technigues and represeat@DE
methods. In the next section, Section IV, our proposed AR-
MOR is presented in detail. In Section V, the comprehensive
experiments are performed using benchmark functions to
evaluate the performance of our approach. In the last sgctio



Section VI draws the conclusions from this work and points 1) Initialization: The DE population consists @f vectors,
out the possible future work. initially, it is generated at random. For example, for théh
variable of thei-th vectorx; it is initialized as follows:

Il. PRELIMINARIES vis = 1 + rndreal(0, 1) - (u; — ) ©)

In this section, we first briefly introduce the constrained
optimization problems (COPs) used in this work. Then, theherei = 1,---,p, j = 1,---,n, andrndreal(0,1) is a
original differential evolution algorithm is briefly desised.  uniformly distributed random real number (A, 1).

2) Mutation: After initialization, the mutation operation is
applied to generate the mutant vectgrfor each target vector

x; in the current population. The classical mutation strategy
Without loss of generality, in this work, we consider thgs “DE/rand/1™:

constrained minimization problem, which can be formalized
a pair (S, f) , whereS C R™ is a bounded set oR™ and vi=%Xp +F(Xp, —Xp3) @)
f S — R is ann-dimensional real-valued function. The
minimization COP can be formu|ated as where F' € (0, 1+) is the mutation Scaling faCtO’f',l,TQ,rg c
{1,---, u} are mutually different integers randomly generated,
min f(x>a X:[xlv"'axn]TeRn (1) andT17éT27éT37éi.
3) Crossover:In order to diversify the current population,
following mutation, DE employs the crossover operator to
gi(x) <0, j=1,---,q produce the trial vect0|u,: betweeqxi and. v;. The most
hi(x)=0, j=q+1,---,m ) commonly used operator is thegnomial or uniform crossover
performed on each component as follows:

A. Constrained Optimization Problems

subject to

wherex is the vector of solutiony; is thei-th (i € {1,...,n})
decision variable ofx, ¢ is the number of inequality con- =~ _ Jvig, if (mndreal(0,1) < Cror j == jrand ®)
straints, andn — ¢ is the number of equality constraints (in x;j, otherwise
both cases, constraints could be linear or nonlinear). (adpe
for each variabler; it satisfies a constrained boundaiyg., WhereCr is the crossover rate anghng is a randomly gen-
@i € [l uq). erated integer withi{1,n}. Note that the notationd'== b"
The feasible regioF C S is defined by then inequality indicatesa is equal tob.
and/or equality constraints. Any point € F is called a  4) Selection:Finally, to keep the population size constantin
feasible solution; otherwise, it is an infeasible solutigior the following generations, the selection operation is ey
an inequality constraint which satisfigs(x) = 0 (j € to determine whether the trial or the target vector survives
{1,---,q}) at a given point € F, we will say it isactiveat to the next generation. In DE, thene-to-one tournament
x. Obviously, all the equality constraints are considerdiyac Selectionfor unconstrained optimization problems is used:
at all points in feasible regioff. _
In the evolutionary constrained optimization, the eqyalit = {um if f(w) < f(xi) ©)
constraints are always converted into inequality constsai x;, otherwise

|hj(x)] =6 <0 (3) wheref(x) is the objective function to be optimized.

wherej € {¢+1,---,m} andd is a positive tolerance value.
The distance of a solution from the j-th constraint can be 1. RELATED WORK
constructed as

G,(x) = {max {0,9,(x)} 1=/ S(_] (4) Originally, EAs lack a mechanism to deal with the con-
max {0, [h;(x)| =0}, ¢+1<j=m straints for the COPs. In order to solve the COPs using EAs,
Then, the distance of the solutionfrom the boundaries of the constraint-handling techniques are required. Nowaday
the feasible set, which also reflects the degree of its cainstr there exists a number of constraint-handling techniquesl-C

A. Constraint-handling Techniques

violation, can be denoted as lo [3] provided a compre_hensive survey of the _mqst popular
- constraint-handling techniques currently used within BAsd
G(x) = ZG]'(X) ) grouped them into five categories: 1) penalty functions; 2)

special representations and operators; 3) repair algasiti4)
separate objective and constraints; and 5) hybrid methods.
Most recently, Mezura-Montes and Coello [4] reviewed and
analyzed the most relevant types of constraint-handliniy-te

The DE algorithm is initially proposed for the unconstralneniques that have been used with nature-inspired algorithms
numerical optimization problems [5]. The main procedure dhis subsection, we describe two techniques that will beluse
DE is briefly described in the following subsections. in this work to implement the fitness transformation.

Jj=1

B. Differential Evolution



f(xi), for feasible solution
fainal(%:) = § v(x), if there is no feasible solution (14)
F(xi)?2+o(xi)?2+[(1—p) v(x)+7r- f(x)], otherwise

1) Improved Adaptive Trade-off ModelThe improved  f/(x;), which is the normalized fitness value &f (i =
adaptive trade-off model (IATM) was proposed by Wang ant - - - | 1), is formulated as:
Cai [15], which is the improved version of ATM [17]. In - ,
IATM, the population contains three situations,, infeasible o fexi) jrf%f(xj) 15
situation, semi-feasible situation, and feasible siarati o) = max f(x;) — min f(x;) (15)

In the infeasible situation, the solutions are ranked based J=Lp J=Lp
on their constraint violations in ascending order. Thergdb v(x;) is the constraint violation that is calculated as the sum
the next population, the first half«(2) solutions are selected of the normalized violation of each constraint divided bg th
from the topu/2 solutions of the ranked population to steetotal number of constraints:

the population to feasibility, while the othar/2 solutions are 1IN G(x)
randomly chosen from the rest solutions to promote diversit v(x;) = — 2 (16)
In the semi-feasible situation, the population containthbo mia Gmax,j
feasible and infeasible solutions. The population is noviddi whereG; (x;) is calculated by Equation (4), and
ed into the feasible grou() and the infeasible groug¢)
based on the feasibility of each solution. Then, the objecti Gmax,j = poax Gj(xk).
function valuef(x;) of the solutionx; is converted into i " )
, foo) - As mentl_oned-above,_ we can see that the adaptive _penal—
fl(xi) = {max{w.f(x“st)ﬂliw).f(xWorst”(Xi)}, iz, 40 ty formulation method is parameter-less and favors skghtl

. o ) ) infeasible solutions with a good objective function value.
where ¢ is the feasibility ratio of the last population, and

Xpest ANdXyorst are the best and worst solutions in the feasiblg Constrained DEs
groupZ, respectively. After obtaining the converted objective

function value of each solution, it is then normalized as Combining with the constraint-handling techniques, the DE

algorithm has been successfully used for solving the COPs.

!/ D\ 4 ! )
f'(xi) jeriz, F'(%)) We will briefly discuss some representative CDEs as follows.
Fror (%) = max f/(x;) — min  ['(x;) (11) Storn [19] proposed the constraint adaptation with DE
JEL1VZy JEL1VZ2 (CADE) for the COPs, which is a multi-member DE.

If we use Equation (5) to calculate the constraint violatidn Lampinen presented a Pareto dominance-based constraint-
each solution, then the normalized constraint violatiom lsa handling method to handle nonlinear constraint functi@ts.[
evaluated as Mezura-Monteset al. proposed a multi-member diversity-
based DE (MDDE) for the COPs in [21], [22]. Similar to

Cloon(x1) = 0 Gxi) — min G(x;) iel (12) CADE, in MDDE each ta_rget parent_ i_s allowed to gener-

e G(xj;f ;lin Nk i € 7o ate more than one off_sprmg. In gddmon, Deb’s feasibility
I€Z2 I€Z2 rules [23] and a diversity mechanism are adopted to handle

Then, the final fitness function is obtained as follows the constraints in MDDE. In CEC 2006 competition on
constrained real parameter optimization [12], several CDE
Jrinal(%i) = Jror(Xi) + Grnor (%) (13) Variants were prgsented andpsome of tLerL get the front

Afterward, u solutions with the smallesfs,..; are selected for ranks. For examplesDE [24], proposed by Takahama and

the next population. Sakai, ranks the first in this competition. WDE, the ¢

In the feasible situation, since all solutions are feadiblhe constrained method is used to handle the constraints. n [25
population, COPs can be viewed as unconstrained optiraizatMezura-Monte®t al. presented a modified DE (MDE) for the
problems. Therefore, solutions with the smallest objectiveCOPs. In MDE, a modified mutation operator is presented.
function values are chosen for the next population. Additionally, a dynamic diversity mechanism is added into

2) Adaptive Penalty FormulationTessema and Yen pro-MDE to maintain infeasible solutions located in promising
posed an adaptive penalty function for solving the CORseas of the search space. In [26], Huatal. proposed an
in [18]. In order to exploit infeasible individuals with low extended SaDE method for the COPs, where the replacement
objective function value and low constraint violation, imst criterion was modified for tackling constraints. Bresit al.
technique, the number of feasible solutions in the curreptesented a self-adaptive DE variant to solve COPs [27]revhe
population is used to determine the penalty value assigniee DE mutation operators are used and the parameters of
to infeasible solutions. Cr and F' are self-adaptively updated. Huargal. proposed

In [18], for each solutiorx;, a final fitness value is evaluateda co-evolution mechanism based DE for the COPs [28], in
as shown in Equation (14), whegeis the feasible ratio of the which a co-evolution model is presented and DE is used to
current population. perform evolutionary search in spaces of both solutions and



penalty factors. Zhangt al. proposed a dynamic stochasticcomplexity significantly.

ranking-based multi-member DE (DSS-MDE) [16], where the

comparison probabilityP; decreases dynamically following IV. ARMOR: ADAPTIVE RANKING MUTATION OPERATOR

the evolution process. Ali and Kajee-Bagdadi presentedlloc |n this section, we will introduce our proposed ARMOR for
exploration-based DE for solving COPs, where a periodialloche DE algorithm in detail. The core idea behind our proposed

exploration technique is incorporated into DE [29]. In [30]JARMOR is elucidated from four aspects.
Mezura-Montes and Palomeque-Ortiz proposed a modified

DE for the COPs, where the parameters related to DE apd potivations

the constraint-handling mechanism are deterministicaty In DE. th is traiff ial .
self-adaptively controlled. To provide some insights altbe n DE, the core qperator IS thwfferentia mutatl|oroperator.
hrough the mutation operator, theutantvector is generated.

behavior of DE variants for solving COPs, Mezura-Monte : .
enerally, the parents in the mutation operator are chosen

et al. presented an empirical study on CDE in [31]. Since n domlv f h lati e e in th
single constraint-handling technique is able to outpenfail randomtly from the current_ population. For example, in the
assmal “DE/rand/1” mutation, three parent vectys, x,.,,

others on every problem, Mallipeddi and Suganthan propos%| . | d domlv f h i
an ensemble of constraint handling techniques (ECHT) _?(E X_”‘Sd are selecte (rjan omyfrom the current popu a(thlon.
solve COPs [32], in which each constraint-handling techeiq ' '€ Ndexesr1,rz, andrs satisly ry,7a,rs € {1, 1} an

r # ro # ry3 # i [5]. However, since all parents are

has its own subpopulation. Elsayetal. presented the ISDE-
hop y P I?osen randomly, it may lead the DE algorithm to be good

L method [33], where multiple search operators, constraifi loring th h ql ing th . lob
handling techniques, and a local search procedure are uddgxploring the search space and locating the region obglo

Wang and Cai proposed & (- \)-CDE for the COPs [15] minimum, but be slow at exploitation of the solutions [10].
In (1 + \)-CDE, three different DE mutation strategies argn the other hand, in the nature, good species always contain

used to generate three offspring for each target parent: adgore useful information, and_ hence, they are more likelygo b
tionally, the IATM is proposed to handle constraints. In][343(:"|e_Cte_d to p_ropa_gate offspring. Therefore, based on mab
Elsayedet al. proposed the SAMSDE method, in which thjnotlvatlons,_l_n this work, we pre_sent the ARMOR technique
population is divided into a number of sub-populations a r DE 1o utilize th_e petter ;(_)Iutlons to guide the search. In
a self-adaptive learning process is used to adjust the s > Way, the exploitation ab'“ty of DE can be enhanced, and
population sizes based on their success [34]. Very recentl nce its convergence speed is able to be accelerated.
Wang and Cai presented the CMODE method [35], in which ) ] )
DE is combined with multiobjective optimization to deal it B- Adaptive Ranking Technique
COPs. Mohamed and Sabry proposed a novel constrainedn ARMOR, we first need to rank the population. Suppose
optimization based on modified DE algorithm (COMDE) [36]that the population is sorted from the best to the worst based
where a new directed mutation strategy is presented andraacriterion, then the ranking ok, is assigned as follows:
modified constraint-handling technique is employed to fend ‘ .
constraints. In [37], Elsayeset al. presented an improved DE Ri=p—itl, i=12-p (17)
algorithm (ISAMODE-CMA) that adopts a mix of differentAccording to Equation (17), the best individual in the catre
DE mutation operators. Moreover, in order to enhance tipepulation will obtain the highest ranking.
local search ability of the algorithm, the CMA-ES [38] is pe- In order to make the ranking-based mutation operator in DE
riodically applied. In ISAMODE-CMA, the dynamic penaltybe suitable for the COPs, we modify our previous proposed
constraint-handling technique is used to tackle congsaif ranking technique [11], which is only based on the objective
a problem. Elsayect al. proposed an adaptive DE varianfunction value for unconstrained optimization problemshis
in [39] for the COPs, where the best combination of the sgaliwork, when solving the COPs, the population is adaptively
factor F', the crossover rat€'r, and the population size are ranked according to the situation of the current population
adaptively selected based on an adaptive mechanism. In [48§ mentioned in [15], the population may experience three
two self-adaptive DE algorithms are presented for the COR${uations,i.e,, i) infeasible situation, where the population is
where a heuristic mixing of operators is incorporated. entirely composed of infeasible solutions; ii) semi-irditde

As briefly reviewed above, different CDE variants havsituation, where the population consists of both feasille a
been proposed for the COPs in the DE literature. To obtaimfeasible solutions; and iii) feasible situation, whele pop-
promising results, different techniques are integratéd DE. ulation contains feasible solutions only. In differentsiions,
For examplesDE [24] combined with the gradient-based muthe population is ranked as follows.
tation; ECHT-DE [32] integrated different constraint-kiéing 1) Ranking in Infeasible Situationn the infeasible situa-
techniques into DE; ISAMODE-CMA [37] adopted mixed DEion, the population contains only infeasible solutiomsihis
mutations and CMA-ES procedure. Generally, combining D&tuation, we sort the population according to the constrai
with other techniques is effective to enhance its perforraan violations €.g, G(x) in Equation (5)) in ascending order. The
however, they are usually more complicated than the originabjective function values are not considered at all. Finafie
DE algorithm. Based on this consideration, we will preshket t population is ranked as
ARMOR technique in DE for the COPs. Unlike the previous
techniques, the proposed ARMOR is simple, and it does Gla) < Glx) < < Glxy) (18)
not destroy the DE structure and not increase DE overall



2) Ranking in Semi-feasible SituationAs suggested
in [15], in the semi-feasible situation, some importantsibke
individuals (those with small objective function valuesjda
infeasible individuals (those with small objective furctival-
ues and slight constraint violations) should be obtainedemo
considerations. Therefore, in order to balance the inflaexic
objective function value and constraint violatidithess trans-
formationtechniques (such as the methods presented in [41],
[18], [15], etc) could be a good choice. As illustrations, in
this work, we adopt the adaptive fithess transformation (AFT 1 1
method (Equation (13)) proposed in [15] and adaptive pgnalt UL WO A
formulation (APF) method (Equation (14)) proposed in [18] t
,Ca'?“,'ate the final transformed fltngss Yamal(xi) of each Fig. 1. Relation between the selection probability and #rking of solution
individual. Afterwards, the population is sorted accogdi® for different models. The population size= 50 is used.
fanal(x;) in ascending order. In this way, the individuals that
have lower final transformed fithess values will obtain highe
rankings based on Equation (17). Finally, the population is1) Explanations:In the infeasible and semi-feasible situa-
ranked as tions, the cosine model (see Equations (21) and (22)) is used
to calculated the selection probability of each solutiohjlev
fanar(x1) < feinal(x2) < - < foinal (%) (19) " in the feasible situation, the inverse function of Equafi2h),
i.e, arccosine model, is employed for probability calculation
3) Ranking in Feasible Situationin this situation, all The relation between the selection probability and the irank
individuals in the population are feasible, and the COPs caheach individual for the two models is plotted in Fig. 1.
be treated as unconstrained optimization problems. Thas, w As shown in Fig. 1, letR,(R2) be the ranking of solution
only need to rank the population according to the objective (x2) andR; > R, then we can get that; —p; > ps — po.
function value f(x;) of each individual in ascending order|t means that for the two solutions there are larger proiigbil

Probability

i.e., the population is ranked as differences in the cosine model than those in the arccosine
- - e 20 model. Therefore, in the cosine model the selection on ibette
fx1) < flx2) <0 < f(x) (20)  solutions will be more dominant than the selection on worse

solutions. On the other hand, in the arccosine model, better
To sum up, in ARMOR the current population is adaptivelgolutions will less dominate the worse ones due to theirlemal

ranked based on the following three criteria: probability differences.
1) constraint violations in the infeasible situation, Based on the analysis, in the infeasible situation, sinte al
2) transformed fitness values in the semi-feasible sitnatioSolutions are infeasible, the solutions with small constra
3) objective function values in the feasible situation. violations should get more chance to be selected to steer

the population towards feasibility. In order to get the fekes
solutions faster we use the cosine model to calculate the se-

. . ) lection probabilities. In this way, better solutions witmaller
After obtaining the ranking of each solutiat;, we then .,<aint violations will more dominate the worse ones.

calculate its selection probability. Different from the method In the semi-feasible situation, some important feasible in
presented in [11] for unconstrained optimization problems ;g ja1s and important infeasible individuals are assijn
this work, the selection probability is calculated accogdi yjgper rankings, since these individuals contain moreulgef

tq the S't“_a“O’.‘ of th? current population for the COPs. Brmation: On the one hand, the important feasible indigldu
different situations, different methods are used to caleul  in small objective functions are able to guide the algwrit
the selection probability. For example, the probabilites 1, fihq the global optimum:; on the other hand, the important
be calculated as follows: infeasible individuals with slight constraint violatiorend

C. Selection Probability Calculation

« In the infeasible situation: small objective function values can promote the algoritiom t
pi= 05 |1.0— cos R; o (21) find _feaS|bIe_ sol_utlons (especially when_the propc_)rtlonkm‘t
feasible region is very small) or to obtain the optimum when

it is located exactly on the boundaries of the feasible megio
Therefore, these individuals should be paid more attention

o In the semi-feasible situation:

pi=05- {1,0 — cos (& : 77)] (22) and be more dominant than the worst ones. Based on this
K consideration, we also use the cosine model to calculate the
« In the feasible situation: selection probabilities as shown in Equation (22).

As mentioned-above, in the feasible situation, the COPs can
(23) be treated as unconstrained optimization problems. Inrdade
T maintain the diversity of the population and avoid trapgirg
wherei =1,--- , pu. the local optima, the arccosine model is employed to caleula

arccos (1.0 —2.0- &)

1%

pi =



the selection probabilities. In this manner, better indlivls criteria. And ii) in [42] different solutions are selectedbiin
will less dominate the worse ones. different considered groups for the crossover operatoilewh
It is worth noting that when the cosine and arccosina this work the selection probability is used to control the
models are used to calculate the selection probabilities selection of different solutions for the DE mutation.
different situations, no additional parameters are inioesdl Note that the additional complexity of the proposed AR-
in the ARMOR. In addition, since the ranking is assigneMOR is population sorting and probability calculation. The
by Equation (17), the worst solution has a small selectiaomplexity of population sorting i€)(u - log (1)), and the
probability (not0). In this way, the worst solution will not complexity of probability calculation i(u). As analyzed
be completely discarded in the selection process. in [43], most of DE variants have the overall complexity of
O(tmax - - n), Wheret,,,x is the maximal generations, and
Algorithm 1 Ranking-based vector selection for “DE/rand/1s the dimension of the problem . Therefore, when combining

1: Input: The target vector index our proposed ARMOR with CDEs, the ARMOR does not

2: Output: The selected vector indexes, ro, R P : ; ; R

3" Randomly select; ¢ {1, 1}: {base \;egtér?nde}( S|gn|f|cantly increase the overall com_plexny of_ CDEs. This

4: while rndreal[0, 1) > p,, of r; == i do might make the ARMOR be easy to integrate into other DE

2 andomly select: € {1, u}: variants for the COPs.

7: Randomly select» € {1, ;i}; {terminal vector indek In order to verify the performance of ARMOR, in the

‘ Ra _ p

S o ot by O pp =T o == following section, we will integrate it into three represative

10: end while o CDEs, i.e, ECHT-DE [14], (« + \)-CDE [15], and DSS-

B Ry et L ) e o i o MDE [16]. These three CDEs are chosen due to their promis-

13:  Randomly selects € {1, u}; ing performance obtained ametarly-pureDE procedure. For

14: end while example, they do not use the memetic procedure. This can
make us focus on the effectiveness of ARMOR for the DE
algorithm.

D. Vector Selection

As presented in [11], after calculating the selection proba V. EXPERIMENTAL RESULTS AND ANALYSIS
bility of each individual, another issue is that in the miglat  In this section, we perform comprehensive experiments to
operator which vectors should be selected according to tiealuate the performance of ARMOR. Firstly, the ARMOR is
selection probabilities. In this work, theasevector and the combined with ECHT-DE [14], and the method is referred
terminal point of the difference vector are selected based @0 as ECHT-ARMOR-DE. ECHT-ARMOR-DE is used to
their selection probabilities, while other vectors in thetation optimize the functions presented in CEC 2006 [12] and CEC
operator are selected randomly as the original DE algorith@010 [13] to verify the enhanced performance of ARMOR.
For example, for the “DE/rand/1” mutation the vectors ar€hen, the ARMOR is integrated intq:(+ \)-CDE [15] and
selected as shown in Algorithm 1. From Algorithm 1 wédSS-MDE [16] to test the capability of ARMOR to improve
can see that the vectors with higher rankings (or selectiother CDEs.
probabilities) are more likely to be chosen as the base vecto
or the terminal point in the mutation operator. Note tha{ pgaonchmark Functions

in Algorithm 1 we only illustrate the vector selection for . ) .

“DE/rand/1", for other mutation operators the vector setec _ I this work, the benchmark functions presented in CEC

is similar to Algorithm 1. 200_6 [12] ar_wd_CEp 2010 [13] for the competltlonlon con-
strained optimization are selected as the test suite. In the
CEC 2006 competition, there agd COPs. In the CEC 2010

E. Remarks competition, there aré8 scalable COPs) = 10 andD = 30

Although this work is the extension of our previous worlare evaluated in this work. Due to the tight space limitation
in [11], however, there are significant differences betweeame omit the details of these functions, interested readans c
them: i) The work in [11] is only for unconstrained problemsiefer to them in [12] and [13], respectively.
while this work is for constrained problems. ii) The ranking
@n [1_1] is only_ based on the o_bjective function val_ue, whil%_ Parameter Settings
in this work since the constraints should be considered, the
ranking is assigned based on different criteria in differen FOr ECHT-ARMOR-DE and ECHT-DE, we use the follow-
situations. And i) the calculation of selection probatyil N9 Parameters, which are set the same as used in [14].
is also different compared with [11]. In this work, diffeten e population sizey = 50;
methods are used to calculate the selection probabiliies i » crossover rateCr € (0.1,0.9) in steps of0.1;
different situations. « scaling factor:F' € (0.4,0.9) in steps of0.1;

This work is similar to the work presented in [42], however, For the functions in CEC 2006, the maximal number of
the differences between them are significant: i) In [42], thfenction evaluations (MaXNFES) for all benchmark problems
ranking scheme classifies the solutions in the populatitm irare set to b&40, 000 [37]. To compare the results of different
different groups, but in this work the ranking technique ialgorithms, each function is optimized oved independent
used to assign rankings for the solutions based on differeohs. We use the same set of initial random populations



to evaluate different algorithms,e., all of the compared respectively. Hereinafter, since for the three algoriththrese
algorithms are started from the same initial populationaohe are no successful runs in functions g20 and g22, the results
out of 50 runs. While for the functions in CEC 2010B8t= 10 of these functions are not reported. The convergence curves
and D = 30, the MaxNFEs are set to b&00,000 and of the selected functions are plotted in Fig. 2.

600, 000 [13], respectively. For these functions, each function From Table | and Fig. 2, it can be observed that

is optimized over25 runs as recommended in [13]. « With respect to the NFEs both ECHT-ARMOR-DE1
and ECHT-ARMOR-DE2 require less NFEgalues than
C. Performance Criteria ECHT-DE in21 out of 22 test functions. Only in function

g11, ECHT-DE obtains slightly better NFEgalues than
those of ECHT-ARMOR-DE1 and ECHT-ARMOR-DE2.
o« For SR, all of the three ECHT-DE variants can suc-

In order to compare the results among different algorithms,
in this work, we adopt the following performance criteria

which have been presented in other literature. . cessfully solvel9 functions in all50 runs. In function

o NFEs. [12]: It is used to record the number of function g19, there are no successful runs obtained by ECHT-
evaluations in each run for finding a solution satisfying  pg however ECHT-ARMOR-DE1 and ECHT-ARMOR-
f(x) = f(x") < le — 4 andx is feasible, wherec" is DE2 can successfully solve this function i and 49
the known-optimal solution of a specific problem. runs, respectively. In g23, ECHT-DE gefR = 0.72

o Success rate(SR) [12]: It is equal to the number while both ECHT-ARMOR-DE1 and ECHT-ARMOR-
of success runs over total number of runs. A success peo ghtainSR = 1.0. In g02, ECHT-DE obtains the best
run means that within MaXNFEs the algorithm finds a SR value, followed by ECH',I'-ARMOR-DEZ and ECHT-
feasible solutionx satisfying f (x) — f(x") < le —4. ARMOR-DEL1. The reason might be that the ARMOR

« NFEs;: It is used to record the number of function  technique enhances the exploitation ability of the algo-
evaluations in each run for finding a feasible solution. rithm, yet slightly decreases its exploration ability. \Kéhi

» Feasible rate (FR) [13]: It equals to the number of for g02 it has large feasible space £ 100% see [12]),

feasible runs over total number of runs. . the ARMOR technique may lead to the algorithm not to
« Convergence graphg12]: The graphs show the median explore the large feasible space sufficiently.

error performancef{(x) — f(x*)) of the total number of | | terms of the accelerate ratdR, it is clear that
runs. i _ in 19 functions both ECHT-ARMOR-DE1 and ECHT-
o Acceleration rate (AR): Similar to the acceleration rate ARMOR-DE2 consistently obtaidR > 1 compared
in [44], this criterion is used to compare the convergence \iith ECHT-DE. The averaged R value between ECHT-
speed between two algorithms. It is defined as follows:  ARMOR-DE1 and ECHT-DE is .30, which means that
_ ANFEsc a/SRa (24) ECHT-ARMOR-DE1 performs30% faster than ECHT-
ANFEsc /Skp DE in overall. Also, ECHT-ARMOR-DE2 providez7%
where ANFEs, » and SR, are respectively the average  faster than ECHT-DE in overall.
NFEs andSR values of algorithm A. AR > 1 indicates e« Fig. 2 clearly shows that ECHT-ARMOR-DEL1 gets the

AR

algorithm B converges faster than algorithm A. fastest convergence rate, followed by ECHT-ARMOR-
DE2 and ECHT-DE.
D. On the Convergence Rate To sum up, according to the above analysis, the experimen-

tal results verified one of our expectation that the ARMOR
: . . t-lé'chnique is capable of accelerating the convergence fate o
ARMOR-DE IS compared th_rough the_ functions n C_E HCT-DE in the majority of test functions. It is worth noting
2006. As mentioned in Section IV-B, in the sem|-fea5|blﬁqat the ARMOR technique can enhance the exploitation

sﬂuztlon, dllffelrent fr:tn?c_ss Itransf?rmatgnf_ techniques fbe ability of CDE variants, however, if the DE mutations are mor
used to calcu ate t e fina transformed fitngfga(x;) for exploitative, it may lead to premature convergence.
each solutionx;. In this work, the AFT method presented

in [15] and the APF method presented in [18] are used
as illustrations. Therefore, there are two ECHT-ARMOR-DE- Comparison with Other State-of-the-art EAs
variants, i.e, ECHT-ARMOR-DE1 with AFT method and In the previous section, we verified that the ARMOR
ECHT-ARMOR-DE2 with APF method. For the two ECHT-technique is able to accelerate the convergence rate of
ARMOR-DE variants, the parameters used are describedB#CT-DE. In this section, the quality of the final solutions
Section V-B. The NFEs SR, and AR values of ECHT-DE, obtained by ECHT-DE, ECHT-ARMOR-DE1, and ECHT-
ECHT-ARMOR-DE1, and ECHT-ARMOR-DE?2 are reportedARMOR-DE2 is compared. In addition, they also compared
in Table P, where the overall best and the second besiith other state-of-the-art EAs for the COPs. These algo-
NFEs values are highlighted i gray boldface andboldface, rithms are AIS-ZYH [45], ISAMODE-CMA [37], SAMOD-
E [46], ECHT-EP2 [32],:DE [24], and ATMES [17]. AIS-
lindeed ANFEs, A /SR is the successful performancg @) of algorith-  ZYH [45] is an artificial immune system based approach
(’;“f:na;ggﬁfﬁr’;ted in [31]. It can be used to measure the speectlatility  for the COPs. SAMODE [46] is a multiple search operators
2Due to the tight space limitation, all of the experimentalutes, including based DE, where different operators are selected adaptivel
the figures and tables, are provided in the supplemental file. ISAMODE-CMA [37] is an improved version of SAMODE. In

Firstly, the convergence rate between ECHT-DE and ECH



ISAMODE-CMA, both mixed mutation operators and CMA-which has been significantly outperformed by five out of seven
ES based local search are implemented. ECHT-EP2 [32]nethods. Additionally, Table Il also shows that there ace n
evolutionary programming based on ensemble of constraistgnificant differences among ECHT-ARMOR-DE1, ECHT-
handling techniques=DE [24], which gets the first ranking ARMOR-DE2, ECHT-DE, ISAMODE-CMA, andDE by the
in the CEC 2006 competition, is a constrained DE with Wilcoxon test. The reason is that in the majority of the CEC
gradient-based mutation and feasible elites. ATMES [17] )06 functions, the six algorithms can obtain the optimal
an adaptive trade-off model based evolution strategy fer teolutions in all runs as shown in Table II.
COPs. We choose these EAs for comparisons due to theitn general, the ARMOR technique improves the perfor-
good performance obtained. The M&FEs of AIS-ZYH are  mance of ECHT-DE in terms of the quality of the final solu-
350,000, the Max NFEs of sDE are500, 000, while other8 tions. The ARMOR-based ECHT-DE variants provide highly-
EAs have the MaxNFEs= 240, 000. competitive results compared with other EAs in the CEC 2006
The mean and standard deviation of the objective functidest suite.
values for each algorithm are shown in Table II. “NA” means Based on the results in Sections V-D and V-E, we see that
not available. Note that the results of AIS-ZYH, ISAMODE-ECHT-ARMOR-DE1 gets slightly better results than ECHT-
CMA, SAMODE, ECHT-EP2¢DE, and ATMES are directly ARMOR-DE2, in the following sections, we mainly focus on
obtained from their corresponding literature. In addififor the ECHT-ARMOR-DE1 method, and for simplicity, we use
ECHT-DE, ECHT-ARMOR-DE1, ECHT-ARMOR-DE2, AIS- ECHT-ARMOR-DE for short.
ZYH, ISAMODE-CMA, SAMODE, ECHT-EP2, anc:DE,
based on the mean values in Table Il in t® functions,
the final rankings obtained by the Friedman Yemte shown
in Fig. 3. In addition, due to the importance of the multiple- From the experimental results on the CEC 2006 test suite,
problem statistical analysis [48], we present the resufts We Vverified the enhanced performance of ARMOR in terms of

the multiple-problem Wilcoxon signed-rank test in Table Il the quality of final solutions and the convergence rate. Te be
where “” means that the method in the row improves thter understand the performance of ARMOR, ECHT-ARMOR-

method of the column, and™ means that the method in theDE is evaluated on the functions in CEC 2010/at= 10 and
column improves the method of the row. Upper diagonal d? = 30. The results of ECHT-ARMOR-DE are compared with
level significance atv = 0.1, and lower diagonal level of those of ECHT-DE as reported in [14]. In addition, ECHT-
significance atx = 0.05. ARMOR-DE and ECHT-DE are also compared with other
According to the results show in Table II, it is clearlyEAS, i.e., AIS-ZYH [45], cDEg® [49], and IEMA [50]. Note
seen that both ECHT-ARMOR-DE1 and ECHT-ARMOR-DEZ2hat the results of ECHT-DE, AIS-ZYHDEg, and IEMA are
consistently obtain highly-competitive results in all @tions directly retrieved from their corresponding literature.
compared with other seven EAs. Both ECHT-ARMOR-DE1 1) Results atD = 10: Table IV reports the results of
and ECHT-ARMOR-DE2 can get the optimal solutions2ih ECHT-DE and ECHT-ARMOR-DE for the functions in CEC
functions in all runs. 2010 atD = 10, where the better mean values are high-
With respect to the average rankings of different algorihntighted in boldface. The comparisons among different EAs
by the Friedman test, the-value is0.209197, which means are reported in Table V in terms of the mean values of final
that there are no significant differences for the comparedlutions. Based on the mean values shown in Table V, the
algorithms in all functions. Additionally, Fig. 3 shows thidDE average rankings of these algorittfny the Friedman test are
gets the first ranking among eight algorithms, while ECHTescribed in Fig. 4(a), and the results of the multiple-fEob

ARMOR-DE1 and ECHT-ARMOR-DE2 obtain the secondnalysis by the Wilcoxon test are shown in Table VI.

and third ranking, respectively. AlthoughDE is the best = From Table IV, in terms of the mean results we see that

one among the compared algorithms, it requires the mastll out of 18 functions ECHT-ARMOR-DE is better than

Max_NFE$. In addition, incDE the gradient-based mutationECHT-DE. In4 functions both of them can obtain the optimal

is used to enhance its performance. solutions in all 25 runs. Only in two functions C08 and
Based on the multiple-problem analysis by the Wilcoxo809, ECHT-DE gets better results than ECHT-ARMOR-DE.

test, Table Ill reveals that both ECHT-ARMOR-DE1 andConsidering the feasible rate, 1 functions ECHT-ARMOR-

ECHT-ARMOR-DE?2 significantly outperform AIS-ZYH and DE obtainsF'R = 1.0, while ECHT-DE getsF'R = 1.0 in 16

SAMODE. ¢DE obtains significantly better results than AlSfunctions.

ZYH, SAMODE, and ECHT-EP2. SAMODE is the worst one, Comparison with other EAs, Table V shows that ECHT-
3 L _ _ ARMOR-DE can obtain the first best mean values 8n
The statistic results of the Friedman test and the Wilcoxest tare functions. and in3 functions it gets the second best mean

calculated by the KEEL software tool [47]. ! g
4To make a fair comparison between ECHT-ARMOR-DE1 aiif, the results. According to the averaging rankings shown in Hg) 4

Max_NFEs=500, 000 is used for ECHT-ARMOR-DEL. In this case, forwe can see that ECHT-ARMOR-DE gets the first ranking, fol-

g02, ECHT-ARMOR-DEL1 gets the mean and standard deviatidwesawith _ -
= 0.8035440 and 2.24F — 05, respectively. For g19, ECHT-ARMOR-DE1 [OWed byeDEQg, AIS-ZYH, [EMA, and ECHT-DE. The results

can obtain the optimal solution32.65559) in all 50 runs. For other20

functions in Table II, both ECHT-ARMOR-DE1 andDE get the global ~ %cDEg is ae constrained DE with gradient-based mutation, which olstain
optimal solutions in all runs. Thus, the performance of EOMRMOR-DE1  the first overall ranking in the CEC 2010 competition [51].

can be highly-competitive to that @fDE in the CEC 2006 test suite when 6Since there are infeasible solutions in C11 and C12 for EOH]J-the
the Max NFEs=500, 000. results of these two functions are not used for statisticalysis.

F. Experiments on CEC 2010 Benchmark Functions



in Table VI indicate that ECHT-ARMOR-DE is competitive 1) ARMOR for Other CDEsAs discussed in Section Il1-B,
to AIS-ZYH and eDEg. ECHT-ARMOR-DE is significantly there are other CDEs for the COPs. Thus, we might be asked
better than ECHT-DE and IEMA by the Wilcoxon test athat “Is the ARMOR useful to other CDEs?” In order to
«a = 0.05. eDEg is significantly better than ECHT-DE andanswer this question, in this section, ARMOR is integrated
IEMA by the Wilcoxon test ate = 0.1 and o« = 0.05, into two representative CDEBse., (1+A)-CDE [15] and DSS-
respectively. MDE [16]. The two ARMOR-based variants are respectively
2) Results atD = 30: For the CEC 2010 benchmarkreferred to as+))-ARMOR-CDE and DSS-ARMOR-MDE.
functions atD = 30, the quality of final solutions of ECHT-DE For (u+ A)-ARMOR-CDE, the parameters are set to the same
and ECHT-ARMOR-DE are tabulated in Table VII. Table Vilias used in [15]e.g, u = 70,A = 210, F = 0.8,Cr = 0.9.
shows the comparisons with other EAs in terms of the me&®r DSS-ARMOR-MDE, the population size is set to be
values. Additionally, the averaging rankings by the Friagm # = 90, and other parameters are kept the same as used
test and the multiple-problem analysis by the Wilcoxon te#t [16], i.e, Cr = 0.9, F' = rndreal(0.3,0.9), andn, = 5.
are reported in Fig. 4(b) and Table 1Xrespectively. We use a larger population size than that of DSS-MRE(
Similar to the results abD = 10, ECHT-ARMOR-DE can 50), because both DSS-MDE and DSS-ARMOR-MDE obtain
obtain better mean results than ECHT-DE in the majority ¢#gher success rates than small population size used in the

the test functions1(l out of 18). It is worse than ECHT-DE Original DSS-MDE. For both/{-+1)-ARMOR-CDE and DSS-
in four functions (CO1, C04, C10, and C17). ARMOR-MDE, Max_NFEs=500, 000. The two algorithms are

Table VIl shows that ECHT-ARMOR-DE gets the first besperformed ovenh0 independent runs for each function. Note
mean values int functions, and the second best results it in ARMOR the AFT method is used to calculate the

2 functions. <DEg respectively obtains the first and secontjansformed fitness in the semi-feasible situation. Theltes
best mean values if and 2 functions. For AIS-ZYH, in4 Of NFES, SR, and AR are tabulated in Table X, and the

functions it gets the first best results, and&rfunctions it better results are highlighted boldface Note that the results

obtains the second best results. The average rankings sh@ff! + A)-CDE are obtained from [15] in Table 6. While for
in Fig. 4(b) tells that DEg is the overall best method, followedP>S-MDE, we performed itin all functions due to the changed

by AIS-ZYH, ECHT-ARMOR-DE, and ECHT-DE. According POPulation size. _
the multiple-problem analysis by the Wilcoxon test, thaitess _ COMparedf+A)-ARMOR-CDE with (u+)-CDE, Table X
in Table IX indicate that ECHT-ARMOR-DE¢DEg, and Cléarly shows that(+4)-ARMOR-CDE requires less NFEs
AIS-ZYH significantly outperform ECHT-DE atv = 0.05. than ,@"")‘)'CDE in the majority (_)f test cases. 0 out of 22
There are no significant differences among ECHT—ARMOF\,ﬁ-mCt'OnS’ f¢ + A)-ARMOR-CDE is better tham(—k )‘)'CDE,
DE, eDEg, and AIS-ZYH in terms of the Wilcoxon test. in terms of the mean NFEs vglues. Only in two functions

3) Remarks:By integrating the ARMOR into ECHT-DE, 992 @nd 915,/ + A)-CDE is slightly better than,(+ A)-
ECHT-ARMOR-DE improves the performance of ECHT-DE RMOR-CDE. In20 fun(lztlonﬁ, both £ + )‘)f'AI‘IRMOFﬁ'CDE
in the CEC 2010 benchmark function 8t= 10 and D = 30 and (u + X)-CDE can solve them successfully in all runs. In
Especially, atD — 10 ECHT-ARMOR-DE obtains the fir.st the rest two functions,.{+ \)-ARMOR-CDE obtains higher

P - § SR value than f + \)-CDE in g21, while it loses seriously

average ranking by the Friedman test. The performanceirc])%ozl In terms of thed R criterion, the average R is 1.43,

ECHT-DE and ECHT-ARMOR-DE decreases At = 30, :

however, ECHT-ARMOR-DE still gets better results thart\ﬁvgsh@mfi)n_sctggﬁ(:;‘\)/é?;:VIOR CDE converges’ faster

ECH.T_DE' o . L _ Comparisons on the performance between DSS-ARMOR-
It is worth mentioning that the main contribution of this\,nE and DSS-MDE. from Table X. we can observe that in

workis the prqpo_sed ARMO.R’ not to propose a COMpetitaly o fnctions DSS-ARMOR-MDE needs less mean NFEs

The ARMOR is integrated into ECHT-DE to evaluate the .. pss.MDE. With respect t& R, DSS-ARMOR-MDE

enhanced performance of ARMOR, and it may be useful i, t, g petter than DSS-MDE in two functions (g21 and
improve other CDEs. We will try to verify this expectation |n923), while DSS-MDE wins in two functions (g02 and g13).

the following section. In the rest18 functions, both DSS-ARMOR-MDE and DSS-
MDE get the SR = 1.0. The average5 R of DSS-ARMOR-
_ . MDE is slightly better than that of DSS-MDE. In addition,
G. Discussions DSS-ARMOR-MDE performd04% faster than DSS-MDE in
verall, since the averagéR = 2.04.

In the previous sections, the performance of ARMOR 5 Therefore, from the above results and analysis, we can say
combined with ECHT-DE, and ECHT-ARMOR-DE improves ' . ) '
P at our proposed ARMOR is of benefit tp ¢ \)-CDE and

ECHT-DE and provides competitive results compared wi _
other EAs in the CEC 2006 and CEC 2010 benchma SS-MDE. It accelerates their convergence speed, but does
%t decrease the success rate in the majority of the furstion

functions. In this section, we address four other issuesa .
follows ence, the ARMOR can be similarly useful for performance
' enhancement of other CDEs.
; _ _ _ 2) On the RobustnessThe robustness of the proposed
Also, C11 and C12 are not used due to the infeasible solutiorikese ARMOR i | . indi . ffecti A
functions. In addition, IEMA is not used for statistical cpamison, because ) 'S_ also |mportant to Indicate Its e _eCt'VeneSS- S
in four functions it can not find any feasible solutions in raihs. mentioned in Section IV-C, there are no additional pararsete
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introduced in ARMOR; hence, to evaluate its robustness, agerage AR are 1.26 and 1.21 for ECHT-DE vs ECHT-
will modify the parameters of DE to show how quality ofARMOR-DE3 and ECHT-DE vs ECHT-ARMOR-DEA4, re-
solutions changed. Since in ECHT-DE [32] bathr and F" are  spectively. Therefore, the above models can also accelerat
adaptively controlled, in this section, we uge\)-CDE [15] the convergence rate of ECHT-DE in overall.

as the basis algorithm. In the DE literature for the COPsh(suc 4) On the NFEg Performance:Another issue is that “Can
as [24], [16], [15]),Cr = 0.9 has obtained very promisingthe ARMOR make the algorithm achieve feasible solutions
results. In addition, as suggested in [31], the most usEful faster?” In order to answer this question, in this sectibe, t
values aré).6 < F < 0.9. Therefore, we fixCr = 0.9; while NFEs;, FR, and AR’ values of ECHT-DE, ECHT-ARMOR-
F=0.7andF = 0.9 are used ing + \)-CDE and f; + A)- DE1, and ECHT-ARMOR-DEBare compared in Table XIlI.
ARMOR-CDE to evaluate the robustness. All other parameteid results are averaged ovén runs. AR’ is similar to AR

are kept the same as used in [15]. The results are reportecid it is calculated as

Table XI. _ ANFEs; a/FRa

. . AR =
According to the results in Table Xl, we can see that ANFEs; 5/ FRp

regardless of different” values {1 + \)-ARMOR-CDE is where ANFEs; » and FRa are respectively the average
able to accelerate the convergence rate 0f(A)-CDE in NFEs; and FR values of algorithm A.AR’ > 1 indicates
the majority of the functions. The averaged? value is1.33  algorithm B gets feasible solution faster than algorithm A.
and 1.31 for F' = 0.7 and F' = 0.9, respectively. Thus, we Note that in Table XIlI, the results of g02, g04, g12, g19,
can conclude that the ARMOR is still capable of acceleratinghd g24 are omitted, because in these functions the feasible
(1 + A)-CDE with different " values. And the robustness ofsplutions are obtained in the initial population. The resof
ARMOR is not significantly influenced by differefit settings 20 are not reported in Table XllI, since the three algorithm
in (u+ \)-CDE. can not find feasible solutions in all runs.

3) Influence of Other Probability Calculation Models:  From the results shown in Table XIII, we can observe that
In Section IV-C, the cosine and arccosine models are usedHT-ARMOR-DE1 requires less mean NFEgalues than
to calculate the selection probabilities in different atians. ECHT-DE in 12 out of 18 functions, while it is worse than
Other models may also be used for probability calculatian. ECHT-DE in6 functions. In function g22, there are no feasible

(28)

address this issue, the following models are used. solutions found by ECHT-DE, however, ECHT-ARMOR-DE1
« In the infeasible situation: can provideFR = 0.88. AR’ = 1.11 between ECHT-DE
Lo, 1< and ECHT-ARMOR-DE1, which means that ECHT-ARMOR-
pi = {R CL Z‘< 2 (25) DEL achieves the feasible solutiohs faster than ECHT-
gﬂ 5<t1<pu DE in overall. Compared the results between ECHT-DE and

ECHT-ARMOR-DE3, similar results can be obtained. ECHT-
ARMOR-DE3 wins in13 functions with respect to the mean
R\ . NFEs: values, and it gets the feasible solutidi# faster than
pi = <7> y t=Lep (26)  ECHT-DE in overall.

In general, for the two methods to calculate the selection

o In the semi-feasible situation:

« In the feasible situation: probabilities in ARMOR, the ARMOR-based ECHT-DE vari-
R\ ants can achieve feasible solutions faster than ECHT-DEein t
pi = (7) ,oi=1 (27)  majority of test functions. In addition, the ARMOR technégu

) ) can make ECHT-DE obtain the feasible solutions in some
The above models are also based on the considerations)thajhctions with many active constraints, such as g22.

In the infeasible situation, the main task is to steer theutsp
tion into feasible space. ii) In the semi-feasible situatiboth VI. CONCLUSIONS ANDFUTURE WORK
important feasible solutions and important infeasibleisohs

are more dominant than the worse ones. And i) in the feasib] In_k;r:rderlto_ accfelerat(fa thﬁ converg_encde rate aﬂd ach;]eve
situation, better solutions less dominate worse solutimns '€asible solutions faster for the constrained DE methodsw

promote the diversity solving the COPs, in this paper, we propose an adaptive
The ARMOR with these models are also integrated int{ nking mutation operator (ARMOR). In ARMOR, based on

ECHT-DE [14], two ECHT-ARMOR-DE variants,e, ECHT- the situation of the current population, the solutions atapa

ARMOR-DE3 with AET method and ECHT-ARMOR-DE4 fively ranked. In addition, in different situations the calation

with APF method, are evaluated in the CEC 2006 function f selection probability of each sclution is different, and

For ECHT-ARMOR-DE3 and ECHT-ARMOR-DE4, the pa- ifferent models can be used to calculate the probabilities

rameter settings are the same as described in Section VTIQ.e ARMOR is simple, and does not increase the overall

The results of NFES SR, and AR are reported in Table XII. complexity of CDEs. It is easy to integrate into most of

Al results are ave_raQEd F’Véﬂ md.ependent. ru.ns. . 8In the infeasible situation, the population is ranked onisédl on the
Like the results in Section V-D, in the majority of functionsonstraint violation of each individual. In this way, ECARMOR-DE1 and

both ECHT-ARMOR-DE3 and ECHT-ARMOR-DE4 requiresECHT-ARMOR-DE2 (also ECHT-ARMOR-DE3 and ECHT-ARMOR-DE4)
have the same NFEsand F' R values in the same function. Hence, the results

less NFEs values. Moreover, they can provide higher MEakt ECHT-DE are compared with those of ECHT-ARMOR-DE1 and HEH
SR values than ECHT-DE. In terms of th&éR values, the ARMOR-DE3.



CDEs, and as illustrations, it is combined with ECHT-DE[15]
(1 + A)-CDE, and DSS-MDE. Experimental results verified
our expectations that the proposed ARMOR is able to ma
the CDEs converge faster and find feasible solution faster.
Additionally, ECHT-ARMOR-DE provides fairly-competité/
results compared with other state-of-the-art EAs in the cet!
2006 and CEC 2010 benchmark functions.

The ranking-based mutation operators may be useful in thél
multiobjective optimization. For example, the non-dontéth
sorting method [52] can be possibly used to rank solutions in
the multiobjective optimization. In our future, we will thp  [19]
verify this expectation.
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SUPPLEMENT FILE

TABLE |

COMPARISON ON THENFES, VALUES OF ECHT-DE, ECHT-ARMOR-DE1AND ECHT-ARMOR-DE2FOR THECEC 2006FUNCTIONS. ALL RESULTS
ARE AVERAGED OVER50 RUNS.

Prob ECHT-DE (1) ECHT-ARMOR-DEL1 (2) ECHT-ARMOR-DE2 (3) AR AR
Mean Std SR Mean Std SR Mean Std SR Qvs(2) | )vs3)
g01 1.384E+05 | 4.06E+03 [ 1.00 9.739E+04 | 3.14E+03 1.00 1.064E+05 | 3.28E+03 1.00 1.42 1.30
g02 8.205E+04 | 6.25E+03 [ 0.42 6.689E+04 | 1.41E+04 | 0.30 7.672E+04 | 3.34E+04 | 0.40 0.88 1.02
g03 1.161E+05 | 1.53E+03 [ 1.00 1.136E+05 | 3.20E+03 1.00 1.149E+05 | 2.64E+03 1.00 1.02 1.01
g04 6.470E+04 [ 2.43E+03 | 1.00 4.283E+04 | 1.45E+03 1.00 4.599E+04 | 1.75E+03 1.00 151 1.41
g05 1.204E+05 | 1.45E+03 [ 1.00 1.195E+05 | 8.75E+02 1.00 1.201E+05 | 1.23E+03 1.00 1.01 1.00
g06 2.224E+04 | 1.24E+03 | 1.00 1.536E+04 | 7.04E+02 1.00 1.630E+04 | 6.67E+02 1.00 1.45 1.36
g07 1.088E+05 | 4.87E+03 | 1.00 6.718E+04 | 2.80E+03 1.00 7.013E+04 | 2.97E+03 1.00 1.62 1.55
g08 2.644E+03 | 4.15E+02 | 1.00 2.216E+03 | 3.07E+02 1.00 2.340E+03 | 3.77E+02 1.00 1.19 1.13
g09 4.194E+04 | 1.81IE+03 | 1.00 2.902E+04 | 1.15E+03 1.00 3.054E+04 | 1.14E+03 1.00 1.44 1.37
g10 1.855E+05 | 7.49E+03 [ 1.00 1.023E+05 | 3.75E+03 1.00 1.071E+05 | 3.47E+03 1.00 1.81 1.73
g1l 5.820E+04 | 1.85E+04 | 1.00 6.265E+04 | 1.55E+04 1.00 6.272E+04 | 1.42E+04 1.00 0.93 0.93
g12 3.072E+03 | 7.83E+02 | 1.00 2.552E+03 | 5.69E+02 1.00 2.424E+03 | 6.06E+02 1.00 1.20 1.27
g13 1.109E+05 | 4.39E+03 [ 1.00 1.092E+05 | 4.70E+03 1.00 1.092E+05 | 4.70E+03 1.00 1.01 1.01
gl4 1.401E+05 | 6.59E+03 [ 1.00 1.302E+05 | 3.33E+03 1.00 1.318E+05 | 3.26E+03 1.00 1.08 1.06
g15 1.083E+05 | 5.58E+03 [ 1.00 1.074E+05 | 5.01E+03 1.00 1.076E+05 | 4.96E+03 1.00 1.01 1.01
g16 3.019E+04 | 1.37E+03 | 1.00 2.005E+04 | 1.06E+03 1.00 2.200E+04 | 1.04E+03 1.00 151 1.37
gl7 1.174E+05 | 1.59E+03 [ 1.00 1.167E+05 | 1.04E+03 1.00 1.170E+05 | 1.12E+03 1.00 1.01 1.00
g18 1.431E+05 | 2.02E+04 | 1.00 8.000E+04 | 9.28E+03 1.00 7.895E+04 | 1.09E+04 1.00 1.79 1.81
g19 NA NA 0.00 1.830E+05 | 1.60E+04 1.00 1.868E+05 | 1.73E+04 | 0.98 NA NA
g21 1.734E+05 | 6.82E+03 | 1.00 1.476E+05 | 1.34E+04 1.00 1517E+05 | 3.10E+03 1.00 1.17 1.14
g23 2.274E+05 | 5.72E+03 | 0.72 1.706E+05 [ 4.29E+03 1.00 1.751E+05 | 4.19E+03 1.00 1.85 1.80
924 8.120E+03 [ 7.81E+02 | 1.00 6.032E+03 | 4.97E+02 1.00 6.348E+03 | 5.48E+02 1.00 1.35 1.28
avg — 0.915 — 0.968 — 0.972 1.30 1.27
TABLE 1l

COMPARED THE QUALITY OF FINAL SOLUTIONS OF OUR APPROACH WITH DHER STATE-OF-THE-ART EAS FOR ALL CEC 2006FUNCTIONS.

Prob | Criteria | ECHT-ARMOR-DE1 | ECHT-ARMOR-DE2 EHCT-DE AIS-ZYH ISAMODE-CMA SAMODE ECHT-EP2 eDE ATMES
go1 Mean =155 =155 =15 =15 =15 =15 =15 =15 =155
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.60E-14
902 Mean -0.7900342 -0.7952637 -0.7936387 | -0.8021930 -0.79244 -0.79873521 -0.799822 -0.8036191 -0.790148
Std 1.23E-02 8.10E-03 1.12E-02 5.1I9E-10 2.80E-02 8.80E-03 1.26E-02 1.75E-08 1.30E-02
903 Mean -1.0005 -1.0005 -1.0005 -1.0005 -1.0005 -1.0005 -1.0005 -1.0005 B!
Std 0.00E+00 0.00E+00 0.00E+00 1.77E-11 0.00E+00 0.00E+00 0.00E+00 2.96E-31 5.90E-05
q04 Mean -30665.539 -30665.539 -30665.539 | -30665.539 -30665.539 -30665.5386 | -30665.539 -30665.539 -30665.539
Std 0.00E+00 0.00E+00 0.00E+00 3.69E-13 0.00E+00 0.00E+00 0.00E+00 0.00E+00 7.40E-12
905 Mean 5126.497 5126.497 5126.497 5126.498 5126.497 5126.497 5126.497 5126.497 5127.648
Std 0.00E+00 0.00E+00 0.00E+00 1.70E-02 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.80E+00
906 Mean -6961.813875 -6961.813875 -6961.814 | -6961.81385 -6961.813875 -6961.813875| -6961.814 | -6961.813875| -6961.814
Std 0.00E+00 0.00E+00 0.00E+00 1.90E-12 0.00E+00 0.00E+00 0.00E+00 0.00E+00 4.60E-12
907 Mean 24.3062 24.3062 24.3062 24.3557 24.3062 24.3096 24.3063 24.3062 24.316
Std 0.00E+00 0.00E+00 1.14E-10 8.20E-03 0.00E+00 1.59E-03 3.19E-05 2.18E-15 1.1I0E-02
08 Mean -0.095825 -0.095825 -0.095825 -0.095825 -0.095825 -0.09582504 | -0.095825 -0.095825 -0.095825
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.61E-08 1.23E-32 2.80E-17
909 Mean 680.63 680.63 680.63 680.65 680.63 680.63 680.63 680.63 680.639
Std 0.00E+00 0.00E+00 0.00E+00 1.20E-08 0.00E+00 1.16E-05 0.00E+00 0.00E+00 1.00E-02
10 Mean 7049.24802 7049.24802 7049.24802 | 7049.57032 7049.24802 7059.81345 7049.249 7049.24802 7250.437
Std 0.00E+00 0.00E+00 4.18E-07 4.50E-04 5.42E-06 7.86E+00 6.60E-04 4.24E-13 1.20E+02
911 Mean 0.7499 0.7499 0.7499 0.7499 0.7499 0.7499 0.7499 0.7499 0.75
Std 0.00E+00 0.00E+00 0.00E+00 1.40E-08 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.40E-04
g12 Mean =il ! ! ! =il ! ! =il B!
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.00E-03
913 Mean 0.05394 0.05394 0.05394 0.05394 0.05394 0.05394 0.05394 0.05394 0.05396
Std 0.00E+00 0.00E+00 0.00E+00 7.80E-10 0.00E+00 1.75E-08 1.00E-12 0.00E+00 1.30E-05
gl4 Mean -47.764888 -47.764888 -47.764888 | -47.764881 -47.764888 -47.68115 -47.7648 -47.764888 NA
Std 0.00E+00 0.00E+00 3.26E-13 1.00E-12 0.00E+00 4.04E-02 2.72E-05 1.39E-15 NA
915 Mean 961.71502 961.71502 961.71502 961.71502 961.71502 961.71502 961.71502 961.71502 NA
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.01E-13 0.00E+00 NA
916 Mean 19905155 19905155 F1N905155 E1N905155 F1N905155 11905155 E1N905155 11905155 NA
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.12E-10 1.58E-30 NA
917 Mean 8853.5397 8853.5397 8853.5397 8853.5397 8853.5397 8853.5397 8853.5397 8853.5397 NA
Std 0.00E+00 0.00E+00 0.00E+00 1.90E-09 0.00E+00 1.15E-05 2.13E-08 1.21E-27 NA
18 Mean -0.866025 -0.866025 -0.866024 -0.866025 -0.866025 -0.866024 -0.866025 -0.866025 NA
Std 0.00E+00 0.00E+00 5.15E-06 1.30E-15 0.00E+00 7.04E-07 1.00E-09 2.18E-17 NA
g19 Mean 32.65560 32.65560 32.65654 32.65559 32.65559 32.75734 32.66230 32.65560 NA
Std 8.39E-06 1.90E-05 7.76E-04 0.00E+00 6.46E-07 6.15E-02 3.40E-03 1.26E-05 NA
921 Mean 193.72451 193.72451 193.72451 196.72451 193.72451 193.771375 193.7438 193.72451 NA
Std 0.00E+00 0.00E+00 0.00E+00 1.10E+00 0.00E+00 1.96E-02 1.65E-02 3.34E-14 NA
923 Mean -400.0551 -400.0551 -400.0546 -399.8743 -395.62403 -360.817656 -373.2178 -400.0551 NA
Std 2.68E-09 1.76E-08 2.18E-03 2.00E+00 7.79E+00 1.96E+01 3.37E+01 1.11E-14 NA
924 Mean -5.508013 -5.508013 -5.508013 -5.508013 -5.508013 -5.508013 -5.508013 -5.508013 NA
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.52E-29 NA




COMPARISON ON THE PERFORMANCE OECHT-DEAND ECHT-ARMOR-DEFOR FUNCTIONS IN THECEC 2010TEST SUITE ATD = 10.

TABLE Il
RANKS COMPUTED BY THEWILCOXON TEST FOR STATEOF-THE-ART EAS ONCEC 2006BENCHMARK FUNCTIONS. HEREINAFTER, ® = THE METHOD
IN THE ROW IMPROVES THE METHOD OF THE COLUMNO = THE METHOD IN THE COLUMN IMPROVES THE METHOD OF THE ROWUPPER DIAGONAL OF
LEVEL SIGNIFICANCE AT o = 0.1, LOWER DIAGONAL LEVEL OF SIGNIFICANCE AT« = 0.05.

(@) @ ®) Q] ©) (©) () ®)
ECHT-ARMOR-DEL (1) - | 1160 | 1455 | 187.00 | 1270 | 1835 1705 | 116.0
ECHT-ARMOR-DEZ (2) | 137.0 - | 1675 | 187.06 | 148.0 | 1835 1715 | 116.0
EHCT-DE (3) | 1075 | 855 - 1735 | 1285 | 1735 | 1655 | 855
AIS-ZYH(4) | 66.0 | 66.0 | 795 - | 870 | 1395 | 1080 | 50
[SAMODE-CMA (5) | 126.0 | 1050 | 1245 | 166.0 - | 1835 1705 | 105.0
SAMODE (6) | 695 | 695 | /9.5 1135 | 69.5 - | 52k | B2k
ECHT-EP2(7) | 825 | 815 | 875 | 1450 | 825 | 2005 - [ 635
<DE (8) | 137.0 | 137.0 | 1675 | 203.00 | 148.0 | 2005 | 189.5 -

TABLE IV

Prob ECHT-DE ECHT-ARMOR-DE

Best Median Worst Mean Std FR Best Median Worst Mean Std FR
Co1 -7.4730E-01 -7.4730E-01 -7.4060E-01 -7.4700E-01 1.4E-03 1.00 -7.4730E-01 -7.4730E-01 -7.4060E-01 -7.4700E-01 1.4E-03 1.00
C02 -2.2777E+00 | -2.2777E+00 | -2.2612E+00 | -2.2744E+00| 6.7E-03 | 1.00 -2.2777E+00 | -2.2777E+00 | -2.2612E+00 | -2.2770E+00 | 3.3E-03 | 1.00
C03 0.0000E+00 | 0.0000E+00 | 0.0000E+00 | 0.0000E+00 | 0.0E+00 | 1.00 0.0000E+00 | 0.0000E+00 | 0.0000E+00 | 0.0000E+00 | 0.0E+00 | 1.00
C04 -1.0000E-05 | -1.0000E-05 | -1.0000E-O5 | -1.0000E-05 [ 0.0E+00 | 1.00 -1.0000E-05 | -1.0000E-05 | -1.0000E-O5 | -1.0000E-05 | 0.0E+00 | 1.00
CO05 -4.8361E+02 | -4.3495E+02 | -2.7057E+02 | -4.1145E+02 | 7.6E+01 | 1.00 -4.8361E+02 | -4.8361E+02 | -4.8361E+02 | -4.8361E+02 | 0.0E+00 | 1.00
C06 -5.7866E+02 | -5.7866E+02 | -3.6855E+02 | -5.6247E+02 | 4.5E+01 [ 1.00 -5.7866E+02 | -5.7866E+02 | -5.7866E+02 | -5.7866E+02 | 4.0E-13 | 1.00
C07 0.0000E+00 | 0.0000E+00 | 3.9866E+00 1.3290E-01 | 7.3E-01 [ 1.00 0.0000E+00 | 0.0000E+00 | 0.0000E+00 | 0.0000E+00 | 0.0E+00 | 1.00
C08 0.0000E+00 | 7.0979E+00 | 2.6115E+01 | 6.1566E+00 | 6.5E+00 | 1.00 0.0000E+00 | 1.0942E+01 | 1.0942E+01 | 7.5262E+00 | 5.0E+00 | 1.00
C09 0.0000E+00 | 0.0000E+00 | 4.4082E+00 | 1.4691E-01 | 8.0E-01 | 1.00 0.0000E+00 | 0.0000E+00 | 4.4082E+00 1.7633E-01 | 8.8E-01 | 1.00
C10 0.0000E+00 | 0.0000E+00 | 4.1727E+01 | 1.7117E+00 | 7.7E+00 | 1.00 0.0000E+00 | 0.0000E+00 | 0.0000E+00 | 0.0000E+00 | 0.0E+00 [ 1.00
Cl1 -1.5000E-03 | -1.5000E-03 | -8.7300E-03 | -4.4000E-03 | 1.6E-02 NA -1.5227E-03 | -1.5227E-03 | -8.7342E-02 | -4.2716E-02 | 4.4E-02 | 0.52
C12 -1.9920E-01 | -1.9920E-01 | -5.5435E+03 | -1.7187E+02 | 2.2E+02 | NA -1.9925E-01 | -1.9925E-01 | -1.9925E-01 | -1.9925E-01 | 1.6E-13 | 1.00
C13 -6.8429E+01| -6.3518E+01 | -6.1649E+01 | -6.5121E+01| 2.4E+00 [ 1.00 -6.8429E+01| -6.8429E+01 | -6.2276E+01 | -6.7169E+01 | 2.1E+00 | 1.00
Cl4 0.0000E+00 | 0.0000E+00 | 1.7191E+07 | 7.0242E+05 | 3.2E+06 | 1.00 0.0000E+00 | 0.0000E+00 | 0.0000E+00 | 0.0000E+00 | 0.0E+00 | 1.00
C15 0.0000E+00 | 1.2216E+10 | 1.8693E+14 | 2.3392E+13 | 5.3E+13 | 1.00 0.0000E+00 | 3.6732E+00 | 4.4974E+00 | 2.8246E+00 | 1.6E+00 | 1.00
C16 0.0000E+00 | 3.0437E-02 1.6351E-01 3.9327E-02 | 4.3E-02 | 1.00 0.0000E+00 | 0.0000E+00 | 2.3426E-01 2.8478E-02 | 5.0E-02 | 1.00
C17 0.0000E+00 | 0.0000E+00 | 1.0884E+00 1.1152E-01 | 3.3E-01 | 1.00 0.0000E+00 | 6.1630E-33 6.1630E-33 3.6978E-33 | 3.1E-33 | 1.00
C18 0.0000E+00 | 0.0000E+00 | 0.0000E+00 | 0.0000E+00 | 0.0E+00 | 1.00 0.0000E+00 | 0.0000E+00 | 0.0000E+00 | 0.0000E+00 | 0.0E+00 | 1.00

i+ indicates the solution is infeasible.
TABLE V

COMPARED THE RESULTS OFECHT-ARMOR-DEWITH OTHER EAS FOR FUNCTIONS IN THECEC 2010TEST SUITE ATD = 10.

Prob

ECHT-DE

AIS-ZYH

eDEg

IEMA

ECHT-ARMOR-DE

C01

-7.4700E-01+ 1.40E-03

-7.4705E-01+ 1.30E-03

-7.4704E-01+ 1.32E-03

-7.4319E-01+ 4.33E-03

-7.4700E-01+ 1.40E-03

C02

-2.2744E+00+ 6.70E-03

-2.2748E+00+ 2.00E-03

-2.2588E+00+ 2.38E-02

-2.2777E+00+ 1.82E-07

-2.2770E+00+ 3.30E-03

C03

0.0000E+00+ 0.00E+00

3.7472E-09+ 4.81E-04

0.0000E+00+ 0.00E+00

6.2346E-07+ 1.40E-06

0.0000E+00+ 0.00E+00

Co4

-1.0000E-05+ 0.00E+00

-9.9712E-06+ 4.28E-03

-9.9185E-06+ 1.54E-07

-9.3702E-06+ 8.99E-08

-1.0000E-05+ 0.00E+00

C05

-4.1145E+02+ 7.63E+01

-4.7996E+02+ 6.30E+00

-4.8361E+02+ 3.89E-13

-3.7916E+02+ 1.79E+02

-4.8361E+02+ 0.00E+00

C06

-5.6247E+02+ 4.51E+01

-5.7995E+02+ 7.30E-08

-5.7865E+02+ 3.62E-03

-5.5147E+02+ 7.36E+01

-5.7866E+02+ 4.00E-13

C07

1.3290E-01+ 7.28E-01

1.1735E-08+ 2.70E+00

0.0000E+00+ 0.00E+00

3.2569E-09+ 3.39E-09

0.0000E+00+ 0.00E+00

C08

6.1566E+00+ 6.45E+00

4.0919E+00+ 1.46E+00

6.7275E+00+ 5.56E+00

4.0702E+00+ 6.38E+00

7.5262E+00+ 5.00E+00

C09

1.4691E-01+ 8.05E-01

2.6980E+01+ 7.50E+01

0.0000E+00+ 0.00E+00

1.9511E+12+ 5.40E+12

1.7633E-01+ 8.82E-01

C10

1.7117E+00+ 7.66E+00

1.6200E+03+ 5.00E+02

0.0000E+00+ 0.00E+00

2.5613E+12+ 3.97E+12

0.0000E+00+ 0.00E+00

Cl1

-4.4000E-03+ 1.57E-0F

-9.1995E-04+ 8.23E-04

-1.5227E-03+ 6.34E-11

1.5227E-03+ 2.73E-08

-4.2716E-02+ 4.38E-02

C12

-1.7187E+02t 2.21E+0F

-4.3577E+02+ 6.02E+01

-3.3673E+02+ 1.78E+02

-6.4817E-01+ 2.19E+00

-1.9925E-01+ 1.61E-13

Ci13

-6.5121E+01+ 2.38E+00

-6.7874E+01+ 3.11-E01

-6.8429E+01+ 1.02E-06

-6.8018E+01+ 1.40E+00

-6.7169E+01+ 2.15E+00

C14

7.0242E+05+ 3.19E+06

1.2213E-04+ 2.90E-08

0.0000E+00+ 0.00E+00

5.6308E+01+ 1.82E+02

0.0000E+00+ 0.00E+00

C15

2.3392E+13+ 5.30E+13

5.1855E-09+ 1.10E-08

1.7990E-01+ 8.81E-01

1.5753E+08+ 6.04E+08

2.8246E+00+ 1.63E+00

C16

3.9327E-02+ 4.28E-02

9.9593E-18+ 6.27E-15

3.7021E-01+ 3.71E-01

3.3030E-02+ 2.26E-02

2.8478E-02+ 4.99E-02

C17

1.1152E-01+ 3.32E-01

2.9340E+00+ 2.29E+00

1.2496E-01+ 1.93E-01

3.1509E-03+ 1.57E-02

3.6978E-33+ 3.08E-33

C18

0.0000E+00+ 0.00E+00

1.6590E+00+ 1.27E+00

9.6788E-19+ 1.81E-18

1.6179E-14+ 3.82E-14

0.0000E+00+ 0.00E+00

1 indicates that there are infeasible solutions in this function egendependent runs.

RANKS COMPUTED BY THEWILCOXON TEST FOR STATEOF-THE-ART EAS ONCEC 2010BENCHMARK FUNCTIONS AT D = 10.

TABLE VI

Ol @] 0 @ ©
ECHT-DE (1) — [ 460 | 37.0 630 | 22.00
AIS-ZYH (2) 90.0 — | 500 98.0 | 520

=DEg (3) 99.0 | 86.0 — [ 1050 | 730
IEMA (4) 730 | 380 | 310 — [ 240
ECHT-ARMOR-DE (5) 114.0e 84.0 63.0 112.00 -




TABLE VI

COMPARISON ON THE PERFORMANCE OECHT-DEAND ECHT-ARMOR-DEFOR FUNCTIONS IN THECEC 2010TEST SUITE ATD = 30.

Prob ECHT-DE ECHT-ARMOR-DE

Best Median Worst Mean Std FR Best Median Worst Mean Std FR
C01 -8.2170E-01 | -8.0120E-01 | -7.5570E-01 | -7.9940E-01 | 1.79E-02 | 1.00 -8.1806E-01 | -8.0029E-01 | -7.3601E-01 | -7.8992E-01 | 2.51E-02 | 1.00
C02 -2.2251E+00 | -2.0662E+00 [ -1.3511E+00 | -1.9943E+00| 2.10E-01 | 1.00 -2.2607E+00 | -2.1900E+00 | -1.9746E+00 [ -2.1706E+00 | 7.36E-02 | 1.00
C03 3.2433E-21 1.0983E+02 | 1.8496E+02 | 9.8920E+01 | 6.26E+01 | 1.00 2.5801E-24 | 2.8673E+01 | 2.8673E+01 | 2.6380E+01 | 7.94E+00 [ 1.00
C04 -3.3015E-06 | -2.9456E-06 | 4.6205E-01 | -1.0257E-06 | 9.01E-02 | 1.00 -3.3326E-06 | 9.9236E-05 1.0886E+00 8.3713E-02 | 2.89E-01 [ 1.00
CO05 -2.1368E+02 | -1.6300E+02 | 4.7719E+02 | -1.0642E+02 | 1.67E+02 | 1.00 -4.8122E+02 | -4.7647E+02 | 7.6414E+01 | -4.3335E+02 | 1.46E+02 | 1.00
C06 -2.9572E+02 | -1.4732E+02 | 2.6353E+02 | -1.3762E+02 | 9.89E+01 | 1.00 -5.3010E+02 | -5.2465E+02 | 1.2454E+02 | -4.8931E+02 | 1.32E+02 | 1.00
C07 0.0000E+00 | 0.0000E+00 | 3.9866E+00 1.3290E-01 | 7.28E-01 | 1.00 0.0000E+00 | 3.4286E-26 1.1045E-24 1.0789E-25 2.20E-25 | 1.00
C08 0.0000E+00 | 0.0000E+00 | 5.8567E+02 | 3.3585E+01 | 1.11E+02 | 1.00 0.0000E+00 | 8.5541E-26 15113E+02 | 2.0101E+01 | 4.70E+01 | 1.00
C09 0.0000E+00 | 0.0000E+00 | 6.5710E+02 | 4.2441E+01 | 1.38E+02 | 1.00 0.0000E+00 | 2.2153E-25 1.1527E+02 | 4.6110E+00 | 2.31E+01 | 1.00
C10 0.0000E+00 | 3.1309E+01 | 4.7510E+02 | 5.3381E+01 | 8.83E+01 | 1.00 6.0209E-13 | 3.1309E+01 | 5.3332E+02 | 6.5536E+01 | 1.07E+02 | 1.00
Cl1 -4,0000E-04 | -2.0000E-04 | 2.0400E-02 2.6000E-03 | 6.00E-03 | NA -3.9234E-04 | -3.9234E-04 | 1.8671E-02 1.1327E-03 | 5.28E-03 | 0.92
C12 -1.9930E-01 | -1.9930E-01 | -7.4816E+03 | -2.5129E+01 | 1.37E+02 | NA -1.9926E-01 | -1.9926E-01 | 7.6343E-01 | -1.6076E-01 | 1.93E-01 | 1.00
C13 -6.8429E+01| -6.4619E+01 | -6.0939E+01 | -6.4583E+01| 1.67E+00 | 1.00 -6.7416E+01 | -6.4908E+01| -6.0769E+01 | -6.4646E+01 | 1.97E+00 | 1.00
Cl4 0.0000E+00 | 0.0000E+00 | 3.7101E+06 | 1.2368E+05 | 6.77E+05 | 1.00 1.5809E-27 4.4875E-26 1.1507E+04 | 6.6135E+02 | 2.47E+03 | 1.00
C15 1.9922E+09 | 8.5527E+10 | 2.3252E+12 | 1.9409E+11 | 4.35E+11 | 1.00 1.1716E-04 | 2.1603E+01 | 5.9937E+09 | 3.1316E+08 | 1.20E+09 | 1.00
C16 0.0000E+00 | 0.0000E+00 | 0.0000E+00 | 0.0000E+00 | 0.00E+00 | 1.00 0.0000E+00 | 0.0000E+00 | 0.0000E+00 | 0.0000E+00 | 0.00E+00 | 1.00
C17 0.0000E+00 1.9273E-01 1.8986E+00 | 2.7496E-01 | 3.78E-01 | 1.00 3.3564E-16 4.2103E-01 1.2633E+00 4.0336E-01 | 3.51E-01 [ 1.00
C18 0.0000E+00 | 0.0000E+00 | 0.0000E+00 | 0.0000E+00 | 0.00E+00 | 1.00 0.0000E+00 | 0.0000E+00 | 0.0000E+00 | 0.0000E+00 | 0.00E+00 | 1.00

1 indicates the solution is infeasible.
TABLE ViIII

COMPARED THE RESULTS OFECHT-ARMOR-DEWITH OTHER EAS FOR FUNCTIONS IN THECEC 2010TEST SUITE ATD = 30.

Prob ECHT-DE AIS-ZYH eDEg IEMA ECHT-ARMOR-DE

C01 -7.9940E-01+ 1.79E-02 -8.2011E-01+ 3.25E-04 -8.2087E-01+ 7.10E-04 -8.1777E-01+ 4.79E-03 -7.8992E-01+ 2.51E-02
C02 -1.9943E+00+ 2.10E-01 | -2.2125E+00+ 2.84E-03 -2.1745E+00+ 1.20E-02 | -1.5045E+00+ 2.14E+00 | -2.1706E+00+ 7.36E-02
C03 9.8920E+01+ 6.26E+01 6.6758E+01+ 4.26E+02 2.8838E+01+ 8.00E-01 - 2.6380E+01+ 7.94E+00
C04 -1.0257E-06+ 9.01E-02 1.9761E-03+ 1.61E-03 8.1630E-03+ 3.06E-03 - 8.3713E-02+ 2.89E-01
C05 -1.0642E+02+ 1.67E+02 | -4.3611E+02+ 2.51E+01 | -4.4955E+02+ 2.89E+00 | -2.7093E+02+ 1.41E+00 | -4.3335E+02+ 1.46E+02
C06 -1.3762E+02+ 9.89E+01 | -4.5426E+02+ 4.79E+01 | -5.2791E+02+ 4.74E-01 | -1.3288E+02f 5.61E+02 | -4.8931E+02+ 1.32E+02
Co7 1.3290E-01+ 7.28E-01 1.0730E+00+ 1.61E+00 2.6036E-15+ 1.23E-15 8.4861E-10+ 4.84E-10 1.0789E-25+ 2.20E-25
C08 3.3585E+01+ 1.11E+02 1.6531E+00+ 6.41E-01 7.8315E-14+ 4.85E-14 1.7703E+01+ 4.08E+01 2.0101E+01+ 4.70E+01
C09 4.2441E+01+ 1.38E+02 1.5654E+00+ 1.96E+00 1.0721E+01+ 2.82E+01 2.9879E+07+ 4.50E+07 4.6110E+00+ 2.31E+01
C10 5.3381E+01+ 8.83E+01 1.7847E+01+ 1.88E+01 3.3262E+01+ 4.54E-01 1.5834E+07A 1.68E+07 6.5536E+01+ 1.07E+02
Cl1 2.6000E-03+ 6.00E-03 -1.5790E-04+ 4.67E-05 -2.8638E-04+ 2.71E-05 - 1.1327E-03+ 5.28E-03
C12 -2.5129E+01+ 1.37E+0Z 4.2881E-06+ 4.52E-04 3.5623E+02+ 2.89E+02 - -1.6076E-01+ 1.93E-0F
C13 -6.4583E+01+ 1.67E+00 | -6.6236E+01+ 2.27E-01 | -6.5353E+01f 5.73E+01 | -6.7487E+01+ 9.83E-01 | -6.4646E+01+ 1.97E+00
Cl4 1.2368E+05+ 6.77E+05 8.6828E-07+ 3.14E-07 3.0894E-13+ 5.61E-13 6.1524E-02+ 3.07E-01 6.6135E+02+ 2.47E+03
C15 1.9409E+11+ 4.35E+11 3.4128E+01+ 3.82E+01 2.1603E+01+ 1.10E-04 2.2949E+08+ 4.64E+08 3.1316E+08+ 1.20E+09
Cl6 0.0000E+00+ 0.00E+00 8.2062E-02+ 1.12E-01 2.1684E-21+ 1.06E-20 1.6329E-03+ 8.16E-03 0.0000E+00+ 0.00E+00
C17 2.7496E-01+ 3.78E-01 3.6051E+00+ 2.54E+00 6.3265E+00+ 4.99E+00 8.8397E-02+ 1.51E-01 4.0336E-01+ 3.51E-01
C18 0.0000E+00+ 0.00E+00 4.0152E+01+ 1.80E+01 8.7546E+01+ 1.66E+02 4.7384E-14+ 6.57E-14 0.0000E+00+ 0.00E+00

1 indicates that there are infeasible solutions in this function egendependent runs.

TABLE IX

RANKS COMPUTED BY THEWILCOXON TEST FOR STATEOF-THE-ART EAS ONCEC 2010BENCHMARK FUNCTIONS AT D = 30.

O] O] ®] @
ECHT-DE (1) 270 | 220 | 245
AIS-ZYA (2) | 109.0s | 600 | 820

=DEg (3) | 114.06 | 760 [ 950

ECHT-ARMOR-DE (4) | 1115 | 540 | 410 -




TABLE X
INFLUENCE OFARMOR TO (1t + A)-CDEAND DSS-MDEIN ALL BENCHMARK FUNCTIONS. THE NFES., SR, AND AR RESULTS ARE REPORTEDALL
RESULTS ARE AVERAGED OVERS(0 INDEPENDENT RUNS

Prob (1 + ))-CDE (1 + A\)-ARMOR-CDE AR DSS-MDE DSS-ARMOR-MDE AR
Mean Std SR Mean Std SR Mean Std SR Mean Std SR
g01 89,000.0 893.7 [ 1.00 49,109.2 2,676.3 1.00 | 1.81 196,659.0 5,186.6 [ 1.00 97,245.0 2,480.2 1.00 | 2.02

g02 277,379.0 | 7,489.7 | 0.96 103,954.8 | 10,080.5 0.58 1.61 169,979.1 | 12,339.6 | 0.64 93,802.5 9,282.4 0.48 1.36
g03 111,025.0 | 5,4744 ] 1.00 91,499.8 | 22,335.8 1.00 1.21 207,981.0 | 22,060.7 [ 1.00 69,120.0 6,957.7 1.00 3.01

904 30,620.0 296.5 [ 1.00 19,478.2 847.6 1.00 1.57 73,305.0 2,073.7 | 1.00 44,667.0 1,562.6 1.00 1.64
g05 165,079.0 78.3 1.00 165,235.0 2255 | 1.00 1.00 64,782.0 2,378.7 | 1.00 29,088.0 996.6 1.00 | 2.23
906 11,032.0 158.1 | 1.00 8,852.2 490.6 1.00 1.25 25,398.0 1,070.2 | 1.00 15,813.0 525.5 1.00 161
g07 141,0380| 11773 ] 1.00 77,602.0 3,654.6 1.00 1.82 171,423.0 6,752.6 | 1.00 89,496.0 3,123.6 1.00 1.92
908 2,010.0 62.1 1.00 1,636.6 2724 1.00 1.23 4,563.0 682.8 | 1.00 3,141.0 438.7 1.00 1.45
909 39,953.0 466.7 | 1.00 28,831.6 1,733.2 1.00 1.39 59,616.0 2,091.1 | 1.00 32,949.0 1,404.0 1.00 1.81
g10 188,725.0 | 19459 | 1.00 94,750.6 5,013.0 1.00 1.99 256,455.0 | 12,864.6 | 1.00 127,998.0 5,273.4 1.00 | 2.00
gll 79,475.0 | 32144 | 1.00 78,122.8 | 14,321.2 1.00 1.02 26,118.0 7,315.2 | 1.00 8,064.0 2,481.5 1.00 | 3.24
gl2 4,908.0 219.1 | 1.00 4,131.4 917.4 1.00 1.19 4,545.0 1,2104 | 1.00 3,825.0 976.0 1.00 1.19

g13 148,237.0 380.9 | 1.00 146,805.4 2,616.0 1.00 1.01 779220 | 16,135.1 | 1.00 48,310.0 | 40,1945 0.90 1.45
914 176,671.0 697.5 [ 1.00 170,703.4 3,689.9 1.00 1.03 286,848.0 9,003.9 [ 1.00 160,938.0 7,599.4 1.00 1.78
915 130,622.0 | 2,276.8 1.00 134,3440| 13,3504 | 1.00 | 0.97 47,376.0 2,576.0 | 1.00 18,027.0 1,181.9 1.00 | 2.63
916 19,154.0 2314 | 1.00 12,707.8 812.4 1.00 151 38,853.0 1,867.6 | 1.00 23,931.0 1,194.0 1.00 1.62
gl7 183,962.0 535.3 [ 1.00 170,535.4 673.2 1.00 1.08 103,734.0 | 10,9940 | 1.00 93,222.0 | 43,174.0 1.00 1.11
918 215,068.0 | 6,770.8 | 1.00 73,645.6 9,800.9 1.00 | 2.92 190,935.0 | 11,554.7 | 1.00 95,319.0 7,405.9 1.00 | 2.00
919 268,374.0 | 3,178.6 [ 1.00 123,995.2 6,145.9 1.00 | 2.16 385,794.0 | 135143 | 1.00 | 208,179.0 | 16,856.6 1.00 1.85
921 209,896.0 | 1,151.1 | 0.92 192,138.6 4,465.7 | 0.98 1.16 198,980.6 8,054.9 | 0.96 95,0025 | 13,796.7 | 0.98 2.14
923 263,695.0 | 2,096.2 | 1.00 | 205,609.6 4,235.1 1.00 1.28 464,537.4 | 29,6609 | 0.38 | 239,121.0 | 41,3654 | 1.00 5.11

927 5,059.0 842 | 100 | 38542 286.2 | 100 | 131 T1196 | 10223 | 1.00 68580 | 5889 | 1.00 | 1.63
avg - 0.99 - 098 | 143 - 0.95 - 097 | 2.04
TABLE XI

ON THE ROBUSTNESS OFARMOR TO (1 + A)-CDEWITH DIFFERENTF VALUES IN ALL BENCHMARK FUNCTIONS. THE NFES., SR, AND AR
RESULTS ARE REPORTEDALL RESULTS ARE AVERAGED OVER50 INDEPENDENT RUNS

F =0.7,Cr =0.9 F =0.9,Cr =0.9
Prob (1w + X)-CDE (12 + \)-ARMOR-CDE AR (1 + X)-CDE (i + \)-ARMOR-CDE AR
Mean Std SR Mean Std SR Mean Std SR Mean Std SR
g0l 57,715.0 2,699.4 [ 1.00 37,874.2 1,717.3 1.00 | 152 110,101.6 5,804.8 | 1.00 65,405.2 3,182.2 1.00 1.68
g02 110,626.5 11,2848 | 0.74 59,500.0 7,949.9 048 | 1.21 250,282.3 | 21,290.2 | 0.78 135,377.5 | 13,903.2 0.56 1.33
g03 62,137.6 13,323.8 | 1.00 60,365.2 14,130.9 1.00 | 1.03 135,608.2 | 39,116.5| 1.00 | 115,297.0 | 31,331.6 1.00 1.18
g04 26,076.4 1,2645 | 1.00 18,289.6 1,088.8 1.00 | 1.43 32,519.2 1,443.3 | 1.00 22,775.2 1,157.7 1.00 1.43
g05 165,592.0 334.1 1.00 165,671.8 1,339.0 | 1.00 | 1.00 164,651.2 379.6 | 1.00 | 164,042.2 615.8 1.00 1.00
g06 10,200.4 440.0 1.00 8,197.0 394.0 1.00 1.24 11,775.4 673.2 1.00 10,074.4 644.5 1.00 1.17
g07 82,461.4 5,190.4 | 1.00 53,809.0 3,509.2 1.00 | 153 197,898.4 | 10,933.1| 1.00 | 117,875.8 6,665.3 1.00 1.68
g08 1,792.0 268.3 1.00 1,540.0 224.5 1.00 | 1.16 2,136.4 3128 | 1.00 1,687.0 345.3 1.00 1.27
g09 28,197.4 1,384.8 | 1.00 20,834.8 1,005.5 1.00 | 1.35 57,043.0 3,429.8 | 1.00 41,515.6 2,205.7 1.00 1.37
g10 NA NA 0.00 172,912.4 | 135,380.0 | 0.68 NA 227,227.0 | 10,175.6 | 1.00 | 140,186.2 8,647.6 1.00 1.62
g1l 74,851.0 15,790.3 | 1.00 73,557.4 13,074.6 1.00 | 1.02 83,137.6 | 18,846.3 | 1.00 82,231.2 1,029.7 1.00 1.01
g12 4,799.2 1,0885 | 1.00 3,921.4 908.6 1.00 | 1.22 4,286.8 891.8 [ 1.00 3,505.6 752.7 1.00 1.22

g13 145,852.0 3,453.0 1.00 143,764.6 3,624.4 1.00 1.01 147,099.4 2,201.3 | 1.00 142,139.2 4512.8 1.00 1.03
914 169,514.8 4,572.9 1.00 167,234.2 3,096.4 1.00 1.01 188,129.2 4,194.7 | 1.00 180,434.8 | 10,629.5 1.00 1.04
gl5 126,716.8 9,819.8 1.00 113,432.2 11,834.4 1.00 1.12 141,110.2 7,286.3 | 1.00 120,328.6 | 10,598.6 1.00 1.17

916 15,072.4 1,025.4 1.00 11,103.4 551.9 1.00 1.36 21,137.2 1,476.1 | 1.00 15,089.2 1,142.6 1.00 1.40
g17 170,753.8 743.7 1.00 170,417.8 615.8 1.00 1.00 168,884.8 1,336.0 | 1.00 168,494.2 1,232.9 1.00 1.00
g18 86,669.8 12,9451 | 1.00 46,446.4 5,000.4 1.00 1.87 185,080.0 | 23,037.5| 1.00 97,5394 | 12,9534 1.00 1.90

g19 125,427.4 6,384.4 | 1.00 80,155.6 5,063.5 1.00 1.56 338,665.6 [ 13,775.0 [ 1.00 185,966.2 9,905.3 1.00 1.82
g21 239,855.0 | 107,912.4| 0.12 184,525.0 3,367.7 | 0.28 3.03 216,785.5 6,734.3 | 0.94 196,390.0 3,847.6 0.94 1.10
923 210,065.8 3,884.4 [ 1.00 201,968.2 22,026.7 1.00 1.04 274,430.8 | 12,279.3 | 1.00 | 230,011.6 6,849.2 1.00 1.19
g24 4,774.0 422.1 1.00 3,795.4 284.0 1.00 1.26 5248.6 4542 | 1.00 4446.4 394.3 1.00 1.18
avg - 0.90 - 0.93 1.33 - 0.99 - 0.98 131




TABLE XII
INFLUENCE OF DIFFERENT MODELS INARMOR. THE NFES, VALUES OFECHT-DE, ECHT-ARMOR-DE3AND ECHT-ARMOR-DE4FOR THECEC
2006FUNCTIONS ARE REPORTED

Prob ECHT-DE (1) ECHT-ARMOR-DE3 (2) ECHT-ARMOR-DE4 (3) AR AR
Mean Std SR Mean Std SR Mean Std SR Q)vs(2) | (1)vs(3)
g0l 1.384E+05 | 4.06E+03 | 1.00 1.011E+05 | 3.91E+03 1.00 1.130E+05 | 3.50E+03 1.00 1.37 1.22
g02 8.205E+04 | 6.25E+03 [ 0.42 6.509E+04 | 8.9IE+03 0.26 7411E+04 | 2.34E+04 | 0.30 0.78 0.79
g03 1.161E+05 | 1.53E+03 | 1.00 1.137E+05 | 2.53E+03 1.00 1.150E+05 | 2.46E+03 1.00 1.02 1.01
g04 6.470E+04 [ 2.43E+03 | 1.00 4.450E+04 | 1.32E+03 1.00 4.946E+04 | 1.44E+03 1.00 1.45 1.31
g05 1.204E+05 | 1.45E+03 [ 1.00 1.196E+05 | 6.85E+02 1.00 1.204E+05 | 1.27E+03 1.00 1.01 1.00
g06 2.224E+04 | 1.24E+03 | 1.00 1.549E+04 | 7.53E+02 1.00 1.722E+04 | 7.64E+02 1.00 1.44 1.29
g07 1.088E+05 | 4.87E+03 | 1.00 7.144E+04 | 3.18E+03 1.00 7.645E+04 | 3.42E+03 1.00 152 1.42
g08 2.644E+03 | 4.15E+02 [ 1.00 2.172E+03 | 2.80E+02 1.00 2.328E+03 | 4.17E+02 1.00 1.22 1.14
g09 4.194E+04 | 1.81E+03 | 1.00 2.956E+04 | 1.09E+03 1.00 3.268E+04 | 1.48E+03 1.00 1.42 1.28
g10 1.855E+05 | 7.49E+03 | 1.00 1.109E+05 | 4.18E+03 1.00 1.203E+05 | 5.02E+03 1.00 1.67 1.54
gll 5.820E+04 | 1.85E+04 1.00 6.264E+04 | 1.11E+04 1.00 6.178E+04 | 1.34E+04 1.00 0.93 0.94
g12 3.072E+03 | 7.83E+02 | 1.00 2.588E+03 | 5.63E+02 1.00 2.316E+03 | 5.38E+02 1.00 1.19 1.33
g13 1.109E+05 | 4.39E+03 [ 1.00 1.090E+05 | 4.76E+03 1.00 1.090E+05 | 4.76E+03 1.00 1.02 1.02
gl4 1.401E+05 | 6.59E+03 [ 1.00 1.293E+05 | 3.06E+03 1.00 1.317E+05 | 3.48E+03 1.00 1.08 1.06
g15 1.083E+05 | 5.58E+03 [ 1.00 1.057E+05 | 7.51E+03 1.00 1.074E+05 | 7.56E+03 1.00 1.03 1.01
g16 3.019E+04 | 1.37E+03 | 1.00 2.055E+04 | 9.11E+02 1.00 2.329E+04 | 1.19E+03 1.00 1.47 1.30
gl7 1.174E+05 | 1.59E+03 [ 1.00 1.168E+05 | 9.70E+02 1.00 1.171E+05 | 1.06E+03 1.00 1.00 1.00
g18 1.431E+05 | 2.02E+04 | 1.00 9.254E+04 | 1.26E+04 1.00 8.807E+04 | 1.05E+04 1.00 1.55 1.63
g19 NA NA 0.00 1.863E+05 | 1.34E+04 1.00 2.016E+05 [ 1.41E+04 | 1.00 NA NA
g21 1.734E+05 | 6.82E+03 | 1.00 1.468E+05 | 2.57E+03 1.00 1.564E+05 | 3.05E+03 1.00 1.18 1.11
923 2.274E+05 | 5.72E+03 | 0.72 1.719E+05 | 6.00E+03 1.00 1.799E+05 | 5.70E+03 1.00 1.84 1.76
g24 8.120E+03 | 7.81E+02 [ 1.00 6.132E+03 | 3.78E+02 1.00 6.556E+03 | 6.01E+02 1.00 1.32 1.24
avg — 0.915 - 0.966 — 0.968 1.26 1.21
TABLE XIlI

COMPARISON ON THENFES; VALUES OF ECHT-DE, ECHT-ARMOR-DE1AND ECHT-ARMOR-DE3FOR THECEC 2006FUNCTIONS.

Prob ECHT-DE (1) ECHT-ARMOR-DEL1 (2) AR’ ECHT-ARMOR-DE3 (3) AR’
Mean Std FR Mean Std FR (1) vs (2) Mean Std FR (1) vs (3)
g0l 3.292E+03 | 6.14E+02 | 1.00 2.352E+03 | 3.99E+02 1.00 1.40 2.720E+03 | 4.64E+02 1.00 1.21
g03 4.296E+04 | 1.00E+04 | 1.00 4.375E+04 | 1.01E+04 1.00 0.98 4.426E+04 | 1.09E+04 1.00 0.97
g05 1.160E+05 | 2.33E+03 | 1.00 1.165E+05 | 2.11E+03 1.00 1.00 1.160E+05 | 2.79E+03 1.00 1.00
g06 1.448E+03 | 3.25E+02 [ 1.00 1.104E+03 | 2.56E+02 1.00 1.31 1.168E+03 | 2.47E+02 1.00 1.24
g07 2.412E+03 | 5.35E+02 | 1.00 1.936E+03 [ 3.9IE+02 1.00 1.25 2.232E+03 | 4.49E+02 1.00 1.08
g08 2.440E+02 | 1.09E+02 | 1.00 2.360E+02 | 7.76E+01 1.00 1.03 2.400E+02 | 9.04E+01 1.00 1.02
g09 2.960E+02 [ 1.35E+02 [ 1.00 2.800E+02 | 1.07E+02 1.00 1.06 2.920E+02 | 1.29E+02 1.00 1.01
g10 2.480E+03 | 5.92E+02 | 1.00 1.920E+03 | 3.59E+02 1.00 1.29 2.040E+03 | 3.81E+02 1.00 1.22
g1l 2.248E+04 | 1.35E+04 | 1.00 2.090E+04 | 1.15E+04 1.00 1.08 2.082E+04 | 1.14E+04 1.00 1.08
gl13 1.109E+05 | 4.39E+03 [ 1.00 1.092E+05 | 4.70E+03 1.00 1.01 1.090E+05 | 4.76E+03 1.00 1.02
gl4 1.109E+05 [ 6.80E+03 | 1.00 1.136E+05 | 4.79E+03 1.00 0.98 1.122E+05 | 6.07E+03 1.00 0.99
gl5 1.033E+05 | 6.46E+03 | 1.00 1.010E+05 | 6.33E+03 1.00 1.02 9.962E+04 | 7.84E+03 1.00 1.04
916 1.236E+03 | 4.38E+02 [ 1.00 1.028E+03 | 3.18E+02 1.00 1.20 1.088E+03 | 3.86E+02 1.00 1.14
g17 1.116E+05 | 3.05E+03 [ 1.00 1.129E+05 | 2.44E+03 1.00 0.99 1.132E+05 | 2.45E+03 1.00 0.99
g18 7.568E+03 [ 6.94E+02 | 1.00 5.416E+03 | 5.83E+02 1.00 1.40 6.232E+03 | 7.68E+02 1.00 121
g21 1.095E+05 | 5.52E+03 [ 1.00 1.131E+05 | 3.01E+03 1.00 0.97 1.127E+05 | 4.15E+03 1.00 0.97
g22 NA NA 0.00 2.183E+05 | 1.12E+04 0.88 NA 2.273E+05 | 9.15E+03 0.30 NA
923 1.061E+05 [ 2.69E+03 | 1.00 1.076E+05 | 4.25E+03 1.00 0.99 1.060E+05 | 3.38E+03 1.00 1.00
avg — 0.944 — 0.993 1.11 — 0.961 1.07
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Fig. 2. Convergence graphs of ECHT-DE, ECHT-ARMOR-DE1, &@HT-ARMOR-DE2 for the selected functions in CEC 2006. (8}Lg(b) g07; (c)
913; (d) 916; (e) 918 (f) g23.
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Fig. 3. Average rankings of different algorithms by the Brien test for the CEC 2006 functions. The lower the ranking,better the performance obtained
by the algorithm. Thep-value computed by the Friedman testi209197.

Average rankings of different algorithms by the Friedman test (CEC~2010 at D=10) Average rankings of different algorithms by the Friedman test (CEC-2010 at D=30)
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Fig. 4. Average rankings of different algorithms by the Brean test for the CEC 2010 functions with respect to the meaiity of final solutions. (a)
D = 10; The p-value computed by the Friedman tesi®60226. (b) D = 30; The p-value computed by the Friedman testi®59022.



