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Abstract

Parameter extraction of solar cell models plays an important role in the simulation and design calculation of pho-
tovoltaic (PV) systems. In this paper, in order to fast and accurately extract the solar cell parameters, an improved
adaptive differential evolution with crossover rate repairing technique and ranking-based mutation is proposed. The
proposed method is referred to as Rcr-IJADE, which is an improved version of JADE. In Rcr-IJADE, including the pa-
rameter adaptation presented in JADE, the crossover rate repairing technique and the ranking-based mutation are also
synergized to improve the performance of JADE when solving the parameter extraction problems of solar cell models.
In order to verify the performance of Rcr-IJADE, it is used to extract the parameters of different solar cell models,
i.e., single diode, double diode, and PV module. Compared with other parameter extraction techniques, experimental
results indicate the superiority of Rcr-IJADE in terms of the quality of final solutions, success rate, and convergence
speed. In addition, the simulated data with the extracted parameters of Rcr-IJADE are in very good agreement with
the experimental data in all cases.

Key words: Solar cell models, parameter extraction, differential evolution, parameter adaptation, repairing
technique, ranking-based mutation

1. Introduction

Because of several promising features like renewability, less pollution, ease of installation, and noise-free, the
photovoltaic (PV) system such as solar cell has been obtained increasing interest recently [1]. For PV systems, it
is very important to select a model to closely emulate the characteristics of PV cells [2]. Several models have been
introduced to describe the current-voltage (I-V) relationship in solar cells over recent years[3, 4, 5, 6]. In practice, two
main equivalent circuit models have been widely used: single and double diode models [7]. However, no matter what
kinds of models, there are important PV parameters that needto be accurately extracted for the simulation, design,
performance evaluation, and control of solar cell systems.

Generally, in the literature, there are two types of approaches for the purpose of parameter extraction of solar
cell models: i) analytical approaches [8, 9, 10, 6, 11] and ii) numerical approaches [12, 13, 14]. Since the parameter
extraction of solar cell models is a non-linear, multi-variable, and multi-modal problem with many local optima, tra-
ditional extraction techniques may be difficult to extract the parameters accurately. Therefore, in the later approaches,
the use of artificial intelligence techniques for solar cellparameter extraction has received considerable attentionre-
cently [15, 16], such as genetic algorithms (GAs) [12, 17], particle swarm optimization (PSO) [18, 19, 20, 21, 22],
differential evolution (DE) [23, 24, 2, 25], pattern search(PS) [26, 7], simulated annealing (SA) [27], harmony search
(HS) [28], artificial bee swarm optimization (ABSO) [1], andso on.
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Differential evolution (DE), proposed by Storn and Price in1997 [29], is a simple yet efficient evolutionary
algorithm for the numerical optimization. Due to several advantages like ease of use, simple structure, and robustness,
DE has been successfully used in diverse fields, such as data mining, sensor fusion, engineering design [30], etc. More
applications can be found in the survey paper [31], and the references therein.

In the original DE algorithm, there are some pitfalls: i) theparameter setting of DE is sensitive; ii) the choice of
optimal mutation strategy is difficult for a specific problem; and iii) DE is good at exploring the search space, however
it is slow at exploitation of the solutions. Therefore, there are several advanced DE variants available in the literature
to remedy some of drawbacks of DE, such as jDE [32], SaDE [33],JADE [34], DEGL [35], CoDE [36], and so on.
The advanced DE variants obtain better performance than theoriginal DE algorithm through benchmark functions.
As mentioned above, in [23, 24, 2, 25], DE has been used to solve the parameter extraction problems of solar cell
models. However, in these references only the original DE algorithm is employed.

Inspired by the promising performance obtained by the advanced DE variants, in this paper, we proposed an im-
proved DE method so as to fast and accurately extract the parameters of solar cell models. The proposed method is
called Rcr-IJADE for short. Rcr-IJADE is an improved version of JADE [34], where two improvements are synergized.
i) To make the algorithm adapt the optimal crossover rate (Cr) quickly, a crossover rate repairing technique is imple-
mented. And ii) the ranking-based mutation operator presented in [37] is employed to accelerate the convergence
speed, and hence, to reduce the computational efforts. In order to verify the performance of Rcr-IJADE, it is used to
extract the parameters of different solar cell models,i.e., single diode, double diode, and PV module. Experimental
results demonstrate the superiority of our approach when comparing with other parameter extraction techniques.

The main contributions of this paper are as follows:

i) An improved JADE algorithm, Rcr-IJADE, is proposed. In Rcr-IJADE, two parameters of DE (i.e., Cr andF)
are adaptively controlled, which makes the algorithm be very useful to real-world applications. In addition, the
ranking-based mutation operator can accelerate the convergence speed of Rcr-IJADE, and hence, it is able to
reduce the computational efforts.

ii) Rcr-IJADE is comprehensively investigated through the parameter extraction problems of different solar cell
models via the experimental I-V data.

iii) Compared with other different techniques, the superior performance of Rcr-IJADE is confirmed. Therefore,
Rcr-IJADE can be an effective alternative to solve other complex optimization problems of PV systems.

The rest of this paper is organized as follows. In Section 2, the solar cell models used in this work together with the
objective function to be optimized are introduced. The DE and JADE algorithms are briefly described in Section 3.
Section 4 presents our proposed Rcr-IJADE method in detail, followed by the experimental results and analysis in
Section 5. Finally, in Section 6, we conclude this paper.

2. Problem formulation

2.1. Solar cell models
In the literature, several models are available to describethe I-V characteristics of solar cells. In practice, two

commonly used models are single and double diode models. In this subsection, we first introduce these two models
briefly.

2.1.1. Double diode model
In the double diode model, the output current of solar cell can be formulated as follows [3, 26]:

IL = Iph − Id1− Id2− Ish (1)

whereIL is the cell output current.Iph indicates the photogenerated current.Id1 andId2 are the first and second diode
currents, respectively.Ish represents the shunt resistor current.

According the Shockley equation, the two diode currentsId1 andId2 can be calculated as

Id1 = Isd1

(

exp

(

VL + ILRs

a1Vt

)

− 1

)

(2)
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Id2 = Isd2

(

exp

(

VL + ILRs

a2Vt

)

− 1

)

(3)

whereVL is the cell output voltage.Isd1andIsd2are respectively the diffusion and saturation currents.a1 anda2 denote
the diffusion and recombination diode ideality factors, respectively.Rs is the series resistance, andVt is the junction
thermal voltage as

Vt =
kT
q

(4)

wherek is the Boltzmann constant (1.3806503× 10−23 J/K), T is the temperature of the junction in Kelvin, andq is
the electron charge (1.60217646× 10−19 C).

The shunt resistor currentIsh is formulated as

Ish =
VL + ILRs

Rsh
(5)

whereRsh denotes the shunt resistance.
In the above double diode model, there are seven parameters (i.e., Iph, Isd1, Isd2,Rs,Rsh, a1, anda2) that need to be

extracted from the I-V data of the solar cell.

2.1.2. Single diode model
Due to the simplicity and accuracy, the single diode model isalso widely considered. In this model, the output

current of cell is calculated as follows:

IL = Iph− Isd

(

exp

(

VL + ILRs

aVt

)

− 1

)

−
VL + ILRs

Rsh
(6)

For the single diode model, five parameters to be extracted are Iph, Isd,Rs,Rsh, anda.

2.1.3. Photovoltaic module
The single diode model of a PV module, which consists ofNs connected cells in series per string, is given as [22]:

IL = Iph− Isd

(

exp

(

VL + ILRs

aNsVt

)

− 1

)

−
VL + ILRs

Rsh
(7)

2.2. Objective function

In order to extract the parameters of different solar cell models from the I-V data using the optimization techniques,
we first need to define the objective function to be optimized.In this work, similar to [18, 25, 1], the root mean square
error (RMSE) is used as the objective function, which is described as

F(x) =

√

√

√

1
N

N
∑

k=1

fk (VL , IL , x)2 (8)

whereN is the number of experimental data. In Equation (8), for the double diode model

f (VL , IL, x) =Iph − Isd1

(

exp

(

VL + ILRs

a1Vt

)

− 1

)

− Isd2

(

exp

(

VL + ILRs

a2Vt

)

− 1

)

−
VL + ILRs

Rsh
− IL

(9)

x = {Iph, Isd1, Isd2,Rs,Rsh, a1, a2} (10)
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Table 1: Ranges of the parameters of the double and single diode models.

Parameter Lower bound Upper bound
Iph (A) 0 1
Isd (µA) 0 1
Rs(Ω) 0 0.5
Rsh(Ω) 0 100
a 1 2

Table 2: Ranges of the parameters of the PV module.

Parameter Lower bound Upper bound
Iph (A) 0 2
Isd (µA) 0 50
Rs(Ω) 0 2
Rsh(Ω) 0 2000
a 1 50

For the single diode model

f (VL , IL , x) =Iph− Isd

(

exp

(

VL + ILRs

aVt

)

− 1

)

−
VL + ILRs

Rsh
− IL

(11)

x = {Iph, Isd,Rs,Rsh, a} (12)

x is decision vector which consists of the parameters to be extracted. For each parameter, it is bounded in the search
space. In the double and single diode models, the lower and upper boundaries of each parameter are shown in Table 1,
which is the same as used in [1]. While in the PV module, the lower and upper boundaries of each parameter are
tabulated in Table 2.

Obviously, in order to make the simulated data better fit the experimental data, the objective functionF(x) in
Equation (8) needs to be minimized. The smaller the objective function, the better the solutions obtained.

3. DE and JADE

In this section, the original DE algorithm and the JADE algorithm are briefly presented.

3.1. The DE algorithm

The DE algorithm is originally proposed by Storn and Price in1997 [29], which is mainly used for the numerical
optimization problems. In DE, there are four operations,i.e., initialization, mutation, crossover, and selection, which
will be described as follows.

3.1.1. Population initialization
Generally, the population of DE consists ofµ solutions (vectors). The population is initialized at random within

the boundaries. For example, for thei-th vectorxi it is initialized as follows:

xi, j = L j + rndreal(0, 1) ·
(

U j − L j

)

(13)

whereL j andU j are respectively the lower bound and upper bound ofx j, i.e., x j ∈ [L j,U j]. i = 1, · · · , µ, j = 1, · · · ,D.
D is the number of decision variables. rndreal(0, 1) is a uniformly distributed random real number in (0, 1).
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3.1.2. Mutation
The mutation operation is also named asdifferential mutation, which is the core operator of DE. For eachtarget

vectorxi, amutant vectorvi is generated by the mutation operator. For example, for the “DE/rand-to-best/1” mutation,
it is formulated as:

vi = xr1 + F ·
(

xbest− xr1

)

+ F ·
(

xr2 − xr3

)

(14)

whereF is the mutation scaling factor,r1, r2, r3 ∈ {1, · · · , µ} are mutually different integers randomly generated, and
r1 , r2 , r3 , i. xbest is the best-so-far solution in the current population.

3.1.3. Crossover
In order to diversify the current population, following mutation, DE employs the crossover operator to produce

thetrial vectorui betweenxi andvi. The most commonly used operator is thebinomial crossover performed on each
component as follows:

ui, j =















vi, j, if (rndreal(0, 1) < Cr or j == jrand)

xi, j, otherwise
(15)

whereCr is the crossover rate andjrand is a randomly generated integer within{1,D}. The notation “a == b” indicates
a is equal tob.

3.2. Selection

Finally, to keep the population size constant in the following generations, the selection operation is employed to
determine whether the trial or the target vector survives tothe next generation. In DE, the one-to-one tournament
selection is used as follows:

xi =















ui, if F(ui) ≤ F(xi)

xi, otherwise
(16)

whereF(x) is the objective function to be optimized.

3.3. The JADE algorithm

As above-description, DE has three parameters,i.e., µ,Cr, andF. Previous studies [38, 32] indicate that the
parameter setting is crucial to the performance of DE. To remedy this drawback, Zhang and Sanderson presented
an adaptive DE variant (JADE) in [34], where the parametersCr and F are adaptively controlled according their
successful experience in the last generation. The adaptation techniques proposed in JADE are briefly introduced as
follows.

3.3.1. Crossover rate adaptation
At each generation, for each target vector the crossover rateCri is independently generated as follows:

Cri = rndni(µCr , 0.1) (17)

and truncated to the interval [0, 1]. WhereµCr is the mean value to generateCri. It is updated as follows:

µCr = (1− c) · µCr + c ·meanA(S Cr) (18)

wherec is a constant in [0, 1]; meanA(·) is the usual arithmetic mean operation; andS Cr is the set of all successful
crossover ratesCri at generationg.
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3.3.2. Mutation factor adaptation
In order to maintain the population diversity, for each target vector the mutation factorFi is independently calcu-

lated as:
Fi = rndci(µF , 0.1) (19)

and then truncated to be 1.0 if Fi > 1.0 or regenerated ifFi ≤ 0. rndci(µF , 0.1) is a random number generated
according to the Cauchy distribution with location parameterµF and scale parameter 0.1. The location parameterµF

is updated in the following manner:
µF = (1− c) · µF + c ·meanL(S F ) (20)

whereS F is the set of all successful mutation factorsFi at generationg; and meanL(·) is the Lehmer mean:

meanL(S F) =

∑|S F |

i=1 F2
i

∑|S F |

i=1 Fi

(21)

4. Repaired JADE: Rcr-IJADE

In order to fast and accurately extract the parameters of different solar cell models, we propose the improved JADE
method,i.e., Rcr-IJADE. In Rcr-IJADE, the parameter adaptation techniques mentioned above are used. Addition-
ally, two improvements (i.e., crossover rate repairing and ranking-based mutation) areimplemented in the following
subsections.

4.1. Crossover rate repairing technique

The most commonly used crossover operator is the binomial crossover (see Equation (15)) in the DE algorithm.
In order to analyze the behavior of the binomial crossover, we letbi be a binary string generated for each target vector
xi as follows:

bi, j =















1, if (rndreal(0, 1) < Cr or j == jrand)

0, otherwise
(22)

Therefore, the binomial crossover of DE in Equation (15) canbe reformulated as

ui, j = bi, j · vi, j + (1− bi, j) · xi, j (23)

wherei = 1, · · · , µ and j = 1, · · · ,D. According to Equations (22) and (23), we can see that the binary stringbi

is stochastically related toCr; however, the trial vectorui is directly related to its binary stringbi, but not directly
related to its crossover rateCr. Based on this consideration, we propose the crossover repairing technique, where the
crossover rate is repaired by its corresponding binary string, i.e. by using the average number of components taken
from the mutant. Suppose thatCr′i is the repaired crossover rate, it is calculated as

Cr′i =

∑D
j=1 bi, j

D
(24)

wherebi is the binary string calculated in Equation (22). The crossover rate is repaired after its binary string is
generated by Equation (22) based onCri. If the trial vectorui is a successful vector,Cr′i will be stored inS Cr, instead
of storingCri.

4.2. Ranking-based mutation operator

In JADE [39], the authors presented a modified “DE/rand-to-best/1” mutation (i.e., “DE/rand-to-pbest/1”) as

vi = xr1 + Fi ·
(

xp
best− xr1

)

+ Fi ·
(

xr2 − xr3

)

(25)

wherexp
best refers to thepbest solution, which is randomly selected from the top 100p% solutions, withp ∈ (0, 1].

r1, r2, r3 ∈ {1, · · · , µ} andr1 , r2 , r3 , i.
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Algorithm 1: Ranking-based vector selection
Input: The target vector indexi
Output: The selected vector indexesr1, r2, r3

while rndreal[0,1) > pvr1 or r1 == i do
Randomly selectr1 ∈ {1, µ};

Randomly selectr2 ∈ {1, µ};
while rndreal[0,1) > pvr2 or r2 == r1 or r2 == i do

Randomly selectr2 ∈ {1, µ};

Randomly selectr3 ∈ {1, µ};
while r3 == r2 or r3 == r1 or r3 == i do

Randomly selectr3 ∈ {1, µ};

In Equation (25), sincexr1, xr2, andxr3 are only randomly selected from the population, it may make the algorithm
be good at exploring the search space, but be slow at exploitation of the solutions. Therefore, in order to reduce
the computational efforts and make the parameter extraction process of solar cell models faster, in this work, the
ranking-based vector selection technique [37] is used in the above mutation operator.

In the ranking-based vector selection technique, the population is firstly ranked from the best to the worst. Then,
the rankRi of each vectorxi in the sorted population is assigned as

Ri = µ − i, i = 1, 2, · · · , µ (26)

After that, the selection probability of each vector is calculated as follows:

pvi =

(

Ri

µ

)2

(27)

Finally, the vectors (xr1 andxr2) in the mutation are selected according to their selection probabilities as shown in
Algorithm 1. Obviously, better solutions have more chance to be chosen asxr1 andxr2 in the “DE/rand-to-pbest/1”
mutation to generate the mutant vector.

4.3. Boundary-handling technique

In DE, after performing the mutation operation to generate anew solution, some variables may be out of their
corresponding boundaries,i.e., x j < [L j,U j], if that, the following boundary-handling technique is applied:

x j = L j + rndreal(0, 1) ·
(

U j − L j

)

(28)

Actually, it is thereinitialization method as mentioned in [40].

4.4. The Rcr-IJADE algorithm

Combining the parameter adaptation techniques presented in JADE [34] with the crossover rate repairing technique
and the ranking-based “DE/rand-to-pbest/1” mutation, our proposed Rcr-IJADE is developed. The pseudo-code of
Rcr-IJADE is introduced in Algorithm 2, where NFEs means the number of function evaluations and MaxNFEs is the
maximal NFEs, which is the termination criterion in this work. Note that we do not use the maximal generations as
the termination criterion, since for different algorithmsthe consumed NFEs at one generation are not the same. From
Algorithm 2, we can see that there are only two parameters (µ and MaxNFEs) that need to be given by the user, while
other parameters (i.e., µCr , µF , c, p) are kept the default values as used in JADE [34]. This makes Rcr-IJADE be easy
to be applied to real-world applications.

5. Experimental results and analysis

In this section, the performance of Rcr-IJADE is evaluated for parameter extraction of different solar cell models,
i.e., single diode model, double diode model, and PV module. The experimental I-V data of a solar cell and a solar
module are used for this purpose. The data is obtained from [41], where a 57 mm diameter commercial (R.T.C France)
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Algorithm 2: The pseudo-code of the Rcr-IJADE algorithm
Input: Control parameters:µ and MaxNFEs
Output: The best final solution
SetµCr = 0.5, µF = 0.5, c = 0.1, p = 0.05;
Initialize the populationP randomly;
Calculate the objective function value of each solution in the population;
NFEs= µ;
while NFEs < Max NEFs do

S Cr = φ, S F = φ;
Sort the population from the best to the worst;
for i = 1 to µ do /* Generate parameters */

GenerateCri andFi with Equations (17) and (19), respectively;
Calculate the rankingRi and the selection probabilitypvi;

for i = 1 to µ do /* Generate vi and ui */
Selectr1, r2, andr3 as shown in Algorithm 1;
Produce the mutant vectorvi with ranking-based “DE/rand-to-pbest/1”;
Get the binary stringbi as shown in Equation (22);
Calculate the repaired crossover rateCr′i with Equation (24);
for j = 1 to D do

ui, j = bi, j · vi, j + (1− bi, j) · xi, j;

Calculate the objective function value ofui;

for i = 1 to µ do /* Survival selection */
if ui is better than its parent xi then

xi = ui;
Cr′i → S Cr ;
Fi → S F ;

Update theµCr andµF with Equations (18) and (20), respectively;
NFEs= NFEs+ µ;

silicon solar cell (at 33◦C) and a solar module (Photowatt-PWP 201, at 45◦C) in which 36 polycrystalline silicon cells
are connected in series.

As shown in Algorithm 2, there are two parameters that need tobe given by the user. In this work, the population
sizeµ = 50 is used for all experiments. For the single diode model andthe PV module, the MaxNFEs is set to be
10, 000, while for the double diode model MaxNFEs= 20, 000. Rcr-IJADE is coded in standard C++.

In order to show the superior performance of Rcr-IJADE, in this section, it is firstly compared with the reported
results in the literature with respect to the RMSE values andextracted parameters. Then, Rcr-IJADE is directly
compared with other advanced DE variants according to the statistical results of different performance criteria.

Table 3: Comparison among different parameter extraction techniques for the single diode model.

Item GA [26] CPSO [20] PS [7] SA [27] IGHS [28] ABSO [1] Rcr-IJADE
Iph (A) 0.7619 0.7607 0.7617 0.7620 0.7608 0.7608 0.760776
Isd (µA) 0.8087 0.4000 0.9980 0.4798 0.3435 0.3062 0.323021
Rs (Ω) 0.0299 0.0354 0.0313 0.0345 0.0361 0.0366 0.036377
Rsh (Ω) 42.3729 59.0120 64.1026 43.1034 53.2845 52.2903 53.718526
a 1.5751 1.5033 1.6000 1.5172 1.4874 1.4758 1.481184

RMSE 0.01908 0.00139 0.01494 0.01900 9.9306E-04 9.9124E-04 9.8602E-04

5.1. Results on single diode model

For the single diode model, the extracted parameters and RMSE value of Rcr-IJADE are compared with those of
GA [26], CPSO [20], PS [7], SA [27], IGHS [28], and ABSO [1]. These methods are chosen for comparison due to
the good performance obtained by them in the single diode model. The experimental results are reported in Table 3.
The overall best and the second best RMSE values among the compared methods are highlighted ingrey boldface
andboldface, respectively.

From Table 3, it is clear to observe that Rcr-IJADE provides the best RMSE value among all compared methods,
followed by ABSO, IGHS, CPSO, PS, SA, and GA. Although the RMSE values of ABSO and IGHS are very close
to that of Rcr-IJADE, however, since the experimental data is adopted, noinformation is available about the accurate
values of the parameters; therefore, any reduction in the objective function value is significant because it results
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Figure 1: Comparison on the I-V characteristics between theexperimental data and simulated data obtained by Rcr-IJADE for 1(a): the single diode
model , 1(b): the double diode model, and 1(c): the PV module.
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in improvement in the knowledge about the real values of the parameters [26]. It is worth emphasizing that the
Max NFEs of Rcr-IJADE is only 10, 000, which is much less than those of ABSO (150, 000), IGHS (150, 000), and
CPSO (45, 000). The MaxNFEs for GA, PS, and SA are not available in the literature.

Table 4: Curve fitting results of Rcr-IJADE for the single diode model.
Item VL (V) IL measured (A) IL calculated (A) IAE
1 -0.2057 0.7640 0.76409559 0.00009559
2 -0.1291 0.7620 0.76266611 0.00066611
3 -0.0588 0.7605 0.76135473 0.00085473
4 0.0057 0.7605 0.76014966 0.00035034
5 0.0646 0.7600 0.75905702 0.00094298
6 0.1185 0.7590 0.75804472 0.00095528
7 0.1678 0.7570 0.75709510 0.00009510
8 0.2132 0.7570 0.75615050 0.00084950
9 0.2545 0.7555 0.75508177 0.00041823
10 0.2924 0.7540 0.75367033 0.00032967
11 0.3269 0.7505 0.75139542 0.00089542
12 0.3585 0.7465 0.74735737 0.00085737
13 0.3873 0.7385 0.74010420 0.00160420
14 0.4137 0.7280 0.72740088 0.00059912
15 0.4373 0.7065 0.70694631 0.00044631
16 0.4590 0.6755 0.67530400 0.00019600
17 0.4784 0.6320 0.63089105 0.00110895
18 0.4960 0.5730 0.57208973 0.00091027
19 0.5119 0.4990 0.49949902 0.00049902
20 0.5265 0.4130 0.41349030 0.00049030
21 0.5398 0.3165 0.31721532 0.00071532
22 0.5521 0.2120 0.21210468 0.00010468
23 0.5633 0.1035 0.10271603 0.00078397
24 0.5736 -0.0100 -0.00924563 0.00075437
25 0.5833 -0.1230 -0.12437754 0.00137754
26 0.5900 -0.2100 -0.20919680 0.00080320

Sum of IAE 0.01770357

In addition, the I-V characteristic obtained by Rcr-IJADE and the individual absolute error (IAE) [7] between the
experimental data and simulated data are shown in Figure 1(a) and Table 4, respectively. The results clearly indicate
that the simulated data generated by Rcr-IJADE are highly coincide with the experimental data in thesingle diode
model, which means that the extracted parameters of Rcr-IJADE are very accurate.

Table 5: Comparison among different parameter extraction techniques for the double diode model.
Item PS [7] SA [27] IGHS [28] ABSO [1] Rcr-IJADE
Iph (A) 0.7602 0.7623 0.7608 0.7608 0.760781
Isd1 (µA) 0.9889 0.4767 0.9731 0.2671 0.225974
Rs (Ω) 0.0320 0.0345 0.0369 0.0366 0.036740
Rsh (Ω) 81.3008 43.1034 56.8368 54.6219 55.485443
a1 1.6000 1.5172 1.9213 1.4651 1.451017
Isd2 (µA) 0.0001 0.0100 0.1679 0.3819 0.749347
a2 1.1920 2.0000 1.4281 1.9815 2.000000

RMSE 0.01518 0.01664 9.8635E-04 9.8344E-04 9.8248E-04

5.2. Results on double diode model

In this model, seven parameters need to be extracted. The results of Rcr-IJADE are indirectly compared with those
of PS [7], SA [27], IGHS [28], and ABSO [1]. The extracted parameters and RMSE values of different methods
are tabulated in Table 5 and the curve fitting results of Rcr-IJADE are reported in Table 6. Additionally, the I-V
characteristic of Rcr-IJADE is plotted in Figure 1(b). Similar to the results in the single diode model, in this case,
our proposed Rcr-IJADE still obtains the best RMSE value but with less MaxNFEs (20, 000) compared with other
methods. Moreover, by returning the extracted parameters to the double diode model, the simulated data of Rcr-IJADE
are in very good agreement with the experimental data almostin all data points as shown in Table 6 and Figure 1(b).
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Table 6: Curve fitting results of Rcr-IJADE for the double diode model.

Item VL (V) IL measured (A) IL calculated (A) IAE
1 -0.2057 0.7640 0.76409268 0.00009268
2 -0.1291 0.7620 0.76265394 0.00065394
3 -0.0588 0.7605 0.76135755 0.00085755
4 0.0057 0.7605 0.76016253 0.00033747
5 0.0646 0.7600 0.75906000 0.00094000
6 0.1185 0.7590 0.75805065 0.00094935
7 0.1678 0.7570 0.75709635 0.00009635
8 0.2132 0.7570 0.75614465 0.00085535
9 0.2545 0.7555 0.75508115 0.00041885
10 0.2924 0.7540 0.75366874 0.00033126
11 0.3269 0.7505 0.75139511 0.00089511
12 0.3585 0.7465 0.74734939 0.00084939
13 0.3873 0.7385 0.74010214 0.00160214
14 0.4137 0.7280 0.72738784 0.00061216
15 0.4373 0.7065 0.70695162 0.00045162
16 0.4590 0.6755 0.67530112 0.00019888
17 0.4784 0.6320 0.63088766 0.00111234
18 0.4960 0.5730 0.57207477 0.00092523
19 0.5119 0.4990 0.49949417 0.00049417
20 0.5265 0.4130 0.41349125 0.00049125
21 0.5398 0.3165 0.31721918 0.00071918
22 0.5521 0.2120 0.21210831 0.00010831
23 0.5633 0.1035 0.10272032 0.00077968
24 0.5736 -0.0100 -0.00924461 0.00075539
25 0.5833 -0.1230 -0.12437667 0.00137667
26 0.5900 -0.2100 -0.20919499 0.00080501

Sum of IAE 0.01770933

Table 7: Comparison among different parameter extraction techniques for the PV module.
Item Newton [41] Method in [42] CPSO [20] Method in [43] PS [7] SA [27] Rcr-IJADE

Iph (A) 1.0318 1.0339 1.0286 1.0310 1.0313 1.0331 1.030514
Isd (µA) 3.2875 3.0760 8.3010 3.8236 3.1756 3.6642 3.482263

Rs (Ω) 1.2057 1.2030 1.0755 1.0920 1.2053 1.1989 1.201271
Rsh (Ω) 555.5556 555.5556 1850.1000 689.6600 714.2857 833.3333 981.982240

a 48.4500 48.1862 52.2430 48.9300 48.2889 48.8211 48.642835

RMSE 0.7805 0.6130 0.0035 0.0102 0.0118 0.0027 0.002425

5.3. Results on PV module

For the PV module, the experimental results are reported in Table 7, where Rcr-IJADE is compared with New-
ton [41], method in [42], CPSO [20], method in [43], PS [7], and SA [27]. Like the previous cases, Rcr-IJADE also
gets the best RMSE value among all compared methods in the PV module. Moreover, according the curve fitting
results shown in Table 8 and the I-V characteristic plotted in Figure 1(c), we can see that the simulated data obtained
by Rcr-IJADE fit the experimental data very well.

5.4. Statistical results and convergence speed

In the previous subsections, the superiority of Rcr-IJADE has been confirmed by indirectly comparing it with other
parameter extraction techniques in the literature. As mentioned above, there are several DE variants that have obtained
promising results via benchmark functions. Therefore, in order to further evaluate the performance of Rcr-IJADE, it
is compared with five advanced DE variants (i.e., jDE [32], SaDE [33], CoDE [36], DEGL [35], and JADE [34]) to
solve the parameter extraction problems of solar cell models. The MaxNFEs for the three solar cell models are the
same as used in Rcr-IJADE in the previous experiments. In addition, to make a fair comparison, all DE variants use
the same population size,i.e., µ = 50. All other parameters are kept the same as used in their original literature. Note
that the parameter settings of JADE are the same as Rcr-IJADE, the only differences are that in JADE the crossover
rate repairing and ranking-based mutation are not employed. Since the DE algorithm is stochastic, all DE variants are
executed over 100 independent runs to make the comparison meaningful. All DE variants are coded in standard C++.
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Figure 2: Convergence graphs of different DE variants for 2(a): the single diode model , 2(b): the double diode model, and2(c): the PV module.
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Table 8: Curve fitting results of Rcr-IJADE for the PV module.

Item VL (V) IL measured (A) IL calculated (A) IAE
1 0.1248 1.0315 1.02912049 0.00237951
2 1.8093 1.0300 1.02738564 0.00261436
3 3.3511 1.0260 1.02573499 0.00026501
4 4.7622 1.0220 1.02409557 0.00209557
5 6.0538 1.0180 1.02227575 0.00427575
6 7.2364 1.0155 1.01991719 0.00441719
7 8.3189 1.0140 1.01635389 0.00235389
8 9.3097 1.0100 1.01048191 0.00048191
9 10.2163 1.0035 1.00068707 0.00281293
10 11.0449 0.9880 0.98465514 0.00334486
11 11.8018 0.9630 0.95969425 0.00330575
12 12.4929 0.9255 0.92305160 0.00244840
13 13.1231 0.8725 0.87258829 0.00008829
14 13.6983 0.8075 0.80731392 0.00018608
15 14.2221 0.7265 0.72796294 0.00146294
16 14.6995 0.6345 0.63646347 0.00196347
17 15.1346 0.5345 0.53569189 0.00119189
18 15.5311 0.4275 0.42882216 0.00132216
19 15.8929 0.3185 0.31867170 0.00017170
20 16.2229 0.2085 0.20785189 0.00064811
21 16.5241 0.1010 0.09835838 0.00264162
22 16.7987 -0.0080 -0.00817367 0.00017367
23 17.0499 -0.1110 -0.11096908 0.00003092
24 17.2793 -0.2090 -0.20912100 0.00012100
25 17.4885 -0.3030 -0.30202427 0.00097573

Sum of IAE 0.04177271

Table 9: Comparison on different performance criteria among different DE variants for the single diode model. “NA” means not available.

Algorithm
RMSE NFEsǫ (ǫ = 0.001)

S rMin Median Max Mean Std sig. Mean Std
jDE 1.011467E-03 1.221579E-03 1.674285E-03 1.236149E-03 1.48E-04 + NA NA 0.00

SaDE 9.972754E-04 1.140693E-03 1.386479E-03 1.145756E-03 9.26E-05 + 9850.00 NA 0.01
CoDE 1.101993E-03 1.494410E-03 2.081250E-03 1.505273E-03 1.93E-04 + NA NA 0.00
DEGL 9.860219E-04 1.084221E-03 1.827544E-03 1.162104E-03 2.06E-04 + 3308.62 2098.05 0.29
JADE 9.860219E-04 9.889961E-04 1.142030E-03 1.001006E-03 2.88E-05 + 8529.17 1094.38 0.72

Rcr-IJADE 9.860219E-04 9.860219E-04 9.860219E-04 9.860219E-04 5.12E-16 4430.50 1084.74 1.00

“+” indicates Rcr-IJADE is significantly better than its competitor according to the Wilcoxon signed-rank test atα = 0.05, hereinafter.

Table 10: Comparison on different performance criteria among different DE variants for the double diode model. “NA” means not available.

Algorithm
RMSE NFEsǫ (ǫ = 0.001)

S rMin Median Max Mean Std sig. Mean Std
jDE 1.070336E-03 1.470803E-03 2.114012E-03 1.488346E-03 2.66E-04 + NA NA 0.00

SaDE 9.917107E-04 1.460147E-03 2.221314E-03 1.496245E-03 2.82E-04 + 19400.00 NA 0.01
CoDE 1.225893E-03 1.820441E-03 2.563051E-03 1.840997E-03 3.07E-04 + NA NA 0.00
DEGL 9.825195E-04 9.859891E-04 1.583493E-03 1.021629E-03 9.55E-04 + 6155.92 3450.34 0.76
JADE 9.826437E-04 1.241540E-03 2.125234E-03 1.283669E-03 2.73E-04 + 13034.62 2189.05 0.26

Rcr-IJADE 9.824849E-04 9.826140E-04 9.860244E-04 9.826140E-04 9.86E-05 4407.50 834.86 1.00

Table 11: Comparison on different performance criteria among different DE variants for the PV module. “NA” means not available.

Algorithm
RMSE NFEsǫ (ǫ = 0.01)

S rMin Median Max Mean Std sig. Mean Std
jDE 2.425084E-03 2.428733E-03 2.606556E-03 2.437621E-03 2.44E-05 + 2303.00 424.91 1.00

SaDE 2.425075E-03 2.425405E-03 2.470321E-03 2.428499E-03 6.70E-06 + 2117.50 333.06 1.00
CoDE 2.437571E-03 2.631745E-03 3.499591E-03 2.689244E-03 2.10E-04 + 3756.50 755.67 1.00
DEGL 2.425075E-03 2.425120E-03 3.303094E-03 2.457298E-03 1.14E-04 + 847.00 97.40 1.00
JADE 2.425075E-03 2.425075E-03 2.639902E-03 2.428243E-03 2.18E-05 + 1395.00 262.13 1.00

Rcr-IJADE 2.425075E-03 2.425075E-03 2.425075E-03 2.425075E-03 2.90E-17 976.50 169.29 1.00

5.4.1. Performance criteria
To compare the performance between different algorithms, the following performance criteria are used.
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• RMSE: As described in Equation (8), it is used to measure the quality of the fit between the simulated data and
experimental data obtained by the algorithm.

• NFEsǫ : The NFEsǫ is used to record the number of function evaluations in each run for finding a solutionx
satisfyingF(x) − F(x∗) ≤ ǫ, whereF(x∗) = 0 is the optimal objective function value in this work, andǫ is a
very small positive value to be pre-given for different problems.

• Success rate (S r): It is equal to the number of success runs over total runs. A success run means that within
Max NFEs the algorithm finds a solutionx satisfyingF(x) − F(x∗) ≤ ǫ.

• Convergence graphs: The graphs show themean RMSE performance of the total runs.

5.4.2. Compared with other DEs
The results of different performance criteria of differentDE variants are respectively described in Tables 9, 10,

and 11 for the single diode model, double diode model, and PV module. For the RMSE performance, the minimal,
median, maximal, mean, and standard deviation over 100 runsare reported. In addition, to compare the significance
of RMSE values between two algorithms, the paired Wilcoxon signed-rank test is used, and “+” indicates Rcr-IJADE
is significantly better than its competitor according to theWilcoxon signed-rank test atα = 0.05. With respect to the
NFEsǫ performance, the mean and standard deviation values are recorded. The convergence graphs of different DE
variants are plotted in Figure 2.

Based on the results shown in Tables 9 - 11 and Figure 2, it can be observed that

• In terms of the RMSE values, the proposed Rcr-IJADE consistently gets the overall best results among different
DE variants in all cases. According to the Wilcoxon’s test, Rcr-IJADE significantly surpasses other DE variants
for different solar cell models. In addition, the standard deviation values of Rcr-IJADE are the smallest, which
means that Rcr-IJADE is the most robust method compared with other five DE variants.

• For the NFEsǫ performance, for the single diode model and PV module, DEGL requires the smallest NFEsǫ
values to reach theǫ, followed by Rcr-IJADE. However, when the extracted parameters increase, for the double
diode model, Rcr-IJADE is the best one, followed by DEGL. This phenomenon indicates that Rcr-IJADE has
better scalability than DEGL.

• Considering the success rateS r, it is clear that only Rcr-IJADE can consistently provideS r = 1.0 for different
solar cell models, while other DE methods can not successfully solve the parameter extraction problems in the
single and double diode models in all runs. The highest success rate confirms the effectiveness and efficiency
of our proposed Rcr-IJADE.

• With respect to the convergence speed, Figure 2 shows that inthe early stage DEGL converges the fastest,
followed by Rcr-IJADE, JADE, SaDE, jDE, and CoDE. However, DEGL stagnates quickly, which makes DEGL
not obtain highly accurate final solutions. Rcr-IJADE is capable of successively converging toward the optimal
solutions during the whole evolutionary process.

6. Conclusions

In this paper, an improved DE variant, Rcr-IJADE, is proposed to fast and accurately extract the parameters of solar
cell models. Rcr-IJADE is the improved version of JADE, where the crossover rate repairing technique and ranking-
based mutation are implemented to enhance the performance of JADE. In Rcr-IJADE, this is only one algorithmic
parameter (µ) that needs to be pre-given by the user, which makes it be easeof use for real-world problems. Rcr-IJADE
is comprehensively evaluated through the parameter extraction problems of different solar cell models,i.e., single
diode model, double diode model, and PV module. Moreover, the performance of Rcr-IJADE is indirectly compared
with the reported results of different techniques and directly compared with other advanced DE variants based on
different performance criteria. Experimental results confirm our expectation that the proposed Rcr-IJADE method is
able to extract the parameters of different solar cell models fast and accurately. Additionally, compared with other
methods, Rcr-IJADE can provide more precise and robust solutions, obtain higher success rate, and converge faster.
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Therefore, Rcr-IJADE can be an efficient and reliable alternative for othercomplex optimization problems of solar
cell models.

The source code of Rcr-IJADE can be obtained from the first author upon request.
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