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Abstract

Parameter extraction of solar cell models plays an impor@e in the simulation and design calculation of pho-
tovoltaic (PV) systems. In this paper, in order to fast anclisately extract the solar cell parameters, an improved
adaptive differential evolution with crossover rate rejpaj technique and ranking-based mutation is proposed. The
proposed method is referred to ag-RIADE, which is an improved version of JADE. In,RJADE, including the pa-
rameter adaptation presented in JADE, the crossover nadérireg technique and the ranking-based mutation are also
synergized to improve the performance of JADE when solMiregparameter extraction problems of solar cell models.
In order to verify the performance ofRIJADE, it is used to extract the parameters of differenasakll models,

i.e, single diode, double diode, and PV module. Compared wihkrgtarameter extraction techniques, experimental
results indicate the superiority of,RJADE in terms of the quality of final solutions, succes®rand convergence
speed. In addition, the simulated data with the extractedmpeters of R-IJADE are in very good agreement with
the experimental data in all cases.

Key words: Solar cell models, parameter extraction, differentialletron, parameter adaptation, repairing
technique, ranking-based mutation

1. Introduction

Because of several promising features like renewabilys Ipollution, ease of installation, and noise-free, the
photovoltaic (PV) system such as solar cell has been olntaimeeasing interest recently [1]. For PV systems, it
is very important to select a model to closely emulate theasttaristics of PV cells [2]. Several models have been
introduced to describe the current-voltage (I-V) relasioip in solar cells over recent years[3, 4, 5, 6]. In practioe
main equivalent circuit models have been widely used: siagd double diode models [7]. However, no matter what
kinds of models, there are important PV parameters that teebd accurately extracted for the simulation, design,
performance evaluation, and control of solar cell systems.

Generally, in the literature, there are two types of appneador the purpose of parameter extraction of solar
cell models: i) analytical approaches [8, 9, 10, 6, 11] ahduimerical approaches [12, 13, 14]. Since the parameter
extraction of solar cell models is a non-linear, multi-edie, and multi-modal problem with many local optima, tra-
ditional extraction techniques may be difficult to extrde parameters accurately. Therefore, in the later appesach
the use of artificial intelligence techniques for solar pelfameter extraction has received considerable attergion
cently [15, 16], such as genetic algorithms (GAs) [12, 13ticle swarm optimization (PSO) [18, 19, 20, 21, 22],
differential evolution (DE) [23, 24, 2, 25], pattern sea(Bts) [26, 7], simulated annealing (SA) [27], harmony search
(HS) [28], artificial bee swarm optimization (ABSO) [1], ard on.
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Differential evolution (DE), proposed by Storn and Pricel®97 [29], is a simple yet efficient evolutionary
algorithm for the numerical optimization. Due to severalattages like ease of use, simple structure, and robustness
DE has been successfully used in diverse fields, such as dstegpsensor fusion, engineering design [30], etc. More
applications can be found in the survey paper [31], and tfezgrces therein.

In the original DE algorithm, there are some pitfalls: i) frerameter setting of DE is sensitive; ii) the choice of
optimal mutation strategy is difficult for a specific problegnd iii) DE is good at exploring the search space, however
it is slow at exploitation of the solutions. Therefore, #hare several advanced DE variants available in the literatu
to remedy some of drawbacks of DE, such as jDE [32], SaDE [BEDE [34], DEGL [35], CoDE [36], and so on.
The advanced DE variants obtain better performance thaartgmal DE algorithm through benchmark functions.
As mentioned above, in [23, 24, 2, 25], DE has been used t® sbky parameter extraction problems of solar cell
models. However, in these references only the original @@&ridhm is employed.

Inspired by the promising performance obtained by the ack@DE variants, in this paper, we proposed an im-
proved DE method so as to fast and accurately extract thengdeas of solar cell models. The proposed method is
called R,-IJADE for short. R,-IJADE is an improved version of JADE [34], where two impravents are synergized.

i) To make the algorithm adapt the optimal crossover ratg ¢uickly, a crossover rate repairing technique is imple-
mented. And ii) the ranking-based mutation operator preseim [37] is employed to accelerate the convergence
speed, and hence, to reduce the computational efforts.der ¢o verify the performance of RIJADE, it is used to
extract the parameters of different solar cell modiets, single diode, double diode, and PV module. Experimental
results demonstrate the superiority of our approach wherpaoing with other parameter extraction techniques.

The main contributions of this paper are as follows:

i) An improved JADE algorithm, B-IJADE, is proposed. In R-IJADE, two parameters of DE.€., Cr andF)
are adaptively controlled, which makes the algorithm be weseful to real-world applications. In addition, the
ranking-based mutation operator can accelerate the aqgpenvee speed of RIJADE, and hence, it is able to
reduce the computational efforts.

i) Re-1JADE is comprehensively investigated through the patemextraction problems of different solar cell
models via the experimental I-V data.

iii) Compared with other different techniques, the supeperformance of B-IJADE is confirmed. Therefore,
Rc-IJADE can be an effective alternative to solve other complatimization problems of PV systems.

The rest of this paper is organized as follows. In Sectioh@sblar cell models used in this work together with the
objective function to be optimized are introduced. The DH 8ADE algorithms are briefly described in Section 3.
Section 4 presents our proposegd-RADE method in detail, followed by the experimental réswnd analysis in
Section 5. Finally, in Section 6, we conclude this paper.

2. Problem formulation

2.1. Solar cell models

In the literature, several models are available to desctibd-V characteristics of solar cells. In practice, two
commonly used models are single and double diode modelsidistibsection, we first introduce these two models
briefly.

2.1.1. Double diode model
In the double diode model, the output current of solar celllma formulated as follows [3, 26]:

I =lph—ld1—la2 = Isn (1)

wherel_ is the cell output currenty, indicates the photogenerated currdgt.andl gy, are the first and second diode
currents, respectivelys, represents the shunt resistor current.
According the Shockley equation, the two diode currégtsindly, can be calculated as

V|_ + |LR3) 1)

lgr = |sd1(exp( av. (2



V|_ + ||_RS
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whereV/| is the cell output voltagdsq; andlsgz are respectively the diffusion and saturation curremt&nda, denote

the diffusion and recombination diode ideality factorspectively.Rs is the series resistance, avidis the junction
thermal voltage as

lg2 = |sd2(eXp(

_ KT
q

wherek is the Boltzmann constant @806503x 10723 J/K), T is the temperature of the junction in Kelvin, aqds
the electron charge (30217646< 1071° C).
The shunt resistor currehy, is formulated as

Vi (4)

(5)

whereRg;, denotes the shunt resistance.
In the above double diode model, there are seven paramesrky, Isqs. Isd2 Rs, Rsh, &1, anday) that need to be
extracted from the |-V data of the solar cell.

2.1.2. Single diode model

Due to the simplicity and accuracy, the single diode modelss widely considered. In this model, the output
current of cell is calculated as follows:

(6)

Vi + ILR VL + IR
I, = |ph_|sd(exp(¥)_1)_¥

th Rsh

For the single diode model, five parameters to be extractehafsq, Rs, Rsn, anda.

2.1.3. Photovoltaic module
The single diode model of a PV module, which consistslgéonnected cells in series per string, is given as [22]:

(7)

VL + ILR VL +ILR
. |Sd(exp($) _ 1) _VLH IR

aN th Rsh

2.2. Objective function

In order to extract the parameters of different solar celtiele from the I-V data using the optimization techniques,
we first need to define the objective function to be optimizedhis work, similar to [18, 25, 1], the root mean square
error (RMSE) is used as the objective function, which is dbed as

N
F(x) = J%ka(\/b'bx)z (8)
k=1

whereN is the number of experimental data. In Equation (8), for thelde diode model

VL + IR
f (VL» |L’X) =|ph - |sd1(eXp($) - 1)

a1 Vi
V|_ + ||_RS
— lsgo|eXpl ———— -1 9
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- ==
Rsh
X = {lph, Isd1, Isd2 Rs, Rsh, @1, @2} (10)
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Table 1: Ranges of the parameters of the double and singlie dimdels.
Parameter| Lower bound | Upper bound

Ton () 0 1
Teag (WA 0 1
X®)] 0 05
Ren(®Y) 0 100
a 1 2

Table 2: Ranges of the parameters of the PV module.
Parameter| Lower bound | Upper bound

Ton (A 0 2
Teg (WA 0 50
X®)] 0 2
Ren(Q) 0 2000
a T 50

For the single diode model

f (VL 1L %) =lph - Isd(exp(m) _ 1)

aVi (11)
V|_ + ||_RS |
Rsh -
X = {Iph, ISd7 R57 RSh» a-} (12)

x is decision vector which consists of the parameters to bmebed. For each parameter, it is bounded in the search
space. In the double and single diode models, the lower aperigpundaries of each parameter are shown in Table 1,
which is the same as used in [1]. While in the PV module, thestoand upper boundaries of each parameter are
tabulated in Table 2.

Obviously, in order to make the simulated data better fit thgeemental data, the objective functiéi(x) in
Equation (8) needs to be minimized. The smaller the objedtimction, the better the solutions obtained.

3. DE and JADE

In this section, the original DE algorithm and the JADE altfon are briefly presented.

3.1. The DE algorithm

The DE algorithm is originally proposed by Storn and Pric&®7 [29], which is mainly used for the numerical
optimization problems. In DE, there are four operatiores, initialization, mutation, crossover, and selection, ethi
will be described as follows.

3.1.1. Population initialization
Generally, the population of DE consistsio§olutions (vectors). The population is initialized at randwithin
the boundaries. For example, for thh vectory; it is initialized as follows:

Xij = Lj+rndreal(Q1)- (Uj - Lj) (13)

wherel ; andU; are respectively the lower bound and upper bound dfe,, x; € [Lj,Uj]. i=1,--- ,u, j=1,---,D.
D is the number of decision variables. rndreal(0is a uniformly distributed random real number in 1.



3.1.2. Mutation
The mutation operation is also nameddifferential mutation, which is the core operator of DE. For egaiyet
vectorx;, amutant vectorv; is generated by the mutation operator. For example, forf&rand-to-best/1” mutation,
it is formulated as:
Vi =X, + F - (Xpest— Xr,) + F - (Xr, — Xr,) (14)

whereF is the mutation scaling factars, ro, r3 € {1, - - - , u} are mutually different integers randomly generated, and
ri # ra # rs # i. XpestiS the best-so-far solution in the current population.

3.1.3. Crossover

In order to diversify the current population, following natibn, DE employs the crossover operator to produce
thetrial vectoru; betweerx; andv;. The most commonly used operator is tigomial crossover performed on each
component as follows:
B {vi,,-, if (rndreal(Q1) < Cr or j == jrand) (15)

Uij = .
"7 1%, otherwise

whereCr is the crossover rate arjgngis a randomly generated integer withil) D}. The notation & == b” indicates
ais equal tab.

3.2. Section

Finally, to keep the population size constant in the follogvgenerations, the selection operation is employed to
determine whether the trial or the target vector survivethéonext generation. In DE, the one-to-one tournament
selection is used as follows:

. (16)
X;, otherwise

. {ui, if F(ui) < F(x)

whereF(x) is the objective function to be optimized.

3.3. The JADE algorithm

As above-description, DE has three parametees,u, Cr, andF. Previous studies [38, 32] indicate that the
parameter setting is crucial to the performance of DE. Toedyrthis drawback, Zhang and Sanderson presented
an adaptive DE variant (JADE) in [34], where the parame@rsand F are adaptively controlled according their
successful experience in the last generation. The adapt@thniques proposed in JADE are briefly introduced as
follows.

3.3.1. Crossover rate adaptation
At each generation, for each target vector the crossoveCrais independently generated as follows:

Cr; = rndn(ucy,0.1) a7
and truncated to the interval,[0]. Whereuc, is the mean value to genera&e . It is updated as follows:
per = (1=¢) - pcr + ¢ - mean(Scr) (18)

wherec is a constant in [QL]; mean(-) is the usual arithmetic mean operation; &l is the set of all successful
crossover rate€r; at generatiom.



3.3.2. Mutation factor adaptation
In order to maintain the population diversity, for each &ngector the mutation factdt; is independently calcu-
lated as:
Fi = rndg(ug,0.1) (29)

and then truncated to be(QLif F; > 1.0 or regenerated iF; < 0. rndg(ur,0.1) is a random number generated
according to the Cauchy distribution with location paraengt and scale parameterl0 The location parametgg
is updated in the following manner:

ur = (1 —-¢) - ur + c-mean(Sg) (20)
whereSk is the set of all successful mutation factéfsat generatiory; and meap(-) is the Lehmer mean:

S5l 2
mean (Sg) = ==L (21)
L\OF Z

4. Repaired JADE: Ry -IJADE

In order to fast and accurately extract the parametersfefrdifit solar cell models, we propose the improved JADE
method,i.e, R-IJADE. In R-IJADE, the parameter adaptation techniques mentionedeaséiee used. Addition-
ally, two improvementsi(e., crossover rate repairing and ranking-based mutationygseemented in the following
subsections.

4.1. Crossover rate repairing technique

The most commonly used crossover operator is the binonmoakover (see Equation (15)) in the DE algorithm.
In order to analyze the behavior of the binomial crossoveretb; be a binary string generated for each target vector
x; as follows:

1, if (01 ==
— i (mdr_ea (01) <Crorj == jrana) (22)
0, otherwise
Therefore, the binomial crossover of DE in Equation (15) lsameformulated as
Uj=bij-vij+@Q-bij) X; (23)

wherei = 1,---,uandj = 1,---,D. According to Equations (22) and (23), we can see that tharpistringb;

is stochastically related tGr; however, the trial vectou; is directly related to its binary stringy;, but not directly
related to its crossover ra&r. Based on this consideration, we propose the crossoverirgpgechnique, where the
crossover rate is repaired by its corresponding binarggtiie. by using the average number of components taken
from the mutant. Suppose th@t] is the repaired crossover rate, it is calculated as

, szl bi j
Cr = 'T (24)

whereb; is the binary string calculated in Equation (22). The crussaate is repaired after its binary string is
generated by Equation (22) based@m. If the trial vectoru; is a successful vectagr; will be stored inSc;, instead
of storingCr;.

4.2. Ranking-based mutation operator
In JADE [39], the authors presented a modified “DE/rand4¢stiL” mutationi(e., “DE/rand-topbest/1”) as

Vi =Xp, + Fi - (Xpage— Xry) + Fir - (X, = Xry) (25)

Wherexbpest refers to thepbest solution, which is randomly selected from the top ®@Gsolutions, withp € (0, 1].
ri,rp,r3ef{l,---,ufandry #rp #r3 #i.
6



Algorithm 1: Ranking-based vector selection

Input: The target vector indeix
Output: The selected vector indexeg ra, r3
whilerndreal[Q1) > pv, or ry ==ido

| Randomly seleat; € {1, u};

Randomly seleat, € {1, u};

whilerndreal[Q1) > PVr, OF Iz ==T1 01 5 == ido
| Randomly seleat; € {1, u};

Randomly seleat; € {1, u};

whilerz ==ryorrz==ryorrz==ido
| Randomly seleats € {1, u};

In Equation (25), sincg,,, X;,, andx,, are only randomly selected from the population, it may malkeaigorithm
be good at exploring the search space, but be slow at exjpboitaf the solutions. Therefore, in order to reduce
the computational efforts and make the parameter extragtiocess of solar cell models faster, in this work, the
ranking-based vector selection technique [37] is usederatiove mutation operator.

In the ranking-based vector selection technique, the @dijoul is firstly ranked from the best to the worst. Then,
the rankR; of each vectok; in the sorted population is assigned as

R|=/.1_|, i=192’.'.9/-1 (26)
After that, the selection probability of each vector is cédted as follows:
\ 2
pvi = (5) (27)
M

Finally, the vectorsx;, andx,,) in the mutation are selected according to their selectiobgbilities as shown in
Algorithm 1. Obviously, better solutions have more charmcbkd chosen as;, andx,, in the “DE/rand-topbest/1”
mutation to generate the mutant vector.

4.3. Boundary-handling technique

In DE, after performing the mutation operation to generateewa solution, some variables may be out of their
corresponding boundaridse,, x; ¢ [L;, Uj], if that, the following boundary-handling technique ispéipd:

Xj = Lj+rndreal(Q1)- (Uj - Lj) (28)
Actually, it is thereinitialization method as mentioned in [40].

4.4. The R;-1JADE algorithm

Combining the parameter adaptation techniques presendddiE [34] with the crossover rate repairing technique
and the ranking-based “DE/rand-pipest/1” mutation, our proposed,RJADE is developed. The pseudo-code of
Rq-IJADE is introduced in Algorithm 2, where NFEs means the banof function evaluations and MaXFEs is the
maximal NFEs, which is the termination criterion in this woNote that we do not use the maximal generations as
the termination criterion, since for different algoriththe consumed NFEs at one generation are not the same. From
Algorithm 2, we can see that there are only two parameteasd MaxNFEs) that need to be given by the user, while
other parameters.é., ucr, ur, C, p) are kept the default values as used in JADE [34]. This make$IJRDE be easy
to be applied to real-world applications.

5. Experimental resultsand analysis

In this section, the performance of,RJADE is evaluated for parameter extraction of differesias cell models,
i.e, single diode model, double diode model, and PV module. Kpermental I-V data of a solar cell and a solar
module are used for this purpose. The datais obtained fréinjdhere a 57 mm diameter commercial (R.T.C France)
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Algorithm 2: The pseudo-code of the;RJADE algorithm

Input: Control parameterg: and MaxNFEs

Output: The best final solution

Setucr = 0.5,ur = 0.5,¢c=0.1, p = 0.05;

Initialize the populatior® randomly;

Calculate the objective function value of each solutiorhi population;

NFEs= ;

while NFEs < Max_NEFsdo

Scr = ¢, Sk = [o8

Sort the population from the best to the worst;

fori=1toudo /* Generate paraneters */
GenerateCr; andF; with Equations (17) and (19), respectively;
Calculate the rankin& and the selection probabilityv;;

fori=1toudo /+* Generate v; and uj */
Selectry, rp, andrz as shown in Algorithm 1;
Produce the mutant vecter with ranking-based “DE/rand-tpbest/1”;
Get the binary stringy; as shown in Equation (22);
Calculate the repaired crossover r@r¢ with Equation (24);
for j=1toDdo
| ouij=bij-vij+@-bij) %
Calculate the objective function value af,

fori=1toudo /* Survival selection */
if u; is better than its parent x; then

X = Ui
Cri’—>SC,;
Fi — Sg;

Update theuc, andur with Equations (18) and (20), respectively;
NFEs= NFEs+ y;

silicon solar cell (at 33C) and a solar module (Photowatt-PWP 201, &C)5n which 36 polycrystalline silicon cells
are connected in series.

As shown in Algorithm 2, there are two parameters that nede tgiven by the user. In this work, the population
sizeu = 50 is used for all experiments. For the single diode modelthad®VV module, the MaXNFEs is set to be
10,000, while for the double diode model MaXFEs= 20, 000. R,-IJADE is coded in standard C++.

In order to show the superior performance @f-RADE, in this section, it is firstly compared with the repeat
results in the literature with respect to the RMSE values exidacted parameters. ThengRIADE is directly
compared with other advanced DE variants according to #iesstal results of different performance criteria.

Table 3: Comparison among different parameter extracgohriques for the single diode model.

ltem GA[26] | CPSO[20] | PS[7] | SA[27] | IGHS[28] | ABSO[1] | Ru-IJADE

Ton (A 0.7619 0.7607 | 0.7617 | 0.7620 0.7608 0.7608 | 0.760776
Tea WA) | 0.8087 0.4000 | 0.9980 | 0.4798 0.3435 0.3062 | 0.323021
Rs () 0.0299 0.0354 | 0.0313 | 0.0345 0.0361 0.0366 | 0.036377
Ren(Q) | 42.3729 50.0120 | 64.1026 | 43.1034 53.2845 52.2903 | 53.718526
a 15751 15033 | 1.6000 | 15172 1.4874 1.4758 1.481184

[RMSE_[ 0.01008]  0.00139 | 0.01494 | 0.01900 | 9.9306E-04] O.0124E-04 | 9.8602E-04 |

5.1. Resultson single diode model

For the single diode model, the extracted parameters andERM&ie of R,-IJADE are compared with those of
GA [26], CPSO [20], PS [7], SA [27], IGHS [28], and ABSO [1]. @se methods are chosen for comparison due to
the good performance obtained by them in the single diodesinddhe experimental results are reported in Table 3.
The overall best and the second best RMSE values among theacedhmethods are highlighted grey boldface
andboldface, respectively.

From Table 3, it is clear to observe thatRIADE provides the best RMSE value among all compared nastho
followed by ABSO, IGHS, CPSO, PS, SA, and GA. Although the EM&lues of ABSO and IGHS are very close
to that of R-IJADE, however, since the experimental data is adoptedhfeomation is available about the accurate
values of the parameters; therefore, any reduction in thectibe function value is significant because it results
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Figure 1: Comparison on the I-V characteristics betweerxperimental data and simulated data obtained {3 JRADE for 1(a): the single diode
model , 1(b): the double diode model, and 1(c): the PV module.



in improvement in the knowledge about the real values of theupeters [26]. It is worth emphasizing that the
Max_NFEs of R-IJADE is only 1Q 000, which is much less than those of ABSO (1®00), IGHS (150000), and
CPSO (45000). The MaxNFEs for GA, PS, and SA are not available in the literature.

Table 4: Curve fitting results of RIJADE for the single diode model.

Item VL (V) 1. measured (A) | I, calculated (A) IAE
1 -0.2057 0.7640 0.76409559] 0.00009559
2 -0.1291 0.7620 0.76266611| 0.00066611
3 -0.0588 0.7605 0.76135473| 0.00085473
4 0.0057 0.7605 0.76014966 | 0.00035034
5 0.0646 0.7600 0.75905702 | 0.00094298
6 0.1185 0.7590 0.75804472| 0.00095528
7 0.1678 0.7570 0.75709510] 0.00009510
8 0.2132 0.7570 0.75615050] 0.00084950
9 0.2545 0.7555 0.75508177 | 0.00041823
10 0.2924 0.7540 0.75367033| 0.00032967
11 0.3269 0.7505 0.75139542| 0.00089542
12 0.3585 0.7465 0.74735737| 0.00085737
13 0.3873 0.7385 0.74010420| 0.00160420
14 0.4137 0.7280 0.72740088 | 0.00059912
15 0.4373 0.7065 0.70694631] 0.00044631
16 0.4590 0.6755 0.67530400] 0.00019600
17 0.4784 0.6320 0.63089105| 0.00110895
18 0.4960 0.5730 0.57208973| 0.00091027
19 0.5119 0.4990 0.49949902 | 0.00049902
20 0.5265 0.4130 0.41349030| 0.00049030
21 0.5398 0.3165 0.31721532| 0.00071532
22 0.5521 0.2120 0.21210468| 0.00010468
23 0.5633 0.1035 0.10271603] 0.00078397
24 0.5736 -0.0100 -0.00924563| 0.00075437
25 0.5833 -0.1230 -0.12437754| 0.00137754
26 0.5900 -0.2100 -0.20919680| 0.00080320
Sum of IAE 0.01770357

In addition, the |-V characteristic obtained by RIADE and the individual absolute error (IAE) [7] betweéie t
experimental data and simulated data are shown in Figujeah(hTable 4, respectively. The results clearly indicate
that the simulated data generated hy-BADE are highly coincide with the experimental data in #iegle diode
model, which means that the extracted parameters©fJRDE are very accurate.

Table 5: Comparison among different parameter extracgohrtiques for the double diode model.

Tlem PS[7] | SA[27] | IGHS[28] | ABSO[1] | Ry-lADE

Ton (A 0.7602 | 0.7623 0.7608 0.7608 | 0.760781
leasWA) | 00889 | 0.4767 0.9731 02671 | 0225974
Rs () 0.0320 | 0.0345 0.0369 0.0366 | 0.036740
Ren(Q?) | 81.3008 | 43.1034 56.8368 546219 | 55485443
a 1.6000 | 1.5172 1.9213 1.4651 1.451017
Tez @A) | 0.0001 | 0.0100 0.1679 0.3810 | 0.749347
2 1.1920 | 2.0000 1.4281 1.9815 |  2.000000

RMSE | 0.01518 | 0.01664 | 9.8635E-04] O.8344E-04 | O.8248E-04 |

5.2. Results on double diode model

In this model, seven parameters need to be extracted. ThiesreSR.-IJADE are indirectly compared with those
of PS [7], SA [27], IGHS [28], and ABSO [1]. The extracted paeters and RMSE values of different methods
are tabulated in Table 5 and the curve fitting results gflIBADE are reported in Table 6. Additionally, the I-V
characteristic of R-IJADE is plotted in Figure 1(b). Similar to the results ireteingle diode model, in this case,
our proposed R-IJADE still obtains the best RMSE value but with less MdkEs (20000) compared with other
methods. Moreover, by returning the extracted parameig¢hetdouble diode model, the simulated data gfIRADE
are in very good agreement with the experimental data alm@dtdata points as shown in Table 6 and Figure 1(b).
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Table 6: Curve fitting results of RIJADE for the double diode model.

Item Ve (V) I, measured (A) | [ calculated (A) IAE
1 -0.2057 0.7640 0.76409268 | 0.00009268
2 -0.1291 0.7620 0.76265394 | 0.00065394
3 -0.0588 0.7605 0.76135755| 0.00085755
4 0.0057 0.7605 0.76016253| 0.00033747
5 0.0646 0.7600 0.75906000| 0.00094000
6 0.1185 0.7590 0.75805065] 0.00094935
7 0.1678 0.7570 0.75709635| 0.00009635
8 0.2132 0.7570 0.75614465| 0.00085535
9 0.2545 0.7555 0.75508115| 0.00041885
10 0.2924 0.7540 0.75366874 | 0.00033126
11 0.3269 0.7505 0.75139511| 0.00089511
12 0.3585 0.7465 0.74734939] 0.00084939
13 0.3873 0.7385 0.74010214] 0.00160214
14 0.4137 0.7280 0.72738784| 0.00061216
15 0.4373 0.7065 0.70695162 | 0.00045162
16 0.4590 0.6755 0.67530112| 0.00019888
17 0.4784 0.6320 0.63088766 | 0.00111234
18 0.4960 0.5730 0.57207477| 0.00092523
19 0.5119 0.4990 0.49949417| 0.00049417
20 0.5265 0.4130 0.41349125] 0.00049125
21 0.5398 0.3165 0.31721918] 0.00071918
22 0.5521 0.2120 0.21210831| 0.00010831
23 0.5633 0.1035 0.10272032| 0.00077968
24 0.5736 -0.0100 -0.00924461| 0.00075539
25 0.5833 -0.1230 -0.12437667 | 0.00137667
26 0.5900 -0.2100 -0.20919499| 0.00080501
Sum of IAE 0.01770933

Table 7: Comparison among different parameter extracgohrtiques for the PV module.

ltem | Newion [41] | Methodin [42] | CPSO [20] | Method in [43] PS[7] | SA[27] | Ry-WADE
Ton (A) 1.0318 1.0339 1.0286 10310 | 1.0313 | 1.0331 | 1.030514
Tsd (uA) 3.2875 3.0760 8.3010 3.8236 | 3.1756 | 3.6642 | 3.482263
R (@) 1.2057 1.2030 1.0755 10920 | 12053 | 1.1989 | 1.201271
Ren (Q) 555.5556 555.5556 | 1850.1000 689.6600 | 714.2857 | 833.3333 | 981.982240
a 48.4500 48,1862 | 52.2430 48,9300 | 48.2889 | 48.8211 | 48.642835
[ RMSE | 0.7805 | 0.6130 | 0.0035 | 0.0102 | 0.0118 | 00027 | 0002425 |

5.3. Resultson PV module

For the PV module, the experimental results are reportecbiel7, where R-IJADE is compared with New-
ton [41], method in [42], CPSO [20], method in [43], PS [7]de®A [27]. Like the previous cases,RJADE also
gets the best RMSE value among all compared methods in the &len Moreover, according the curve fitting
results shown in Table 8 and the |-V characteristic plotteBigure 1(c), we can see that the simulated data obtained
by R.-1JADE fit the experimental data very well.

5.4. Satistical results and convergence speed

In the previous subsections, the superiority gf RADE has been confirmed by indirectly comparing it witheath
parameter extraction techniques in the literature. As rorat above, there are several DE variants that have obtaine
promising results via benchmark functions. Therefore rafeoto further evaluate the performance gf-RADE, it
is compared with five advanced DE variarite.( jDE [32], SaDE [33], CoDE [36], DEGL [35], and JADE [34]) to
solve the parameter extraction problems of solar cell nodEhe MaxNFEs for the three solar cell models are the
same as used inRIJADE in the previous experiments. In addition, to makeiadamparison, all DE variants use
the same population sizeg., u = 50. All other parameters are kept the same as used in thginatiiterature. Note
that the parameter settings of JADE are the same.aBJRDE, the only differences are that in JADE the crossover
rate repairing and ranking-based mutation are not empldyiede the DE algorithm is stochastic, all DE variants are
executed over 100 independent runs to make the comparisaningéul. All DE variants are coded in standard C++.
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Table 8: Curve fitting results of RIJADE for the PV module.

Item Ve (V) I measured (A) | I_ calculated (A) IAE
1 0.1248 1.0315 1.02912049| 0.00237951
2 1.8093 1.0300 1.02738564 | 0.00261436
3 3.3511 1.0260 1.02573499| 0.00026501
4 4.7622 1.0220 1.02409557 | 0.00209557
5 6.0538 1.0180 1.02227575] 0.00427575
6 7.2364 1.0155 1.01991719] 0.00441719
7 8.3189 1.0140 1.01635389 | 0.00235389
8 9.3097 1.0100 1.01048191| 0.00048191
9 10.2163 1.0035 1.00068707 | 0.00281293
10 11.0449 0.9880 0.98465514 | 0.00334486
11 11.8018 0.9630 0.95969425 | 0.00330575
12 12.4929 0.9255 0.92305160| 0.00244840
13 13.1231 0.8725 0.87258829| 0.00008829
14 13.6983 0.8075 0.80731392 | 0.00018608
15 14.2221 0.7265 0.72796294 | 0.00146294
16 14.6995 0.6345 0.63646347 | 0.00196347
17 15.1346 0.5345 0.53569189 | 0.00119189
18 15.5311 0.4275 0.42882216 | 0.00132216
19 15.8929 0.3185 0.31867170| 0.00017170
20 16.2229 0.2085 0.20785189| 0.00064811
21 16.5241 0.1010 0.09835838| 0.00264162
22 16.7987 -0.0080 -0.00817367 | 0.00017367
23 17.0499 -0.1110 -0.11096908 | 0.00003092
24 17.2793 -0.2090 -0.20912100| 0.00012100
25 17.4885 -0.3030 -0.30202427 | 0.00097573
Sum of IAE 0.04177271

Table 9: Comparison on different performance criteria agndifferent DE variants for the single diode model. “NA” mearot available.

. RMSE NFEs (e = 0.001
Algorithm Min Median Max Mean Std Sig. Mean( S)td St
jDE 1.011467E-03| 1.221579E-03| 1.674285E-03| 1.236149E-03| 1.48E-04 + NA NA 0.00
SaDE | 9.972754E-04| 1.140693E-03| 1.386479E-03| 1.145756E-03| 9.26E-05 + 9850.00 NA 0.01
CoDE 1.101993E-03| 1.494410E-03| 2.081250E-03| 1.505273E-03| 1.93E-04 + NA NA 0.00
DEGL 9.860219E-04 1.084221E-03| 1.827544E-03| 1.162104E-03| 2.06E-04 + 3308.62 2098.05 0.29
JADE | 9.860219E-04 9.889961E-04 1.142030E-03 1.001006E-03 2.88E-05 + 8529.17 1094.38 0.72
Re-IJADE 9.860219E-04 9.860219E-04 9.860219E-04 9.860219E-04 5.12E-16 4430.50 1084.74 1.00

“+” indicates Ry-IJADE is significantly better than its competitor accoglio the Wilcoxon signed-rank testat= 0.05, hereinafter.

Table 10: Comparison on different performance criteria mgndifferent DE variants for the double diode model. “NA” meaot available.

. RMSE NFEs (e = 0.001
Algorithm Min Median Max Mean Std sig. Me?ln( S)td Sr
JDE 1.070336E-03| 1.470803E-03| 2.114012E-03| 1.488346E-03| 2.66E-04 + NA NA 0.00
SaDE | 9.917107E-04| 1.460147E-03| 2.221314E-03| 1.496245E-03| 2.82E-04 + 19400.00 NA 0.01
CoDE | 1.225893E-03| 1.820441E-03| 2.563051E-03| 1.840997E-03| 3.07E-04 + NA NA 0.00
DEGL | 9.825195E-04 | 9.859891E-04 | 1.583493E-03 | 1.021629E-03 | 9.55E-04 + 6155.92 3450.34 || 0.76
JADE 9.826437E-04| 1.241540E-03| 2.125234E-03| 1.283669E-03| 2.73E-04 + 13034.62 | 2189.05 0.26
Ry -IJADE | 9.824849E-04 | 9.826140E-04 | 9.860244E-04 | 9.826140E-04 | 9.86E-05 4407.50 834.86 1.00

Table 11: Comparison on different performance criteria mgndifferent DE variants for the PV module. “NA” means notitalale.

i RMSE NFES (e = 0.01)
Algorithm Min Median Max Mean Std sig. Mean Std Sr
DE 2.425084E-03| 2.428733E-03| 2.606556E-03| 2.437621E-03| 2.44E-05 + 2303.00 424.91 1.00
SaDE | 2.425075E-03 2.425405E-03| 2.470321E-03 2.428499E-03| 6.70E-06 + 2117.50 333.06 1.00
CoDE 2.437571E-03| 2.631745E-03| 3.499591E-03| 2.689244E-03| 2.10E-04 + 3756.50 755.67 1.00
DEGL 2.425075E-03 2.425120E-03| 3.303094E-03| 2.457298E-03| 1.14E-04 + 847.00 97.40 1.00
JADE | 2.425075E-03 2.425075E-03 2.639902E-03| 2.428243E-03 2.18E-05 + 1395.00 | 262.13 1.00
Rc-IJADE 2.425075E-03 2.425075E-03 2.425075E-03 2.425075E-03 2.90E-17 976.50 169.29 1.00

5.4.1. Performancecriteria
To compare the performance between different algorithinestdllowing performance criteria are used.
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e RMSE: As described in Equation (8), it is used to measure the yualthe fit between the simulated data and
experimental data obtained by the algorithm.

e NFEs.: The NFEs is used to record the number of function evaluations in eaorfor finding a solutiorx
satisfyingF(x) — F(x*) < €, whereF(x*) = 0 is the optimal objective function value in this work, ant a
very small positive value to be pre-given for different peohs.

e Successrate (S;): It is equal to the number of success runs over total runsugsess run means that within
Max_NFEs the algorithm finds a solutionsatisfyingF (x) — F(x*) < e.

e Convergencegraphs: The graphs show theean RMSE performance of the total runs.

5.4.2. Compared with other DEs

The results of different performance criteria of differ®# variants are respectively described in Tables 9, 10,
and 11 for the single diode model, double diode model, and BYuie. For the RMSE performance, the minimal,
median, maximal, mean, and standard deviation over 100anegeported. In addition, to compare the significance
of RMSE values between two algorithms, the paired Wilcoxgned-rank test is used, and “+” indicategRIADE
is significantly better than its competitor according to Wiécoxon signed-rank test at = 0.05. With respect to the
NFEs performance, the mean and standard deviation values avedezt: The convergence graphs of different DE
variants are plotted in Figure 2.

Based on the results shown in Tables 9 - 11 and Figure 2, iteatberved that

e Interms of the RMSE values, the proposegtBADE consistently gets the overall best results amorfgiaint
DE variants in all cases. According to the Wilcoxon's test; IBADE significantly surpasses other DE variants
for different solar cell models. In addition, the standaedidtion values of R-IJJADE are the smallest, which
means that R-1JADE is the most robust method compared with other five Diiavés.

e For the NFEs performance, for the single diode model and PV module, DE&Juires the smallest NFEs
values to reach the followed by R,-IJADE. However, when the extracted parameters increaséhé double
diode model, R-IJADE is the best one, followed by DEGL. This phenomenondatés that R-IJADE has
better scalability than DEGL.

e Considering the success r&g it is clear that only R-IJADE can consistently provids, = 1.0 for different
solar cell models, while other DE methods can not succdgsfolve the parameter extraction problems in the
single and double diode models in all runs. The highest fsc@e confirms the effectiveness and efficiency
of our proposed R-1JADE.

e With respect to the convergence speed, Figure 2 shows ttibeiearly stage DEGL converges the fastest,
followed by R.-IJADE, JADE, SaDE, jDE, and CoDE. However, DEGL stagnatésldy, which makes DEGL
not obtain highly accurate final solutionse/RIADE is capable of successively converging toward thénogut
solutions during the whole evolutionary process.

6. Conclusions

In this paper, an improved DE variant,RJADE, is proposed to fast and accurately extract the paters of solar
cell models. R-IJADE is the improved version of JADE, where the crossowa#e repairing technique and ranking-
based mutation are implemented to enhance the performdridéd&. In R.-IJADE, this is only one algorithmic
parametery) that needs to be pre-given by the user, which makes it beodase for real-world problems.RIJADE
is comprehensively evaluated through the parameter eitraproblems of different solar cell modelse., single
diode model, double diode model, and PV module. Moreoverp#rformance of R-IJADE is indirectly compared
with the reported results of different techniques and diyemompared with other advanced DE variants based on
different performance criteria. Experimental resultsfoomour expectation that the proposegRIADE method is
able to extract the parameters of different solar cell moidt and accurately. Additionally, compared with other
methods, R-IJADE can provide more precise and robust solutions, alitgjher success rate, and converge faster.
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Therefore, R-IJADE can be an efficient and reliable alternative for otb@mplex optimization problems of solar
cell models.

The source code of RIJADE can be obtained from the first author upon request.
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