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Abstract Differential evolution (DE) is a fast and robust

evolutionary algorithm for global optimization. It has been

widely used in many areas. Biogeography-based optimi-

zation (BBO) is a new biogeography inspired algorithm. It

mainly uses the biogeography-based migration operator to

share the information among solutions. In this paper, we

propose a hybrid DE with BBO, namely DE/BBO, for the

global numerical optimization problem. DE/BBO com-

bines the exploration of DE with the exploitation of BBO

effectively, and hence it can generate the promising can-

didate solutions. To verify the performance of our proposed

DE/BBO, 23 benchmark functions with a wide range

of dimensions and diverse complexities are employed.

Experimental results indicate that our approach is effective

and efficient. Compared with other state-of-the-art DE

approaches, DE/BBO performs better, or at least compa-

rably, in terms of the quality of the final solutions and the

convergence rate. In addition, the influence of the popu-

lation size, dimensionality, different mutation schemes, and

the self-adaptive control parameters of DE are also studied.

Keywords Differential evolution � Biogeography-based

optimization � Hybridization � Global numerical

optimization � Exploration � Exploitation

1 Introduction

Evolutionary algorithms (EAs, including genetic algo-

rithms, evolution strategies, evolutionary programming,

and genetic programming) have received much attention

regarding their potential as global optimization techniques

(Bäck 1996), both in single and in multi-objective opti-

mization. Inspired by the natural evolution and survival of

the fittest, EAs utilize a collective learning process of a

population of individuals. Descendants of individuals are

generated using randomized operations such as mutation

and recombination. Mutation corresponds to an self-repli-

cation of individuals, while recombination exchanges

information between two or more existing individuals.

According to a fitness measure, the selection process favors

better individuals to reproduce more often than those that

are relatively worse.

Differential evolution (DE) (Storn and Price 1997) is a

simple yet powerful population-based, direct search algo-

rithm with the generation-and-test feature for global opti-

mization problems using real-valued parameters. DE uses

the distance and direction information from the current

population to guide the further search. It won the third

place at the first International Contest on Evolutionary

Computation on a real-valued function test-suite (Storn

and Price 2008). Among DE’s advantages are its simple

structure, ease of use, speed and robustness. Price and

Storn (1997) gave the working principle of DE with single

scheme. Later on, they suggested ten different schemes of

DE (Storn and Price 2008; Price et al. 2005). However, DE
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has been shown to have certain weaknesses, especially if

the global optimum should be located using a limited

number of fitness function evaluations (NFFEs). In addi-

tion, DE is good at exploring the search space and locating

the region of global minimum, but it is slow exploiting of

the solution (Noman and Iba 2008).

Biogeography-based optimization (BBO), proposed by

Simon (2008a, b), is a new global optimization algorithm

based on the biogeography theory, which is the study of the

geographical distribution of biological organisms. Similar

to genetic algorithms (GAs), BBO is a population-based,

stochastic global optimizer. In the original BBO algorithm,

each solution of the population is a vector of integers. BBO

adopts the migration operator to share information between

solutions. This feature is similar to other biology-based

algorithms, such as GAs and PSO. It makes BBO appli-

cable to many of the same types of problems that GAs and

PSO are used for. However, BBO also has several unique

features compared with biology-based algorithms. For

example, it maintains its set of solutions from one iteration

to the next one (Simon 2008a, b). Simon compared BBO

with seven state-of-the-art EAs over 14 benchmark func-

tions and a real-world sensor selection problem. The results

demonstrated the good performance of BBO. With the

migration operator, BBO has a good exploitation ability.

Hybridization of EAs is getting more and more pop-

ular due to their capabilities in handling several real

world problems (Grosan et al. 2009). A good review of

hybrid metaheuristics with EAs specializing in intensifi-

cation and diversification can be found in Lozano and

Garcı́a-Martı́nez (2010). In order to balance the explo-

ration and the exploitation of DE, in this paper, we

propose a hybrid DE with BBO, referred to as DE/BBO,

for the global numerical optimization problems. In DE/

BBO, a hybrid migration operator is proposed, which

combines the exploration of DE with the exploitation of

BBO effectively. Experiments have been tested on 23

benchmark functions chosen from the literature. In

addition, five performance criteria are employed to fairly

compare our approach with other algorithms. Further-

more, the influence of the population size, dimensional-

ity, different mutation schemes, and the self-adaptive

control parameters of DE are also investigated.

The rest of this paper is organized as follows. Section 2

describes briefly function optimization problem, the DE

algorithm, and the BBO algorithm. In Sect. 3, some related

work of DE are presented. Our proposed approach is pre-

sented in detail in Sect. 4. In Sect. 5, we verify our

approach through 23 benchmark functions. Moreover, the

experimental results are compared with several other

approaches. The last section, Sect. 6, is devoted to con-

clusions and future work.

2 Preliminary

2.1 Problem definition

Global numerical optimization problems are frequently

arisen in almost every field of engineering design, applied

sciences, molecular biology and other scientific applica-

tions. Without loss of generality, the global minimization

problem can be formalized as a pair (S, f) , where S � RD is

a bounded set on RD and f : S ! R is a D-dimensional real-

valued function. The problem is to find a point X� 2 S such

that f ðX�Þ is the global minimum on S (Yao et al. 1999).

More specifically, it is required to find an X� 2 S such that

8X 2 S : f ðX�Þ � f ðXÞ ð1Þ

where f does not need to be continuous but it must be

bounded. In this work, we only consider the unconstrained

function optimization.

In global numerical optimization problems, the major

challenge is that an algorithm may be trapped in the local

optima of the objective function. This issue is particularly

challenging when the dimension is high. Recently, using the

evolutionary computation (EC) (Bäck 1996) to solve the

global optimization has been very active, producing differ-

ent kinds of EC for optimization in the continuous domain,

such as GAs (Zhong et al. 2004; Herrera et al. 1998; Herrera

2000), evolution strategy (Yao and Liu 1997; Hansen and

Kern 2004; Auger and Hansen 2004), evolutionary pro-

gramming (Yao et al. 1999), particle swarm optimization

(PSO) (Liang et al. 2006; Langdon and Poli 2007), immune

clonal algorithm (Jiao et al. 2008), DE (Storn and Price

1997), memetic algorithms (Lozano et al. 2004), etc.

W. Gong et al.

123



2.2 Differential evolution

Differential evolution (Storn and Price 1997) is a simple

EA that creates new candidate solutions by combining the

parent individual and several other individuals of the same

population. A candidate replaces the parent only if it has

better fitness. Among DE’s advantages are its simple

structure, ease of use, speed and robustness. Due to these

advantages, it has been applied to many real-word appli-

cations, such as data mining (Alatas et al. 2008; Das et al.

2008), pattern recognition, digital filter design, neural

network training, etc. (Price et al. 2005; Feoktistov 2006;

Chakraborty 2008). Most recently, DE has also been used

for the global permutation-based combinatorial optimiza-

tion problems (Onwubolu and Davendra 2009).

The pseudo-code of the original DE algorithm is shown

in Algorithm 1. Where D is the number of decision vari-

ables. NP is the size of the parent population P. F is the

mutation scaling factor. CR is the probability of crossover

operator. XiðjÞ is the jth variable of the solution Xi: Ui is the

offspring. rndintð1;DÞ is a uniformly distributed random

integer number between 1 and n. And rndrealj½0; 1Þ is a

uniformly distributed random real number in [0, 1). Many

schemes of creation of a candidate are possible. We use the

DE/rand/1/bin scheme (see lines 6–13 of Algorithm 1)

described in Algorithm 1 (more details on DE/rand/1/bin

and other DE schemes can be found in Storn and Price

(2008) and Price et al. (2005).

From Algorithm 1, we can see that there are only three

control parameters in this algorithm. These are NP, F and

CR. As for the terminal conditions, one can either fix the

maximum NFFEs Max_NFFEs or the precision of a desired

solution VTR (value to reach).

2.3 Biogeography-based optimization

BBO (Simon 2008a, b) is a new population-based, bioge-

ography inspired global optimization algorithm. In BBO,

each individual is considered as a ‘‘habitat’’ with a habitat

suitability index (HSI), which is similar to the fitness of

EAs, to measure the individual. A good solution is analo-

gous to an island with a high HSI, and a poor solution

indicates an island with a low HSI. High HSI solutions tend

to share their features with low HSI solutions. Low HSI

solutions accept a lot of new features from high HSI

solutions.

In BBO, each individual has its own immigration rate k
and emigration rate l: A good solution has higher l and

lower k; vice versa. The immigration rate and the emi-

gration rate are functions of the number of species in the

habitat. They can be calculated as follows:

kk ¼ I 1� k

n

� �
ð2Þ

lk ¼ E
k

n

� �
ð3Þ

where I is the maximum possible immigration rate. E is the

maximum possible emigration rate. k is the number of

species of the kth individual in the ordered population

according to the fitness. For example, for the minimization

problem the population is ordered with the descent order

based on the fitness, so that for the best solution k ¼ n; and

lk ¼ E; kk ¼ 0; it means that this solution can share more

information to other poor solutions. n is the maximum

number of species. Note that Eqs. 2 and 3 are just one

method for calculating k and l: There are other different

options to assign them based on different specie models

(Simon 2008a, b). In this work, we use Eqs. 2 and 3 to

calculate the immigration rate and the emigration rate as

proposed in Simon (2008a, b).

Suppose that we have a global optimization problem and

a population of candidate individuals. The individual is

represented by a D-dimensional vector. The population

consists of NP ¼ n parameter vectors. In BBO, there are

two main operators, the migration and the mutation. One

option for implementing the migration operator can be

described in Algorithm 2.1 Where rndrealð0; 1Þ is a uni-

formly distributed random real number in (0,1) and XiðjÞ is

the jth SIV of the solution Xi: With the migration operator,

BBO can share the information among solutions. Espe-

cially, poor solutions tend to accept more useful informa-

tion from good solutions. This makes BBO be good at

exploiting the information of the current population. More

details about the two operators can be found in Simon

(2008a, b) and in the Matlab code (Simon 2008a, b).

1 Since the mutation operator of BBO is not used in our approach,

we do not describe it here. Interested readers can refer to (Simon

2008a, b).
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3 Related work to DE

Some previous researches pointed out that there are three

main drawbacks of the original DE algorithm. First, the

parameters of DE are problem dependent and the choice of

them is often critical for the performance of DE (Gäperle

et al. 2002; Liu and Lampinen 2005). Second, choosing the

best among different mutation schemes available for DE is

also not easy for a specific problem (Qin and Suganthan

2005; Qin et al. 2009). Third, DE is good at exploring the

search space and locating the region of global minimum,

but it is slow exploiting of the solution (Noman and Iba

2008). Due to these drawbacks, many researchers are now

working on the improvement of DE, and many variants are

presented.

Adapting the DE’s control parameters is one possible

improvement. Liu and Lampinen (2005) proposed a Fuzzy

Adaptive DE (FADE), which employs fuzzy logic con-

trollers to adapt the mutation and crossover control

parameters. Brest et al. (2006) proposed self-adapting

control parameter settings. Their proposed approach

encodes the F and CR parameters into the chromosome and

uses a self-adaptive control mechanism to change them.

Salman et al. (2007) proposed a self-adaptive DE (SDE)

algorithm that eliminates the need for manual tuning of

control parameters. In SDE, the mutation scaling factor F is

self-adapted by a mutation strategy similar to the mutation

operator of DE. Nobakhti and Wang (2008) proposed a

randomized adaptive differential evolution (RADE)

method, where a simple randomized self-adaptive scheme

was proposed for the mutation weighting factor F. Das

et al. (2005) proposed two variants of DE, DERSF and

DETVSF, that use varying scale factors. They concluded

that those variants outperform the original DE. Teo (2006)

presented a dynamic self-adaptive populations DE, where

the population size is self-adapting. Through five De Jong’s

test functions, they showed that DE with self-adaptive

populations produced highly competitive results. Brest and

Maučec (2008) proposed an improved DE method, where

the population size is gradually reduced. They concluded

that their approach improved efficiency and robustness of

DE. Teng et al. (2009) proposed a variant of DE where two

different techniques (absolute encoding and relative

encoding) were used to implement the self-adaptive pop-

ulation size. The authors concluded that DE with the self-

adaptive population size using relative encoding performed

well (Teng et al. 2009).

Qin and Suganthan (2005) proposed a self-adaptive DE

algorithm. The aim of their work was to allow DE to switch

between two schemes: ‘‘DE/rand/1/bin’’ and ‘‘DE/best/2/

bin’’ and also to adapt the F and CR values. The approach

performed well on several benchmark problems. Recently,

Qin et al. (2009) extended their previous work (Qin and

Suganthan 2005). In their SaDE, four schemes were

adopted. And different CR values were also used for dif-

ferent mutation schemes. Their proposed algorithm out-

performed the original DE and some other compared

adaptive/self-adaptive DE variants (Qin et al. 2009).

Hybridization with other different algorithms is another

direction for the improvement of DE. Fan and Lampinen

(2003) proposed a new version of DE that uses an

additional mutation operation called trigonometric muta-

tion operation. They showed that the modified DE algo-

rithm can outperform the classic DE algorithm for some

benchmarks and real-world problems. Sun et al. (2005)

proposed a new hybrid algorithm based on a combination

of DE with estimation of distribution algorithm (EDA).

This technique uses a probability model to determine

promising regions in order to focus the search process on

those areas. Gong et al. (2006) employed the two level

orthogonal crossover to improve the performance of DE.

They showed that the proposed approach performs better

than the classical DE in terms of the quality, speed, and

stability of the final solutions. Noman and Iba (2005)

proposed fittest individual refinement, a crossover-based

local search (LS) method DE to solve the high dimen-

sional problems. Based on their previous work (Noman

and Iba 2005), they incorporated LS into the classical DE

in Noman and Iba (2008). They presented a LS technique

to solve this problem by adaptively adjusting the length

of the search, using a hill-climbing heuristic. Through the

experiments, they showed that the proposed new version

of DE performs better, or at least comparably, to classic

DE algorithm. Kaelo and Ali (2007) adopted the attrac-

tion-repulsion concept of electromagnetism-like algorithm

to boost the mutation operation of the original DE. Wang

et al. (2007) proposed a dynamic clustering-based DE for

global optimization, where a hierarchical clustering

method is dynamically incorporated in DE. Experiments

on 28 benchmark problems, including 13 high dimen-

sional functions, showed that the new method is able to

find near optimal solutions efficiently (Wang et al. 2007).

Rahnamayan et al. (2008) proposed a novel initialization

approach which employs opposition-based learning to

generate initial population. Through a comprehensive set

of benchmark functions they showed that replacing the

random initialization with the opposition-based population

initialization in DE can accelerate convergence speed. In

Caponio et al. (2009), proposed a memetic DE method,

namely SFMDE. In SFMDE, the PSO algorithm is used

in the beginning of the evolutionary process to generate

the super-fit solutions. Additionally, two local searchers

are adaptively used to refine the individuals of the

population.

W. Gong et al.
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4 Our approach: DE/BBO

As mentioned above, DE is good at exploring the search

space and locating the region of global minimum. How-

ever, it is slow exploiting of the solution (Noman and Iba

2008). On the other hand, BBO has a good exploitation for

global optimization (Simon 2008a, b). Based on these

considerations, in order to balance the exploration and the

exploitation of DE, in this work, we propose a hybrid DE

approach, called DE/BBO, which combines the exploration

of DE with the exploitation of BBO effectively. Our pro-

posed DE/BBO approach is described as follows.

4.1 Hybrid migration operator

The main operator of DE/BBO is the hybrid migration oper-

ator, which hybridizes the DE operator with the migration

operator of BBO, described in Algorithm 3. From Algorithm 3

we can see that the offspring Ui is possibly constituted by three

components: the DE mutant, the migration of other solutions,

and its corresponding parent Xi: The core idea of the proposed

hybrid migration operator is based on two considerations.

First, good solutions would be less destroyed, while poor

solutions can accept a lot of new features from good solutions.

In this sense, the current population can be exploited suffi-

ciently. Second, the mutation operator of DE is able to explore

the new search space and make the algorithm more robust.

According to Lozano and Garcı́a-Martı́nez (2010) the original

migration operator in DE/BBO focuses on the intensification;

while, the DE mutation operator emphasizes on the diversi-

fication. From the analysis, it can be seen that the hybrid

migration operator can balance the exploration and the

exploitation effectively. It is worth pointing out that in

Algorithm 1 the ‘‘DE/rand/1’’ mutation operator is illustrated,

however, other mutation operators of DE can also be used in

our proposed hybrid migration operator. The influence of

different mutation operators will be discussed in Sect. 5.6.

4.2 Boundary constraints

In order to keep the solution of bound-constrained prob-

lems feasible, those trial parameters that violate boundary

constraints should be reflected back from the bound by the

amount of violation. In this work, the following repair rule

is applied

XðiÞ ¼
li þ rndreali½0; 1� � ðui � liÞ if XðiÞ\li

ui � rndreali½0; 1� � ðui � liÞ if XðiÞ[ ui

8<
: ð4Þ

where rndreali½0; 1� is the uniform random variable from

[0,1] in each dimension i.

4.3 Main procedure of DE/BBO

By incorporating the above-mentioned hybrid migration

operator into DE, the DE/BBO approach is developed and

shown in Algorithm 4. Compared with the original DE

algorithm described in Algorithm 1, our approach needs

only a small extra computational cost in sorting the

population and calculating the migration rates. In addi-

tion, the structure of our proposed DE/BBO is also very

simple. Moreover, DE/BBO is able to explore the new

search space with the mutation operator of DE and to

exploit the population information with the migration

operator of BBO. This feature overcomes the lack of

exploitation of the original DE algorithm. Note that the

only difference between DE/BBO and the original DE

algorithm is that the hybrid migration operator is used to

replace the original DE mutation operator. In DE/BBO,

the selection method of DE is kept the same; therefore,

DE/BBO is also an elitist method like the original DE

algorithm.

DE/BBO: a hybrid differential evolution with biogeography-based optimization
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5 Experimental results

In order to verity the performance of DE/BBO, 23 bench-

mark functions are chosen from Yao et al. (1999) Since we

do not make any modification of these functions, they are

only briefly described in Table 1. A more detailed

description of these functions can be found in Yao et al.

(1999), where the functions were divided into three cate-

gories: unimodal functions, multimodal functions with

many local minima, and multimodal functions with a few

local minima.

Functions f01–f13 are high-dimensional and scalable

problems. Functions f01–f05 are unimodal. Function f06 is

the step function, which has one minimum and is discon-

tinuous. Function f07 is a noisy quartic function, where

random [0,1) is a uniformly distributed random variable in

[0,1). Functions f08–f13 are multimodal functions where

the number of local minima increases exponentially with

the problem dimension. They appear to be the most diffi-

cult class of problems for many optimization algorithms.

Functions f14–f23 are low-dimensional functions that have

only a few local minima.

5.1 Experimental setup

For DE/BBO, we have chosen a reasonable set of value and

have not made any effort in finding the best parameter

settings. For all experiments, we use the parameters shown

in Table 2 unless a change is mentioned. The maximum

NFFEs (Max_NFFEs) for each function at D ¼ 30 are

listed in the second column of Table 3.

Moreover, in our experiments, each function is opti-

mized over 50 independent runs. We also use the same set

of initial random populations to evaluate different algo-

rithms in a similar way done in Noman and Iba (2008). All

the algorithms are implemented in standard C??. The

source code can be obtained from the first author upon

request.

5.2 Performance criteria

Five performance criteria are selected from the literature

(Rahnamayan et al. 2008; Suganthan et al. 2005) to eval-

uate the performance of the algorithms. These criteria are

described as follows.

Table 1 Benchmark functions used in our experimental studies

Functions Name D S Optimal

f01 Sphere model 30 ½�100; 100�D 0

f02 Schwefel’s problem 2.22 30 ½�10; 10�D 0

f03 Schwefel’s problem 1.2 30 ½�100; 100�D 0

f04 Schwefel’s problem 2.21 30 ½�100; 100�D 0

f05 Generalized Rosenbrock’s functions 30 ½�30; 30�D 0

f06 Step function 30 ½�100; 100�D 0

f07 Quartic function 30 ½�1:28; 1:28�D 0

f08 Generalized Schwefel’s problem 2.26 30 ½�500; 500�D -12569.5

f09 Generalized Rastrigin’s function 30 ½�5:12; 5:12�D 0

f10 Ackley’s function 30 ½�32; 32�D 0

f11 Generalized Griewank function 30 ½�600; 600�D 0

f12 Generalized Penalized function 1 30 ½�50; 50�D 0

f13 Generalized Penalized function 2 30 ½�50; 50�D 0

f14 Shekel’s Foxholes function 2 ½�65:536; 65:536�D 1

f15 Kowalik’s function 4 ½�5; 5�D 0.003075

f16 Six-Hump Camel-Back function 2 ½�5; 5�D -1.0316285

f17 Branin Function 2 ½�5; 10� � ½0; 15� 0.398

f18 Glodstein-Price function 2 ½0; 1�D 3

f19 Hartman’s function 1 3 ½0; 1�D -3.86

f20 Hartman’s function 2 6 ½0; 1�D -3.32

f21 Shekel’s Function 1 4 ½0; 10�D -10.1532

f22 Shekel’s function 2 4 ½0; 10�D -10.4029

f23 Shekel’s function 3 4 ½0; 10�D -10.5364

More details of all functions can be found in Yao et al. (1999)
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• Error: Suganthan et al. (2005): The error of a solution

X is defined as f ðXÞ � f ðX�Þ; where X� is the global

optimum of the function. The minimum error is

recorded when the Max_NFFEs is reached in 50 runs.

Also the average and standard deviation of the error

values are calculated.

• NFFEs: Suganthan et al. (2005). The number of fitness

function evaluations (NFFEs) is also recorded when the

VTR is reached. The average and standard deviation of

the NFFEs values are calculated.

• Number of successful runs (SR): Suganthan et al.

(2005): The number of successful runs is recorded

Table 2 The parameter settings of the DE/BBO method used in this work

Parameter Value

Population size: NP 100 (Noman and Iba 2008; Yao et al. 1999; Brest et al. 2006; Rahnamayan et al. 2008)

Habitat modification probability 1.0 (Simon 2008a, b)

Maximum immigration rate: I 1.0 (Simon 2008a, b)

Maximum emigration rate: E 1.0 (Simon 2008a, b)

Scaling factor: F rndreal 0:1; 1:0ð Þ (Price et al. 2005; Chakraborty 2008)

Crossover probability: CR 0.9 (Storn and Price 1997; Liu and Lampinen 2005; Teo 2006; Rahnamayan et al. 2008)

DE mutation scheme DE/rand/1/bin (Storn and Price 1997; Noman and Iba 2008; Liu and Lampinen 2005; Teo 2006)

Value to reach: VTR 10�8 (Suganthan et al. 2005), except for f07 of VTR = 10�2

Table 3 Best error values of DE/BBO, DE, and BBO on all test functions, where ‘‘Mean’’ indicates the mean best error values found in the last

generation, ‘‘Std Dev’’ stands for the standard deviation

F Max_NFFEs DE/BBO DE BBO 1 vs. 2 1 vs. 3

Mean Std Dev SR Mean Std Dev SR Mean Std Dev SR t test t test

f01 150,000 8.66E228 5.21E-28 50 1.10E-19 1.34E-19 50 8.86E-01 3.26E-01 0 �5:81y �19:21y

f02 200,000 0.00E100 0.00E?00 50 1.66E-15 8.87E-16 50 2.42E-01 4.58E-02 0 �13:24y �37:36y

f03 500,000 2.26E-03 1.58E-03 0 8.19E212 1.65E-11 50 4.16E?02 2.02E?02 0 10:10I �14:58y

f04 500,000 1.89E215 8.85E-16 50 7.83E?00 3.78E?00 0 7.76E-01 1.72E-01 0 �14:65y �31:96y

f05 500,000 1.90E?01 7.52E?00 0 8.41E201 1.53E?00 6 9.14E?01 3.78E?01 0 16.73I �13:28y

f06 150,000 0.00E100 0.00E?00 50 0.00E100 0.00E?00 50 2.80E-01 5.36E-01 38 0 �3:69y

f07 300,000 3.44E203 8.27E-04 50 3.49E-03 9.60E-04 50 1.90E-02 7.29E-03 4 -0.29 �14:96y

f08 300,000 0.00E100 0.00E?00 50 4.28E?02 4.69E?02 1 5.09E-01 1.65E-01 0 �6:45y �21:78y

f09 300,000 0.00E100 0.00E?00 50 1.14E?01 7.57E?00 0 8.50E-02 3.42E-02 0 �10:61y �17:61y

f10 150,000 1.07E214 1.90E-15 50 6.73E-11 2.86E-11 50 3.48E-01 7.06E-02 0 �16:66y �34:81y

f11 200,000 0.00E100 0.00E?00 50 1.23E-03 3.16E-03 43 4.82E-01 1.27E-01 0 �2:76y �26:93y

f12 150,000 7.16E229 6.30E-29 50 2.07E-03 1.47E-02 49 5.29E-03 5.21E-03 0 -1.00 �7:18y

f13 150,000 9.81E227 7.10E-27 50 7.19E-02 5.09E-01 49 1.42E-01 5.14E-02 0 -1.00 �19:50y

f14 10,000 0.00E100 0.00E?00 50 2.75E-13 1.55E-12 50 8.85E-06 2.74E-05 14 -1.26 �2:28y

f15 40,000 3.84E-12 2.70E-11 50 4.94E219 5.20E-19 50 5.92E-04 2.68E-04 0 1.01 �15:65y

f16 10,000 1.15E-12 6.39E-12 50 1.98E213 4.12E-13 50 6.75E-04 1.09E-03 0 1.05 �4:37y

f17 10,000 2.92E210 1.38E-09 50 7.32E-10 2.21E-09 49 4.39E-04 4.26E-04 0 -1.19 �7:30y

f18 10,000 9.15E-13 6.51E-15 50 9.14E-13 5.01E-15 50 7.86E-03 9.57E-03 0 0.70 �5:81y

f19 10,000 0.00E100 0.00E?00 50 1.36E-14 6.40E-15 50 2.51E-04 2.62E-04 0 �15:05y �6:76y

f20 20,000 0.00E100 0.00E?00 50 4.76E-03 2.35E-02 47 1.46E-02 3.90E-02 0 -1.43 �2:64y

f21 10,000 3.59E-03 1.44E-02 15 6.83E206 1.26E-05 0 5.18E?00 3.34E?00 0 1.76 �10:95y

f22 10,000 3.14E207 1.36E-06 29 7.26E-06 4.53E-05 1 3.67E?00 3.40E?00 0 -1.08 �7:63y

f23 10,000 2.50E208 5.37E-08 27 3.70E-06 1.75E-05 0 2.73E?00 3.29E?00 0 -1.49 �5:87y

‘‘1 vs. 2’’ means ‘‘DE/BBO vs. DE’’ and ‘‘1 vs. 3’’ means ‘‘DE/BBO vs. BBO’’. Hereafter, a result with boldface means better value found
y;I The value of t with 49 degrees of freedom is significant at a ¼ 0:05 by two-tailed test
I means that the corresponding algorithm is better than our proposed DE/BBO method
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when the VTR is reached before the Max_NFFEs

condition terminates the trial.

• Convergence graphs: Suganthan et al. (2005): The

convergence graphs show the mean error performance

of the best solution over the total runs, in the respective

experiments.

• Acceleration rate (AR): Rahnamayan et al. (2008): This

criterion is used to compare the convergence speeds

between DE/BBO and other algorithms. It is defined as

follows:

AR ¼ NFFEsother

NFFEsDE=BBO

ð5Þ

where AR [ 1 indicates DE/BBO converges faster than its

competitor.

5.3 General performance of DE/BBO

In order to show the superiority of our proposed DE/BBO

approach, we compare it with the original DE algorithm

and the BBO algorithm. The parameters used for DE/BBO

and DE are the same as described in Sect. 5.1. The

parameters of BBO are set as in Simon 2008a, b), and the

mutation operator with mmax ¼ 0:005 is also used in our

experiments. All functions are tested for 50 independent

runs. Table 3 shows the best error values of DE/BBO, DE,

and BBO on all test functions. The average and standard

deviation of NFFEs are shown in Table 4. In addition,

some representative convergence graphs of DE/BBO, DE,

and BBO are shown in Fig. 1.

5.3.1 When compared with DE

From Table 3 we can see that DE/BBO is significantly

better than DE on eight functions. However, DE/BBO is

outperformed by DE on two functions (f03 and f05). For

the rest 13 functions, there are no significant difference

based on the t test.2 For the multimodal functions with

many local minima (f08–f13), DE/BBO can obtain the

VTR ¼ 10�8 over all 50 runs within the Max_NFFEs.

Table 4 NFFEs required to obtain accuracy levels less than VTR

F DE/BBO DE BBO 1 vs. 2 1 vs. 3

Mean Std Dev SR Mean Std Dev SR Mean Std Dev SR AR AR

f01 59,926 745.5 50 79,688 1,858.8 50 NA NA 0 1.33 NA

f02 82,004 983.9 50 119,764 1,871.2 50 NA NA 0 1.46 NA

f03 NA NA 0 385,990 17,193.4 50 NA NA 0 NA NA

f04 296,572 4,969.9 50 NA NA 0 NA NA 0 NA NA

f05 NA NA 0 448,583 60,428.8 6 NA NA 0 NA NA

f06 21,590 573.3 50 28,874 2,014.5 50 119,042 16,882.8 38 1.34 5.51

f07 109,574 21,005.8 50 103,136 29,677.7 50 205,000 23,896.2 4 0.94 1.87

f08 95,952 3,126.7 50 251,700 0 1 NA NA 0 2.62 NA

f09 170,226 8,379.0 50 NA NA 0 NA NA 0 NA NA

f10 91,308 922.7 50 122,340 2,179.6 50 NA NA 0 1.34 NA

f11 62,042 1219.6 50 81,986 1,795.8 43 NA NA 0 1.32 NA

f12 54,482 873.3 50 71,183 4,700.9 49 NA NA 0 1.31 NA

f13 64,772 1,133.4 50 93,298 16,916.8 49 NA NA 0 1.44 NA

f14 4,532 719.5 50 6,768 766.0 50 5,757 2,351.3 14 1.49 1.27

f15 24,028 3,279.3 50 12,590 977.8 50 NA NA 0 0.52 NA

f16 5,676 1,012.7 50 5,760 632.5 50 NA NA 0 1.01 NA

f17 7,138 1,404.9 50 7,271 1,098.7 49 NA NA 0 1.02 NA

f18 5,050 374.3 50 4,610 292.9 50 NA NA 0 0.91 NA

f19 4,808 352.2 50 5,434 346.8 50 NA NA 0 1.13 NA

f20 9,614 705.1 50 14,161 1,553.3 47 NA NA 0 1.47 NA

f21 9,560 397.9 15 NA NA 0 NA NA 0 NA NA

f22 9,527 349.4 29 10,000 0 1 NA NA 0 1.05 NA

f23 9,533 362.7 27 NA NA 0 NA NA 0 NA NA

‘‘NA’’ indicates the accuracy level is not obtained after Max_NFFEs. ‘‘1 vs. 2’’ means ‘‘DE/BBO vs. DE’’ and ‘‘1 vs. 3’’ means ‘‘DE/BBO vs.

BBO’’

2 The paired t-test determines whether two paired sets differ from

each other in a significant way under the assumptions that the paired

differences are independent and identically normally distributed

(Goulden 1956).
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However, DE may trap into the local minima for five out of

six functions. This indicates that our approach has the

ability to escape from poor local optima and locate a good

near-global optimum. Apparently, from Table 4 it can be

seen that DE/BBO requires less NFFEs to reach the VTR

than DE on 18 functions. DE is faster than DE/BBO on the

rest 5 functions. Additionally, for the majority of the test

functions DE/BBO converges faster than DE as shown in

Fig. 1.

5.3.2 When compared with BBO

From Tables 3, 4 and Fig. 1, it is obvious that DE/BBO

performs significantly better than BBO consistently with

respect to all five criteria for all test functions. By carefully

looking at Fig. 1, we can see that in the beginning of the

evolutionary process BBO converges faster than DE/BBO

while DE/BBO is able to improve its solution steadily for a

long run. The reason might be that BBO has a good

exploitation but lacks the exploration. However, for DE/

BBO with the hybrid migration operator, it can balance the

exploration and the exploitation effectively.

In general, the performance of DE/BBO is highly

competitive with DE, especially for the high-dimensional

problems. Moreover, DE/BBO is significantly better than

BBO for all problems. Since for the majority of the low-

dimensional functions (f14–f23), both DE/BBO and DE

have no significant difference, we will not use these
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functions in the following experiments. In addition, we also

do not compare the algorithms with BBO in the following

experiments.

5.4 Influence of population size

The choice of the best population size of DE is always

critical for different problems (Gäperle et al. 2002; Teo

2006; Brest and Maučec 2008). Increasing the population

size will increase the diversity of possible movements,

promoting the exploration of the search space. However,

the probability to find the correct search direction decreases

considerably (Feoktistov and Janaqi 2004). The influence

of population size is investigated in this section. For both

DE/BBO and DE, all the parameter settings are the same

as mentioned in Sect. 5.1, only except for NP ¼ 50; NP ¼
150; and NP ¼ 200:

The results for different population size are shown in

Table 5. It can be seen that: (i) for NP ¼ 50 DE/BBO is

significantly better than DE on 10 functions while it is

outperformed by DE for function f03. For f05, DE/BBO is

sightly better than DE. And for f13, DE/BBO can locate the

near-global optimum over all 50 runs, however, DE traps

into the local minima on 14 out of 50 runs. (ii) When the

population increases to NP ¼ 100; DE can obtain higher

overall successful runs than NP ¼ 50: DE/BBO is

Table 5 Influence of the performance to different population size for functions f01–f13 ðD ¼ 30Þ

F NP ¼ 50 NP ¼ 100

DE/BBO DE DE/BBO DE

f01 4.93E234 ± 2.44E233 (50) 6.73E-33 ± 9.09E-33 (50)y 8.66E228 ± 5.21E228 (50) 1.10E-19 ± 1.34E-19 (50)y

f02 0.00E100 ± 0.00E100 (50) 1.55E-17 ± 4.49E-17 (50)y 0.00E100 ± 0.00E100 (50) 1.66E-15 ± 8.87E-16 (50)y

f03 7.69E-13 ± 8.68E-13 (50) 3.03E217 ± 2.10E216 (50)I 2.26E-03 ± 1.58E-03 (0) 8.19E212 ± 1.65E211 (50)I

f04 1.37E206 ± 6.00E206 (40) 1.72E?01 ± 5.64E?00 (0)y 1.89E215 ± 8.85E216 (50) 7.83E?00 ± 3.78E?00 (0)y

f05 1.10E101 ± 5.63E100 (0) 1.27E?01 ± 7.26E?00 (0) 1.90E?01 ± 7.52E?00 (0) 8.41E201 ± 1.53E100 (6)I

f06 [9.39E103 ± 3.09E102] (50) [1.95E?04 ± 6.20E?03] (50)y [2.16E104 ± 5.73E102] (50) [2.89E?04 ± 2.01E?03] (50)y

f07 1.64E203 ± 3.67E204 (50) 4.19E-03 ± 2.05E-03 (50)y 3.44E203 ± 8.27E204 (50) 3.49E-03 ± 9.60E-04 (50)

f08 2.37E101 ± 5.35E101 (41) 5.57E?02 ± 3.38E?02 (0)y 0.00E100 ± 0.00E100 (50) 4.28E?02 ± 4.69E?02 (1)y

f09 5.37E201 ± 7.84E201 (31) 1.23E?01 ± 4.17E?00 (0)y 0.00E100 ± 0.00E100 (50) 1.14E?01 ± 7.57E?00 (0)y

f10 4.14E215 ± 0.00E100 (50) 7.45E-02 ± 2.55E-01 (46)y 1.07E214 ± 1.90E215 (50) 6.73E-11 ± 2.86E-11 (50)y

f11 3.45E204 ± 1.73E203 (48) 4.83E-03 ± 7.90E-03 (32)y 0.00E100 ± 0.00E100 (50) 1.23E-03 ± 3.16E-03 (43)y

f12 1.57E232 ± 0.00E100 (50) 4.98E-02 ± 1.26E-01 (41)y 7.16E229 ± 6.30E229 (50) 2.07E-03 ± 1.47E-02 (49)

f13 1.36E232 ± 7.15E234 (50) 3.61E?00 ± 1.80E?01 (36) 9.81E227 ± 7.10E227 (50) 7.19E-02 ± 5.09E-01 (49)

F NP ¼ 150 NP ¼ 200

DE/BBO DE DE/BBO DE

f01 7.60E223 ± 3.75E223 (50) 6.36E-12 ± 4.24E-12 (50)y 1.91E216 ± 7.51E217 (50) 7.24E-08 ± 2.98E-08 (0)y

f02 0.00E100 ± 0.00E100 (50) 1.12E-09 ± 3.67E-10 (50)y 1.88E214 ± 4.27E215 (50) 8.87E-07 ± 2.37E-07 (0)y

f03 8.10E-01 ± 4.63E-01 (0) 1.16E207 ± 2.24E207 (2)I 1.98E?01 ± 9.76E?00 (0) 3.27E205 ± 3.17E205 (0)I

f04 2.33E213 ± 1.02E213 (50) 4.74E?00 ± 3.21E?00 (0)y 6.53E210 ± 2.04E210 (50) 2.61E?00 ± 1.95E?00 (0)y

f05 1.99E?01 ± 5.26E-01 (0) 1.84E100 ± 1.58E100 (0)I 2.11E?01 ± 4.06E-01 (0) 4.85E100 ± 1.63E100 (0)I

f06 [2.56E104 ± 6.27E102] (50) [4.27E?04 ± 1.53E?03] (50)y [3.36E104 ± 6.97E102] (50) [5.78E?04 ± 1.74E?03] (50)y

f07 3.93E203 ± 7.69E204 (50) 4.39E-03 ± 1.10E-03 (50)y 5.03E203 ± 1.09E203 (50) 5.55E-03 ± 1.75E-03 (50)

f08 0.00E100 ± 0.00E100 (50) 2.35E?03 ± 1.13E?03 (0)y 0.00E100 ± 0.00E100 (50) 3.10E?03 ± 1.04E?03 (0)y

f09 0.00E100 ± 0.00E100 (50) 3.27E?01 ± 1.43E?01 (0)y 0.00E100 ± 0.00E100 (50) 4.86E?01 ± 1.21E?01 (0)y

f10 1.91E212 ± 5.21E213 (50) 6.40E-07 ± 1.98E-07 (0)y 3.11E209 ± 5.76E210 (50) 7.04E-05 ± 1.68E-05 (0)y

f11 0.00E100 ± 0.00E100 (50) 2.22E-18 ± 1.57E-17 (50) 0.00E100 ± 0.00E100 (50) 4.93E-04 ± 1.99E-03 (47)

f12 5.13E224 ± 3.15E224 (50) 2.07E-03 ± 1.47E-02 (49) 1.17E217 ± 5.01E218 (50) 1.58E-09 ± 1.01E-09 (50)y

f13 6.84E222 ± 5.10E222 (50) 2.51E-03 ± 1.78E-02 (49) 1.75E215 ± 8.37E216 (50) 9.58E-08 ± 7.78E-08 (0)y

Hereafter, (#) indicates the number of successful runs and ½a� b� denotes the averaged NFFEs required when the global minimum achieved

before using Max_NFFEs for all algorithms
y;I The value of t with 49 degrees of freedom is significant at a ¼ 0:05 by two-tailed test
I means that the corresponding algorithm is better than our proposed DE/BBO method
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significantly better than DE on eight functions based on the

t-test results. DE is significantly better than DE/BBO for

functions f03 and f05. For the rest three functions, DE/

BBO is better than DE. (iii) For NP ¼ 150 and NP ¼ 200;

DE/BBO is able to obtain significant better performance

than DE on eight and nine functions, respectively. Simi-

larly, for f03 and f05, DE/BBO is outperformed by DE

significantly. In addition, from Fig. 2 we can see that DE/

BBO can obtain higher convergence speed to different

population size for the majority of functions compared with

DE.

In general, the overall performance of DE/BBO is better

than DE to different population size. DE/BBO exhibits

higher overall successful runs, higher convergence veloc-

ity, and more robustness than DE.

5.5 Effect of dimensionality

In order to investigate the influence of the problem

dimension on the performance of DE/BBO, we carry out a

scalability study comparing with the original DE algo-

rithm for the scalable functions in the test suit. For

functions f01–f13, D ¼ 10; 50; 100; and 200: The results

are recorded in Table 6 after D� 10; 000 NFFEs, and

some representative convergence graphs are shown in

Fig. 3. From Table 6 we can see that the overall SR is

decreasing for both DE/BBO and DE, since increasing the

problem dimension leads to the algorithms sometimes

unable to solve the problem before reaching the

Max_NFFEs. However, similarly to D ¼ 30; on the

majority of functions, DE/BBO outperforms DE at every

dimension. By carefully looking at the results, we can

recognize that for f05 DE is better than DE/BBO at D ¼
10 and D ¼ 30; however, DE is outperformed by DE/

BBO at higher dimension ðD ¼ 50; 100; and 200Þ: So,

from the experimental results of this section, we can

conclude that the hybrid migration operator has the ability

to accelerate DE in general, especially the improvements

are more significant at higher dimensionality.

5.6 Influence of different mutation schemes

There are ten mutation schemes proposed in the original

DE (Storn and Price 2008; Price et al. 2005). Actually,

choosing the best among different mutation schemes

available for DE is also not easy for a specific problem

(Qin and Suganthan 2005; Qin et al. 2009). In this sec-

tion, we perform additional experiment to compare the
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performance of DE/BBO with that of DE to different

schemes. Four schemes, namely, DE/best/1/bin, DE/rand/

2/bin, DE/rand-to-best/1/bin, and DE/best/2/bin are chosen

in these experiments. All remaining parameters are the

same as mentioned in Sect. 5.1. Table 7 gives the results

of DE/BBO and DE for the four schemes. Based on the

t test, the results can be summarized as ‘‘w=t=l’’, which

means that DE/BBO wins in w functions, ties in t func-

tions, and loses in l functions, compared with DE. From

Table 7, for DE/best/1/bin, DE/rand/2/bin, DE/rand-to-

best/1/bin, and DE/best/2/bin, they are 12=1=0; 9=2=2;

8=3=2; and 10=2=1; respectively. The results indicate that

DE/BBO is able to obtain greater robustness than DE to

different mutation schemes on the majority of functions.

5.7 Influence of self-adaptive parameter control

As mentioned above, the choice of the control parameters

F and CR is sensitive for different problems (Gäperle et al.

2002). Researchers have proposed the adaptive parameter

control of DE, such as (Liu and Lampinen 2005; Brest

et al. 2006), and so on. In order to show that DE/BBO can

also improve the self-adaptive DE, in this section, we adopt

the self-adaptive parameter control proposed in Brest et al.

(2006) to replace F ¼ rndrealð0:1; 1:0Þ and CR ¼ 0:9 in

the previous experiments. All other parameter settings are

kept unchanged. The results for the self-adaptive DE

(SADE) and self-adaptive DE/BBO (SADE/BBO) are

given in Table 8.

Table 6 Scalability study for functions f01–f13 at Max NFFEs ¼ D� 10; 000

F D ¼ 10 D ¼ 50

DE/BBO DE DE/BBO DE

f01 [1.89E104 ± 3.63E102](50) [3.08E?04 ± 8.41E?02] (50)y 0.00E100 ± 0.00E100 (50) 1.87E-32 ± 1.64E-32 (50)y

f02 [2.63E104 ± 4.19E102] (50) [4.71E?04 ± 7.61E?02] (50)y 0.00E100 ± 0.00E100 (50) 1.44E-17 ± 3.97E-17 (50)y

f03 6.07E-14 ± 9.60E-14 (50) 1.35E221 ± 2.49E221 (50)I 5.20E?02 ± 2.48E?02 (0) 1.12E201 ± 8.06E202 (0)I

f04 1.58E216 ± 9.88E217 (50) 1.39E-13 ± 1.22E-13 (50)y 3.42E203 ± 2.28E202 (3) 1.95E?01 ± 4.14E?00 (0)y

f05 3.40E?00 ± 8.03E-01 (0) 3.53E211 ± 1.24E210 (50)I 4.43E101 ± 1.39E101 (0) 5.33E?01 ± 2.89E?01 (0)

f06 [6.62E103 ± 3.28E102] (50) [1.06E?04 ± 5.50E?02] (50)y [2.74E104 ± 6.22E102] (50) [5.57E?04 ± 1.64E?04] (50)y

f07 1.11E203 ± 3.96E204 (50) 1.52E-03 ± 5.97E-04 (50)y 4.05E203 ± 9.20E204 (50) 9.49E-03 ± 3.07E-03 (34)y

f08 0.00E100 ± 0.00E100 (50) 1.51E-11 ± 1.05E-10 (50) 2.37E100 ± 1.67E101 (49) 1.51E?03 ± 9.97E?02 (0)y

f09 0.00E100 ± 0.00E100 (50) 3.75E?00 ± 2.72E?00 (5)y 0.00E100 ± 0.00E100 (50) 2.33E?01 ± 8.27E?00 (0)y

f10 5.89E216 ± 0.00E100 (50) 8.02E-16 ± 8.52E-16 (50) 5.92E215 ± 1.79E215 (50) 3.52E-02 ± 1.74E-01 (48)

f11 0.00E100 ± 0.00E100 (50) 8.54E-03 ± 1.56E-02 (31)y 0.00E100 ± 0.00E100 (50) 5.08E-03 ± 1.62E-02 (9)y

f12 4.71E-32 ± 0.00E?00 (50) 4.71E-32 ± 0.00E?00 (50) 9.42E233 ± 0.00E100 (50) 4.51E-02 ± 1.40E-01 (41)y

f13 1.35E-32 ± 0.00E?00 (50) 1.35E-32 ± 0.00E?00 (50) 1.35E232 ± 0.00E100 (50) 1.34E-01 ± 5.74E-01 (40)

F D = 100 D ¼ 200

DE/BBO DE DE/BBO DE

f01 6.16E234 ± 1.97E233 (50) 2.30E-31 ± 1.37E-31 (50)y 3.07E232 ± 2.48E232 (50) 1.41E-24 ± 3.14E-24 (50)y

f02 0.00E100 ± 0.00E100 (50) 7.95E-16 ± 1.05E-15 (50)y 5.83E217 ± 8.11E217 (50) 7.38E-09 ± 2.33E-08 (46)y

f03 3.10E?04 ± 1.12E?04 (0) 1.31E102 ± 5.76E101 (0)I 2.22E?05 ± 5.90E?04 (0) 3.64E103 ± 7.60E102 (0)I

f04 2.71E100 ± 2.58E100 (0) 3.05E?01 ± 4.00E?00 (0)y 1.59E101 ± 3.43E100 (0) 4.27E?01 ± 4.31E?00 (0)y

f05 1.19E102 ± 3.38E101 (0) 1.76E?02 ± 4.22E?01 (0)y 2.95E102 ± 4.48E101 (0) 4.39E?02 ± 1.11E?02 (0)y

f06 [4.93E104 ± 1.11E103] (50) [3.30E?05 ± 1.34E?05] (50)y 0.00E100 ± 0.00E100 (50) 3.00E?00 ± 7.75E?00 (20)

f07 6.87E203 ± 1.15E203 (49) 4.84E-02 ± 2.19E-02 (0)y 1.56E202 ± 2.82E203 (0) 2.19E-01 ± 7.38E-02 (0)y

f08 7.11E100 ± 2.84E101 (47) 6.79E?03 ± 1.07E?03 (0)y 2.01E102 ± 1.68E102 (23) 2.47E?04 ± 2.44E?03 (0)y

f09 7.36E201 ± 8.48E201 (23) 7.28E?01 ± 1.07E?01 (0)y 1.76E101 ± 2.89E100 (0) 2.12E?02 ± 2.12E?01 (0)y

f10 7.84E215 ± 7.03E216 (50) 1.87E?00 ± 5.72E-01 (1)y 1.09E214 ± 1.12E215 (50) 5.30E?00 ± 8.47E-01 (0)y

f11 0.00E100 ± 0.00E100 (50) 8.43E-03 ± 1.71E-02 (36)y 1.11E216 ± 0.00E100 (50) 1.33E-01 ± 2.50E-01 (0)

f12 4.71E233 ± 0.00E100 (50) 8.07E?03 ± 2.82E?04 (26)y 2.36E233 ± 0.00E100 (50) 5.71E?04 ± 7.31E?04 (8)y

f13 1.76E232 ± 2.68E232 (50) 1.85E?03 ± 7.38E?03 (12) 8.36E232 ± 1.44E231 (50) 1.65E?05 ± 2.91E?05 (0)

y;I The value of t with 49 degrees of freedom is significant at a ¼ 0:05 by two-tailed test
I means that the corresponding algorithm is better than our proposed DE/BBO method
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According to Table 8, we can see that: first, for the Error

values, both SADE/BBO and SADE can obtain the global

optimum on five functions (f02, f06, f08, f09, and f11) over

50 runs. SADE/BBO is significantly better than SADE on five

functions. SADE outperforms SADE/BBO on two functions

(f03 and f05). Second, with respect to the NFFEs, it is obvious

that SADE/BBO is significantly better than SADE on 11

functions. And the AR values are larger than one for these

functions, it means that SADE/BBO is faster than SADE. For

functions f03 and f05, SADE/BBO fails to solve the two

functions over all 50 runs. Overall, integration of the hybrid

migration operator can improve the performance of SADE.

5.8 Comparison with other DE hybrids

In this section, we make a comparison with other DE

hybrids. Since there are many variants of DE, we only

compare our approach with DEahcSPX proposed in Noman

and Iba (2008), ODE proposed in Rahnamayan et al.

(2008), and DE/EDA proposed in Sun et al. (2005).

5.8.1 Comparison with DEahcSPX and ODE

Firstly, we compare our approach with DEahcSPX and

ODE. In DEahcSPX, a crossover-based adaptive local

search operation to accelerate the original DE. The

authors concluded that DEahcSPX outperforms the origi-

nal DE in items of convergence rate in all experimental

studies. In ODE, the opposition-based learning is used for

the population initialization and generation jumping. In

this section, we compare our proposed CDE with the

original DE, DEahcSPX and ODE. All the parameter

settings are the same as mentioned in Sect. 5.1. For

DEahcSPX, the number of parents in SPX sets to be np ¼
3 (Noman and Iba 2008). For ODE, the jump rate Jr ¼ 0:3

(Rahnamayan et al. 2008). The results are given in

Table 9. The selected representative convergence graphs

are shown in Fig. 4.

It can be seen that, from Table 9, DE/BBO is signifi-

cantly better than DEahcSPX on eight functions while it is

outperformed by DEahcSPX on two functions (f03 and

f05). For the rest three functions, there are no significant

difference between DE/BBO and DEachSPX. However, for

f12 and f13, DE/BBO can obtain the near-global optimum

over all 50 runs while DEahcSPX traps into the local

minima on one run, respectively. In addition, Fig. 4 shows

that DE/BBO converges faster than DEahcSPX on the

major functions.

With respect to ODE, the t test is 9/2/2 in Table 9. It

means that DE/BBO significantly outperforms ODE on
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nine out of 13 functions. ODE is significantly better than

DE/BBO on two functions (f03 and f07). For f01 and f10,

there are no significant difference between DE/BBO and

ODE, however, DE/BBO is slightly better than ODE.

Moreover, on the majority of functions, DE/BBO exhibits

higher convergence rate than ODE.

5.8.2 Comparison with DE/EDA

Secondly, the comparison between DE/BBO and DE/EDA

is evaluated in this section. The reason is that DE/BBO is

similar to DE/EDA, i.e., both algorithms combine DE with

another global optimization algorithm to improve the per-

formance of DE. DE/EDA combines global information

extracted by EDA with differential information obtained by

DE to create promising solutions (Sun et al. 2005). DE/

BBO integrates the migration operator of BBO into DE to

balance the exploration and the exploitation. In original

DE/EDA algorithm,3 the DE mutation scheme is described

as follows

UiðjÞ ¼ Xr1
ðjÞ þ XiðjÞ½ �=2

þ F � Xr1
ðjÞ � XiðjÞð Þ þ Xr2

ðjÞ � Xr3
ðjÞð Þ½ �

ð6Þ

where Xi is the target vector of DE. In order to make a fair

comparison, all compared algorithms (DE, DE/BBO, and

DE/EDA) adopt the mutation scheme shown in Eq. 6 to

replace the DE/rand/1/bin scheme. All other parameters are

Table 7 Comparison of DE/BBO and DE to different mutation schemes for functions f01–f13 (D = 30)

F DE/best/1/bin DE/rand/2/bin

DE/BBO DE DE/BBO DE

f01 3.71E-32 ± 3.61E-32 (50) 1.25E?02 ± 1.55E?02 (0)y 1.27E-17 ± 6.15E218 (50) 1.53E -10 ± 8.92E-11 (50)y

f02 5.46E216 ± 1.81E215 (50) 4.16E?00 ± 3.02E?00 (0)y 4.70E215 ± 1.54E215 (50) 2.02E-08 ± 9.61E-09 (2)y

f03 8.15E230 ± 2.66E229 (50) 2.62E?02 ± 3.04E?02 (0)y 1.31E?01 ± 7.15E?00 (0) 7.28E207 ± 8.90E207 (0)I

f04 2.36E101 ± 5.72E100 (0) 2.97E?01 ± 6.06E?00 (0)y 2.04E209 ± 7.53E210 (50) 5.18E?00 ± 3.41E?00 (0)y

f05 8.72E100 ± 1.43E101 (8) 1.14E?04 ± 1.43E?04 (0)y 9.25E?00 ± 1.30E?00 (0) 9.60E202 ± 5.63E201 (0)I

f06 1.56E101 ± 2.98E101 (0) 1.17E?03 ± 5.42E?02 (0)y [3.16E104 ± 8.95E102] (50) [4.74E?04 ± 1.88E?03] (50)y

f07 4.07E203 ± 1.39E203 (50) 9.53E-03 ± 5.73E-03 (43)y 5.21E203 ± 1.26E203 (50) 5.41E-03 ± 1.46E-03 (49)

f08 6.58E102 ± 2.94E102 (0) 4.84E?03 ± 6.80E?02 (0)y 0.00E100 ± 0.00E100 (50) 6.71E?03 ± 2.95E?02 (0)y

f09 1.85E101 ± 7.55E100 (0) 7.26E?01 ± 1.51E?01 (0)y 7.60E205 ± 2.98E204 (12) 1.16E?02 ± 2.28E?01 (0)y

f10 2.48E100 ± 1.16E100 (2) 9.73E?00 ± 1.66E?00 (0)y 8.65E210 ± 2.00E210 (50) 3.11E-06 ± 1.04E-06 (0)y

f11 3.22E202 ± 4.06E202 (12) 2.13E?00 ± 1.33E?00 (0)y 0.00E100 ± 0.00E100 (50) 6.41E-04 ± 2.22E-03 (46)y

f12 6.70E201 ± 1.15E100 (20) 2.77E?01 ± 2.24E?01 (0)y 1.31E218 ± 1.09E218 (50) 8.03E-12 ± 1.04E-11 (50)y

f13 7.14E201 ± 1.24E100 (1) 2.67E?04 ± 1.28E?05 (0) 3.28E216 ± 3.02E216 (50) 1.29E-04 ± 9.08E-04 (44)

F DE/rand-to-best/1/bin DE/best/2/bin

DE/BBO DE DE/BBO DE

f01 0.00E100 ± 0.00E100 (50) 1.23E-34 ± 6.10E-34 (50) 1.65E232 ± 1.37E232 (50) 1.65E-31 ± 1.93E-31 (50)y

f02 [3.42E104 ± 3.97E102] (50) [4.14E?04 ± 3.72E?03] (50)y 3.11E217 ± 6.65E217 (50) 7.88E-15 ± 3.26E-14 (50)

f03 3.71E-25 ± 8.69E-25 (50) 5.63E232 ± 2.72E232 (50)I 3.28E-30 ± 5.47E-30 (50) 1.07E230 ± 8.69E231 (50)I

f04 2.63E100 ± 1.35E100 (0) 2.95E?00 ± 1.31E?00 (0) 2.31E206 ± 6.77E206 (3) 3.64E-02 ± 4.42E-02 (0)y

f05 1.28E?01 ± 3.24E?00 (0) 1.04E100 ± 1.77E100 (37)I 1.10E101 ± 5.63E100 (0) 1.27E?01 ± 7.26E?00 (0)

f06 2.00E202 ± 1.41E201 (49) 3.42E?00 ± 4.13E?00 (5)y 2.20E201 ± 4.65E201 (40) 1.34E?01 ± 1.95E?01 (2)y

f07 8.43E204 ± 2.62E204 (50) 2.17E-03 ± 7.98E-04 (50)y 2.20E203 ± 7.68E204 (50) 5.33E-03 ± 2.81E-03 (46y

f08 4.97E101 ± 7.60E101 (33) 3.15E?03 ± 5.79E?02 (0)y 2.61E101 ± 5.50E101 (40) 4.60E?03 ± 5.21E?02 (0)y

f09 3.98E202 ± 1.97E201 (48) 2.37E?01 ± 7.13E?00 (0)y 1.11E100 ± 1.25E100 (19) 5.71E?01 ± 1.48E?01 (0)y

f10 6.13E215 ± 1.78E215 (50) 1.69E?00 ± 7.01E-01 (0)y 1.77E201 ± 4.19E201 (42) 3.99E?00 ± 1.14E?00 (0)y

f11 1.23E203 ± 3.24E203 (43) 1.35E-02 ± 1.52E-02 (12)y 6.74E203 ± 8.82E203 (23) 2.60E-02 ± 4.33E-02 (16)y

f12 2.07E203 ± 1.47E202 (49) 7.06E-02 ± 1.71E-01 (34)y 6.43E202 ± 1.63E201 (40) 1.54E?00 ± 2.35E?00 (8)y

f13 2.20E204 ± 1.55E203 (49) 2.71E?00 ± 1.05E?01 (16) 5.47E203 ± 1.93E202 (41) 1.99E?01 ± 2.41E?01 (0)y

y;I The value of t with 49 degrees of freedom is significant at a ¼ 0:05 by two-tailed test
I means that the corresponding algorithm is better than our proposed DE/BBO method

3 The source code of DE/EDA is available online at: http://cswww.

essex.ac.uk/staff/qzhang/IntrotoResearch/HybridEDA.htm.
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the same as mentioned in Sect. 5.1. The results are pre-

sented in Table 10. And the selected representative con-

vergence graphs are shown in Fig. 5.

5.8.3 When compared with DE

DE/BBO is significantly better than DE on 11 functions.

For the rest two functions (f06 and f13), DE/BBO is also

better than DE. Additionally, DE/BBO is able to obtain

faster convergence velocity than DE for all functions.

5.8.4 When compared with DE/EDA

The overall SR of DE/BBO is better than DE/EDA. On nine

functions, DE/BBO is significantly better than DE/EDA.

DE/EDA is significantly better than DE/BBO only on one

functions (f03). For the rest three functions, there are no

significant difference. By carefully looking at the results in

Table 10, we can see that DE/BBO is substantial better

than DE/EDA for all multimodal functions (f08–f13). DE/

BBO can locate the near-global optimum over all 50 runs

Table 8 Influence of self-adaptive parameter control to DE/BBO and DE for functions f01–f13 ðD ¼ 30Þ

F Error NFFEs

SADE/BBO SADE SADE/BBO SADE AR

f01 0.00E100 ± 0.00E100 (50) 1.75E-27 ± 1.57E-27 (50)y 3.91E104 ± 8.15E102 6.11E?04 ± 1.12E?03y 1.56

f02 0.00E?00 ± 0.00E?00 (50) 0.00E?00 ± 0.00E?00 (50) 5.12E104 ± 8.17E102 8.45E?04 ± 1.40E?03y 1.65

f03 2.10E-01 ± 2.85E-01 (0) 4.03E213 ± 6.20E213 (50)I NA 3.57E105 ± 1.84E104 NA

f04 4.11E216 ± 1.10E215 (50) 3.44E-14 ± 1.83E-13 (50) 2.25E105 ± 3.57E104 3.09E?05 ± 4.54E?03y 1.38

f05 4.05E?01 ± 2.30E?01 (0) 9.99E202 ± 1.23E201 (1)I NA 4.81E105 ± 0.00E100 NA

f06 0.00E?00 ± 0.00E?00 (50) 0.00E?00 ± 0.00E?00 (50) 1.46E104 ± 4.91E102 2.30E?04 ± 7.05E?02y 1.57

f07 1.98E203 ± 4.35E204 (50) 3.46E-03 ± 9.00E-04 (50)y 6.33E104 ± 1.32E104 1.11E?05 ± 2.23E?04y 1.75

f08 0.00E?00 ± 0.00E?00 (50) 0.00E?00 ± 0.00E?00 (50) 4.87E104 ± 1.26E103 9.58E?04 ± 2.27E?03y 1.97

f09 0.00E?00 ± 0.00E?00 (50) 0.00E?00 ± 0.00E?00 (50) 6.45E104 ± 3.23E103 1.19E?05 ± 4.08E?03y 1.85

f10 4.14E215 ± 0.00E100 (50) 1.54E-14 ± 5.48E-15 (50)y 5.92E104 ± 8.21E102 9.31E?04 ± 1.63E?03y 1.57

f11 0.00E?00 ± 0.00E?00 (50) 0.00E?00 ± 0.00E?00 (50) 4.04E104 ± 7.94E102 6.47E?04 ± 3.14E?03y 1.60

f12 1.57E232 ± 0.00E100 (50) 1.15E-28 ± 1.15E-28 (50)y 3.56E104 ± 8.09E102 5.52E?04 ± 1.28E?03y 1.55

f13 1.35E232 ± 0.00E100 (50) 3.92E-26 ± 5.22E-26 (50)y 4.22E104 ± 8.62E102 6.71E?04 ± 1.45E?03y 1.59

y;I The value of t with 49 degrees of freedom is significant at a ¼ 0:05 by two-tailed test
I means that the corresponding algorithm is better than our proposed DE/BBO method

Table 9 Comparison the performance of DE/BBO with DE, DEachSPX, and ODE for functions f01–f13 ðD ¼ 30Þ

F DE/BBO DE DEahcSPX ODE

f01 8.66E228 ± 5.21E228 (50) 1.10E-19 ± 1.34E-19 (50)y 2.90E-20 ± 2.28E-20 (50)y 4.33E-25 ± 1.86E-24 (50)

f02 0.00E100 ± 0.00E100 (50) 1.66E-15 ± 8.87E-16 (50)y 4.47E-16 ± 3.66E-16 (50)y 2.81E-13 ± 1.74E-13 (50)y

f03 2.26E-03 ± 1.58E-03 (0) 8.19E-12 ± 1.65E-11 (50)I 5.11E212 ± 9.27E212 (50)I 2.50E-11 ± 3.91E-11 (50)I

f04 1.89E215 ± 8.85E216 (50) 7.83E?00 ± 3.78E?00 (0)y 7.79E?00 ± 3.18E?00 (0)y 9.44E-02 ± 2.33E-01 (14)y

f05 1.90E?01 ± 7.52E?00 (0) 8.41E201 ± 1.53E100 (6)I 1.24E?00 ± 1.67E?00 (5)I 2.80E?01 ± 9.24E?00 (0)y

f06 [2.16E104 ± 5.73E102] (50) [2.89E?04 ± 2.01E?03] (50)y [2.81E?04 ± 1.50E?03] (50)y [2.29E?04 ± 1.81E?03] (50)y

f07 3.44E-03 ± 8.27E-04 (50) 3.49E-03 ± 9.60E-04 (50) 3.52E-03 ± 1.20E-03 (50) 1.03E203 ± 3.38E204 (50)I

f08 0.00E100 ± 0.00E100 (50) 4.28E?02 ± 4.69E?02 (1)y 4.98E?02 ± 8.42E?02 (5)y 1.63E?03 ± 1.27E?03 (1)y

f09 0.00E100 ± 0.00E100 (50) 1.14E?01 ± 7.57E?00 (0)y 1.30E?01 ± 8.11E?00 (0)y 1.65E?01 ± 1.17E?01 (0)y

f10 1.07E214 ± 0.00E100 (50) 6.73E-11 ± 2.86E-11 (50)y 3.89E-11 ± 1.97E-11 (50)y 5.34E-07 ± 3.77E-06 (49)

f11 0.00E100 ± 0.00E100 (50) 1.23E-03 ± 3.16E-03 (43)y 1.82E-03 ± 5.09E-03 (42)y 2.12E-03 ± 4.66E-03 (39)y

f12 7.16E229 ± 6.30E229 (50) 2.07E-03 ± 1.47E-02 (49) 6.22E-03 ± 2.49E-02 (47) 3.44E-18 ± 1.95E-17 (50)y

f13 9.81E227 ± 7.10E227 (50) 7.19E-02 ± 5.09E-01 (49) 3.22E-02 ± 2.26E-01 (46) 2.05E-22 ± 1.44E-21 (50)y

y;I The value of t with 49 degrees of freedom is significant at a ¼ 0:05 by two-tailed test I means that the corresponding algorithm is better than

our proposed DE/BBO method
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for all these functions. However, DE/EDA traps into the

local minima many times. Especially, for f08 and f09, DE/

EDA fails to solve the two functions. In addition, Fig. 5

shows that DE/BBO converges faster than DE/EDA on the

major functions.

5.9 Non-parametric statistical tests

In the previous sections, we presented the experimental

results with paired t test, which is a parametric statistical

test. However, recent studies indicated that the parametric
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Fig. 4 Mean error curves of DE/BBO, DE, DEahcSPX, and ODE for selected functions. a f02, b f03, c f07, d f10, e f11, f f13

Table 10 Comparison the performance of DE/BBO with DE, and DE/EDA for functions f01–f13 (D = 30)

F DE/BBO DE DE/EDA

f01 0.00E100 ± 0.00E100 (50) 2.20E-08 ± 2.91E-08 (22)y 4.68E-25 ± 1.33E-24 (50)y

f02 0.00E100 ± 0.00E100 (50) 8.46E-11 ± 8.62E-11 (50)y 8.33E-16 ± 2.85E-16 (50)y

f03 1.97E-06 ± 2.14E-06 (0) 3.93E-03 ± 5.06E-03 (0)y 5.27E216 ± 1.17E215 (50)I

f04 1.46E100 ± 1.01E100 (0) 1.14E?01 ± 3.05E?00 (0)y 6.58E?00 ± 1.65E?00 (0)y

f05 2.08E?01 ± 7.69E?00 (0) 3.53E?01 ± 2.64E?01 (0)y 1.97E101 ± 1.72E101 (0)

f06 0.00E100 ± 0.00E100 (50) 2.00E-02 ± 1.41E-01 (49) 0.00E100 ± 0.00E100 (50)

f07 1.09E203 ± 3.31E204 (50) 1.04E-02 ± 3.70E-03 (23)y 3.10E-03 ± 1.31E-03 (50)y

f08 0.00E100 ± 0.00E100 (50) 6.53E?03 ± 4.96E?02 (0)y 7.81E?03 ± 2.77E?02 (0)y

f09 4.57E212 ± 2.91E211 (50) 2.48E?01 ± 2.32E?01 (0)y 7.72E?00 ± 2.52E?00 (0)y

f10 4.07E215 ± 5.02E216 (50) 1.09E?00 ± 7.27E-01 (0)y 1.26E?00 ± 6.31E-01 (7)y

f11 0.00E100 ± 0.00E100 (50) 1.28E-02 ± 1.70E-02 (24)y 1.67E-02 ± 1.91E-02 (16)y

f12 1.57E232 ± 0.00E100 (50) 3.73E-02 ± 9.54E-02 (31)y 3.73E-02 ± 9.07E-02 (38)y

f13 1.35E232 ± 0.00E100 (50) 1.18E?02 ± 7.77E?02 (0) 6.53E-01 ± 4.17E?00 (39)

y;I The value of t with 49 degrees of freedom is significant at a ¼ 0:05 by two-tailed test
I means that the corresponding algorithm is better than our proposed DE/BBO method
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statistical analysis is not appreciate especially when we

tackle the multiple-problem results (Demsar 2006; Garcı́a

and Herrera 2008; Garcı́a et al. 2009a, b). In order to fur-

ther prove statistical significance of the results, in this

section, we adopt the non-parametric statistical test to

compare the DE/BBO method with other algorithms. There

are many types of non-parametric statistical methods

(Garcı́a et al. 2009a, b), such as Bonferroni–Dunn’s pro-

cedure, Holm procedure, Hochberg procedure, Wilcoxon’s

test, and so on. In this study, the Wilcoxon’s test is
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Fig. 5 Mean error curves of DE/BBO, DE, and DE/EDA for selected functions. a f03, b f05, c f06, d f08, e f10, f f12

Table 11 Results of the single-problem non-parametric statical Wilcoxon’s test at a ¼ 0:05 for functions f01–f13 ðD ¼ 30Þ

BBO DE DEahcSPX ODE DE/EDA

p value Significant p value Significant p value Significant p value Significant p value Significant

f01 0.00 ? 0.00 ? 0.00 ? 0.00 ? 0.00 ?

f02 0.00 ? 0.00 ? 0.00 ? 0.00 ? 0.00 ?

f03 0.00 ? 0.00 - 0.00 - 0.00 - 0.00 -

f04 0.00 ? 0.00 ? 0.00 ? 0.00 ? 0.00 ?

f05 0.00 ? 0.00 - 0.00 - 0.00 ? 0.22 	
f06 0.00 ? 1.00 	 1.00 	 1.00 	 1.00 	
f07 0.00 ? 0.99 	 1.00 	 0.00 - 0.00 ?

f08 0.00 ? 0.00 ? 0.00 ? 0.00 ? 0.00 ?

f09 0.00 ? 0.00 ? 0.00 ? 0.00 ? 0.00 ?

f10 0.00 ? 0.00 ? 0.00 ? 0.00 ? 0.00 ?

f11 0.00 ? 0.02 ? 0.01 ? 0.00 ? 0.00 ?

f12 0.00 ? 0.00 ? 0.00 ? 0.00 ? 0.00 ?

f13 0.00 ? 0.00 ? 0.00 ? 0.00 ? 0.00 ?

Hereafter, ‘‘ ? ’’, ‘‘ - ’’, and ‘‘	 ’’ indicate that DE/BBO is significantly better, significantly worse, and indifferent, respectively, compared with

other algorithms
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employed since this test is included in well-known soft-

ware packages (e.g., SPSS, SAR, OriginPro, Matlab, etc.).

To apply the Wilcoxon’s test the results are obtained

from the previous experiments at D ¼ 30 for functions

f01–f13. The results of DE/BBO is compared with those of

BBO, DE, DEahcSPX, ODE, and DE/EDA. First, we

present the results of the single-problem Wilcoxon’s test at

a ¼ 0:05 in Table 11. From Table 11, we can see that DE/

BBO is significantly better than the other algorithms in 51

out of 65 cases. In seven cases, DE/BBO is outperformed

by the other algorithms. For the remaining seven cases,

there is no significance. In summary, the DE/BBO

approach outperforms the other algorithms in 78.5% of the

cases and is outperforms in only 10.8% of the cases.

Secondly, we present the results of the multiple-problem

Wilcoxon’s test at a ¼ 0:05 in Table 12. It is clear that DE/

BBO obtains higher Rþ values than R� values in all cases.

According to the p value, we can see that DE/BBO is

significantly better than BBO and DE/EDA. However, with

a a ¼ 0:10; DE/BBO is able to provide different results

compared with BBO, DEahcSPX, ODE, and DE/EDA.

5.10 Experimental results on CEC’05 test functions

In order to further evaluate the performance of DE/BBO, in

this section, we report the results of SADE/BBO and

SADE for CEC’05 test functions (Suganthan et al. 2005) at

D ¼ 10: From the experimental results described in

Sect. 5.7 showed that the parameter self-adaptation pro-

posed in (Brest et al. 2006) is able to enhance both of the

performance of DE/BBO and DE; therefore, this parameter

self-adaptation is used. In addition, since most of CEC’05

test functions are rotated, in SADE/BBO for each indi-

vidual ki ¼ 1:0: All other parameter settings are kept

unchanged as Sect. 5.1. The results are summarized in

Tables 13 and 14. All results are averaged over 50 inde-

pendent runs when Max_NFFEs = 100,000.

From Table 13 we can see that SADE/BBO is signifi-

cantly better than SADE on 13 out of 25 functions. On two

functions (f15 and f23), SADE/BBO is outperformed by

SADE. On the rest 10 functions, there is no significant

difference between SADE/BBO and SADE in terms of the

best error values. The results shown in Table 14 indicate

that SADE/BBO is able to obtain faster convergence rate

on the successful functions. The reason is that the enhanced

exploitation by the hybrid migration operator can acceler-

ate the convergence rate. However, due to the enhanced

exploitation, SADE/BBO gets stuck in the local minima of

some very complex functions, e.g., f15 and f23. The pop-

ulation restart technique (Auger and Hansen 2004) might

be used to remedy the premature convergence of SADE/

BBO. We will verify it in our future work. In general, our

proposed SADE/BBO obtains better results than SADE on

Table 12 Results of the multiple-problem non-parametric statical

Wilcoxon’s test at a ¼ 0:05 for functions f01–f13 ðD ¼ 30Þ

R? R- p value Significant

BBO 91 0 0.00 ?

DE 60 18 0.11 	
DEahcSPX 61 17 0.09 	
ODE 63 15 0.06 	
DE/EDA 67 11 0.03 ?

Table 13 Best error values achieved when Max_NFFEs = 100,000 for CEC’05 test functions f01–f25 ðD ¼ 10Þ

F SADE/BBO SADE F SADE/BBO SADE

f01 0.00E?00 ± 0.00E?00 (50) 0.00E?00 ± 0.00E?00 (50) f14 2.70E100 ± 4.66E201 (0) 3.34E?00 ± 1.75E-01 (0)y

f02 7.40E229 ± 1.53E228 (50) 1.10E-15 ± 2.25E-15 (50)y f15 1.25E?02 ± 1.65E?02 (22) 7.10E100 ± 1.85E101 (43) I

f03 9.34E209 ± 6.10E208 (47) 9.39E-03 ± 6.30E-02 (9)y f16 9.70E101 ± 1.11E101 (0) 1.08E?02 ± 6.30E?00 (0)y

f04 4.34E229 ± 7.00E229 (50) 2.39E-14 ± 4.96E-14 (50)y f17 1.00E102 ± 1.42E101 (0) 1.27E?02 ± 1.02E?01 (0)y

f05 1.13E212 ± 4.01E212 (50) 7.92E-07 ± 9.28E-07 (0)y f18 7.36E?02 ± 2.11E?02 (0) 7.30E102 ± 1.75E102 (0)

f06 4.74E-01 ± 1.12E?00 (39) 8.07E202 ± 2.24E201 (4) f19 7.43E?02 ± 1.84E?02 (0) 7.10E102 ± 1.94E102 (0)

f07 5.30E202 ± 3.97E202 (4) 5.39E-02 ± 3.32E-02 (2) f20 7.05E102 ± 2.27E102 (0) 7.10E?02 ± 1.94E?02 (0)

f08 2.04E?01 ± 7.99E-02 (0) 2.03E101 ± 6.33E202 (0) f21 5.12E102 ± 1.26E102 (0) 7.24E?02 ± 1.88E?02 (0)y

f09 0.00E?00 ± 0.00E?00 (50) 0.00E?00 ± 0.00E?00 (50) f22 7.59E?02 ± 6.75E?01 (0) 7.54E102 ± 6.56E101 (0)

f10 5.52E100 ± 2.93E100 (0) 1.04E?01 ± 2.28E?00 (0)y f23 7.04E?02 ± 1.91E?02 (0) 6.43E102 ± 1.46E102 (0) I

f11 1.11E100 ± 1.85E100 (1) 5.90E?00 ± 6.87E-01 (0)y f24 2.00E?02 ± 0.00E?00 (0) 2.00E?02 ± 0.00E?00 (0)

f12 1.88E101 ± 1.00E102 (32) 1.95E?01 ± 1.00E?02 (14)y f25 5.16E102 ± 4.99E100 (0) 5.17E?02 ± 5.01E?00 (0)y

f13 4.23E201 ± 6.08E202 (0) 6.04E-01 ± 2.85E-01 (0)y

The results were averaged over 50 independent runs
y indicates SADE/BBO is significantly better than its competitor by the Wilcoxon signed-rank test at a ¼ 0:05
I means that the corresponding algorithm is better than our proposed SADE/BBO method
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the majority of CEC’05 test functions at D ¼ 10 in terms of

the quality of the final results and the convergence speed.

5.11 Discussions

The DE algorithm is a fast, robust, and simple global

optimization algorithm. However, it may lack the exploi-

tation. BBO is novel optimization algorithm for global

optimization. BBO has a good exploitation with the

migration operator. Therefore, in this work, we hybridize

DE with BBO and propose a hybrid migration operator to

generate the promising candidate solution. And then, the

DE/BBO algorithm is proposed based on the hybrid

migration operator. From the experimental results we can

summarize that

• Our proposed DE/BBO approach is effective and

efficient. It can obtain the global, or near-global,

optimum for the test functions.

• The overall performance of DE/BBO is superior to or

highly competitive with BBO and other compared

state-of-the-art DE algorithms.

• DE/BBO and DE were compared for different popula-

tion sizes. On the majority of functions, DE/BBO is

substantial better than DE.

• The scalability studies show that DE/BBO is able to

accelerate DE in general, especially the improvements

are more significant at higher dimensionality.

• Comparison of DE/BBO and DE to different mutation

schemes, the overall performance of DE/BBO is more

robust than that of DE.

• The self-adaptive parameter control can enhance the

performance of DE/BBO and DE. Our proposed hybrid

migration operator shows the potential to accelerate the

self-adaptive variants of DE.

• According to the non-parametric single/multiple-prob-

lem Wilcoxon’s test, we can conclude that our approach

is better, or at least highly competitive, than the

compared algorithm for the test functions.

• Due to the hybrid migration operator proposed in this

paper, DE/BBO is able to balance the exploration and

the exploitation. In addition, the hybrid migration

operator can make the good solutions share more

information with the poor ones, meanwhile, it can

prevent the good solutions from being destroyed during

the evolution. This might be the reason that DE/BBO is

significantly better than the original DE algorithm on

all tested multimodal functions.

• For function f03, DE/BBO is worse than DE with DE/

rand/1/bin scheme. However, from Tables 7 and 10,

we can see that DE/BBO is better than DE for DE/

best/1/bin and scheme described in Eq. 6. So, we can

expect that the strategy adaptation as proposed in Qin

et al. (2009) may be used to make DE/BBO more

robust.

6 Conclusions and future work

In order to balance the exploration and the exploitation of

DE, in this paper, we propose a hybrid DE approach, called

DE/BBO, which combines the exploration of DE with the

exploitation of BBO. In DE/BBO, a new hybrid migration

operator is proposed to generate the promising solutions.

Since the hybrid migration operator has a good trade-off

between the exploration and the exploitation, it makes our

proposed DE/BBO approach be very effective and effi-

cient. To verify the performance of DE/BBO, 23 bench-

mark functions chosen from literature are employed.

Experimental results demonstrate the good performance of

our approach. Compared with BBO, DE, DEahcSPX, ODE,

and DE/EDA, the results show that DE/BBO is superior to

or at least highly competitive with them. Moreover, the

influence of the population size, dimensionality, different

mutation schemes, and the self-adaptive control parameters

of DE/BBO and DE are also investigated. And the results

confirm that DE/BBO exhibits a higher convergence rate

and greater robustness compared with DE. In addition,

compared the results between our approach and SADE on

CEC’05 functions, SADE/BBO obtains better results than

SADE on the majority of CEC’05 test functions at D ¼ 10:

In this work, 23 benchmark functions are used to eval-

uate the performance of our approach, we will test our

approach on more problems, such as the high-dimensional

ðD 
 30Þ CEC’05 test suit (Suganthan et al. 2005) and the

real-world problems. Moreover, we will compare DE/BBO

with other EAs, like the work in Garcı́a et al. (2009a, b). In

addition, we only consider the unconstrained function

optimization in this work. Our future work consists on

Table 14 Successful NFFEs obtained by SADE/BBO and SADE for

CEC’05 test functions f01–f25 ðD ¼ 10Þ

F SADE/BBO SADE AR

f01 1.31E104 ± 3.37E102 2.52E?04 ± 6.57E?02 1.92

f02 2.90E104 ± 2.08E103 6.42E?04 ± 3.10E?03 2.21

f03 7.92E104 ± 1.07E104 9.46E?04 ± 1.98E?03 1.19

f04 3.59E104 ± 2.25E103 6.92E?04 ± 3.43E?03 1.93

f05 6.80E104 ± 6.65E103 NA ± NA NA

f06 6.86E104 ± 1.19E104 9.53E?04 ± 5.16E?03 1.39

f07 4.03E104 ± 4.48E103 9.27E?04 ± 7.92E?03 2.30

f09 1.90E104 ± 7.15E102 4.10E?04 ± 1.67E?03 2.16

f12 4.96E104 ± 6.47E103 9.01E?04 ± 6.05E?03 1.82

f15 2.04E104 ± 1.35E103 5.79E?04 ± 3.82E?03 2.84

DE/BBO: a hybrid differential evolution with biogeography-based optimization
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adding the diversity rules into DE/BBO for constrained

optimization problems.
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