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Abstract Solving engineering design and resources opti-
mization via multiobjective evolutionary algorithms (MOEAs)
has attracted much attention in the last few years. In this
paper, an efficient multiobjective differential evolution al-
gorithm is presented for engineering design. Our proposed
approach adopts the orthogonal design method with quan-
tization technique to generate the initial archive and evolu-
tionary population. An archive (or secondary population) is
employed to keep the nondominated solutions found and it is
updated by a new relaxed form of Pareto dominance, called
Pareto-adaptive ε-dominance (paε-dominance), at each gen-
eration. In addition, in order to guarantee to be the best per-
formance produced, we propose a new hybrid selection mech-
anism to allow the archive solutions to take part in the gen-
erating process. To handle the constraints, a new constraint-
handling method is employed, which does not need any pa-
rameters to be tuned for constraint handling. The proposed
approach is tested on seven benchmark constrained prob-
lems to illustrate the capabilities of the algorithm in han-
dling mathematically complex problems. Furthermore, four
well-studied engineering design optimization problems are
solved to illustrate the efficiency and applicability of the al-
gorithm for multiobjective design optimization. Compared
with NSGA-II, one of the best MOEAs available at present,
the results demonstrate that our approach is found to be sta-
tistically competitive. Moreover, the proposed approach is
very efficient and is capable of yielding a wide spread of so-
lutions with good coverage and convergence to true Pareto-
optimal fronts.
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1 Introduction

Many real-world engineering design or resources optimiza-
tion involve simultaneous optimization of multiple objec-
tives. Usually, these objectives stay in conflict with each
other. As an example, in the design of an automobile an
engineer may wish to maximize crash resistance for safety
and minimize weight for fuel economy. Instead of finding a
single solution, the multiobjective optimization methods try
to produce a set of good trade-off solutions called the non-
dominated solutions or Pareto-optimal solutions from which
the decision maker may select one.

To deal with the multiobjective optimization problems
(MOPs), many mathematical programming techniques are
developed since the 1950s [4]. However, mathematical pro-
gramming techniques have certain limitations when tackling
MOPs, such as (i) most of them can not find multiple solu-
tions in a single run, (ii) many of them are susceptible to the
shape of the Pareto front and may not work when the Pareto
front is concave or disconnected, and (iii) multiple applica-
tion of these methods do not guarantee finding widely differ-
ent Pareto-optimal solutions. On the contrary, evolutionary
algorithms (EAs) deal simultaneously with a set of possible
solutions (the so-called population) which allows us to find
several members of the Pareto-optimal set in a single run
of the algorithm. Additionally, EAs are less susceptible to
the shape or continuity of the Pareto front. Also, the use of
diversity-preserving mechanisms can be added to the EAs to
find widely different Pareto-optimal solutions.
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Since the 1980s, several multiobjective evolutionary al-
gorithms (MOEAs) have been proposed and applied in MOPs,
such as NSGA-II [8], SPEA2 [32], DEMO [23], etc. Re-
cently, many researchers adopted the MOEAs to solve en-
gineering design problems [5], [12], [15], [20], and so on.
These algorithms share the same purpose - searching for a
uniformly distributed, near-optimal, and near-complete Pareto
front for a given MOP. However, this ultimate goal is far
from being accomplished by the existing MOEAs described
in literature. In one respect, most of the MOPs are very com-
plicated and require the computational resources to be ho-
mogenously distributed in a high-dimensional search space.
On the other hand, those better-fit individuals generally have
strong tendencies to restrict searching efforts within local
areas because of the “genetic drift” phenomenon, which re-
sults in the loss of diversity due to stochastic sampling.

Differential evolution (DE) [26] algorithm is a novel EA
for faster optimization, which mutation operator is based
on the distribution of solutions in the population. And DE
has won the third place at the first International Contest on
Evolutionary Computation on a real-valued function test-
suite. Unlike Genetic Algorithm (GA) that uses binary cod-
ing to represent problem parameters, DE is a simple yet
powerful population based, direct search algorithm with the
generation-and-test feature for globally optimizing functions
using real valued parameters. Among the DE’s advantages
are its simple structure, ease of use, speed and robustness.
Price & Storn [26] gave the working principle of DE with
single scheme. Later on, they suggested ten different schemes
of DE [27]. It has been successfully used in solving single-
objective optimization problems. Hence, several researchers
have tried to extend it to handle MOPs. Such as Pareto DE
(PDE) [1], Pareto DE Approach (PDEA) [18], Multiobjec-
tive DE (MODE) [28], DE for Multiobjective Optimization
(DEMO) [23], GDE3 [14], and ε-MyDE [24], which uses
the ε-dominance [9] to get a good distribution of solutions
retained. A detailed survey of multiobjective DE has been
published recently [24], where the advantages and disadvan-
tages of the most known existing multiobjective DE methods
are discussed. Thus, in the present paper we do not review
again this field. However, all of previous approaches gener-
ated the initial population randomly and most of them were
tested in unconstrained problems. Also little previous work
pays attention to solve engineering design problems.

In order to further extend DE to solve multiobjective
engineering design problems efficiently, in this paper, we
propose a novel multiobjective DE algorithm, called paε-
ODEMO, which integrates established techniques in exist-
ing EA’s in a single unique algorithm. The new approach
uses the orthogonal design method with quantization tech-
nique to generate the initial population. Moreover, it adopts
an archive to store the nondominated solutions and employs
the new Pareto-adaptive ε-dominance [13] to update the archive

at each generation. In order to handle the constraints, a new
constraint-handling method is employed, which does not need
any parameters to be tuned for constraint handling. Our pro-
posed approach is validated using seven benchmark con-
strained MOPs and four engineering optimization problems
taken from the specialized literature, and its performance
is compared against the Nondominated Sorting Genetic Al-
gorithm II (NSGA-II) [8]. The results indicate that our ap-
proach is a viable alternative to efficient multiobjective op-
timization.

The remainder of this paper is organized as follows. In
Section 2, we give the problem formulation of MOPs. The
related work is introduced in Section 3. In Section 4, the DE
algorithm is briefly described. Section 5 proposes a novel
paε-ODEMO to deal with MOPs and describes its main com-
ponents in detail. In Section 6, we test our algorithm through
a number of benchmark constrained MOPs and engineer-
ing design problems. In addition, the experiment results are
compared with NSGA-II. The last section, Section 7, is de-
voted to conclusions.

2 Problem formulation

Without loss the generality, an MOP includes a set of n

parameters (decision variables), a set of k objective func-
tions, and a set of m constraints. Objective functions and
constraints are functions of the decision variables. The opti-
mization goal is to

minimize : y = f(x) = (f1(x), · · · , fk(x))

subject to : e(x) = (e1(x), · · · , em(x)) ≥ 0

where : x = (x1, x2, · · · , xn) ∈ X (1)

y = (y1, y2, · · · , yk) ∈ Y

where x is the decision vector, y is the objective vector, X

denotes as the decision space, and Y represents the objec-
tive space. Generally, for each variable xi it satisfies a con-
strained boundary

li ≤ xi ≤ ui, i = 1, 2, · · · , n (2)

The constraints e(x) ≥ 0 determine the set of feasible solu-
tions.

Definition 1 (Pareto Dominance) A vector x = (x1, · · · , xk)

is said to Pareto dominate another vector y = (y1, · · · , yk),
denoted as x ≺ y, if and only if

∀i ∈ 1, · · · , k, xi ≤ yi and ∃j ∈ 1, · · · , k, xi < yi

Definition 2 (Pareto Optimality) A solution x ∈ X is said
to be Pareto optimal in X if and only if ¬∃y ∈ X, v ≺
u, where u = f(x) = (f1(x), · · · , fk(x)), v = f(y) =

(f1(y), · · · , fk(y)).
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Definition 3 (ε-dominance) Let f , g ∈ �k. Then f is said
to ε-dominate g for some ε > 0, denoted as f ≺ε g, if and
only if for all i ∈ {1, · · · , k}, (1 − ε)fi ≤ gi.

Definition 4 (Pareto-optimal set) The Pareto-optimal set POS
is defined as the set of all Pareto-optimal solutions, i.e., POS =
{x ∈ X|¬∃y ∈ X, f(y) ≺ f (x)}.

Definition 5 (Pareto-optimal front) The Pareto-optimal front
POF is defined as the set of all objective functions values
corresponding to the solutions in POS, i.e., POF = {f(x) =

(f1(x), · · · , fk(x))|x ∈ POS}.

3 Related Work

3.1 ε-domination based MOEAs

To achieve a faster convergence in multiobjective optimiza-
tion, one of the relaxed forms of Pareto dominance, ε-dominance
proposed by Laumanns et al. [16], has become popular in the
last few years. The ε-dominance acts as an archiving strategy
to ensure both properties of convergence towards the Pareto-
optimal set and properties of diversity among the solutions
found. Deb et al. [9], [10] proposed a steady-state MOEA,
ε-MOEA, based on the ε-dominance concept and efficient
parent and archive update strategies to MOPs. The simula-
tion results indicated that ε-MOEA is a good compromise in
terms of convergence near to the Pareto-optimal front, di-
versity of solutions, and computational time. The authors
concluded that the use of ε-dominance criterion has been
found to have two advantages: (i) it helps in reducing the
cardinality of Pareto-optimal region and (ii) it ensures that
no two obtained solutions are within an εi from each other
in the i-th objective. Later, Santana-Quintero et al. [24] and
Cai et al. [2] incorporated the ε-dominance concept into DE
method to solve MOPs. However, the above-mentioned ε-
domination based MOEAs do not overcome the main limi-
tation of ε-dominance: the loss of several nondominated so-
lutions from the hypergrid adopted in the archive because of
the way in which solutions are selected within each box [13].
In order to remedy the limitation, Hernández-Dı́az et al.
[13] proposed a new Pareto-adaptive ε-dominance method,
called paε-dominance, where different ε-dominance regions
depending on the geometrical characteristics of the Pareto-
optimal front is used. This method remedies some limita-
tions of the original ε-dominance and can finds a higher
number of efficient points. However, in order to use the paε-
dominance method, an initial Pareto front approximation,
denoted by F , must be generated [13]. And the number of
efficient points in F can be critical for the final performance.
If F is not generated efficiently, the final performance may
be very poor.

3.2 Orthogonal design method in EAs

In a discrete single objective optimization problem, when
there are N factors (variables) and each factor has Q lev-
els, the search space consists of QN combinations of levels.
When N and Q are large, it may not be possible to do all
QN experiments to obtain optimal solutions. Therefore, it is
desirable to sample a small, but representative set of com-
binations for experimentation, and based on the sample, the
optimal may be estimated. The orthogonal design was de-
veloped for the purpose [11]. The selected combinations are
scattered uniformly over the space of all possible combina-
tions QN .

Recently, some researchers applied the orthogonal de-
sign method incorporated with EAs to solve optimization
problems. Leung et al. [17] incorporated orthogonal design
in GA for numerical optimization problems and found such
method was more robust and statistically sound than the
classical GAs. OMOEA [29] presented by Zeng et al. adopted
the orthogonal design method to solve MOPs. In OMOEA,
it uses the orthogonal design method to generate a group of
sub-niches, every sub-niche evolves at each generation. Be-
cause the orthogonal arrays (OAs) must be generated at each
generation, OMOEA is very time-consuming. Cai et al. [2]
proposed a novel multiobjective DE, ε-ODEMO, which uses
the orthogonal design method to generate the initial popula-
tion and adopts ε-dominance to update the archive. Experi-
mental results indicate ε-ODEMO is very efficient in terms
of convergence near to the Pareto-optimal front, diversity of
solutions, and computational time. However, there are two
limitations of ε-ODEMO, (i) it may lose some nondomi-
nated solutions in the final archive; and (ii) the choice of
the ε-vector is difficult of this approach.

4 Differential Evolution Algorithm

DE algorithm [26] is a simple evolutionary algorithm that
creates new candidate solutions by combining the parent in-
dividual and several other individuals of the same popula-
tion. A candidate replaces the parent only if it has better
fitness. This is a rather greedy selection scheme that of-
ten outperforms traditional EAs. Unlike GA that uses bi-
nary coding to represent problem parameters, DE is a sim-
ple yet powerful population based, direct search algorithm
with the generation-and-test feature for globally optimiz-
ing functions using real valued parameters. It has been suc-
cessfully used in solving single-objective optimization prob-
lems. Among the DE’s advantages are its simple structure,
ease of use, speed and robustness.

The DE algorithm in pseudo-code is shown in Algo-
rithm 1. Where NP is size of the evolutionary population.
CR is the probability of crossover operator. F is the scaling
factor. rndint(1, n) is a randomly chosen index∈ 1, 2, · · · , n
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which ensures that U i gets at least one parameter from the
mutant vector. And rndj [0, 1) is the j-th evaluation of a
uniform random number generator from [0, 1). Many vari-
ants of creation of a candidate are possible. We use the DE
scheme DE/rand/1/bin (see lines 6 and 13 of Algorithm 1)
described in Algorithm 1 (more details on DE/rand/1/bin
scheme and other DE schemes can be found in [27]).

Algorithm 1 DE algorithm with DE/rand/1/bin scheme
1: Generate the initial population of NP individuals P (0)
2: Evaluate the fitness for each individual in P (0)
3: while The halting criterion is not satisfied do
4: for i = 1 to NP do
5: Select uniform randomly r1 �= r2 �= r3 �= i

6: jrand = rndint(1, n)
7: for j = 1 to n do
8: if rndj [0, 1) < CR or j = jrand then
9: U i

j = X
r1
j + F × (Xr2

j − X
r3
j )

10: else
11: U i

j = Xi
j

12: end if
13: end for
14: Evaluate the offspring U i

15: if U i is better than Xi then
16: Xi = U i

17: end if
18: end for
19: end while

5 Our Proposed Approach: paε-ODEMO

From the literature review, the main deficiency in the ex-
isting MOEAs lies on designing a suitable fitness assign-
ment strategy in order to search for a uniformly distributed,
near-complete and near-optimal approximated Pareto front
for the given optimization problem. Unfortunately, these ob-
jectives are contradictory. Inspired by the ideas from the
orthogonal design method successfully used in EAs ([17],
[29], and [2]) and paε-dominance proposed in [13], in this
work, we propose an extension of DE algorithm to solve
constrained MOPs, which integrates established techniques
in existing EA’s in a single unique algorithm. Our proposed
DE algorithm is named paε-ODEMO. Six crucial proce-
dures of paε-ODEMO will be discussed as follows.

5.1 Orthogonal Initial Population

As mentioned above, in order to use the paε-dominance method,
an initial Pareto front approximation F must be generated
[13]. And the number of efficient points in F can be critical
for the final performance. Obviously, the higher the number
of the efficient points in F the better performance of the grid
generated. However, before solving an optimization prob-
lem, we usually have no information about the location of

the global minimum. It is desirable that an algorithm starts
to explore those points that are scattered evenly in the fea-
sible solution space. In our presented manner, the algorithm
can evenly scan the feasible solution space once to locate
good points for further exploration in subsequent iterations.
As the algorithm iterates and improves the population of
points, some points may move closer to the global mini-
mum. Based on these considerations, in order to obtain an
efficient F to generate the the first grid as soon as possible,
we apply the quantization technique and the orthogonal de-
sign method to generate this initial archive and evolutionary
population (EP).

5.1.1 Design of the orthogonal array

To design an orthogonal array (OA), in this research, we use
LR(QC) to denote the OA with different level Q, where Q

is odd and use R = QJ to indicate the number of the rows
of OA, where J is a positive integer fulfilling

C =
QJ − 1

Q − 1
(3)

C denotes the number of the columns of OA in the above
equation. The OA needs to find a proper J and Q to satisfy

minimize : R = QJ

subject to : C =
QJ − 1

Q − 1
≥ n (4)

R ≥ NP

where n is the number of the variables, NP is the size of
the evolutionary population. In this study, we adopt the al-
gorithm described in [17] to construct an OA. In particular,
we use L(R, C) to indicate the OA; and ai,j to denote the
level of the jth factor in the ith combination in L(R, C). The
algorithm to generate the OA is described in Algorithm 2.

5.1.2 Quantization

For one decision variable Xj with the boundary [lj, uj ], we
quantize the domain into Q levels αj

1, α
j
2, · · · , αj

Q, where
the design parameter Q is odd and αi is given by

αj
i = lj + (i − 1)(

uj − lj
Q − 1

), 1 ≤ i ≤ Q (5)

In other words, the domain [lj , uj] is quantized Q − 1 frac-
tions, and any two successive levels are same as each other.

5.1.3 Generation of Initial Population

After constructing a proper OA and quantizing the domain
of each decision variable, we can generate the orthogonal
population (OP) which can scatter uniformly over the de-
cision space. Recall that Algorithm 2 can only construct
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Algorithm 2 Construction of Orthogonal Array
1: /* Construct the basic columns */
2: for k = 1 to J do
3: j = Qk−1

−1
Q−1

+ 1

4: for i = 1 to R do
5: ai,j = � i−1

QJ−k
� mod Q

6: end for
7: end for
8: /* Construct the nonbasic columns */
9: for k = 2 to J do

10: j = Qk−1
−1

Q−1
+ 1

11: for s = 1 to j − 1 do
12: for t = 1 to Q − 1 do
13: for i = 1 to R do
14: ai,(j+(s−1)(Q−1)+t) = (ai,s × t + ai,j) mod Q

15: end for
16: end for
17: end for
18: end for
19: Increment ai,j by one for all i ∈ [1, R] and j ∈ [1, C]

LR(QC), where R = QJ and J is a smallest positive in-

teger fulfilling C = QJ−1
Q−1 ≥ n [see (4)]. Since the prob-

lem dimension n is given, when we execute Algorithm 2 to
construct an OA with C factors, if C > n, then delete the
last C − n columns to get an array with n factors. And the
remainder of the array is still an OA [17]. The algorithm
for generating the OP is described in Algorithm 3, where
OPi,j is the j-th variable of the i-th individual of OP, R

is the number of rows in OA, n is the number of decision
variables, and eval is the current number of fitness function
evaluations (NFFEs). Regularly, the number of the rows R

of the OA is larger than the population size NP , so we cre-
ate the initial archive with the nondominated solutions from
OP first. And then we generate the initial EP from the initial
archive and OP with the following procedure (more details
are described in Algorithm 3). If ar size ≥ NP , we select
NP solutions from the initial archive randomly; or all of
the ar size solutions in the initial archive are inserted into
EP, and the remainder NP − ar size solutions are selected
from OP randomly. Compared with OGA/Q [17], our ap-
proach and OGA/Q differ in two aspects with respect to the
generation of initial population: (i) our approach integrates
the orthogonal design method within MOEAs, and (ii) in our
approach there are two population, archive and EP, we first
generate the initial archive with the nondominated solutions
from OP, and then the initial EP is generated from the ini-
tial archive and OP. It is worth to point out that for a given
MOP and the given Q and J , the initial archive generated
by Algorithm 3 is the same for all runs, so we can gener-
ate the initial archive offline to avoid the time complexity of
the Algorithm 2 and Algorithm 3. Thus we do not need to
generate the initial archive each run, which makes the new
algorithm more efficient. Furthermore, for a given MOP, we
only need to generate a minimal OA which satisfies (4), so

that the parameters Q and J are very easy to be selected for
different problems.

Algorithm 3 Construction of Initial Archive and Evolution-
ary Population
1: /* Construction of orthogonal population (OP) */
2: eval = 0, ar size = 0
3: for i = 1 to R do
4: for j = 1 to n do
5: k = ai,j

6: OPi,j = α
j
k

7: end for
8: Evaluate OPi and eval++
9: end for

10: /* Construction of initial archive (AR) */
11: Find all of the nondominated solutions of OP
12: Insert them into the initial archive, now ar size > 0
13: /* Construction of initial evolutionary population (EP) */
14: if ar size ≥ NP then
15: Randomly select NP solutions from AR to generate initial EP
16: else
17: Insert all of the ar size solutions of AR into EP
18: Select the remainder NP − ar size solutions from OP ran-

domly
19: Inert them into EP
20: end if

5.2 Archiving the Candidate Solutions

In the study of Zitzler et al. [31], it was clearly shown that
elitist helps in achieving better convergence in MOEAs. In
paε-ODEMO, the elitism scheme is also adopted through
maintaining an external archive of nondominated solutions
found in evolutionary process. In order to achieve a faster
convergence, in this work, the Pareto-adaptive ε-dominance,
the so-called paε-dominance proposed by Hernández-Dı́az
et al. [13], is used to update the archive. At each genera-
tion, in order to include a solution into this archive, it is
compared with respect to each member already contained
in the archive using paε-dominance after the grid is gen-
erated. Note, however, that although ε can often have little
meaning for test function analysis, the ε-dominance method
is very useful: i) it allows for the desired convergence prop-
erties, and ii) it guarantees an optimal distribution of solu-
tions [16]. Moreover, Laumanns et al. [16] pointed out that
none of the MOEAs has a proof of convergence to the true
Pareto-optimal solutions with a wide diversity among the so-
lutions, so the ε-dominance method used to solve engineer-
ing problems is meaningful and reasonable compared with
other MOEAs. The procedure is described as follows.

Every solution in the archive is assigned an identification
array (B = (B1, B2, · · · , Bk)T , where k is the total number
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of objectives) as follows:

Bi(f) =
⌊ log(

εi

1pvi−(pvi−1)fi

εi

1
)

log( 1
pvi

)
+ 1

⌋
(6)

where, p controls the shape of the curve (or surface), T is
the number of points desired by the decision maker, εi

1 is the
size of the first box for each dimension, and vi controls the
speed of variation. These parameters satisfy the following
equations:{

εi
1 = (pvi−1)p(T−1)vi

pT vi−1

(1 − 21/p)pTvi + 21/ppTvi/2 − 1 = 0
(7)

The identification array divides the whole objective space
into hyper-boxes. With the identification arrays calculated
for the offspring c and each archive member a, the offspring
c updates the archive as Algorithm 4 described (Ba indicates
the identification arrays of solution a).

Algorithm 4 Updating the Archive
1: if Bc of the offspring ε-dominates Ba of any archive member a

then
2: Delete all of the dominated archive members
3: Accept the offspring c

4: else if Bc is ε-dominated by Ba of any archive member a then
5: Reject c

6: else
7: if c shares the same grid with an archive member a then
8: if c dominates a or c is closer to the grid than a then
9: Delete a from the archive and accept c

10: else
11: Reject c

12: end if
13: else
14: Insert c into the archive
15: end if
16: end if

Using the paε-dominance method, we can maintain the
good properties of the original ε-dominance, such as en-
suring both properties of convergence towards the Pareto-
optimal set and properties of diversity among the solutions
found in a small computation time, while overcoming the
main limitations of ε-dominance: the loss of several non-
dominated solutions from the hypergrid adopted in the archive.

5.3 Hybrid Selection Mechanism

In [16], Laumanns et al. concluded that the archived mem-
bers are really guaranteed to be the best solutions found. As
the archive is used to maintain the nondominated solutions
in paε-ODEMO, a key issue must be addressed is that how
to allow the archive members to take part in the generating
process? In ε-MOEA [9], [10], Deb et al. randomly picked

a solution from the archive for mating starting from the evo-
lutionary process. In ε-MyDE [24], Santana-Quintero et al.
proposed two selection mechanisms, where the random se-
lection and elitist selection are interleaved. At the beginning,
all of the parents for mating are randomly selected from the
EP to generate the offspring. When the current generations
is larger than a pre-defined number, the elitist selection is
used and all of the parents are randomly selected from the
archive to generate the offspring. However, these two tech-
niques have a limitation: the selection pressure is very high.
Especially, in ε-MyDE, the main evolutionary population
(EP) is not used at all when the elitist selection is adopted.

In our proposed approach, in order to regulate the se-
lection pressure we propose a hybrid selection mechanism,
which is similar to the method used in ε-MyDE, in which
a random selection and an elitist selection are interleaved.
The difference between ε-MyDE and our approach is that
in elitist selection we only randomly choose one solution
from the archive as the base parent, Xr1 , in DE/rand/1/bin
scheme described in Algorithm 1. And the other two par-
ents, Xr2 and Xr3 , are selected from EP randomly. We use
a selection parameter λ ∈ [0.1, 1.0] to regulate the selection
pressure.

selection =

{
random selection, eval < (λ × Max eval)
elitist selection, otherwise

(8)

where, eval is the current NFFEs, and Max eval is the
maximal NFFEs pre-defined by the user. In our proposed
hybrid selection mechanism, one archive solution, which is
disturbed by the two randomly selected solutions from EP,
is selected to take part in the generating process when the
elitist selection is used. In this manner, our approach has
three advantages: (i) it can guarantee to be the best solu-
tions found; (ii) because we do not use the archive solution
to guide the search at the beginning of evolutionary process,
it can avoid to be misled by the inefficient archive solutions;
and (iii) the solutions in EP can also guide the search in the
elitist scheme.

5.4 Constraint-handling Method

Usually, most of engineering design problems have multi-
ple constraints. So it is essential to handle the constraints
to solve the engineering design problems. A considerable
amount of researches on constraint handing techniques that
incorporate objective(s) and constraint(s) into the fitness func-
tion of design candidates has been carried out (a good sum-
mary is given in [3]). However, many previous constraint-
handling methods need to tune some parameters to balance
between the objective(s) and constraint(s). In this research,
we employ a new constraint-handling method proposed by
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Oyama [19], which does not need any parameters to be tuned
for constraint handling. This method is based on the “Constraint-
First-Objective-Next” model [15], where the constraints pre-
cede the objectives because the feasibility of x is more im-
portant than minimization of f(x). The method is described
as follows.

Definition 6 (Constrained Pareto dominance) A solution xi

is said to constrained-dominate a solution xj , if any of the
following conditions is true:

1. Solutions xi and xj are both feasible and solution xi

dominates solution xj in objective function space.
2. Solution xi is feasible and solution xj is not.
3. Solutions xi and xj are both infeasible, but solution xi

dominates solution xj in constraint space.

where dominance in objective space is defined as Defini-
tion 1 while dominance in constraint space is defined as:

Definition 7 (Constraint space dominance) A solution xi

is said to dominate a solution xj in constraint space, if both
of the following conditions are true:

1. Solutions xi is no worse than solution xj in all con-
straints, i.e.,

∀Ek(xi) ≥ Ek(xj) (9)

2. Solution xi is strictly better than solution xj in at least
one constraint, i.e.,

∃Ek(xi) > Ek(xj) (10)

where Ek(x) = min(0, ek(x)), and k = 1, · · · , m.

5.5 Handling the Constraint of the Variables

After using the DE/rand/1/bin scheme to generate a new so-
lution, if one or more of the variables in the new solution
are outside their boundaries, i.e. xi /∈ [li, ui], the following
repair rule is applied:

xi =

{
li + rndi[0, 1]× (ui − li) if xi < li
ui − rndi[0, 1] × (ui − li) if xi > ui

(11)

where rndi[0, 1] is the uniform random variable from [0,1]
in each dimension i.

5.6 Main Procedure of paε-ODEMO

For an MOP, the proposed paε-ODEMO algorithm works
as Algorithm 5. First, the temporary orthogonal population
(OP) is created using Algorithm 3, all of the nondominated
solutions of OP are inserted into the initial archive (AR).
And then, the initial evolutionary population (EP) is cre-
ated from AR and OP. At each generation, an offspring is

Algorithm 5 Main procedure of the proposed paε-ODEMO
1: Generate a proper OA and generate the orthogonal population OP

2: Create the initial archive AR1 with the nondominated solutions of
OP

3: Create the initial evolutionary population EP1 from AR1 and OP

4: t = 1
5: flag = 0
6: while eval < Max eval do
7: child size = 0
8: for i = 1 to NP do
9: if eval < λ × Max eval then

10: Random selection
11: Produce the offspring c with DE/rand/1/bin scheme
12: else
13: Elitist selection
14: Produce the offspring c with DE/rand/1/bin scheme
15: end if
16: Evaluate the offspring c and eval++
17: if the offspring c dominates the target parent EP i

t then
18: EP i

t = c

19: else if c is nondominated by EP i
t then

20: Add c to the child population CP

21: child size++
22: else
23: Discard c

24: end if
25: if flag == 0 then
26: Update the archive with the usual dominance
27: else
28: Update the archive with paε-dominance
29: end if
30: end for
31: if child size �= 0 then
32: Combine CP and EPt

33: Prune the mixed population using nondominated ranking
method only

34: Get the next evolutionary population EPt+1

35: end if
36: if ar size ≥ N F and flag == 0 then
37: Generate the paε-dominance grid
38: flag = 1
39: end if
40: t++
41: end while

generated using DE/rand/1/bin scheme. The offspring re-
places the parent immediately if the parent is dominated by
the offspring. If the parent dominates the offspring, the off-
spring is discarded. Otherwise (when the offspring and par-
ent are nondominated with regard to each other), the off-
spring is added to a temporary child population (CP). If
the first grid is not generated, insert the offspring into the
archive with usual dominance concept. Otherwise, if the first
grid has been generated, insert the offspring into the archive
with paε-dominance concept. This step is repeated until NP

number of offspring are created. After that, combine the
temporary child population CP with EP, and we get a popu-
lation of the size between NP and 2×NP . If the population
has enlarged, we have to truncate it to prepare it for the next
step of the algorithm.



8

The truncation sorts the individuals with nondominated
sorting and if the individuals in the same front we only se-
lect them randomly. This is different from NSGA-II [8] and
DEMO [23] to evaluate the individuals of the same front
with the crowding distance metric. Because in our approach
the diversity is maintained in the archive with paε-dominance.
The truncation procedure keeps in EP only the best NP in-
dividuals (with regard to the nondominated sorting metric).

If the initial Pareto front approximation F is created, i.e.
ar size is larger than N F that is the size of F , and the
first grid is not generated, then we use the paε-dominance
concept to generate the grid (the algorithm is omitted here,
interest readers can refer [13] for more details).

6 Experiments and Results

In order to validate the performance of our proposed ap-
proach, paε-ODEMO, it is tested on seven constrained bench-
mark problems to illustrate the capabilities of the algorithm
in handling mathematically complex problems. Also, four
well-studied engineering design optimization problems are
solved to illustrate the efficiency and applicability of the al-
gorithm for multiobjective design optimization. Moreover,
our approach is compared with NSGA-II [8], which is one
of the best MOEAs available at present. For paε-ODEMO,
we have chosen a reasonable set of value and have not made
any effort in finding the best parameter settings. We leave
this task for a future study.

6.1 Parameter Settings

All approaches are run 50 independent runs with different
random seeds on all test problems. The maximal NFFEs of
different problems (described in the following sections) are
different due to the complexity of the search space. For dif-
ferent approaches, the parameter settings are as follows:

– For NSGA-II [8], the simulated binary crossover (SBX)
and polynomial mutation are used. The crossover prob-
ability of pc = 0.9 and a mutation probability of pm =

1/n (where n is the number of decision variables). The
distribution indices for crossover and mutation operators
set as ηc = 20 and ηm = 20, respectively. The popula-
tion size of NP = 100.

– For paε-ODEMO, the crossover probability of pc = 0.9

and the scaling factor of F = 0.5. The evolutionary pop-
ulation size NP is set to 100. The size of initial Pareto
front approximation F is N F = 1001. The number of
points desired by the decision maker of T = 100. The

1 For a grid with a maximum capacity of 100 vectors (i.e. T = 100),
Hernández-Dı́az et al indicated that the best results are obtained when
75 ≤ N F ≤ 125 [13].

selection parameter of λ = 0.9. As suggested in [17], to
generate an OA, we use J = 2, and Q = 11 if n < 10;
otherwise, Q = n − 1.

6.2 Performance Metrics

In order to make a fair comparison with other MOEAs, we
use two performance metrics proposed by Deb et al. [8] to
assess the performance. The two metrics are derived from
the final generation of 50 independent runs with different
random seeds.

The first metric is the Convergence metric γ. It mea-
sures the distance between the obtained nondominated front
Q and the set POF of Pareto-optimal front:

γ =

∑|Q|
i=1 di

|Q| (12)

where di is the Euclidean distance (in the objective space,
hereinafter) between the solution i ∈ Q and the nearest
member of POF . The lower the γ value, the better the con-
vergence of solutions. A result of γ = 0 indicates the con-
vergence Q = POF ; any other value indicates Q deviates
from POF .

The second metric is Diversity metric Δ. This metric
measures the extent of spread achieved among the obtained
nondominated front Q. It is desirable to get a set of solutions
that spans the entire Pareto-optimal region. Δ is defined as
follows:

Δ =

∑k
i=1 de

i +
∑|Q|

i=1 |di − d|∑k
i=1 de

i + |Q|d
(13)

where de
i denotes the Euclidean distance between the i-th

coordinate for both extreme points in Q and POF , and di

measures the Euclidean distance of each point in Q to its
closer point in Q. From the above definition, it is easy to
conclude that Δ ≥ 0 and the lower the Δ value, the better
the distribution of solutions. A perfect distribution, that is
Δ = 0, means that the extreme points of POF have been
found and di is constant for all i.

Moreover, in order to compare the dominance relation-
ship between two populations resulting from two different
MOEAs, the coverage of two sets (C value) [30], which is a
binary metric [33], is measured to show how the final pop-
ulation of one algorithm dominates the final population of
another algorithm. The C value can be calculated as follows:

C(X ′, X ′′) =
|a′′ ∈ X ′′; ∃a′ ∈ X ′ : a′ 	 a′′|

|X ′′| (14)

where X ′, X ′′ ∈ X are two sets of objective vectors, and
a′ 	 a′′ means that a′ covers a′′ if and only if a′ ≺ a′′ or
a′ = a′′. Function C maps the ordered pair (Xi, Xj) to the
interval [0, 1], where Xi and Xj denote the final populations
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resulting from algorithm i and j, respectively. The value
C(Xi, Xj) = 1 implies that all points in Xj are dominated
by or equal to points in Xi. The opposite, C(Xi, Xj) =

0, represents the situation when none of the points in Xj

are covered by the set Xi. Note that both C(Xi, Xj) and
C(Xj , Xi) need to be considered independently since they
have the distinct meanings.

6.3 Benchmark Constrained MOPs

First, we select seven benchmark constrained MOPs (OSY,
SRN, TNK, Kita, Tamaki, DTLZ8, and DTLZ9) to test the
capabilities of the algorithm in handling mathematically com-
plex problems. The details of these problems are described
in Table 1, where OSY, SRN, and TNK are chosen from [6],
Kita and Tamaki are chosen from [24], DTLZ8 and DTLZ9
are selected from [7]. For OSY, SRN, TNK, and Kita, they
are two-objective MOPs. For Tamaki, DTLZ8, and DTLZ9,
they are three-objective MOPs. The characters of these prob-
lems are briefly described as follows.

– For OSY, there are six constraints. The Pareto-optimal
region is a concatenation of five regions. Every region
lies on the intersection of certain constrains. Since the
entire Pareto-optimal region demands an MOEA popu-
lation to maintain sub-populations at different intersec-
tions of constraint boundaries, it is difficult to solve for
MOEAs.

– For SRN, it is relatively easy to solve for MOEAs. The
only difficulty the constraints introduce in this problem
is that they eliminate some part of the unconstrained
Pareto-optimal set.

– For TNK, this is a disconnected MOP, the Pareto-optimal
sets are disconnected because of the constraints. Since
the Pareto-optimal solutions lie on a non-linear constraint
space, an optimization algorithm may find difficulty in
finding a spread of solutions across the entire Pareto-
optimal region.

– For Kita, this problem has disconnected, concave Pareto-
optimal front, and the Pareto-optimal set is also discon-
nected. Note that the Pareto-optimal set is in the bound-
ary between the feasible and the infeasible region.

– For Tamaki, this a three-objective MOP. The Pareto-optimal
front is connected and forms a curved surface.

– For DTLZ8, it is a high-dimensional and three-objective
problem. The Pareto-optimal front is a combination of
a straight line and a hyper-plane. An optimization algo-
rithm may find difficulty in finding solutions in both the
straight line and the hyper-plane in this problem and also
in maintaining a good distribution of solutions on the
hyper-plane.

– For DTLZ9, it is also a high-dimensional and three-objective
problem. The Pareto-optimal front is a curve with f1 =

f2. The density of solutions gets thinner towards the Pareto-
optimal region. The Pareto-optimal curve lies on the in-
tersection of all 2 constraints. This feature of this prob-
lem may cause MOEAs difficulty in solving this prob-
lem.

Table 2 compares the performances of paε-ODEMO and
NSGA-II. The statistics shown are based on 50 independent
runs with different random seeds. All the algorithms are im-
plemented in C++ and the experiments are done on a P-IV
2.8 GHz machine with 512 MB RAM under WIN-XP plat-
form. For the convergence metric and diversity metric, we
need to know the true Pareto-optimal front for a problem.
Since the benchmark constrained MOPs in Table 1 are arti-
ficial test problems, the true Pareto-optimal front is not dif-
ficult to be obtained. In our experiments we use uniformly
spaced Pareto-optimal solutions as the approximation of the
true Pareto-optimal front.

From Table 2, we can see that our approach is capa-
ble of converging closely to the true Pareto-optimal front,
with good distribution of non-dominated solutions, for all of
the benchmark constrained MOPs. With respect to the set
coverage metric, paε-ODEMO produces better mean val-
ues than NSGA-II for all of the seven MOPs. Also com-
pared with the convergence metric, paε-ODEMO performs
better than NSGA-II for these test problems. For the diver-
sity metric, paε-ODEMO provides better mean values than
NSGA-II for six out of seven test problems, NSGA-II is
better than paε-ODEMO on OSY. However, from Fig. 1, it
can be seen that NSGA-II can not coverage the entire true
Pareto front sometimes. Moreover, paε-ODEMO needs less
CPU time than NSGA-II. The reason are two aspects. On the
one hand, for a give MOP and the given Q and J we only
need to generate the initial archive one run out of 50 runs.
On the other hand, as described in Algorithm 5, the crowd-
ing distance metric is not used in our approach, and hence
it can eliminate the complexity of O(k(2NP )log(2NP ))

of the crowding distance assignment and the complexity of
O(2NPlog(2NP )) of the crowding distance sorting com-
pared with NSGA-II [8].

In order to demonstrate the working of the algorithm,
a typical simulation run using paε-ODEMO and NSGA-II
is shown in Fig. 1 and Fig. 2 for all benchmark constrained
problems. The graphical illustration also clearly demonstrates
that for the two-objective MOPs paε-ODEMO is able to
search for a uniformly distributed, near-complete and near-
optimal approximated Pareto front. Furthermore, paε-ODEMO
can obtain better nondominated solutions than NSGA-II for
all three-objective MOPs.

From the comparison and analysis above, we can con-
clude that paε-ODEMO can produce competitive results com-
pared with NSGA-II. It is able to search for a uniformly
distributed, near-complete and near-optimal approximated
Pareto front. Moreover, paε-ODEMO can deal with two-
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Table 1 Benchmark constrained problems used in this study, n is the number of decision variables

Problem Max eval n Domain Objective functions Constraints
OSY 25,000 6 0 ≤ x1, x2, x6 ≤ 10 minf1(x) = −25[

∑ 2
i=1(xi − 2)2 + (x3 − 1)2+ e1(x) = x1 + x2 − 2 ≥ 0

(x4 − 4)2 + (x5 − 1)2]
1 ≤ x3, x5 ≤ 5 minf2(x) =

∑ 6
i=1 x2

i
e2(x) = 6 − x1 − x2 ≥ 0

0 ≤ x4 ≤ 6 e3(x) = 2 + x1 − x2 ≥ 0
e4(x) = 2 − x1 + 3x2 ≥ 0
e5(x) = 4 − (x3 − 3)2 − x4 ≥ 0
e6(x) = (x5 − 3)2 + x6 − 4 ≥ 0

SRN 5,000 2 −20 ≤ x1 ≤ 20 minf1(x) = 2 + (x1 − 2)2 + (x2 − 1)2 e1(x) = 225 − x2
1 − x2

2 ≥ 0
−20 ≤ x2 ≤ 20 minf2(x) = 9x1 − (x2 − 1)2 e2(x) = 10 − x1 + 3x2 ≥ 0

TNK 20,000 2 0 ≤ x1 ≤ π minf1(x) = x1 e1(x) = x2
1 + x2

2 − 1−
0.1 cos (16 arctan (x1/x2)) ≥ 0

0 ≤ x2 ≤ π minf2(x) = x2 e2(x) = 0.5 −
∑ 2

i=1 (xi − 0.5)2 ≥ 0

Kita 5,000 2 x1 ≥ 0 maxf1(x) = x2 − x2
1 e1(x) = 6.5 − x1/6 − x2 ≥ 0

x2 ≥ 0 maxf2(x) = 0.5x1 + x2 + 1 e2(x) = 7.5 − x1/2 − x2 ≥ 0
e3(x) = 30 − 5x1 − x2 ≥ 0

Tamaki 5,000 3 0 ≤ xi ≤ 1 maxf1(x) = x1 e1(x) = x2
1 + x2

2 + x2
3 > 0

maxf2(x) = x2

maxf2(x) = x3

DTLZ8 50,000 30 0 ≤ xi ≤ 1 minf1(x) = 1
10

∑ 10
i=1 xi e1(x) = f3(x) + 4f1(x) − 1 ≥ 0

minf2(x) = 1
10

∑ 20
i=11 xi e2(x) = f3(x) + 4f2(x) − 1 ≥ 0

minf3(x) = 1
10

∑ 30
i=21 xi e3(x) = 2f3(x) + f1(x) + f2(x) − 1 ≥ 0

DTLZ9 50,000 30 0 ≤ xi ≤ 1 minf1(x) = 1
10

∑ 10
i=1 x0.1

i
e1(x) = f2

3 (x) + f2
1 (x) − 1 ≥ 0

minf2(x) = 1
10

∑ 20
i=11 x0.1

i
e2(x) = f2

3 (x) + f2
2 (x) − 1 ≥ 0

minf3(x) = 1
10

∑ 30
i=21 x0.1

i

Table 2 Comparison of paε-ODEMO and NSGA-II on the seven benchmark constrained problems considered in the study showing the mean, and
standard deviation (SD) values for set coverage metric (C, where X1 and X2 represent paε-ODEMO and NSGA-II, respectively), convergence
metric (γ), and spread metric (Δ). All results have been averaged over 50 independent runs. A result with boldface indicates better value obtained.

Problem Statistic
C γ Δ Time (s)

C(X1, X2) C(X2, X1) paε-ODEMO NSGA-II paε-ODEMO NSGA-II paε-ODEMO NSGA-II
OSY Mean 0.26040 0.16947 1.31837 1.56145 0.80109 0.74815 0.64000 0.72648

SD 0.11974 0.05659 0.16359 0.22319 0.07555 0.08818 0.02640 0.02360
SRN Mean 0.12900 0.01263 0.06575 0.23971 0.15080 0.39062 0.14470 0.22188

SD 0.03190 0.00935 0.00882 0.03456 0.01632 0.04516 0.00697 0.01411
TNK Mean 0.11880 0.09949 0.00146 0.00228 0.367440 0.84805 0.42648 0.49932

SD 0.03243 0.03350 2.28E-4 3.59E-4 0.042210 0.10055 0.02604 0.02156
Kita Mean 0.55318 0.01100 0.01964 0.07199 0.29728 0.81069 0.11532 0.17340

SD 0.05346 0.01093 0.00145 0.07644 0.03246 0.14839 0.00767 0.01007
Tamaki Mean 0.17960 0.08153 0.01903 0.02027 0.34264 0.51283 0.13316 0.22682

SD 0.04708 0.02684 0.00075 0.00249 0.01735 0.04984 0.00793 0.03209
DTLZ8 Mean 0.35160 0.00373 0.00982 0.03549 0.34844 0.58427 2.03898 2.75628

SD 0.06052 0.00402 7.86E-4 0.00593 0.02166 0.03546 0.07374 0.18688
DTLZ9 Mean 0.96980 0.81995 0.02018 0.02530 0.74592 0.78633 2.09844 2.56438

SD 0.04851 0.13507 0.00573 0.00356 0.02456 0.03416 0.05457 0.12258

and three-objective problems of diverse complexities; prob-
lems with low and high dimensionality, with different types
of Pareto fronts (concatenation, concave, discontinuous, thin
density and non-uniform spread), and with many constraints.

6.4 Different Parameter Settings

In this work, we do not make any serious attempt to find
the best parameter settings for paε-ODEMO. However in
this section, we perform additional experiments to show the
effect of a couple of different parameter settings on the per-
formance of paε-ODEMO.

First, we keep all other parameters as described in Sec-
tion 6.1, but perform our approach with λ taken from [0.0, 1.0]

by step 0.1. Especially, when λ = 0.0, it means that start-
ing from evolution one of the archive solutions is selected

to generate the offspring. In this case, the inefficient archive
member may mislead the search. However, λ = 1.0 indi-
cates that any archive solution is not selected to generate the
offspring at all. It can be observed from Fig. 3 that different
λ provides different performance in terms of convergence
metric and diversity metric. For all benchmark constrained
MOPs, the good control value λ is from [0.5, 0.9].

It is very interesting that apparently if λ = 0.0, paε-
ODEMO produces the worst performance in terms of both
convergence metric and diversity metric for all benchmark
MOPs . It means that the archive member mislead the search
if they take part in the generating process starting from evo-
lution. In addition, for λ = 1.0, the performance of paε-
ODEMO is poor for most of benchmark MOPs. It indicates
that properly allowing the archive solutions to take part in
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Fig. 1 Nondominated solutions of the final archive obtained by paε-ODEMO and NSGA-II on two-objective MOPs. The presented fronts are the
outcome of a typical run for paε-ODEMO and NSGA-II.
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Fig. 2 Nondominated solutions of the final archive obtained by paε-ODEMO and NSGA-II on three-objective MOPs. The presented fronts are the
outcome of a typical run for paε-ODEMO and NSGA-II.

the generating process can guarantee to be the best perfor-
mance produced.

Second, we test different levels Q on the performance
of paε-ODEMO. Except for Q, all other parameters as de-
scribed in Section 6.1. For OSY, SRN, TNK, Kita, and Tamaki,
Q sets with 11, 17, 21, 27, 31, 37, 41, 47, 51, 57 (ticks 1 -
10 of X axis in Fig. 4 and 5). For DTLZ8 and DTLZ9, Q

sets with 29, 35, 39, 45, 49, 55, 59, 65, 69, 75 (ticks 1 - 10
of X axis in Fig. 4 and 5). In addition, to validate the ef-
fect of orthogonal initial population, we generate the initial
evolutionary population randomly to replace the orthogonal

initial population used in paε-ODEMO. The tick 0 of X axis
in Fig. 4 and 5 represents the outcome of random initial pop-
ulation.

From Fig. 4, it can be observed that the performance of
random initial population is the worst in terms of both con-
vergence metric and diversity metric. Moreover, the effect
of different levels on the performance of our approach is
small. From Fig. 5, we can see that when the Q increases
the running time decreases. The reason is that for the given
Q and J we only need to generate the OA and the initial
archive one run. Since the maximal NFFEs is fixed, when Q
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Fig. 3 Effect of different selection parameter settings on the performance of all benchmark constrained MOPs. The results were averaged over
50 independent runs. Both convergence values and diversity values for each problem are normalized. Where problems 1-7 represent OSY, SRN,
TNK, Kita, Tamaki, DTLZ8, and DTLZ9, respectively, hereinafter.

Fig. 4 Effect of different levels on the performance of all benchmark constrained MOPs. The results were averaged over 50 independent runs.
Both convergence values and diversity values for each problem are normalized.

is larger, the algorithm needs more NFFEs to generate the
initial archive and evolutionary population, and hence the
remainder NFFEs for evolution process are smaller. In this
manner, if Q is too large, the overall performance of paε-
ODEMO may be poor [see Fig. 4].

6.5 Engineering Design Problems

From the benchmark constrained MOPs experiments, we
can see that our approach is able to handle mathematically
complex problems efficiently. So this section we will use our
approach to solve the engineering design problems. Four en-
gineering design problems are selected to test the efficiency

and applicability of the algorithm for multiobjective design
optimization. For paε-ODEMO and NSGA-II, the parame-
ter settings are described in Section 6.1. The consistency of
the algorithm was verified by running all the problems for
50 independent runs with different random seeds. However,
as the performance has already been proved (see previous
section), only the results for the representative sample run
in 50 runs are reported here.

6.5.1 Two-bar truss design

The first problem is the two-bar truss design problem, which
has been well studied by many researchers [12], [5], and
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Fig. 5 Effect of different levels on the running time of all benchmark
constrained MOPs. The results were averaged over 50 independent
runs. The time values for each problem are normalized.

Fig. 6 The two-bar truss design problem.

[22]. The problem is shown in Fig. 6, and the mathematical
description of the problem is as follows [5].

Minimize{
fvolume = f1(x) = x1(16 + y2)0.5 + x2(1 + y2)0.5

fstress,AC = f2(x) = 20(16 + y2)0.5/(x1y)

(15)

subject to⎧⎨
⎩

fvolume ≤ 0.1

fstress,AC ≤ 100, 000

fstress,BC = 80(1 + y2)0.5/(x2y) ≤ 100, 000

where 1 ≤ y ≤ 3, and x1, x2 ≥ 0.
The maximal NFFEs of this problem is 10,000 for both

paε-ODEMO and NSGA-II. The nondominated solutions
obtained with paε-ODEMO and NSGA-II are shown in Fig. 7.
From Fig. 7, it can be observed that the Pareto front of paε-
ODEMO is similar to the one of NSGA-II. The solutions ob-
tained with paε-ODEMO are spread in the range (0.004224m3,
99987kPa) and (0.098645m3, 1741.37kPa), and those ob-
tained with NSGA-II are spread in the range (0.0043319m3,
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Fig. 7 The nondominated solutions obtained by paε-ODEMO (top)
and NSGA-II (bottom) on two-bar truss design problem.

99533.26kPa) and (0.052769m3, 8433.61kPa). Thus paε-
ODEMO provides a wider spread than NSGA-II. If mini-
mum volume is desired, our approach gives a value as low as
0.004224m3. If minimization of stress is important, it finds
a solution with stress as low as 1741.37kPa. Moreover, from
Fig. 7, we can see that paε-ODEMO is able to maintain
a uniform distribution solutions and find a wide spread of
Pareto-optimal solutions.

6.5.2 Welded beam design

The second problem is selected from [21], which is to be de-
signed for minimum cost and minimum end deflection sub-
ject to constraints on shear stress, bending stress and buck-
ling load (Fig. 8). The mathematical formulation of the two
objective optimization problem is as follows.

Minimize{
f1(x) = 1.10471h2l + 0.04811tb(14.0 + t)
f2(x) = δ(x) = 2.1952/(t3b)

(16)

subject to⎧⎪⎪⎨
⎪⎪⎩

e1(x) = 13, 600− τ(x) ≥ 0

e2(x) = 30, 000− σ(x) ≥ 0

e3(x) = b − h ≥ 0
e4(x) = Pc(x) − 6, 000 ≥ 0
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Fig. 8 The welded beam design problem.

where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

τ(x) =
√

(τ ′)2 + (τ ′′)2 + lτ ′τ ′′√
0.25(l2+(h+t)2)

τ ′ = 6, 000/(
√

2hl)

τ ′′ =
6,000(14.0+0.5l)

√
0.25(l2+(h+t)2)

2[0.707hl(l2/12+0.25(l2+(h+t)2))]

σ(x) = 504, 000/(t2b)
Pc(x) = 64, 764.022(1− 0.0282346t)tb3

0.125 ≤ h, b ≤ 5.0, and0.1 ≤ l, t ≤ 10.0

Fig. 9 shows the non-dominated solutions obtained af-
ter 15,000 NFFEs for both paε-ODEMO and NSGA-II. It
can be seen that paε-ODEMO is also capable of maintaining
a uniform distribution of solutions. paε-ODEMO found the
minimal cost solution as 2.8959 units with deflection 0.0131
inches, and the minimal deflection as 0.00044 with a cost
of 36.6172 units. For NSGA-II, the minimal cost is 3.0294
units for deflection of 0.0088 units, and the minimal deflec-
tion is 0.000439 with a cost of 37.4018 units. The extreme
solutions are captured well in paε-ODEMO. Again, it is in-
dicated that our proposed approach is efficient and is able to
find a wide variety of Pareto-optimal solutions.

6.5.3 Speed reducer design

The third design problem is the speed reducer design prob-
lem shown in Fig. 10. This problem has also been studied in
[5], [12], [15], [24], and so on. The problem is described as
follows [5].

Minimize

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

fweight = f1(x) =
0.7854x1x

2
2(10x2

3/3 + 14.933x3 − 43.0934)

−1.508x1(x
2
6 + x2

7) + 7.477(x3
6 + x3

7)

+0.7854(x4x
2
6 + x5x

2
7)

fstress = f2(x) =

√
(
745x4
x2x3

)2+1.69×107

0.1x3
6

(17)
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Fig. 9 The nondominated solutions obtained by paε-ODEMO (top)
and NSGA-II (bottom) on welded beam design problem.

Fig. 10 The speed reducer design problem.

subject to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e1(x) = 1/27− 1/(x1x
2
2x3) ≥ 0

e2(x) = 1/397.5− 1/(x1x
2
2x

2
3) ≥ 0

e3(x) = 1/1.93− x3
4/(x2x3x

4
6) ≥ 0

e4(x) = 1/1.93− x3
5/(x2x3x

4
7) ≥ 0

e5(x) = 40 − x2x − 3 ≥ 0

e6(x) = 12 − x1/x2 ≥ 0

e7(x) = x1/x2 − 5 ≥ 0

e8(x) = x4 − 1.5x6 − 1.9 ≥ 0
e9(x) = x5 − 1.1x7 − 1.9 ≥ 0

e10(x) = 1, 300− f2(x) ≥ 0

e11(x) = 1, 100−
√

(
745x5
x2x3

)2+1.275×108

0.1x3
7

≥ 0
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Fig. 11 The nondominated solutions obtained by paε-ODEMO (top)
and NSGA-II (bottom) on speed reducer design problem.

where 2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 17 ≤ x3 ≤ 28,
7.3 ≤ x4, x5 ≤ 8.3, 2.9 ≤ x6 ≤ 3.9, and 5.0 ≤ x7 ≤ 5.5.

The Pareto fronts are presented in Fig. 11 obtained with
paε-ODEMO and NSGA-II after 15,000 NFFEs. paε-ODEMO
results in an extended Pareto curve between (2775.02, 1298.01)
and (5897.4, 695.348). And the solutions obtained with NSGA-
II are spread in the range (2772.08, 1299.8) and (5728.87,
696.726). Thus both have a wide variety of alternatives. The
proposed paε-ODEMO solutions are very competitive with
NSGA-II solutions in terms of both closeness to the true op-
timum front and their spread. It is worth to point out that the
solutions in the horizontal segment of the Pareto front are
obtained with paε-ODEMO because of the paε-dominance
adopted in paε-ODEMO.

6.5.4 Disc brake design

The fourth example consists in optimizing the disc brake de-
sign problems studied by [21]. The objectives of the design
are to minimize the mass of the brake and to minimize the
stopping time. The variables are the inner radius of the discs,
outer radius of the discs, the engaging force and the num-
ber of friction surfaces and are represented as x1, x2, x3

and x4 respectively. The constraints for the design include

minimum distance between the radii, maximum length of
the brake, pressure, temperature and torque limitations. The
problem is a mixed, constrained, multiobjective problem.
The mathematical description of this problem is as follows
[21].

Minimize{
f1(x) = 4.9 × 10−5(x2

2 − x2
1)(x4 − 1)

f2(x) =
9.82×106(x2

2−x2
1)

x3x4(x3
2−x3

1)

(18)

subject to⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

e1(x) = (x2 − x1) − 20 ≥ 0

e2(x) = 30 − 2.5(x4 + 1) ≥ 0

e3(x) = 0.4 − x3/(3.14(x2
2 − x2

1)) ≥ 0

e4(x) = 1 − 2.22×10−3x3(x
3
2−x3

1)

(x2
2−x2

1)
2 ≥ 0

e5(x) =
2.66×10−2x3x4(x

3
2−x3

1)

(x2
2−x2

1)
− 900 ≥ 0

where 55 ≤ x1 ≤ 80, 75 ≤ x2 ≤ 110, 1, 000 ≤ x3 ≤
3, 000, and 2 ≤ x4 ≤ 20.

The maximal NFFEs of this problem is 5,000 for both
paε-ODEMO and NSGA-II. The nondominated solutions
obtained with paε-ODEMO and NSGA-II are shown in Fig. 12.
It is presented from Fig. 12 that both algorithms are able
to obtain a wide variety of solutions which are uniformly
spread. The solutions obtained with paε-ODEMO are spread
in the range (0.1274, 16.6549) and (2.8684, 2.0906), and
those obtained with NSGA-II are spread in the range (0.1293,
17.598) and (2.7915, 2.1127). It is interesting to note that
NSGA-II found the minimal mass of the brake as 0.1293
with stopping time 17.598, this solution is dominated by
the minimal mass of the brake as 0.1274 with stopping time
16.6549 obtained with paε-ODEMO.

Moreover, in order to verify our approach, the four met-
rics (convergence metric, diversity metric, C metric, and
running time) are applied in the four engineering MOPs.
Note that in all the four problems we generated the true (or
global) Pareto-optimal front by enumeration, using parallel
processing techniques (some of these fronts require a rather
high computational effort to be generated by enumeration).

Table 3 shows the results of paε-ODEMO and NSGA-II.
The statistics shown are based on 50 independent runs with
different random seeds. From this table it can be observed
that NSGA-II requires more running time than paε-ODEMO
for all four engineering problems, and hence it has larger
time complexity. paε-ODEMO is able to obtain better con-
vergence values than NSGA-II for all engineering MOPs.
In addition, for the C metric, except for Disc brake design
problem, NSGA-II gives worse C values than paε-ODEMO.
Moreover, paε-ODEMO gives smaller diversity values than
NSGA-II for three engineering problems out of four. For the
speed reducer design problem the diversity of paε-ODEMO
is worse than NSGA-II, the reason is that paε-ODEMO re-
tains only a few solutions in the horizontal segment of the
Pareto-optimal front [see Fig. 11].
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Table 3 Comparison of paε-ODEMO and NSGA-II on the four engineering problems considered in the study showing the mean, and standard
deviation (SD) values for set coverage metric (C, where X1 and X2 represent paε-ODEMO and NSGA-II, respectively), convergence metric (γ),
and spread metric (Δ). All results have been averaged over 50 independent runs. A result with boldface indicates better value obtained.

Problem Statistic
C γ Δ Time (s)

C(X1, X2) C(X2, X1) paε-ODEMO NSGA-II paε-ODEMO NSGA-II paε-ODEMO NSGA-II
Two-bar truss Mean 0.95900 0.00240 254.9408 439.7384 0.87393 0.93725 0.26560 0.30660

SD 0.01669 0.00497 48.2813 52.8976 0.05032 0.02425 0.02685 0.00876
Welded beam Mean 0.19620 0.14481 0.09169 0.16875 0.58607 0.88987 0.37520 0.46880

SD 0.08366 0.04019 0.00733 0.08030 0.04366 0.11976 0.01940 0.02451
Speed reducer Mean 0.26524 0.05000 2.69281 3.0771 0.84041 0.79717 0.42500 0.46260

SD 0.13005 0.03411 0.24051 0.10782 0.20085 0.06608 0.00671 0.00876
Disc brake Mean 0.19800 0.20418 0.05175 0.08203 0.61511 0.66542 0.13780 0.16880

SD 0.09348 0.09952 0.00579 0.01957 0.04581 0.01431 0.00716 0.00661
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Fig. 12 The nondominated solutions obtained by paε-ODEMO (top)
and NSGA-II (bottom) on disc brake design problem.

From the above analysis we can see that the paε-ODEMO
solutions are very competitive with NSGA-II solutions in
terms of both closeness to the true optimum front and their
spread for all test problems used in this study. paε-ODEMO
does not have any difficulty in achieving a good spread of
Pareto-optimal solutions for constrained multiobjective op-
timization. The results obtained for both benchmark con-
strained MOPs and engineering design problems amply demon-
strate that the paε-ODEMO technique can yield efficient,
uniformly distributed, near-complete and near-optimal Pareto-
optimal solutions for multiobjective optimization.

7 Conclusions

In this paper, an efficient multiobjective DE algorithm is pre-
sented to solve constrained MOPs. It is characterized by a)
employing the orthogonal design method with quantization
technique to generate the initial population, b) adopting an
archive to store the nondominated solutions and employing
the new Pareto-adaptive ε-dominance to update the archive
at each generation, c) employing a new constraint-handling
method to handle the constraints, and d) using a hybrid se-
lection mechanism in which a random selection and elitist
selection are interleaved in order to allow the archive solu-
tion to guide the search towards the Pareto-optimal front.

Seven benchmark constrained MOPs are chosen to test
the capabilities of the algorithm in handling mathematically
complex problems. And four well designed problems are se-
lected to validate the efficiency and applicability of the al-
gorithm for multiobjective design optimization. Compared
with NSGA-II, one of the best MOEAs available at present,
the results show that paε-ODEMO are very competitive with
NSGA-II in terms of both closeness to the true optimum
front and their spread for the four all test problems. The
paε-ODEMO technique can yield efficient, uniformly dis-
tributed, near-complete and near-optimal Pareto-optimal so-
lutions for all test MOPs used in this work. So, we can con-
clude that our approach is a viable alternative to efficient
multiobjective optimization.

For the proposed paε-ODEMO, we have only chosen a
reasonable set of value and have not made any effort in find-
ing the best parameter settings. Our future study consists on
investigating the effect of different parameter settings on the
performance of paε-ODEMO.
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