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Abstract. Clustering is a core problem in data mining and machine learning. It

has innumerable applications in many fields. Recently, using the evolutionary al-

gorithms for the clustering problem has become more and more popular. In this

paper, we propose an automatic clustering differential evolution (DE) technique

for the clustering problem. Our approach can be characterized by (i) proposing

a modified point symmetry-based cluster validity index (CVI) as a measure of

the validity of the corresponding partitioning, (ii) using the Kd-tree based nearest

neighbor search to reduce the complexity of finding the closest symmetric point,

and (iii) employing a new representation to represent an individual. Experiments

have been conducted on 6 artificial data sets of diverse complexities. And the re-

sults indicate that our approach is suitable for both the symmetrical intra-clusters

and the symmetrical inter-clusters. In addition, our approach is able to find the op-

timal number of clusters of the data. Furthermore, based on the comparison with

the original point symmetry-based CVI, our proposed point symmetry-based CVI

shows better performance in terms of the F-measure and the number of clusters

found.

1 Introduction

Clustering is the unsupervised classification of objects (patterns) into different groups,

or more precisely, the partitioning of a data set into subsets (clusters), so that the data

in the same clusters is similar and the data in different clusters is dissimilar according

to some defined distance measure. Data clustering is a common technique for statistical

data analysis, which is used in many fields, including machine learning, data mining,

pattern recognition, image analysis, and bioinformatics [1], [2].

Clustering techniques may broadly be divided into two categories: hierarchical and

partitional clustering [3], [4]. Hierarchical clustering algorithms generate a cluster tree

by using heuristic splitting or merging techniques. Algorithms that use splitting to gen-

erate the cluster tree are called divisive. On the other hand, the more popular algorithms

that use merging to generate the cluster tree are called agglomerative [2]. There are

two main advantages of the hierarchical clustering algorithms: i) the number of clusters

need not to be specified a priori, and ii) they are independent of the initial conditions [2].



However, the main drawbacks of these algorithms are: i) they are static; that is, data

points assigned to a cluster can not move to another cluster; ii) they may fail to sepa-

rate overlapping clusters due to a lack of information about the global shape or size of

the clusters; and iii) they are computationally expensive. On the other hand, partitional

clustering algorithms try to decompose the data set directly into a set of disjoint clusters.

They try to optimize certain criteria. The advantages of the hierarchical algorithms are

the disadvantages of the partitional algorithms, and vice versa. Two extensive surveys

of the clustering algorithms can be found in [1] and [2].

Since a priori knowledge is generally not available, it is difficult to estimate the

exact number of clusters from the given data set. Recently, many automatic clustering

algorithms based on evolutionary algorithms (EAs) have been introduced [5], [6], [7],

[8], etc. Based on some clustering validity index (CVI) [9], these techniques are more

efficient than the traditional method.

Differential evolution (DE) [10] algorithm is a novel evolutionary algorithm for

faster optimization, which mutation operator is based on the distribution of solutions

in the population. Among DE’s advantages are its simple structure, ease of use, speed

and robustness. Based on the successful applications of DE [11], [12] in many fields,

some researchers adopted it to solve the clustering problems [13], [14], [7]. Experi-

mental results have shown that the DE-based clustering algorithms can provide higher

performance than GA-based clustering algorithms. However, the work of using DE for

clustering problems is still preliminary. In addition, most of the previous work need to

give the number of clusters in advance.

In this paper, in order to automatically determine the optimal number of clusters

in the data set, we propose an automatic clustering DE technique based on the point

symmetry-based CVI. Our approach is referred as ACDEPS. It is characterized by (i)

proposing a modified point symmetry-based cluster validity index (CVI) as a measure

of the validity of the corresponding partitioning, (ii) using the Kd-tree based nearest

neighbor search to reduce the complexity of finding the closest symmetric point, and

(iii) employing a new representation to represent an individual.

The remainder of this paper is organized as follows. In Section 2, we briefly intro-

duce the clustering problem definition and the DE algorithm. Our proposed approach is

presented in detail in Section 3. In Section 4, we verify our approach through 6 artificial

data sets of diverse complexities. The last section, Section 5, is devoted to conclusions

and future work.

2 Preliminary

2.1 Problem Definition

Generally, a clustering problem can be formally defined as follows [2]: Given a data set

X = {x1, x2, · · · , xn}, where n is the number of patterns in X , xi is a pattern in a

d-dimensional feature space, then the clustering of X is the partitioning of X into k
clusters {C1, C2, · · · , Ck} satisfying the following conditions:

– Each pattern should be assigned to a cluster, i.e. ∪k
i=1

Ci = X .

– Each cluster has at least one pattern assigned to it, i.e. Ci 6= φ, for i = 1, 2, · · · , k.



– Each pattern is assigned to one and only one cluster (in case of hard clustering

only), i.e. Ci ∩ Cj = φ, for i = 1, 2, · · · , k, j = 1, 2, · · · , k, and i 6= j.

2.2 Differential Evolution

The DE algorithm [10] is a simple EA that creates new candidate solutions by combin-

ing the parent individual and several other individuals of the same population. A can-

didate replaces the parent only if it has better fitness. This is a rather greedy selection

scheme that often outperforms traditional EAs. In addition, DE is a simple yet powerful

population-based, direct search algorithm with the generation-and-test feature for glob-

ally optimizing functions using real-valued parameters. Among DE’s advantages are

its simple structure, ease of use, speed and robustness. Due to these advantages, it has

many real-world applications, such as data mining [15], [7], pattern recognition, digital

filter design, neural network training, etc. [11], [12].

The DE algorithm in pseudo-code is shown in Algorithm 1. d is the number of de-

cision variables, NP is the size of the parent population P , F is the mutation scaling

factor, CR is the probability of crossover operator, U i is the offspring, rndint(1, d) is

a uniformly distributed random integer number between 1 and n, and rndj [0, 1) is a

uniformly distributed random real number in [0, 1). Many schemes of creation of a can-

didate are possible. We use the DE/rand/1/bin scheme (see lines 6 - 13 of Algorithm 1)

described in Algorithm 1 (more details on DE/rand/1/bin and other DE schemes can be

found in [16] and [11]).

Algorithm 1 DE algorithm with DE/rand/1/bin

1: Generate the initial population

2: Evaluate the fitness for each individual

3: while The halting criterion is not satisfied do

4: for i = 1 to NP do

5: Select uniform randomly r1 6= r2 6= r3 6= i

6: jrand = rndint(1, d)
7: for j = 1 to d do

8: if rndj [0, 1) > CR or j == jrand then

9: U i
j = X

r1

j + F × (Xr2

j − X
r3

j )
10: else

11: U i
j = Xi

j

12: end if

13: end for

14: Evaluate the offspring U i

15: if U i is better than P i then

16: P i = U i

17: end if

18: end for

19: end while

From Algorithm 1, we can see that there are only three control parameters in this

algorithm. These are NP , F and CR. As for the terminal conditions, one can either



fix the maximum number of fitness function evaluations (NFFEs) Max NFFEs or the

precision of a desired solution VTR (value to reach).

2.3 Point Symmetry-based Distance Measures

In natural senses, symmetry is one of the basic feature of shapes and objects, and hence,

it is reasonable to assume some kinds of symmetry exist in the structures of clusters.

Based on this idea, some symmetry-based distance measures are proposed in literature

recently [17], [18], [19]. Since in this work we only employ the point symmetry-based

distance measure proposed in [19], we will briefly discuss this measure in the following.

Recently, Bandyopadhyay and Saha proposed a genetic clustering technique based

on a new point symmetry-based distance measure [19]. In addition, they adopted the

Kd-tree based nearest neighbor search method to reduce the complexity of finding the

most symmetrical point. The proposed point symmetry-based distance measure is de-

fined by

dps(xi, ct) =
d1 + d2

2
× de(xi, ct) (1)

where de(xi, ct) is the Euclidean distance between the pattern xi and the cluster cen-

troid ct, d1 and d2 are the first and the second unique nearest neighbors of the symmet-

rical point (i.e. 2 × ct − xi) of xi with respect to a particular center ct, respectively. To

reduce the complexity of finding d1 and d2, an ANN search using the Kd-tree method

is used. After applying the genetic clustering technique based on point symmetry dis-

tance measure (GAPS) to different types of data sets, they concluded that the GAPS

method is able to detect any type of clusters as long as they possess the characteristic

of symmetry.

In [19], the authors pointed out that the complexity of assigning the points to the

different clusters is O(kn2) when adopting the point symmetry-based distance measure.

In order to reduce the complexity, the Kd-tree based nearest neighbor search technique,

which reduces the complexity from O(kn2) to O(kn log (n)), is adopted. ANN is a

library written in C++ [20], which supports data structures and algorithms for both

exact and approximate nearest neighbor searching in arbitrarily high dimensions.

2.4 Point Symmetry-based CVI

For automatic clustering techniques, there are two fundamental questions that need to

be addressed: i) how many clusters are actually present in the data, and ii) how real or

good is the clustering itself [9]. To measure the goodness of the clustering result, the

cluster validity index (CVI) is used to evaluate the results of a clustering algorithm on

a quantitative basis. In [8], they proposed a point symmetry-based CVI and defined as:

Sym(k) =
(1

k
× 1

ξk

× Dk

)

(2)

Where,

ξk =

k
∑

i=1

Ei (3)



such that

Ei =

ni
∑

j=1

d∗ps(x
i
j , ci) (4)

and

Dk = maxk
i,j=1

‖ ci − cj ‖ (5)

k is the number of clusters. Dk is the maximum Euclidean distance between two cluster

centers among all pairs of centers. d∗ps(x
i
j , ci) is computed by Equation 1 with some

constraint. Here, the first knear nearest neighbors of 2 × ci − xj will be searched

among only those points with are in cluster i. The objective is to maximize this index

in order to obtain the actual number of clusters. More details about this index can be

found in [8].

3 Our approach: ACDEPS

As above-mentioned, DE is a simple and versatile global optimizer. The DE-based

clustering algorithms can provide higher performance than GA-based clustering algo-

rithms [13]. Motivated by this idea, in this work, we propose an automatic clustering

DE approach for the clustering problems. Our approach is referred as ACDEPS, i.e.,

Automatic Clustering DE based on Point Symmetry-based measure. It is explained in

detail in the following subsections.

3.1 Individual Representation

In our approach, the individual representation proposed in [7] is used. For n data points,

each d dimensional, and for a maximum number of clusters kmax =
√

n [6], an indi-

vidual is a vector of real numbers of dimension kmax + kmax × d. It is defined as:

Xi =
(

Ti,1, Ti,2, · · · , Ti,kmax
, ci,1, ci,2, · · · , ci,kmax

)T
(6)

Where the first kmax entries are positive floating-point numbers in [0, 1], each of which

controls whether the corresponding cluster is to be used or not. Only if Ti,j > 0.5,

then the j-th cluster center in the i-th individual is active. The rest entries are the d-

dimensional cluster centers.

3.2 Modified Point Symmetry-based CVI

From Equation 2 we can see that Sym-index is a composition of three factors, 1/k,

1/ξk, and Dk. The first factor increases as k decreases. The second and the third factors

decrease as k decreases. Since the Sym-index needs to be maximized for optimal clus-

tering, only the first factor prefers to decrease k. While the other two factors prefer to

increase k. Thus, in the beginning of the evolutionary process, the individuals prefer to

find more clusters. In order to make the algorithm find the optimal cluster centers faster



and then obtain the optimal partitioning, in this work, we propose a modified point

symmetry-base CVI, where the k is penalized dynamically. It is described as follows.

Sym′(k) =
( 1

k′
× 1

ξk

× Dk

)

(7)

Here, 1/ξk and Dk are defined by Equations 3 and 5, respectively. k′ is defined as:

k′ = k2
t

(8)

and

t = 1.0 − α × gen

Gmax

(9)

where gen is the current generation number. Gmax is the maximum generations. α ≥ 1
is a constant; it controls the dynamic penalty of k. When α = 1, it means that k is

penalized in the entire evolution, except for the last generation. When α = 2, it indicates

that k is penalized if gen < 0.5 × Gmax; while when gen ≥ 0.5 × Gmax, k is not

penalized, i.e. k′ = k. Based on the penalized dynamic Sym′-index, the algorithm is

able to avoid finding too more clusters in the beginning of the evolutionary process.

3.3 Avoiding Erroneous Individuals

In our approach, calculation of the Sym′-index needs to find the first and the second

symmetrical points. In this work, the Kd-tree based nearest neighbor search method

is employed to find the two points, and hence, there are at least two data points for

each cluster. For an individual if any cluster has fewer than two dada points in it, the

individual is reinitialized to k randomly selected points from the data set. After the

special individual is reinitialized, all data points are reassigned to this individual.

Furthermore, when a new offspring is created according to DE/rand/1/bin strategy

as shown in Algorithm 1, if some Ti,j in the offspring is greater than 1 or less than 0, it

is forcefully fixed to 1 or 0, respectively. If the number of Ti,j ≥ 0.5 is less than 2, we

randomly select two Ti,j and reinitialize them to a random value in [0.5, 1.0]. Thus, the

minimum number of clusters is 2.

4 Experimental results and analysis

To evaluate the performance of our approach, we test the ACDEPS approach for both

Sym′-index and Sym-index, then the two methods are referred to as ACDEPS1 and

ACDEPS2, respectively. Moreover, we compare the two ACDEPS methods with GCUK

proposed in [5]3. To make a fair comparison, in GCUK, the Sym′-index and Sym-index

are also used; they are referred to as GCUK1 and GCUK2, respectively.

3 Since we can not obtain the VGAPS method [8] code, we don’t make a comparison with

VGAPS.



4.1 Experimental Setup

In our proposed approach, there are four parameters to be specified: i) the population

size NP , ii) the crossover probability CR, iii) the maximum number of generations

Gmax, and iv) the dynamic control factor α. In the original DE, the scaling factor F re-

quires to be specified in advance. However, in this work, the dither technique is used to

avoid tuning this parameter, where F is uniformly distributed random number generated

from [0.0, 1.0]. The reason is that the dither technique can improve the performance of

DE [11], [12]. Moreover, it can avoid tuning this parameter for the user. For all experi-

ments, we use the following parameters unless a change is mentioned. For GCUK, the

parameter settings are used as mentioned in [5].

– Population size: NP = 100;

– Crossover probability: CR = 0.3;

– DE scheme: DE/rand/1/bin;

– Dynamic control factor: α = 2.0;

– Maximum generations: Gmax = 30.

In our experiments, each data set is optimized over 10 independent runs. We also

use the same set of initial random populations to evaluate different algorithms. All the

algorithms are implemented in standard C++ and the experiments are done on a P-IV

(Core 2) 2.1 GHz laptop with 1.0 GB RAM under WIN-XP platform.

4.2 Data Sets

In order to validate the performance of ACDEPS, we have carried out different experi-

ments using a test suite, which consists of 6 artificial data sets of diverse complexities

chosen from literature. They are artificial data sets and are briefly described as follows.

– data1: This data set has been used in [8]. It consists of two crossed ellipsoid shells,

where each ellipsoid shell contains 200 data points.

– data2: This data set, used in [17], [19], [8], is a combination of ring-shaped, com-

pact and linear clusters. It contains 350 data points.

– data3: This data set, used in [19], contains 400 data points and three clusters, which

consists of a ring-shaped cluster, a rectangular cluster and a linear cluster.

– data4: This data set, used in [19], [8], is in 3-d space, and has 4 hyper-spherical

disjoint clusters. The total number of points is 400.

– data5: This data set has 6 different clusters in 2-d space. It contains 300 data points

used in [19] and [8].

– data6: This data set, used in [8], contains 850 data points distributed on five clus-

ters.

4.3 Performance Criteria

To compare the performance of the four algorithms, three performance criteria are se-

lected to evaluate the performance of the algorithms. These criteria are described as

follows.



Table 1. Comparison of the F-measure value for the four algorithms after 3, 000 NFFEs. Where

“Mean” indicates the mean f-measure values found in the last generation; “Std Dev” stands for

the standard deviation. The best results are highlighted in Bold face.

Dataset
ACDEPS1 GCUK1 ACDEPS2 GCUK2

Mean Std Dev SR Mean Std Dev SR Mean Std Dev SR Mean Std Dev SR

data1 0.982 0.015 1.0 0.084 0.266 0.1 0.492 0.519 0.5 0.000 0.000 0.0

data2 0.942 0.021 1.0 0.645 0.453 0.7 0.762 0.402 0.8 0.278 0.448 0.3

data3 0.999 0.001 1.0 1.000 0.000 1.0 0.300 0.482 0.3 0.100 0.316 0.1

data4 1.000 0.000 1.0 0.300 0.483 0.3 1.000 0.000 1.0 0.899 0.316 0.9

data5 1.000 0.000 1.0 0.800 0.242 0.0 1.000 0.000 1.0 0.900 0.316 0.9

data6 0.365 0.472 0.4 0.699 0.482 0.7 0.197 0.415 0.2 0.690 0.477 0.6

– F-measure: F-measure [21] is associated to the information retrieval field, recall

and precision are measures that give us some idea of how well a clustering algo-

rithm is identifying the classes present in the data set. In the context of classifica-

tion, recall is define as r(i, j) = nij/ni where nij is the number if items of class

i in cluster j and ni is the number of elements of class i. Precision is defined as

p(i, j) = nij/nj where nj is the number of elements in cluster j. For a class i and

cluster j the F-measure is define by

F (i, j) =
2p(i, j)r(i, j)

p(i, j) + r(i, j)
(10)

The overall F-measure for the classification generated by the clustering algorithm

is give by

F =

k
∑

i=1

(ni

n
max

j
F (i, j)

)

(11)

where n is the size of the data set. F is limited to the interval [0, 1] with a value of

1 with a perfect clustering.

– Number of clusters: The number of clusters found of each algorithm in the final

generations. The average value and the standard deviation are calculated over 10
runs.

– Successful rate (SR): If the algorithm can find the actual number of clusters of a

given data set in one run, it means that the algorithm obtains a successful run. The

SR value is the ratio of the successful runs over the total runs.

4.4 Experimental Results

In this section, we compare the performance of the four algorithms. The parameters

used for ACDEPS1, ACDEPS2, GCUK1, and GCUK2 are described above. All data

sets are conducted for 10 independent runs. The experimental results for the four algo-

rithms are shown in Table 1 and Table 2, respectively. And some representative cluster-

ing results are illustrated in Fig. 1.



Table 2. Comparison of the number of clusters found by the four algorithms after 3, 000 NFFEs.

Where “Mean” indicates the mean number of clusters found in the last generation; “Std Dev”

stands for the standard deviation. The best results are highlighted in Bold face.

Dataset
ACDEPS1 GCUK1 ACDEPS2 GCUK2

Mean Std Dev SR Mean Std Dev SR Mean Std Dev SR Mean Std Dev SR

data1 2.000 0.000 1.0 4.200 2.201 0.1 3.100 1.663 0.5 7.200 1.229 0.0

data2 3.000 0.000 1.0 2.700 0.483 0.7 3.200 0.422 0.8 5.600 1.897 0.3

data3 3.000 0.000 1.0 3.000 0.000 1.0 4.400 0.966 0.3 4.800 0.632 0.1

data4 4.000 0.000 1.0 2.600 0.966 0.3 4.000 0.000 1.0 4.100 0.316 0.9

data5 6.000 0.000 1.0 5.800 0.323 0.0 6.000 0.000 1.0 6.100 0.316 0.9

data6 5.800 0.789 0.4 5.200 0.422 0.7 7.000 1.333 0.2 4.100 1.449 0.6

From Table 1, it can be seen that ACDEPS1 can find the actual number of clusters

for five out of six data sets over all 10 runs. And the average F-measure values for these

five data sets (data1 - data5) are very close to 1.0. It indicates that ACDEPS1 can obtain

the near-optimal partitioning of these data sets. When compared with ACDEPS2, we

can see that ACDEPS1 is superior to ACDEPS2 in terms of both the F-measure and

the success rate. This phenomenon means that our proposed Sym′-index is better than

the original Sym-index when used in the ACDEPS method. Compared the results of

ACDEPS with those of GCUK (ACDEPS1 vs GCUK1, and ACDEPS2 vs GCUK2),

the results show that ACDEPS is better than GCUK on the majority of the data sets.

Except for data6, GCUK performs better than ACDEPS.

From Table 2 we can see that for five data sets (data1 - data5) ACDEPS1 can auto-

matically determine the optimal number of clusters over all 10 runs. It can also obtain

the best results compared with ACDEPS2, GCUK1, and GCUK2.

In addition, from Fig. 1 it is apparent to see that for data1 to data5, ACDEPS1 can

obtain both the optimal number of clusters and their corresponding optimal partitioning.

However, for data6, ACDEPS1 is failed to cluster this data set.

In summary, for the majority of the data sets used in this work, our proposed

ACDEPS1 approach is able to automatically determine the optimal number clusters,

also it can obtain the optimal partitioning as long as the data sets possess the character-

istic of symmetry. And the proposed Sym′-index can make the ACDEPS method more

robust than the original Sym-index.

5 Conclusions and future work

The DE algorithm is a simple yet powerful evolutionary algorithm for global optimiza-

tion. In this paper, we adopt the DE algorithm for the automatic clustering problem.

To find the optimal number of clusters, we propose a modified Sym′-index, which can

avoid finding too more number of clusters in the beginning of the evolutionary process.

A new individual representation is employed to make DE suitable for the automatic

clustering. In addition, the Kd-tree based nearest neighbor search is used to reduce the

complexity of finding the closest symmetric point.
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Fig. 1. Clustered results of ACDEPS1 for all data sets. (a) data1. (b) data2. (c) data3. (d) data4.

(e) data5. (f) data6. The ⋆ indicates the cluster center.



In order to test the performance of our approach, 6 artificial data sets are chosen

from literature. Experimental results indicate that our proposed ACDEPS1 approach is

able to automatically determine the optimal number clusters, also it can obtain the opti-

mal partitioning as long as the data sets possess the characteristic of symmetry. Further-

more, based on the comparison with the original Sym-index, our proposed Sym′-index

shows better performance in terms of the F-measure and the number of clusters found.

In our proposed Sym′-index, an additional parameter α is used to control the dy-

namic penalty of k. It may be problem-dependent. Our future work will conduct further

experiments, both for the artificial data sets and the real world data sets, to test the

influence of this parameter.
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