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Abstract

Differential evolution (DE) is a versatile and efficient evolutionary algorithm for global numerical optimization, which
has been widely used in different application fields. However, different strategies have been proposed for the genera-
tion of new solutions, and the selection of which of them should be applied is critical for the DE performance, besides
being problem-dependent. In this paper, we present two DE variants with adaptive strategy selection: two different
techniques, namelyProbability Matching andAdaptive Pursuit, are employed in DE to autonomously select the most
suitable strategy while solving the problem, according to their recent impact on the optimization process. For the
measurement of this impact, four credit assignment methodsare assessed, which update the known performance of
each strategy in different ways, based on the relative fitness improvement achieved by its recent applications. The per-
formance of the analyzed approaches is evaluated on twenty-two benchmark functions. Experimental results confirm
that they are able to adaptively choose the most suitable strategy for a specific problem in an efficient way. Compared
with other state-of-the-art DE variants, better results are obtained on most of the functions in terms of quality of the
final solutions and convergence speed.
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1. Introduction

Differential evolution (DE), proposed by Storn and Price [35], is an efficient and versatile population-based direct
search algorithm that implements the evolutionary generation-and-test paradigm for global optimization, using the
distance and direction informations from the current population to guide the search. Among its advantages are its
simple structure, ease of use, speed, and robustness, whichenables its application on many real-world applications,
such as data mining, IIR design, neural network training [29], power systems [43], financial market dynamics mod-
eling [16], data mining [4], and so on. A good survey of DE can be found in [5], where its basic concepts and major
variants, as well as some theoretical studies and application examples to complex environments, are reviewed in detail.

In the seminal DE algorithm [35], a single mutation strategywas used for the generation of new solutions; later
on, Price and Storn suggested nine other different strategies [29, 36]. In addition, other mutation strategies are also
proposed in the DE literature [50, 3, 6, 8]. Although augmenting the robustness of the underlying algorithm, these
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many available strategies led the user to the need of definingwhich of them would be most suitable for the problem at
hand – a difficult and crucial task for the performance of DE [31, 30, 23].

Off-line tuning techniques, such as the F-Race [1], could beused to choose the mutation strategy to be used.
However, besides being computationally expensive, such techniques usually output a static setting; while, in practice,
the performance of each mutation strategy does not depend onthe problem itself, but rather on the characteristics of
the region of the search landscape being explored by the population at each generation. Based on this, thus, in order
to be more efficient, the autonomous selection of the strategy to be used should be done in a continuous way, while
solving the problem,i.e., dynamically adapting itself as the search goes on.

In order to contribute on remedying this drawback, in this paper, we extend our recent work [15] on the use of
adaptive strategy selection within DE for global numericaloptimization. To do adaptive strategy selection,i.e., to be
able to automatically select which is the best mutation strategy for the generation of each offspring while solving the
problem, two elements need to be defined [48, 18]: (i) how to select between the available strategies based on their
recent performance (strategy selection); and (ii) how to measure the performance of the strategies after their applica-
tion, and consequently update the empirical quality estimates kept for each of them (credit assignment). In this work,
two strategy selection techniques, namelyProbability Matching [12] andAdaptive Pursuit [41], are independently
analyzed in combination with each of four credit assignmenttechniques based on the relative fitness improvement.
In addition, a parameter sensitivity analysis is conductedto investigate the impact of the hyper-parameters on the
performance of the resulting adaptive strategy selection technique. Experiments have been conducted on 22 widely
used benchmark problems, including 9 test functions presented in CEC-05 [37]. The results indicate that the analyzed
approach is able to select the most suitable strategy, whilesolving a problem at hand. Compared with other state-
of-the-art DE variants, better results are obtained on mostof the functions in terms of quality of final solutions and
convergence speed.

Compared with our previous work in [15], the main contributions of this paper are two-fold: (i) in order to pursuit
the most suitable strategy at different search stages for a specific problem more rapidly, theAdaptive Pursuit technique
is used and its performance is compared with theProbability Matching-based DE variant; and (ii) the comprehensive
experiments are conducted to verify our approach and its performance is analyzed in detail.

The remainder of the paper is organized as follows. Section 2briefly introduces the background and related
work of this paper. In Section 3, we describe the adaptive strategy selection approaches in detail, followed by the
experimental results and discussions in Section 4. Finally, Section 5 is devoted to conclusions and future work.

2. Background and Related Work

2.1. Problem Formulation

Without loss of generality, in this work, we consider the following numerical optimization problem:

Minimize f (x), x ∈ S , (1)

whereS ⊆ R
D is a compact set,x = [x1, x2, · · · , xD]T , andD is the dimension,i.e., the number of decision variables.

Generally, for each variablex j, it satisfies a boundary constraint, such that:

L j ≤ x j ≤ U j, j = 1, 2, · · · ,D. (2)

2.2. Differential Evolution

DE [35] is a simple evolutionary algorithm (EA) for global numerical optimization. It creates new candidate
solutions by combining the parent individual and several other individuals of the same population. A candidate
replaces the parent only if it has an equal or better fitness value. The pseudo-code of the original DE algorithm
is shown in Algorithm 1, whereD refers to the number of decision variables (or problem dimension); NP is the
population size;F is the mutation scaling factor;CR is the crossover rate;xi, j is the j-th variable of the solution
xi; ui is the offspring. The function rndint(1,D) returns a uniformly distributed random integer number between
1 andD, while rndrealj[0, 1) gives a uniformly distributed random real number in [0, 1), generated anew for each
value of j. With respect to the population initialization, the widelyused method is uniformly random initialization
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Algorithm 1 The DE algorithm with DE/rand/1/bin strategy
1: Generate the initial population
2: Evaluate the fitness for each individual
3: while the termination criterion is not satisfieddo
4: for i = 1 to NP do
5: Select uniform randomlyr1 , r2 , r3 , i
6: jrand = rndint(1,D)
7: for j = 1 to D do
8: if rndrealj[0,1) < CR or j is equal tojrand then
9: ui, j = xr1, j + F ·

(

xr2, j − xr3, j
)

10: else
11: ui, j = xi, j

12: end if
13: end for
14: end for
15: for i = 1 to NP do
16: Evaluate the offspringui

17: if f (ui) is better thanor equal tof (xi) then
18: Replacexi with ui

19: end if
20: end for
21: end while

within the search space. Other initialization methods are also available, for example, orthogonal initialization [13],
opposition-based initialization [32], chaotical initialization [27], etc.

From Algorithm 1, we can see that there are only three controlparameters in DE. These areNP, F andCR. As
for the terminal conditions, we can either fix the maximum number of fitness function evaluations (Max NFFEs) or
define a desired solution value to be reached (VTR).

In DE, many schemes have been proposed that use different mutation strategies and/or recombination operations
in the reproduction stage [29, 36]. In order to distinguish among its schemes, the notation “DE/a/b/c” is used, where
“DE” denotes the DE algorithm; “a” specifies the vector to be mutated; “b” is the number of difference vectors
used; and “c” denotes the crossover scheme,binomial or exponential, this latter being fixed to the binomial on the
remainder of this work. In line 9 of Algorithm 1, the mutationstrategy is called “DE/rand/1”, which is a classic
strategy of DE [29]. Other well-known mutation strategies can be listed as follows.

1) “DE/best/1”:
vi = xbest + F ·

(

xr2 − xr3

)

(3)

2) “DE/best/2”:
vi = xbest + F · (xr2 − xr3

)

+ F · (xr4 − xr5

)

(4)

3) “DE/rand/2”:
vi = xr1 + F ·

(

xr2 − xr3

)

+ F ·
(

xr4 − xr5

)

(5)

4) “DE/current-to-best/1”1:
vi = xi + F ·

(

xbest − xi
)

+ F ·
(

xr2 − xr3

)

(6)

wherexbest represents the best individual in the current generation,r1, r2, r3, r4, andr5 ∈ {1, · · · ,NP}, andr1 , r2 ,

r3 , r4 , r5 , i.

1“DE/current-to-best” is also referred to as “DE/target-to-best/” [29, 3].
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Figure 1: General framework of adaptive strategy selectionwithin DE.

2.3. Adaptive Strategy Selection

Typically, the parameter setting in EAs is done before launching the main runs that will be used to assess the
algorithm. In this case, the parameters are defined according to the user’s experience, or by anexternal tuning
method, which can be a standard statistical analysis, a moreengineered procedure, or even another optimization
algorithm. The main drawback of suchoff-line methods is that they define a static setting, what generally leads to
sub-optimal performance. Intuitively, as the algorithm proceeds from a global (early) exploration of the landscape toa
more focused, exploitation-like behavior, the parametersshould be adjusted to take care of this new reality. Indeed, it
has been empirically and theoretically demonstrated that different values of parameters might be optimal at different
stages of the search process (see,e.g., [7] and references therein).

Thus, to achieve better performance, the parameter settingshould be done while solving the problem, adapting
the behavior of the algorithm as needed. Following [7], theinternal control of the parameters can be done in different
ways. Deterministic methods modify the parameters values according to predefined rules;Self-Adaptive methods
encode the parameters within the genotype, which is thus evolved in parallel with the solution; and lastly, theAdaptive
methods use changes in some particular properties of the search process as an input signal to modify the parameter
values. While the first approach introduces the extra difficulty of defining the control rules, the second defines the
parameters, but the parameters space is merged with the solutions space, thus augmenting the overall complexity of
the search.

This paper is focused on the latter approach, more specifically, on the Adaptive Strategy Selection (AdapSS)
paradigm. Inspired by some recent works in the Genetic Algorithms (GAs) community (see,e.g., [41, 10]), its
objective is to automatically select among the available (possibly ill-known) mutation strategies, according to their
performance on the search up to now. To do so, as illustrated in Figure 1, there is the need for two components: the
credit assignment, that defines how the impact of the strategies on the search should be assessed and transformed into
a numerical reward; and the strategy (or operator) selection mechanism that, based on the rewards received, selects
which strategy should be applied at the given moment of the search.

2.4. DE with Strategy Adaptation

In the context ofon-line selection among multiple mutation strategies within DE, some approaches can be found
in the literature. Xie and Zhang [45] presented a swarm algorithm framework, in which a neural network is used
to adaptively update the weights of the DE strategies. Qinet al. [31, 30] proposed a variant of DE, named SaDE,
that updates the weights of each strategy in the search basedon their previous success rate. In [2, 47], strategy
adaptation techniques similar to SaDE are used to enhance DEperformance. In [21], both the mutation strategies and
the crossover operation are adaptively selected in DE. In [15], we proposed the use of a strategy adaptation method
for DE, based on theProbability Matching technique being fed by relative fitness improvements; whilein Gong
et al. [14] a different family of strategy adaptation techniques was presented, where a strategy parameterη is used
control the selection of different strategies, and two simple strategy adaptation mechanisms are implemented to update
the parameter. Based on their previous work in [21], Mallipeddi et al. [20] presented a DE variant with ensemble of
parameters and mutation strategies, called EPSDE, in whichthe strategy of each target vector is initialized randomly
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and, during the evolution process, if the generated offspring is better than its target vector, the strategy of the target
vector is stored in the next generation; otherwise, the strategy of the target vector is selected randomly from the pool
or from the previous successful strategies stored with equal probability. In [28], Panet al. presented an improved
DE, referred to as SspDE, in which a strategy list, a scaling factor list, and a crossover rate list are encoded in the
individual, being constantly updated during the evolutionin a self-adaptive manner. Wanget al. [42] proposed a
composite DE (CoDE). In CoDE, each strategy generated its trial vector with a parameter setting randomly selected
from the parameter candidate pool.

3. Adaptive Strategy Selection in DE

In order to automatically select the most suitable strategywhile solving a problem without anyprior knowledge,
in this work, we analyze the use of strategy adaptation methods in DE for numerical optimization problems. This is an
extension of our recent work in [15], which has been considerably enhanced, with the major differences being listed
as follows.

• In this work, two strategy selection techniques, namelyProbability Matching (PM) [12] andAdaptive Pursuit
(AP) [41], are analyzed and empirically compared with the baseline approaches, while in [15] only theProba-
bility Matching was adopted.

• A different pool of four mutation strategies, proposed in [50, 49], is used.

• The parameter adaptation method ofCR andF proposed in [50] is adopted in this work, while in [15]CR and
F were set to pre-defined values.

• The sensitivity of the parameters on the performance of theAdaptive Pursuit technique is empirically investi-
gated.

The main objectives of this work are two-fold. Firstly, theProbability Matching andAdaptive Pursuit strategy
selection techniques are independently integrated into JADE and compared to other existing approaches. Secondly,
four credit assignment techniques based on the relative fitness improvement are compared. These components for
adaptive strategy selection, as well as the JADE algorithm to which they were combined to, are better described in the
following, in Sections 3.1 to 3.4.

3.1. Strategy Selection
Suppose we haveK > 1 strategies in the poolA = {a1, · · · , aK} and a probability vectorP(t) = {p1(t), · · · , pK(t)}

(∀t : pmin ≤ pi(t) ≤ 1;
∑K

i=1 pi(t) = 1). In this work, theProbability Matching (PM) andAdaptive Pursuit (AP)
techniques are used to adaptively update the probabilitypa(t) of strategya based on its known performance (frequently
updated by the rewards received). Denotera(t) as the reward that a strategya receives after its application at timet.
qa(t) is the known quality (or empirical estimate) of a strategya, that is updated as follows [41]:

qa(t + 1) = qa(t) + α · [ra(t) − qa(t)], (7)

whereα ∈ (0, 1] is the adaptation rate.
Based on this common quality empirical estimate, the PM and AP methods differ on the way they use this infor-

mation to update the application probability of each strategy, as detailed in the following.

3.1.1. Probability Matching
The PM method updates the probabilitypa(t) as follows [12, 41]:

pa(t + 1) = pmin + (1− K · pmin)
qa(t + 1)

∑K
i=1 qi(t + 1)

. (8)

wherepmin ∈ (0, 1) is the minimal probability value of each strategy, used toensure that no operator gets lost [41].
From Equation (8), we can see that when only one strategy obtains a reward during a long period of time and all other
strategies receive no reward, then its selection probability pa(t) converges topmax = pmin + (1− K · pmin). Obviously,
∑K

a=1 pa(t) = 1 and 0< pmin <
1
K

5



3.1.2. Adaptive Pursuit
TheAdaptive Pursuit (AP) method is a pursuit algorithm recently introduced for adaptive operator selection in the

context of GAs [41], which was originally proposed for learning automata [40]. After adapting the empirical quality
estimate of each strategy in the same way than the PM method, as presented in Equation 7, the probability of each
strategy is updated as follows:

pa∗ (t + 1) = pa∗ (t) + β · [pmax − pa∗ (t)] (9)

and
∀a , a∗ : pa(t + 1) = pa(t) + β · [pmin − pa(t)] (10)

where
a∗ = argmaxa

(

qa(t + 1)
)

and
pmax = pmin + 1− K · pmin

This constraint makes sure that if
∑K

a=1 pa(t) = 1, then the sum of the updated probabilities is also equal to 1, i.e.,
∑K

a=1 pa(t + 1) = 1 [41].
As in the PM method, the minimal probabilitypmin is used to ensure that no operator gets lost, and 0< pmin <

1
K .

Besides the adaptation rateα used on the update of the empirical quality estimates (Eq. 7), the AP has another
hyper-parameter, the learning rateβ ∈ (0, 1], which basically controls how greedy the “winner-takes-all” strategy will
behave.

3.2. Credit Assignment

Besides the strategy selection itself, another important issue to implement the adaptive strategy selection paradigm
is the credit assignment, as shown in Figure 1. In this work, in order to assign the credit or reward for each strategy,
we adopt the relative fitness improvementηi proposed in [26] as follows:

ηi =

{ δ
c fi
· |p fi − c fi|, for minimization

c fi
δ
· |p fi − c fi|, for maximization

(11)

wherei = 1, · · · ,NP. δ is the fitness of the best-so-far solution in the population.p fi andc fi are the fitness of the
target parent and of its offspring, respectively. Note thatif no improvement is achieved (i.e., the offspring is worse
than or equal to its target parent), the impact of the strategy application is considered as null (ηi = 0).

DenoteS a as the set of all relative fitness improvements achieved by the application of a strategya(a = 1, · · · ,K)
during generationt. At the end of the generation, an unique reward is used to update the quality measure kept by the
PM and AP methods (Equation 7). Following [10], to extract such reward fromS a, we analyze four different credit
assignment methods as follows:

• Average Absolute Reward(AvgAbs):

ra(t) =

∑|S a|
i=1 S a(i)

|S a|
(12)

where|S a| is the number of elements inS a. If |S a| = 0, ra(t) = 0.

• Average Normalized Reward(AvgNorm):

r′a(t) =

∑|S a|
i=1 S a(i)

|S a|
; andra(t) =

r′a(t)

max
b=1,··· ,K

r′b(t)
(13)

• Extreme Absolute Reward(ExtAbs):
ra(t) = max

i=1,··· ,|S a|
S a(i) (14)
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• Extreme Normalized Reward(ExtNorm):

r′a(t) = max
i=1,··· ,|S a|

S a(i); andra(t) =
r′a(t)

max
b=1,··· ,K

r′b(t)
(15)

The reasons for adopting these four credit assignment techniques are as follows:

• Intuitively, the first technique is reasonable, and there are many approaches using the average improvement [10].

• In [44], the extreme improvement, using a statistical measure aimed at outlier detection, is considered. This
method showed better performance than its competitors on a set of benchmark problems. Based on this inspi-
ration, the third method is used herein.

• With respect to the second and fourth methods, the average and the extreme improvements are respectively
normalized. The assumptions to justify such normalizationcan be summarized in the following manner: (i)
there might be magnitude differences between rewards received in two different time instants of the search,
with a later reward possibly affecting much less the update of the empirical quality estimate than it should,
as rewards tend to get smaller as the search goes on; and (ii) there might also be magnitude differences in the
fitness ranges of different problems, what could completelyaffect the behavior of the adaptive strategy selection
method in case one uses the raw reward values.

3.3. Strategy Pool
As previously mentioned, there are many strategies proposed in DE [29, 36], each one presenting its own char-

acteristics. However, to the best of our knowledge, there are no theoretical studies as of today on the choice of the
optimal number of available strategies (pool size) and on the selection of strategies to form the strategy pool [30].
In this work, we consider as the strategy pool the same four strategies used in the JADE method [50, 49], which are
described as follows.

1) “DE/current-to-pbest/1 (without archive)”:

vi = xi + Fi ·
(

xp
best − xi

)

+ Fi ·
(

xr2 − xr3

)

(16)

2) “DE/current-to-pbest/1 (with archive)”:

vi = xi + Fi ·
(

xp
best − xi

)

+ Fi ·
(

xr2 − x̃r3

)

(17)

In the latter one, an archiveA is used to store the inferior solutions recently explored inthe evolutionary search.xp
best

refers to thepbest solution, which is randomly selected from the top 100p% solutions, withp ∈ (0, 1]. xi, xr2, and
xp

best are chosen from the current populationP; x̃r3 is randomly chosen from the union between the archive and current
populations (P∪ A). Later on, in order to solve the large scale problems and further increase the population diversity,
the same authors proposed other two strategies [49]:

3) “DE/rand-to-pbest/1 (without archive)”:

vi = xr1 + Fi ·
(

xp
best − xr1

)

+ Fi ·
(

xr2 − xr3

)

(18)

4) “DE/rand-to-pbest/1 (with archive)”:

vi = xr1 + Fi ·
(

xp
best − xr1

)

+ Fi ·
(

xr2 − x̃r3

)

(19)

The reasons for choosing these strategies are three-fold. Firstly, they have individually obtained good performance
as shown in [50, 49]. Secondly, the two strategies without archive converge faster and are more suitable to the low-
dimensional problems; on the other hand, the strategies with archive can provide higher population diversity, hence
being more suitable to the high-dimensional problems. Thirdly, the JADE method is used as baseline for empirical
comparison (see Section 4); the use of the same strategy poolguarantees that the performance improvements achieved
by our approaches with relation to JADE are solely due to the different proposed strategy adaptation mechanisms.
Note that other strategies could also be used, these 4 strategies can be seen as a test-bed for the adaptive strategy
selection method.
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3.4. JADE with Adaptive Strategy Selection: AdapSS-JADE

By combining the above-mentioned three aspects with the JADE algorithm [50, 49], the AdapSS-JADE method is
developed. Differently from our previous work [15], the CR and F adaptation mechanism proposed in JADE2 [50] is
adopted in parallel with the adaptive strategy selection scheme. From this point of view, this approach can be regarded
as an improved JADE variant. It is worth noting that our proposed strategy adaptation method can also be used in
other DE variants.

The pseudo-code is illustrated in Algorithm 2; modified steps with respect to the original JADE are marked with a
left arrow “⇐”. At each generationt, for each target parenti, a strategyS Ii is selected based on the probability of each
strategy. Then the offspring is generated by the application of the selected strategy. After evaluating the offspring,
the relative fitness improvementηi is calculated and stored in the setS S Ii . Consequently, the reward, quality, and
probability of each strategy are updated.

As previously mentioned, the study on multiple strategies adaptation in DE is scarce. Compared with the ap-
proaches proposed in [30, 14, 20, 28], in which several mutation strategies are also used within DE, the main differ-
ences between our proposed approach and theirs can be listedas follows:

• In the SaDE method [30], theProbability Matching strategy selection scheme is also implemented. However,
our approach is completely different from SaDE in the creditassignment, using the relative fitness improvements
instead of the success and failure number of trials. It turnsout to be a completely different method when using
theAdaptive Pursuit for strategy selection.

• The SaJADE [14] is also based on the JADE method [50, 49]. However, the strategy adaptation is controlled by
a strategy parameter. Two adaptive mechanisms are implemented to update this parameter, which are different
from the strategy selection methods (AP and PM) used in this work.

• In EPSDE [20], the strategy of each target vector is initialized randomly. In the evolution process, if the off-
spring is better than its target vector, the strategy of the target vector is stored in the next generation; otherwise,
it is randomly selected from the pool or from the previous successful strategies stored with equal probability.

• In SspDE [28], the strategy for each target vector is selected from the strategy list of this vector, which is updated
during the search in a self-adaptive manner, thus being completely different from our proposed method.

From the previous subsections, we can see that our approach is either based on the PM or on the AP strategy
selection techniques. In addition, the relative fitness improvement is used to assign the reward of each strategy. In
general, our proposed approach is very different from the above-mentioned variants.

It is also worth noting that the use of our proposed approaches within JADE does not significantly increase the
overall computational complexity of the original algorithm. The additional complexity of AdapSS-JADE is the adap-
tive strategy selection, as shown in Algorithm 2, which takes O(K · NP) operations, whereK is the total number of
strategies in the pool. Since the total complexity of JADE isO(G · NP · (D + log (NP))) [49], whereG is the maximal
number of generations, AdapSS-JADE has the total complexity of O(G · NP · (D + log (NP)) + K · NP). Generally,
K ≪ G · (D + log (NP)), hence the overall complexity of our approach isO(G · NP · (D + log (NP))). In general,
the population sizeNP is set to be proportional to the problem dimensionD in the DE literature. Thus, the total
complexity of AdapSS-JADE isO(G · D2), which is the same as the classic DE algorithm, JADE, and many other DE
variants.

4. Experimental Results

In order to evaluate the performance of our approach, 22 benchmark functions were selected as the test suit.
Functionsf01− f13 are chosen from [48]. Functionsf01− f04 are unimodal. The Rosenbrock’s functionf05 is a multi-
modal function whenD > 3 [33]. Functionf06 is the step function, which has one minimum and is discontinuous.
Function f07 is a noisy quartic function. Functionsf08 − f13 are multi-modal functions where the number of local

2More details about JADE can be found in [50, 49].
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Algorithm 2 JADE with Adaptive Strategy Selection: AdapSS-JADE
1: SetµCR = 0.5;µF = 0.5
2: Generate the initial population randomly
3: Evaluate the fitness for each individual
4: Set the generation countert = 1
5: SetK = 4, pmin = 0.05,α = 0.3, andβ = 0.8 (if any) ⇐
6: For each strategya, setqa(t) = 0 andpa(t) = 1/K ⇐
7: while The halting criterion is not satisfieddo
8: for i = 1 to NP do
9: Select the strategyS Ii based on its probability ⇐

10: Select uniform randomlyr1 , r2 , r3 , r4 , r5 , i
11: jrand = rndint(1,D)
12: for j = 1 to D do
13: if rndrealj[0,1) < CR or j == jrand then
14: if S Ii == 1 then
15: ui, j is generated by strategy (16)
16: else ifS Ii == 2 then
17: ui, j is generated by strategy (17)
18: else ifS Ii == 3 then
19: ui, j is generated by strategy (18)
20: else ifS Ii == 4 then
21: ui, j is generated by strategy (19)
22: end if
23: else
24: ui, j = xi, j

25: end if
26: end for
27: end for
28: for i = 1 to NP do
29: Evaluate the offspringui

30: if f (ui) is better thanor equal tof (xi) then
31: Calculateηi using Equation (11) ⇐
32: CRi → S CR; Fi → S F

33: Replacexi with ui

34: else
35: Setηi = 0 ⇐
36: end if
37: S S Ii ← ηi ⇐
38: end for
39: Update theµCR andµF

40: Calculate the rewardra(t) for each strategy ⇐
41: Update the qualityqa(t) for each strategy ⇐
42: Update the probabilitypa(t) for each strategy by PM or AP technique ⇐
43: t = t + 1
44: end while
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minima increases exponentially with the problem dimension. The other 9 test functions (F06 − F14) were presented
in CEC-05 [37], being all multi-modal functions, with shifted and/or rotated features making them very difficult to
solve. Generally, these 22 functions can be categorized into three groups: (i) basic unimodal functions (f01− f07); (ii)
basic multimodal functions (f08 − f13); and (iii) shifted and/or rotated multimodal functions (F06 − F14). Functions
f01− f13 are described in Appendix A. A detailed description of functionsF06− F14 can be found in [37]. According
to the main objectives of this work, the experiments are carried out with the following key aims.

1) To compare the performance of AdapSS-JADE using each of the four different credit assignment techniques
described in Section 3.2.

2) With the best credit assignment technique found, to compare the performance of AdapSS-JADE using different
strategy selection techniques.

3) The strategy adaptation characteristics of the best adaptive strategy selection approach are analyzed, to demon-
strate that it is able of efficiently selecting the most suitable strategy to be applied, while solving the problem,
without any prior knowledge.

4) The sensitivity of the parameter settings of the best strategy selection technique is studied, to indicate the effect
of these parameters on its performance.

The experimental settings and performance criteria used onthe empirical analysis of these four issues are presented
in the following, with the results concerning each of them being presented in Sections 4.3 to 4.7.

4.1. Experimental Settings

For all experiments, we use the following parameters unlessa change is mentioned.

• Dimension of each function:D = 30;

• Population size:NP = 100 [50, 49];

• µCR = 0.5 andµF = 0.5, [50, 49];

• c = 0.1 andp = 0.05 [50, 49];

• Number of strategies:K = 4; minimal probability:pmin = 0.05; adaptation rate:α = 0.3; and learning rate in
AP: β = 0.8 (the parameter study will be discussed in Section 4.7);

• Value to Reach (VTR): For functionsf01 − f06 and f08 − f13, VTR = 10−8; for functions f07, F06 − F14, VTR =
10−2 [37, 50];

• Maximum Number of Fitness Function Evaluations (MaxNFFEs3): For f01, f06, f10, f12, and f13, Max NFFEs
= 150, 000; for f03 − f05, Max NFFEs = 500, 000; for f02 and f11, Max NFFEs = 200, 000; for f07 − f09, and
F06 − F14, Max NFFEs = 300, 000.

Moreover, in our experiments, each function is optimized over 50 independent runs. We also use the same set of
initial random populations to evaluate different algorithms in a similar way as done in [24]. All the algorithms are
implemented in standard C++.

3The Max NFFEs for functionsf01 − f13 are mainly set as in [48], except forf05, f08, and f09, for which the numbers used are smaller than the
original ones, since our approaches are able to obtain the global optimum of these functions within the MaxNFFEs. For functionsF06 − F14, the
Max NFFEs are set as in [37].
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4.2. Performance Criteria

Four performance criteria are selected from the literature[37] to evaluate the algorithms. These criteria are de-
scribed as follows.

• Error : The error of a solutionx is defined asf (x)− f (x∗), wherex∗ is the global minimum of the function. The
minimum error is recorded when the MaxNFFEs is reached in 50 runs. The average and standard deviation of
the error values are calculated as well.

• Number of Fitness Function Evaluations(NFFEs): The NFFEs is also recorded when the VTR is reached. The
average and standard deviation of the NFFEs values are calculated.

• Successful Rate (S r): A successful run of an algorithm indicates that the algorithm can result in a function
value no worse than the VTR before the MaxNFFEs condition terminates the trial. The successful rateS r is
calculated as the number of successful runs divided by the total number of runs.

• Convergence graphs: The convergence graphs show themedian error performance of the best solution over
the total runs, in the respective experiments.

4.3. Comparison on Different Credit Assignment Methods

In this section, the performance of different credit assignment methods described in Section 3.2 is compared. They
are referred to as being different AdapSS-JADE variants, asfollows:

1) AdapSS-JADE1: AdapSS-JADE with the averaged absolute reward as shown in (12).

2) AdapSS-JADE2: AdapSS-JADE with the averaged normalizedreward as shown in (13).

3) AdapSS-JADE3: AdapSS-JADE with the extreme absolute reward as shown in (14).

4) AdapSS-JADE4: AdapSS-JADE with the extreme normalized reward as shown in (15).

The results are shown in Table 1 for theAdaptive Pursuit technique4, all of them being averaged over 50 indepen-
dent runs. The same kind of conclusions can be gathered from these results, for the AP technique, as follows: (i) all
four credit assignment methods were able to provide very similar averaged successful rates; (ii) JADE with the second
credit assignment method,i.e., the normalized average reward, obtained the best performance in terms of the averaged
ranking. This latter confirms the assumptions listed in Section 3.2, showing that the normalization indeed increases
the robustness of the algorithm when tackling very different problems as the ones used in this work.

For the sake of simplicity, in the following section we only use the normalized average reward as the credit
assignment method, varying just the strategy selection scheme.

4.4. Comparison on Different Strategy Selection Methods

In order to compare the performance of different strategy selection techniques, the following five JADE variants
are considered:

1) Uniform-JADE: JADE with the uniform strategy selection is implemented as baseline: for the creation of each
offspring, a strategy is uniformly drawn from the pool.

2) SJADE: In this approach, the strategy adaptation technique proposed in [30] is used.

3) EPS-JADE: The strategy adaptation method presented in EPSDE [20] is used in EPS-JADE. Since the parameter
adaptation ofCR andF is implemented in JADE, in EPS-JADE the parameter adaptation method originally
proposed in EPSDE is not used.

4For the sake of the brevity, we omit the results of theProbability Matching technique. Interested reader can contact the first author for more
details.
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Table 1: Comparison on the performance of different credit assignment methods withAdaptive Pursuit for all functions atD = 30. “Rank” indicates
the ranking of the corresponding algorithm, obtained basedon the mean values shown in the table.

F
AP-AdapSS-JADE-1 AP-AdapSS-JADE-2 AP-AdapSS-JADE-3 AP-AdapSS-JADE-4

Mean± Std (S r ) / Rank Mean± Std (S r) / Rank Mean± Std (S r) / Rank Mean± Std (S r ) / Rank
f01 2.46E+04± 1.05E+03 (1.0) / 2 2.46E+04± 9.75E+02(1.0) / 1 2.68E+04± 1.03E+03 (1.0) / 4 2.65E+04± 1.28E+03 (1.0) / 3
f02 4.13E+04± 2.47E+03 (1.0) / 2 4.01E+04± 1.96E+03(1.0) / 1 4.44E+04± 2.63E+03 (1.0) / 4 4.35E+04± 2.93E+03 (1.0) / 3
f03 8.83E+04± 4.77E+03(1.0) / 1 8.88E+04± 5.95E+03 (1.0) / 2 9.18E+04± 8.47E+03 (1.0) / 4 8.95E+04± 8.67E+03 (1.0) / 3
f04 1.92E+05± 9.90E+03 (1.0) / 2 1.85E+05± 1.05E+04(1.0) / 1 2.20E+05± 1.81E+04 (1.0) / 3 2.34E+05± 2.12E+04 (1.0) / 4
f05 1.28E+05± 6.68E+03 (.94) / 2 1.26E+05± 6.28E+03(.92) / 1 1.29E+05± 1.21E+04 (.92) / 4 1.28E+05± 1.33E+04 (.94) / 3
f06 9.41E+03± 3.46E+02(1.0) / 1 9.47E+03± 3.76E+02 (1.0) / 2 1.00E+04± 6.15E+02 (1.0) / 3 1.01E+04± 5.75E+02 (1.0) / 4
f07 9.41E+03± 3.46E+02(1.0) / 1 9.47E+03± 3.76E+02 (1.0) / 2 1.00E+04± 6.15E+02 (1.0) / 3 1.01E+04± 5.75E+02 (1.0) / 4
f08 9.64E+04± 3.27E+03 (1.0) / 2 9.37E+04± 4.06E+03(1.0) / 1 9.64E+04± 6.05E+03 (1.0) / 3 9.79E+04± 7.34E+03 (1.0) / 4
f09 1.25E+05± 3.22E+03 (1.0) / 3 1.23E+05± 4.43E+03(1.0) / 1 1.24E+05± 6.16E+03 (1.0) / 2 1.25E+05± 7.14E+03 (1.0) / 4
f10 3.76E+04± 1.40E+03(1.0) / 1 3.76E+04± 1.77E+03 (1.0) / 2 4.11E+04± 1.92E+03 (1.0) / 4 4.09E+04± 2.19E+03 (1.0) / 3
f11 2.59E+04± 1.46E+03(1.0) / 1 2.60E+04± 1.27E+03 (1.0) / 2 2.75E+04± 1.35E+03 (1.0) / 3 2.82E+04± 2.82E+03 (1.0) / 4
f12 2.21E+04± 1.11E+03 (1.0) / 2 2.17E+04± 9.74E+02(1.0) / 1 2.39E+04± 1.53E+03 (1.0) / 3 2.39E+04± 1.54E+03 (1.0) / 4
f13 2.62E+04± 1.64E+03 (1.0) / 2 2.56E+04± 1.34E+03(1.0) / 1 2.90E+04± 2.00E+03 (1.0) / 4 2.87E+04± 1.94E+03 (1.0) / 3

F06 1.12E+05± 1.01E+04 (.94) / 3 1.11E+05± 8.56E+03 (.88) / 2 1.13E+05± 1.29E+04 (.90) / 4 1.10E+05± 9.70E+03(.94) / 1
F07 3.64E+04± 6.32E+03 (.76) / 2 3.57E+04± 5.72E+03(.68) / 1 3.81E+04± 6.83E+03 (.84) / 4 3.81E+04± 6.45E+03 (.86) / 3
F08
⋆ 2.10E+01± 4.54E-02 (0.0) / 4 2.09E+01± 4.76E-02(0.0) / 1 2.09E+01± 5.49E-02 (0.0) / 2 2.10E+01± 5.74E-02 (0.0) / 3

F09 1.05E+05± 2.67E+03 (1.0) / 4 1.02E+05± 5.17E+03(1.0) / 1 1.02E+05± 6.33E+03 (1.0) / 2 1.02E+05± 8.03E+03 (1.0) / 3
F10
⋆ 2.60E+01± 4.81E+00 (0.0) / 3 2.92E+01± 6.61E+00 (0.0) / 4 2.56E+01± 4.17E+00 (0.0) / 2 2.52E+01± 4.66E+00(0.0) / 1

F11
⋆ 2.58E+01± 1.65E+00 (0.0) / 2 2.56E+01± 2.11E+00(0.0) / 1 2.62E+01± 2.01E+00 (0.0) / 3 2.63E+01± 1.36E+00 (0.0) / 4

F12
⋆ 1.12E+03± 1.48E+03(.10) / 1 1.96E+03± 1.81E+03 (.04) / 2 2.11E+03± 3.31E+03 (.14) / 3 2.33E+03± 2.86E+03 (.08) / 4

F13
⋆ 2.18E+00± 1.72E-01(0.0) / 1 2.19E+00± 1.83E-01 (0.0) / 2 2.21E+00± 1.76E-01 (0.0) / 3 2.23E+00± 1.62E-01 (0.0) / 4

F14
⋆ 1.23E+01± 2.81E-01 (0.0) / 3 1.23E+01± 2.79E-01 (0.0) / 2 1.22E+01± 2.89E-01(0.0) / 1 1.23E+01± 2.98E-01 (0.0) / 4

Avg.
(S r) / Rank (S r) / Rank (S r ) / Rank (S r ) / Rank
(.72) / 2.04 (.71) / 1.54 (.72) / 3.09 (.72) / 3.31

⋆ indicates that the error values of the final solutions are used, since the successful rates for all methods are lower than 50%.

4) PM-AdapSS-JADE: AdapSS-JADE with theProbability Matching strategy selection technique and the normal-
ized average credit assignment scheme.

5) AP-AdapSS-JADE: AdapSS-JADE with theAdaptive Pursuit strategy selection technique and the normalized
average credit assignment scheme.

The parameters of all algorithms are used as mentioned in Section 4.1. The results are tabulated in Tables 2, 3,
and 4. In Tables 2 and 3, the paired Wilcoxon signed-rank testat α = 0.05 is adopted to compare the significance
between two algorithms. The Wilcoxon signed-rank test is a non-parametric statistical hypothesis test, which can
be used as an alternative to the pairedt-test when the results cannot be assumed to be normally distributed [34]. In
Table 3, according to the Wilcoxon’s test, the results are summarized as “w/t/l”, which means that the algorithm in
the row wins inw functions, ties int functions, and loses inl functions, compared with the algorithm in the column.
Similar to the methods used in [50], theintermediate results are reported for the functions where several algorithms
can obtain the global optimum within MaxNFFEs. In these cases, the Wilcoxon signed-rank test considers only these
intermediate results. In Table 4, the best and the second best results are highlighted, respectively, ingrey boldface
andboldface.

With respect to the quality of the final results, from Tables 2and 3, we can see that:

• Compared with the baseline,i.e., Uniform-JADE, SJADE showed to be competitive, with the Wilcoxon’s test
resulting in 6/9/7. EPS-JADE obtains similar results compared with Uniform-JADE, the Wilcoxon’s test re-
sulting in 5/12/5. Both PM-AdapSS-JADE and AP-AdapSS-JADE approaches are significantly better than
Uniform-JADE on most of the functions. On 11 test functions PM-AdapSS-JADE significantly outperforms
Uniform-JADE, while on the other 11 functions there are no significant differences between these two algo-
rithms. Uniform-JADE is significantly outperformed by AP-AdapSS-JADE on 12 functions. On 9 functions
AP-AdapSS-JADE provides the similar results to Uniform-JADE. Uniform-JADE only significantly outper-
forms AP-AdapSS-JADE on functionF13.

• According to the Wilcoxon’s test shown in Table 3, it can be seen that both PM-AdapSS-JADE and AP-AdapSS-
JADE approaches significantly outperform SJADE on most of the test functions. PM-AdapSS-JADE is signif-
icantly better than SJADE on 12 functions. AP-AdapSS-JADE is significantly better than SJADE on 11 func-
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Table 2: Comparison on theError values of different strategy selection techniques for all functions atD = 30. When several algorithms can obtain
the global optimum for a function, only theintermediate results for the function are reported, hereinafter.

F NFFEs Uniform-JADE SJADE EPS-JADE PM-AdapSS-JADE AP-AdapSS-JADE
f01 150k 2.33E-60± 1.45E-59 (1.0) 1.48E-60± 6.61E-60 (1.0) 5.59E-59± 3.91E-58 (1.0) 1.66E-62± 9.17E-62 (1.0) 2.46E-75± 1.42E-74(1.0)
f02 200k 3.51E-36± 1.63E-35 (1.0) 1.24E-28± 8.38E-28 (1.0) 1.40E-32± 8.16E-32 (1.0) 2.97E-34± 2.09E-33 (1.0) 1.85E-44± 1.31E-43(1.0)
f03 500k 4.33E-60± 1.81E-59 (1.0) 7.34E-70± 2.23E-69(1.0) 2.15E-66± 1.52E-65 (1.0) 1.79E-67± 1.20E-66 (1.0) 2.50E-68± 8.35E-68 (1.0)
f04 500k 4.79E-16± 2.35E-16 (1.0) 5.27E-15± 3.67E-15 (1.0) 1.07E-15± 4.91E-15 (1.0) 2.74E-16± 1.67E-16 (1.0) 5.14E-22± 5.40E-22 (1.0)
f05 500k 2.39E-01± 9.56E-01 (.94) 7.75E-30± 2.63E-29(1.0) 1.59E-01± 7.89E-01 (.96) 7.97E-02± 5.64E-01 (.98) 3.19E-01± 1.09E+00 (.92)
f06 50k 1.38E+00± 1.15E+00 (1.0) 1.78E+00± 1.04E+00 (1.0) 1.12E+00± 8.63E-01 (1.0) 1.12E+00± 1.05E+00 (1.0) 4.00E-02± 1.96E-01(1.0)
f07 300k 5.53E-04± 1.52E-04 (1.0) 5.82E-04± 2.79E-04 (1.0) 5.21E-04± 2.26E-04(1.0) 5.28E-04± 1.74E-04 (1.0) 5.94E-04± 1.89E-04 (1.0)
f08 100k 2.51E-07± 7.24E-07 (1.0) 1.51E-07± 2.04E-07 (1.0) 4.23E-06± 2.09E-06 (1.0) 1.29E-07± 1.89E-07 (1.0) 1.82E-08± 1.19E-07(1.0)
f09 100k 3.56E-01± 3.06E-01 (1.0) 9.09E-02± 7.06E-02(1.0) 6.68E-01± 3.30E-01 (1.0) 3.02E-01± 4.52E-01 (1.0) 2.95E-01± 5.69E-01 (1.0)
f10 50k 3.15E-10± 3.49E-10 (1.0) 5.56E-10± 6.45E-10 (1.0) 3.03E-10± 2.77E-10 (1.0) 1.99E-10± 2.01E-10 (1.0) 1.10E-11± 1.86E-11(1.0)
f11 50k 1.72E-10± 1.21E-09 (1.0) 1.78E-17± 1.10E-16 (1.0) 3.93E-16± 2.75E-15 (1.0) 6.66E-18± 4.66E-17 (1.0) 0.00E+00± 0.00E+00(1.0)
f12 50k 5.96E-19± 2.14E-18 (1.0) 1.59E-18± 2.59E-18 (1.0) 7.49E-19± 2.00E-18 (1.0) 2.39E-19± 7.64E-19 (1.0) 2.24E-22± 7.79E-22(1.0)
f13 50k 1.91E-16± 3.58E-16 (1.0) 1.72E-14± 8.15E-14 (1.0) 7.30E-16± 2.34E-15 (1.0) 1.77E-16± 3.70E-16 (1.0) 3.76E-20± 1.21E-19(1.0)

F06 300k 3.99E-01± 1.21E+00 (.90) 3.90E+00± 1.52E+01 (.88) 7.36E-01± 3.61E+00 (.92) 6.92E-25± 4.22E-24(1.0) 4.78E-01± 1.31E+00 (.88)
F07 300k 1.13E-02± 1.03E-02 (.74) 1.08E-02± 9.04E-03 (.72) 8.57E-03± 8.00E-03(.84) 9.01E-03± 8.65E-03 (.82) 1.31E-02± 1.04E-02 (.68)
F08 300k 2.09E+01± 6.79E-02 (0.0) 2.09E+01± 5.99E-02 (0.0) 2.09E+01± 5.66E-02 (0.0) 2.09E+01± 4.96E-02 (0.0) 2.09E+01± 4.76E-02 (0.0)
F09 100k 2.69E-01± 2.61E-01 (1.0) 6.54E-02± 7.23E-02(1.0) 8.25E-01± 4.62E-01 (1.0) 1.83E-01± 1.65E-01 (1.0) 1.65E-01± 2.54E-01 (1.0)
F10 300k 2.87E+01± 5.65E+00 (0.0) 3.01E+01± 5.02E+00 (0.0) 2.60E+01± 4.99E+00 (0.0) 2.57E+01± 4.26E+00(0.0) 2.92E+01± 6.61E+00 (0.0)
F11 300k 2.83E+01± 1.36E+00 (0.0) 2.61E+01± 1.18E+00 (0.0) 2.66E+01± 1.38E+00 (0.0) 2.55E+01± 1.22E+00(0.0) 2.56E+01± 2.11E+00 (0.0)
F12 300k 1.61E+03± 1.98E+03(.04) 5.44E+03± 5.09E+03 (.02) 3.21E+03± 3.69E+03 (.14) 1.74E+03± 1.92E+03 (.04) 1.96E+03± 1.81E+03 (.04)
F13 300k 2.09E+00± 1.68E-01 (0.0) 2.45E+00± 2.38E-01 (0.0) 1.35E+00± 1.03E-01(0.0) 2.06E+00± 1.73E-01 (0.0) 2.19E+00± 1.83E-01 (0.0)
F14 300k 1.23E+01± 2.94E-01 (0.0) 1.23E+01± 2.74E-01 (0.0) 1.23E+01± 2.39E-01 (0.0) 1.23E+01± 2.75E-01 (0.0) 1.23E+01± 2.79E-01(0.0)

Table 3: Wilcoxon’s test on theError values of different strategy selection techniques for all functions atD = 30. The algorithm in the row is
compared with the algorithm in the column. The results are described as “wins/ties/losses”.

Uniform-JADE SJADE EPS-JADE PM-AdapSS-JADE AP-AdapSS-JADE
Uniform-JADE – – – – –

SJADE 7/9/6 – – – –
EPS-JADE 5/12/5 10/8/4 – – –

PM-AdapSS-JADE 11/11/0 12/8/2 9/11/2 – –
AP-AdapSS-JADE 12/9/1 11/9/2 11/6/5 11/9/2 –

tions. SJADE significantly dominates PM-AdapSS-JADE and AP-AdapSS-JADE on two functions (f09 and
F09)5. On the rest of the functions, there are no significant differences in terms of error values.

• Considering EPS-JADE, it obtains overall better results than SJADE method. Compared EPS-JADE with PM-
AdapSS-JADE and AP-AdapSS-JADE, we can see that PM-AdapSS-JADE and AP-AdapSS-JADE are signifi-
cantly better than EPS-JADE in most of the cases.

• Comparison on the results between PM-AdapSS-JADE and AP-AdapSS-JADE, the Wilcoxon’s test result is
11/9/2. It means that AP-AdapSS-JADE is significantly better thanPM-AdapSS-JADE on 11 functions. On
9 functions, there are no significant differences between these two algorithms. Only on 2 functions (F10 and
F13), AP-AdapSS-JADE is significantly worse than PM-AdapSS-JADE. Thus, we can conclude that on most of
the functions theAdaptive Pursuit based AdapSS-JADE approach is better than theProbability Matching based
one, consequently being better than all the other methods used in this empirical comparison.

Generally, our proposed PM-AdapSS-JADE and AP-AdapSS-JADE approaches obtain better results than SJADE
in terms of the error values and the convergence rate, which might indicate that the relative fitness improvement based
credit assignment techniques are better than the method proposed in SaDE [30] (which is based on the frequency
of fitness improvements). Moreover, both PM-AdapSS-JADE and AP-AdapSS-JADE approaches are better than
Uniform-JADE and EPS-JADE, which means that theProbability Matching andAdaptive Pursuit techniques based
AdapSS-JADE are able of efficiently adjust the probability of the most suitable strategy while solving the problem.
With respect to the convergence rate, Table 4 shows that PM-AdapSS-JADE and AP-AdapSS-JADE consistently
converge faster than Uniform-JADE, SJADE, and EPS-JADE on most of the functions. In addition, AP-AdapSS-
JADE is capable of providing the fastest convergence rate compared with the other three methods on most of the

5These two functions are the Rastrigin’s functions.F09 is the shifted version off09.
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Table 4: Comparison on theNFFEs values of different strategy selection techniques for the successful functions atD = 30. The results are only
reported for functions that are solved successfully withinthe MaxNFFEs.

F Uniform-JADE SJADE EPS-JADE PM-AdapSS-JADE AP-AdapSS-JADE
f01 2.77E+04± 9.04E+02 2.82E+04± 8.13E+02 2.77E+04± 8.34E+02 2.74E+04± 6.00E+02 2.46E+04± 9.75E+02
f02 4.73E+04± 1.84E+03 4.88E+04± 2.16E+03 4.72E+04± 1.65E+03 4.63E+04± 1.88E+03 4.01E+04± 1.96E+03
f03 9.02E+04± 6.35E+03 8.86E+04± 4.24E+03 8.30E+04± 4.96E+03 8.79E+04± 3.49E+03 8.88E+04± 5.95E+03
f04 2.65E+05± 6.40E+03 2.85E+05± 7.66E+03 2.75E+05± 3.57E+03 2.61E+05± 6.58E+03 1.85E+05± 1.05E+04
f05 1.31E+05± 1.02E+04 1.26E+05± 4.99E+03 1.19E+05± 5.04E+03 1.25E+05± 3.71E+03 1.26E+05± 6.28E+03
f06 1.03E+04± 3.16E+02 1.04E+04± 2.93E+02 1.03E+04± 2.95E+02 1.02E+04± 3.30E+02 9.47E+03± 3.76E+02
f07 2.31E+04± 5.82E+03 2.59E+04± 6.02E+03 2.28E+04± 4.91E+03 2.31E+04± 5.18E+03 2.33E+04± 5.74E+03
f08 1.03E+05± 2.98E+03 1.04E+05± 2.30E+03 1.18E+05± 1.88E+03 1.03E+05± 2.42E+03 9.37E+04± 4.06E+03
f09 1.30E+05± 2.36E+03 1.29E+05± 2.25E+03 1.39E+05± 1.93E+03 1.30E+05± 5.04E+03 1.23E+05± 4.43E+03
f10 4.29E+04± 1.40E+03 4.38E+04± 1.47E+03 4.29E+04± 1.26E+03 4.23E+04± 1.29E+03 3.76E+04± 1.77E+03
f11 4.26E+04± 3.06E+03 2.97E+04± 1.19E+03 2.95E+04± 1.29E+03 2.89E+04± 1.19E+03 2.60E+04± 1.27E+03
f12 2.51E+04± 1.01E+03 2.59E+04± 9.15E+02 2.52E+04± 8.50E+02 2.45E+04± 1.04E+03 2.17E+04± 9.74E+02
f13 3.05E+04± 1.26E+03 3.16E+04± 1.91E+03 3.03E+04± 1.41E+03 3.03E+04± 1.32E+03 2.56E+04± 1.34E+03

F06 1.22E+05± 1.97E+04 1.09E+05± 6.49E+03 1.12E+05± 1.51E+04 1.15E+05± 1.19E+04 1.11E+05± 8.56E+03
F07 3.64E+04± 4.33E+03 3.66E+04± 4.71E+03 3.60E+04± 5.11E+03 3.48E+04± 4.75E+03 3.57E+04± 5.72E+03
F09 1.06E+05± 2.18E+03 1.03E+05± 2.32E+03 1.12E+05± 1.38E+03 1.05E+05± 2.83E+03 1.02E+05± 5.17E+03

functions, while also showing to be better in terms of the error values; the reason for this is that theAdaptive Pursuit
technique is able to converge more rapidly to a strategy probability distribution that accurately reflects the quality
empirical estimates, confirming what was already shown in the context of GAs [41].

For the experiments presented in the following sections, weconsider only the results of the best method found
here,i.e., the AP-AdapSS-JADE using the normalized average reward ofrelative fitness improvements.

4.5. Analysis of Strategy Adaptation

The adaptation characteristics of the PM method have been analyzed in [15], with the results showing that PM-
based DE is able to efficiently select the most suitable strategy while solving a given problem, globally achieving
better results than the baseline adaptive methods, and thanthe DE using a single strategy for each of the strategies
constituting the pool. In this section, the adaptation characteristics of the AP method are analyzed experimentally.
Four variants of JADE are compared with AP-AdapSS-JADE, each of them using one of the strategies that constitute
the pool, as follows:

1) JADE-wo: JADE with the strategy shown in Equation 16.

2) JADE-w: JADE with the strategy shown in Equation 17.

3) rJADE-wo: JADE with the strategy shown in Equation 18.

4) rJADE-w: JADE with the strategy shown in Equation 19.

The parameter settings are kept the same as described in Section 4.1. The results are shown in Table 5. In Table 5,
only the intermediate results are reported for the functions where several algorithms can obtain the global optimum
within the MaxNFFEs. In the last row of Table 5, according to the Wilcoxon’stest, the results are summarized
as “w/t/l”, which means that AP-AdapSS-JADE wins inw functions, ties int functions, and loses inl functions,
compared with its competitors. Some typical convergence curves and the evolution of the probabilities of the selected
functions are plotted in Figure 2. All results are averaged over 50 independent runs.

4.5.1. On the General Performance
From Table 5, it is clear to see that on most of the functions AP-AdapSS-JADE significantly outperforms JADE

with each single strategy in the pool. AP-AdapSS-JADE is significantly better than JADE-wo, JADE-w, rJADE-wo,
and rJADE-w on 16, 12, 14, and 14 out of 22 functions, respectively, while being outperformed on 0, 2, 4, and 5
functions.

Considering the convergence rate, from Figure 2, we can observe that AP-AdapSS-JADE requires less NFFEs to
achieve the value-to-reach and converges faster than the four JADE variants on most of the functions.
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Figure 2: Adaptation analysis of AP-AdapSS-JADE on the selected functions. The convergence graphs of these functions are shown in the left
column, and the evolution of the probabilities of each strategy is shown in the right column. (a, b)f01; (c, d) f06; (e, f) F09; (g, h) F14.
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Table 5: Comparison on theError values between JADE with single strategy and AP-AdapSS-JADE for all functions atD = 30.

F NFFEs JADE-wo JADE-w rJADE-wo rJADE-w AP-AdapSS-JADE
f01 150k 5.06E-59± 3.18E-58 (1.0)† 7.14E-58± 3.36E-57 (1.0)† 2.06E-50± 1.46E-49 (1.0)† 1.89E-53± 1.33E-52 (1.0)† 2.46E-75± 1.42E-74(1.0)
f02 200k 1.32E-29± 5.99E-29 (1.0)† 3.64E-27± 2.51E-26 (1.0)† 4.52E-31± 2.24E-30 (1.0)† 1.63E-28± 6.12E-28 (1.0)† 1.85E-44± 1.31E-43(1.0)
f03 500k 1.71E-60± 6.68E-60 (1.0)† 9.28E-80± 5.62E-79(1.0)‡ 1.64E+00± 5.30E+00 (.88)† 1.69E+00± 3.18E+00 (.76)† 2.50E-68± 8.35E-68 (1.0)
f04 500k 3.17E-14± 1.53E-14 (1.0)† 5.02E-14± 3.45E-14 (1.0)† 5.42E-16± 3.00E-16 (1.0)† 1.15E-15± 4.89E-16 (1.0)† 5.14E-22± 5.40E-22(1.0)
f05 500k 1.59E-01± 7.89E-01 (.96) 1.59E-01± 7.89E-01 (.96) 7.97E-02± 5.64E-01 (.98) 2.25E-30± 4.78E-30(1.0) 3.19E-01± 1.09E+00 (.92)
f06 10k 3.02E+00± 1.24E+00 (1.0)† 5.70E+00± 1.57E+00 (1.0)† 1.40E-01± 4.00E-01 (1.0)† 1.22E+00± 1.20E+00 (1.0)† 4.00E-02± 1.96E-01(1.0)
f07 300k 6.57E-04± 2.51E-04 (1.0)† 6.05E-04± 2.06E-04 (1.0) 4.93E-04± 1.64E-04 (1.0)‡ 4.81E-04± 1.42E-04(1.0)‡ 5.94E-04± 1.89E-04 (1.0)
f08 100k 1.71E-04± 2.27E-04 (1.0)† 2.60E-04± 4.77E-04 (1.0)† 2.93E-09± 5.12E-09(1.0)‡ 4.22E-09± 4.75E-09 (1.0)‡ 1.82E-08± 1.19E-07 (1.0)
f09 100k 1.90E+00± 7.36E-01 (1.0)† 1.63E+00± 7.62E-01 (1.0)† 6.85E-03± 7.25E-03(1.0)‡ 1.22E-02± 1.70E-02 (1.0)‡ 2.95E-01± 5.69E-01 (1.0)
f10 50k 1.14E-09± 1.20E-09 (1.0)† 2.91E-09± 2.89E-09 (1.0)† 1.24E-10± 1.41E-10 (1.0)† 3.54E-10± 2.79E-10 (1.0)† 1.10E-11± 1.86E-11(1.0)
f11 25k 2.71E-04± 1.02E-03 (1.0)† 3.39E-04± 1.44E-03 (1.0)† 2.24E-07± 1.48E-07 (1.0) 1.19E-06± 1.27E-06 (1.0)† 1.49E-07± 5.38E-07(1.0)
f12 50k 1.44E-17± 3.65E-17 (1.0)† 1.68E-16± 4.52E-16 (1.0)† 7.14E-20± 2.17E-19 (1.0)† 1.81E-18± 5.39E-18 (1.0)† 2.24E-22± 7.79E-22(1.0)
f13 50k 1.80E-11± 1.09E-10 (1.0)† 5.87E-12± 2.40E-11 (1.0)† 1.34E-16± 7.27E-16 (1.0)† 1.53E-15± 4.80E-15 (1.0)† 3.76E-20± 1.21E-19(1.0)

F06 300k 5.58E+00± 1.58E+01 (.70)† 4.26E+00± 1.57E+01 (.88) 5.27E+00± 1.83E+01 (.88)† 2.84E+00± 1.15E+01 (.90) 4.78E-01± 1.31E+00(.88)
F07 300k 1.40E-02± 1.80E-02 (.68) 8.86E-03± 9.58E-03 (.74)‡ 1.38E-02± 1.13E-02 (.74) 6.16E-03± 6.25E-03(.92)‡ 1.31E-02± 1.04E-02 (.68)
F08 300k 2.09E+01± 4.33E-02 (0.0) 2.09E+01± 4.50E-02 (0.0) 2.09E+01± 8.20E-02 (0.0) 2.09E+01± 6.56E-02 (0.0) 2.09E+01± 4.76E-02 (0.0)
F09 100k 1.66E+00± 7.33E-01 (1.0)† 1.21E+00± 6.51E-01 (1.0)† 4.02E-03± 6.17E-03(1.0)‡ 2.72E-03± 2.81E-03 (1.0)‡ 1.65E-01± 2.54E-01 (1.0)
F10 300k 3.14E+01± 6.77E+00 (0.0)† 2.90E+01± 4.02E+00(0.0) 4.19E+01± 2.38E+01 (0.0)† 4.00E+01± 2.46E+01 (0.0)† 2.92E+01± 6.61E+00 (0.0)
F11 300k 2.49E+01± 1.17E+00(0.0) 2.59E+01± 1.77E+00 (0.0) 3.08E+01± 2.50E+00 (0.0)† 3.28E+01± 5.29E+00 (0.0)† 2.56E+01± 2.11E+00 (0.0)
F12 300k 4.56E+03± 3.92E+03 (0.0)† 4.49E+03± 4.19E+03 (.02)† 1.44E+04± 1.13E+04 (0.0)† 1.08E+04± 8.94E+03 (0.0)† 1.96E+03± 1.81E+03(.04)
F13 300k 2.22E+00± 1.87E-01 (0.0) 2.19E+00± 1.94E-01(0.0) 2.62E+00± 2.29E-01 (0.0)† 2.70E+00± 2.07E-01 (0.0)† 2.19E+00± 1.83E-01 (0.0)
F14 300k 1.23E+01± 2.17E-01 (0.0) 1.24E+01± 2.09E-01 (0.0) 1.28E+01± 4.90E-01 (0.0)† 1.29E+01± 2.41E-01 (0.0)† 1.23E+01± 2.79E-01(0.0)

w/t/l 16/6/0 12/8/2 14/4/4 14/3/5 –

† indicates AP-AdapSS-JADE is significantly better than its competitor by the Wilcoxon signed-rank test atα = 0.05.
‡ means that AP-AdapSS-JADE is significantly outperformed byits competitor.

4.5.2. On the Adaptation Characteristics
In order to analyze the adaptation characteristics of AP-AdapSS-JADE, the evolution trend of the probability of

each strategy for some selected functions is shown in the right columns of Figure 2. According to the results shown
in Table 5 and Figure 2, it can be observed that:

• Similar to memetic algorithms, the competition and cooperation [25, 26] can also be observed in AP-AdapSS-
JADE. Different strategies of JADE are working together to accomplish the shared optimization goal and re-
sulting in a higher achievement [26]. On most of the functions, AP-AdapSS-JADE obtains the best results
compared with the four JADE variants. This means that theAdaptive Pursuit based AdapSS-JADE is capable
of enhancing the performance of JADE w.r.t. quality of final solutions and convergence speed.

• Comparing the results of JADE with each single strategy, it is difficult to say which one is the best. For example,
for function f08 rJADE-wo and rJADE-w provide better results than JADE-wo and JADE-w. Oppositely, for
functionF11, JADE-wo and JADE-w are better than JADE-wo and JADE-w in terms of quality of final solutions
and convergence rate. This phenomenon can also be observed for other test functions.

• Figure 2 indicates that AP-AdapSS-JADE is able to adaptively select the most suitable strategy while solving
the problem at hand. TheAdaptive Pursuit technique can converge rapidly to a strategy probability distribution
that results in a much higher probability of selecting the current optimal strategy. For example, for func-
tion f13 rJADE-wo converges fastest, followed by rJADE-w. According to Figure 2 (d), we can observe that
“DE/rand-topbest/1 (without archive)” obtains the highest probabilityalmost in the whole evolution process,
followed by “DE/rand-topbest/1 (with archive)”. The probabilities of “DE/current-topbest/1 (without archive)”
and “DE/current-topbest/1 (without archive)” are very small for this function.On the contrary, for function
F14, JADE-wo and JADE-w converge faster than rJADE-wo and rJADE-w. Thus, from Figure 2 (g) and (h) we
can see that strategies “DE/current-topbest/1 (without archive)” and “DE/current-topbest/1 (without archive)”
get higher probabilities than “DE/rand-topbest/1 (without archive)” and “DE/rand-topbest/1 (without archive)”.
By carefully looking at the results in Figure 2, it can be seenthat for some functions the evolution trend of the
probability of each strategy is oscillatory. For functionf02, the reason might be that this function is relatively
simple. One of the four strategies may provide a higher reward than the others in the evolution process, hence
being assigned with a higher probability.
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Table 6: Comparison on theError values between JADE with single strategy and AP-AdapSS-JADE for functions f01 − f13 at D = 100 and for
functionsF06 − F14 at D = 50.

D = 100
F NFFEs JADE-wo JADE-w rJADE-wo rJADE-w AP-AdapSS-JADE
f01 1000k 9.50E-62± 1.97E-61 (1.0)† 9.67E-84± 1.85E-83 (1.0)† 1.77E-83± 4.30E-83 (1.0)† 1.53E-96± 1.07E-96 (1.0)† 2.41E-109± 6.62E-109(1.0)
f02 1000k 7.28E-36± 8.44E-36 (1.0)† 1.16E-41± 1.44E-41 (1.0)† 1.95E-46± 1.36E-45 (1.0) 1.33E-54± 1.68E-54(1.0)‡ 4.20E-50± 9.92E-50 (1.0)
f03 1000k 9.13E-04± 7.02E-04 (0.0)† 3.91E-05± 4.62E-05(0.0)‡ 3.81E+04± 2.81E+04 (0.0)† 4.02E+04± 2.61E+04 (0.0)† 2.34E-04± 3.90E-04 (0.0)
f04 1000k 8.08E-02± 1.06E-01 (0.0)† 7.10E-03± 8.53E-03 (0.0) 2.20E-02± 8.87E-02 (0.0)† 1.40E-04± 2.68E-04(0.0)‡ 9.86E-03± 1.11E-03 (0.0)
f05 1000k 4.96E+01± 1.22E+01 (0.0)† 3.08E+01± 1.36E+01 (0.0)† 4.51E+01± 2.26E+00 (0.0)† 1.87E+01± 1.98E+00(0.0)‡ 2.91E+01± 7.99E+00 (0.0)
f06 50k 2.93E+01± 4.68E+00 (1.0)† 2.57E+01± 3.78E+00 (1.0)† 2.38E+00± 1.28E+00(1.0)‡ 5.86E+00± 1.97E+00 (1.0)† 4.90E+00± 2.57E+00 (1.0)
f07 1000k 1.86E-03± 3.58E-04 (1.0)† 1.62E-03± 2.90E-04 (1.0)† 8.99E-04± 1.76E-04 (1.0)‡ 8.83E-04± 1.82E-04(1.0)‡ 1.20E-03± 2.58E-04 (1.0)
f08 1000k 9.71E+03± 3.53E+02 (0.0)† 9.12E+03± 3.31E+02 (0.0)† 9.39E+03± 2.92E+02 (0.0)† 8.13E+03± 3.65E+02 (0.0)† 7.74E+03± 3.42E+02(0.0)
f09 1000k 1.91E+02± 7.68E+00 (0.0)† 1.84E+02± 7.48E+00 (0.0)† 1.62E+02± 8.13E+00 (0.0)† 1.59E+02± 7.56E+00 (0.0)† 1.54E+02± 6.61E+00(0.0)
f10 100k 1.40E-02± 2.54E-03 (1.0)† 6.64E-03± 1.21E-03 (1.0)† 9.67E-04± 1.30E-04(1.0) 1.09E-03± 1.53E-04 (1.0) 1.01E-03± 3.87E-04 (1.0)
f11 100k 1.27E-02± 7.56E-03 (.92)† 2.50E-03± 1.90E-03 (.98)† 4.88E-05± 1.62E-05 (1.0)† 4.70E-05± 1.52E-05 (1.0)† 1.13E-05± 1.05E-05(1.0)
f12 100k 5.27E-05± 2.24E-05 (1.0)† 1.46E-05± 6.74E-06 (1.0)† 2.88E-07± 9.49E-08(1.0)‡ 3.08E-07± 9.00E-08 (1.0)† 3.01E-07± 5.38E-08 (1.0)
f13 100k 4.32E-01± 1.22E+00 (1.0)† 3.04E-02± 6.44E-02 (1.0)† 1.35E-04± 1.04E-04(1.0)‡ 2.38E-04± 5.38E-04 (1.0)† 2.09E-04± 1.89E-04 (1.0)

D = 50
F NFFEs JADE-wo JADE-w rJADE-wo rJADE-w AP-AdapSS-JADE

F06 500k 1.60E+00± 1.99E+00 (.56)† 4.78E-01± 1.32E+00 (.88) 6.38E-01± 1.49E+00 (.84)† 3.19E-01± 1.10E+00(.92)‡ 3.19E-01± 1.10E+00(.92)
F07 500k 4.04E-03± 5.68E-03 (.88)† 6.20E-03± 1.12E-02 (.76)† 1.77E-03± 4.18E-03 (.92)† 8.87E-04± 3.09E-03(.92) 9.85E-04± 3.48E-03 (.92)
F08 500k 2.11E+01± 3.82E-02 (0.0) 2.11E+01± 4.90E-02 (0.0) 2.11E+01± 3.51E-02 (0.0) 2.11E+01± 3.77E-02 (0.0) 2.11E+01± 3.27E-02 (0.0)
F09 500k 1.62E-01± 1.62E-01 (.02)† 1.56E-02± 1.87E-02 (.68)† 5.62E-10± 9.73E-10 (1.0)† 1.88E-12± 3.06E-12 (1.0)† 4.84E-13± 1.13E-12(1.0)
F10 500k 1.04E+02± 9.08E+00 (0.0)† 9.76E+01± 8.32E+00 (0.0)† 8.40E+01± 7.77E+01(0.0) 9.46E+01± 8.20E+01 (0.0) 8.65E+01± 1.14E+01 (0.0)
F11 500k 5.26E+01± 1.94E+00(0.0)‡ 5.32E+01± 1.49E+00 (0.0) 6.25E+01± 4.64E+00 (0.0)† 6.25E+01± 4.64E+00 (0.0)† 5.39E+01± 1.66E+00 (0.0)
F12 500k 1.22E+04± 1.89E+04 (0.0) 1.04E+04± 1.66E+04 (0.0) 5.89E+04± 5.30E+04 (0.0)† 5.52E+04± 5.25E+04 (0.0)† 7.05E+03± 8.22E+03(0.0)
F13 500k 7.72E+00± 3.99E-01 (0.0)† 7.87E+00± 3.39E-01 (0.0)† 7.87E+00± 4.79E-01 (0.0)† 8.13E+00± 4.38E-01 (0.0)† 7.38E+00± 5.33E-01(0.0)
F14 500k 2.18E+01± 2.69E-01 (0.0) 2.17E+01± 2.47E-01 (0.0) 2.27E+01± 1.99E-01 (0.0)† 2.28E+01± 1.59E-01 (0.0)† 2.16E+01± 3.29E-01(0.0)

w/t/l 18/3/1 15/6/1 14/4/4 13/4/5 –

† indicates AP-AdapSS-JADE is significantly better than its competitor by the Wilcoxon signed-rank test atα = 0.05.
‡ means that AP-AdapSS-JADE is significantly outperformed byits competitor.

In summary, from the above analysis we can conclude that our approach is able to efficiently select the suitable
strategy for a specific problem. For each function, one of thestrategies was empirically found to be the best. The
AP-AdapSS-JADE was able to automatically select between them, without any externala priori knowledge, thus
enhancing the performance of the JADE algorithm.

4.6. Scalability Study

In order to better understand the performance of our approach, in this section, the scalability study is conducted.
For functionsf01 − f13, the dimensions are scaled atD = 100, 200, 500. While for functionsF06 − F14, D = 50 is
used, since these functions are defined up toD = 50 in [37].

4.6.1. Performance on Moderate-Dimensional Problems
In this section, AP-AdapSS-JADE is compared again with the four JADE variants for all functions considering,

but considering a higher dimensionality, as done in the original reference of the baseline JADE method [50]. For
functions f01 − f13, D = 100 is considered. For functionsF06 − F14, D = 50 is used, as in [37]. The population size
NP = 400, MaxNFFEs= D × 10, 000. All other parameters are kept unchanged as described inSection 4.1. The
results are reported in Table 6. From the results shown in these two tables, we can observe that:

• When the dimensionality of the problems increase, their complexity increase consistently, especially for the
multimodal functions. Thus, the overall successful rate ofeach algorithm decreases for higher dimensional
problems. For example, the overallS r of JADE-wo is 9.38, and AP-AdapSS-JADE obtains the overallS r =

10.84.

• For higher dimensional problems, a higher population diversity is required and, hence, the strategy which
provides higher perturbation is able to obtain better performance. This is verified in Table 6, where JADE with
archive (JADE-w and rJADE-w) is better than JADE without archive (JADE-wo and rJADE-wo); JADE with
rand-to-pbest/1 mutation (rJADE-wo and rJADE-w) obtains better performance than JADE with current-to-
pbest/1 mutation (JADE-wo and JADE-w).
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Table 7: Comparison on theError values among different JADE variants for functionsf01 − f13 at D = 200.

F JADE-w rJADE-w SJADE EPS-JADE SaJADE AP-AdapSS-JADE
f01 3.95E-45± 7.65E-45† 5.47E-65± 9.91E-65‡ 2.96E-54± 5.17E-54† 1.04E-52± 1.54E-52† 2.14E-63± 3.88E-63† 4.87E-64± 6.00E-64
f02 1.24E-17± 3.30E-17† 1.15E-25± 3.87E-25‡ 3.09E-21± 1.75E-20† 1.19E-20± 2.70E-20† 2.29E-25± 6.79E-25 1.89E-25± 5.43E-25
f03 1.26E+00± 4.36E-01‡ 3.47E+05± 1.07E+05† 2.80E+00± 9.57E-01† 6.43E+00± 5.34E+00† 1.35E+00± 4.81E-01‡ 2.53E+00± 9.91E-01
f04 7.23E+00± 6.14E-01† 5.54E+00± 5.17E-01‡ 6.28E+00± 5.55E-01† 6.18E+00± 5.80E-01† 6.09E+00± 6.30E-01 5.98E+00± 7.05E-01
f05 2.04E+02± 4.64E+01† 1.49E+02± 1.53E+01 1.82E+02± 2.98E+01† 1.84E+02± 3.45E+01† 1.65E+02± 3.14E+01† 1.55E+02± 2.03E+01
f06
⋆ 1.17E+01± 4.16E+00† 2.40E+00± 1.80E+00 7.18E+00± 3.42E+00† 7.76E+00± 3.14E+00† 5.10E+00± 2.40E+00† 2.04E+00± 1.26E+00

f07 1.02E-02± 1.41E-03† 3.99E-03± 7.42E-04‡ 6.08E-03± 1.03E-03† 6.31E-03± 1.14E-03† 5.21E-03± 8.30E-04† 4.97E-03± 1.07E-03
f08 1.66E+04± 5.57E+02† 1.38E+04± 3.99E+02‡ 1.53E+04± 4.80E+02† 1.54E+04± 5.32E+02† 1.42E+04± 4.92E+02‡ 1.44E+04± 5.79E+02
f09 2.34E+02± 6.18E+00† 1.93E+02± 5.86E+00‡ 2.10E+02± 8.63E+00† 2.13E+02± 6.27E+00† 2.00E+02± 7.19E+00 1.98E+02± 8.97E+00
f10
⋆ 1.42E+00± 1.55E-01† 2.52E-02± 1.58E-02 4.40E-01± 2.67E-01† 6.52E-01± 2.62E-01† 1.34E-01± 1.26E-01† 2.33E-02± 8.91E-03

f11
⋆ 6.77E-01± 8.58E-02† 2.92E-02± 8.05E-03‡ 1.92E-01± 6.74E-02† 2.36E-01± 3.99E-02† 9.67E-02± 2.12E-02† 3.22E-02± 7.83E-03

f12
⋆ 1.95E-01± 8.85E-02† 1.62E-03± 4.00E-03‡ 2.79E-02± 2.54E-02† 3.41E-02± 2.83E-02† 8.94E-03± 1.25E-02† 2.13E-03± 6.85E-03

f13
⋆ 8.77E+01± 4.73E+01† 7.12E+00± 4.98E+00‡ 3.06E+01± 1.58E+01† 3.14E+01± 1.87E+01† 1.90E+01± 1.31E+01† 9.84E+00± 8.52E+00

12/0/1 2/3/8 13/0/0 13/0/0 8/3/2 −−
⋆ indicates that the intermediate error values at NFFEs= 100,000 of the function are used, since several algorithms can obtain the global optimum in the function.
† indicates our approach is significantly better than its competitor by the Wilcoxon signed-rank test atα = 0.05.
‡ means that our approach is significantly worse than its competitor by the Wilcoxon signed-rank test atα = 0.05.

Table 8: Comparison on theError values among different JADE variants for functionsf01 − f13 at D = 500.
F JADE-w rJADE-w SJADE EPS-JADE SaJADE AP-AdapSS-JADE
f01 1.40E-40± 1.48E-40† 9.88E-59± 1.26E-58‡ 3.55E-49± 4.96E-49† 1.75E-47± 2.40E-47† 1.70E-57± 4.11E-57 1.50E-57± 2.11E-57
f02 4.02E-08± 1.40E-07† 6.25E-09± 4.40E-08† 1.42E-09± 6.79E-09† 7.23E-09± 3.08E-08† 3.54E-11± 1.54E-10 3.06E-11± 9.24E-11
f03 1.73E+02± 2.86E+01‡ 1.83E+06± 3.96E+05† 2.57E+02± 3.81E+01 3.47E+02± 1.23E+02† 2.17E+02± 4.44E+01‡ 2.44E+02± 3.92E+01
f04 1.50E+01± 6.32E-01† 1.38E+01± 5.41E-01‡ 1.45E+01± 6.76E-01† 1.44E+01± 6.73E-01† 1.45E+01± 7.05E-01† 1.42E+01± 7.44E-01
f05 6.66E+02± 7.65E+01† 6.02E+02± 7.02E+01† 6.33E+02± 8.91E+01† 6.48E+02± 8.00E+01† 6.30E+02± 8.99E+01† 5.82E+02± 7.69E+01
f06
⋆ 1.54E+03± 1.76E+02† 4.18E+02± 4.32E+01‡ 7.94E+02± 8.84E+01† 8.64E+02± 1.09E+02† 6.72E+02± 6.95E+01† 4.48E+02± 5.46E+01

f07 5.43E-02± 4.65E-03† 2.71E-02± 3.00E-03‡ 3.55E-02± 4.03E-03† 3.75E-02± 4.35E-03† 3.09E-02± 3.59E-03‡ 3.30E-02± 3.86E-03
f08 5.20E+04± 8.83E+02† 4.61E+04± 8.73E+02‡ 4.92E+04± 8.67E+02† 4.94E+04± 7.78E+02† 4.66E+04± 8.63E+02‡ 4.81E+04± 9.88E+02
f09 6.40E+02± 1.25E+01† 5.37E+02± 1.38E+01‡ 5.83E+02± 1.35E+01† 5.87E+02± 1.32E+01† 5.53E+02± 1.35E+01‡ 5.68E+02± 1.90E+01
f10 3.03E+00± 1.86E-01† 2.65E+00± 1.50E-01‡ 3.13E+00± 2.05E-01† 3.16E+00± 1.81E-01† 3.09E+00± 1.64E-01† 2.73E+00± 1.29E-01
f11
⋆ 1.34E+01± 1.43E+00† 3.47E+00± 2.91E-01 7.04E+00± 7.08E-01† 7.69E+00± 9.17E-01† 5.73E+00± 7.24E-01† 3.63E+00± 3.04E-01

f12 8.83E-03± 9.66E-03† 5.60E-03± 7.57E-03 8.34E-03± 1.26E-02 1.02E-02± 1.21E-02† 6.47E-03± 8.70E-03 8.21E-03± 1.61E-02
f13 1.41E+02± 2.33E+01† 3.02E+01± 7.21E+00‡ 6.88E+01± 1.59E+01† 7.49E+01± 1.37E+01† 5.56E+01± 1.26E+01† 3.60E+01± 9.76E+00

12/0/1 3/2/8 11/2/0 13/0/0 6/3/4 −−
⋆ indicates that the intermediate error values at NFFEs= 100,000 of the function are used, since several algorithms can obtain the global optimum in the function.
† indicates our approach is significantly better than its competitor by the Wilcoxon signed-rank test atα = 0.05.
‡ means that our approach is significantly worse than its competitor by the Wilcoxon signed-rank test atα = 0.05.

• For the basic unimodal functions (f01 − f07), they are easy to be solved by all five JADE variants. rJADE-w
obtains the best results, AP-AdapSS-JADE obtains the second best results, followed by rJADE-wo, JADE-w,
and JADE-wo.

• For the basic multimodal functions (f08− f13), our approach obtains the best overall results, rJADE-wo is slightly
worse than AP-AdapSS-JADE, followed by rJADE-w, JADE-w, and JADE-wo.

• For functionsF06 − F14, the shift and/or rotated features make them more difficult to be solved. AP-AdapSS-
JADE gets the best overall results in terms of error values. On 5 out of 9 functions, it obtains the best results,
and on two functions (F07, F10), it obtains the second best results.

• In general, with respect to the error value shown in Table 6, our approach is able to provide the best results in
the most of the cases. It significantly performs better than JADE-wo, JADE-w, rJADE-wo, and rJADE-w on
18, 15, 14, and 13 functions (out of 22 functions), respectively.

4.6.2. Analysis on Large-scale Problems
According to the results described in Section 4.6.1, we can see that for the high-dimensional problems the per-

formance of JADE variants benefits from the archive. Thus, inthis section, we only select “current-to-p-best/1” with
archive and “rand-to-pbest/1” with archive to form the strategy pool. The population sizeNP = 400, MaxNFFEs=
D × 5, 000. All other parameters are the same as mentioned in Section 4.1. For functionsf01 − f13, D = 200 and
D = 500 are tested, respectively. Six JADE variants are compared, i.e., JADE-w [50], rJADE-w [49], SJADE [30],
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Figure 3: Convergence curves for different JADE variants. (a) f01(D = 200); (b) f03(D = 200); (c) f08(D = 200); (d) f05(D = 500); (e)
f10(D = 500); (a) f13(D = 500).

EPS-JADE [20], SaJADE [14], and AP-AdapSS-JADE. For the former five algorithms, some specific parameters are
set as in the original literature. The results are shown in Tables 7 and 8. The convergence curves of some selected
functions are plotted in Figure 3.

The results shown in Tables 7, 8 and Figure 3 indicate that rJADE-w obtains the best overall results. Our proposed
approach obtains the second best results. While JADE-w is the worst one. The reason is that “rand-to-pbest” with
archive is capable of providing higher diversity than “current-to-pbest” with archive. When the two strategies form
the strategy pool, “rand-to-pbest” with archive is able to provide higher reward in the whole evolution process; and
the synergy of these two strategies is invalid. Only one exception is for functionf03, where JADE-w obtains the best
results. AP-AdapSS-JADE is significantly better than rJADE-w in f03.

It is worth noting that although AP-AdapSS-JADE is worse than rJADE-w in the large-scale problems, it is bet-
ter than other three multiple-strategy JADE variants,i.e., SJADE, EPS-JADE, and SaJADE. The reason is that the
Adaptive Pursuit technique is able to pursuit the best available strategy in the pool more quickly than other strategy
adaptation techniques used in the three algorithms.

4.7. Parameter Study

In the previous experiments, the parameters (i.e., pmin, α, andβ) of the Adaptive Pursuit method are predefined
for AP-AdapSS-JADE. In this section, the influence of different parameter settings of theAdaptive Pursuit method
on AP-AdapSS-JADE is discussed. For each parameter, we use five values,i.e., pmin = {0.0, 0.1, 0.15, 0.2, 0.24}6,
α, β = {0.1, 0.4, 0.7, 0.9, 1.0}. Therefore, in this manner, following the experimental design presented in [19, 9], there
areK = 3 factors, and each factor hasQ = 5 levels; the resulting total number of parameter combinations isQK

= 125.
Since experimental design methods are capable of sampling asmall number of well representative combinations for
testing [9], in this section, we only employ the orthogonal design withL25(35) to sample the parameters of AP. The
algorithm for constructing the orthogonal arrays can be found in [9]. The number of sampled parameter combinations
is 25, and these combinations are shown in Table 9. All other parameters of AP-AdapSS-JADE are kept unchanged

6Note that in Section 3.1.2 we setpmin ∈ (0, 1] to ensure that no strategy gets lost. However, in this experiment, to evaluate the influence
pmin = 0.0 is used; this means that when the probability of a strategy equals 0.0, the strategy will be inactive in the following of the evolution
process.
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Table 9: Parameter sensitivity analysis: AP-AdapSS-JADE with the default parameter settings (pmin = 0.05, α = 0.3, β = 0.8) is compared with
AP-AdapSS-JADE with different parameter settings.

(pmin, α, β) (0.00,0.10,0.10) (0.00,0.40,0.40) (0.00,0.60,0.60) (0.00,0.80,0.80) (0.00,1.00,1.00)
R+ 163 175 176 167 160
R− 27 15 14 23 30

p-value 4.58E-03 5.23E-04 4.20E-04 2.40E-03 1.69E-01
significant YES YES YES YES NO

(pmin, α, β) (0.10,0.10,0.40) (0.10,0.40,0.60) (0.10,0.60,0.80) (0.10,0.80,1.00) (0.10,1.00,0.10)
R+ 82 76 96 97 83
R− 89 95 94 74 88

p-value 8.99E-01 7.02E-01 9.84E-01 6.40E-01 9.32E-01
significant NO NO NO NO NO

(pmin, α, β) (0.15,0.10,0.60) (0.15,0.40,0.80) (0.15,0.60,1.00) (0.15,0.80,0.10) (0.15,1.00,0.40)
R+ 70 91 95 122 96
R− 101 99 76 68 75

p-value 5.23E-01 8.91E-01 7.02E-01 2.93E-01 6.71E-01
significant NO NO NO NO NO

(pmin, α, β) (0.20,0.10,0.80) (0.20,0.40,1.00) (0.20,0.60,0.10) (0.20,0.80,0.40) (0.20,1.00,0.60)
R+ 110 108 123 97 109
R− 80 63 67 93 62

p-value 5.68E-01 3.47E-01 2.75E-01 9.53E-01 3.25E-01
significant NO NO NO NO NO

(pmin, α, β) (0.24,0.10,1.00) (0.24,0.40,0.10) (0.24,0.60,0.40) (0.24,0.80,0.60) (0.24,1.00,0.80)
R+ 109 125 140 124 142
R− 62 46 50 66 48

p-value 3.25E-01 8.98E-02 7.28E-02 2.58E-01 6.02E-02
significant NO NO NO NO NO

as shown in Section 4.1. The experiments of each parameter combination are conducted over 50 independent runs.
The multiple-problem Wilcoxon signed-rank test [11] is adopted to compare the performance of AP-AdapSS-JADE
with default parameter settings to that of AP-AdapSS-JADE with different parameter settings. Note that when several
algorithms can obtain the global optimum of a specific function within theMax NFFEs, the NFFEs used in the
second column of Table 2 are considered for the intermediateresults, from which the mean values are extracted. The
results are presented in Table 9; ifR+ is higher thanR−, it means that AP-AdapSS-JADE with default parameter
settings is better than the compared algorithm, worst otherwise.

According to the results we can see that for 4 out of 25 parameter settings there are significant differences when
different parameters are used, all the four applying minimal probability pmin = 0.0. Whenpmin , 0.0, there are no
significant differences for all the other 20 parameter settings. The default parameter settings (i.e., pmin = 0.05, α =
0.3, β = 0.8) in AP-AdapSS-JADE are reasonable but not optimal, since there are other parameter settings that showed
to obtain better results, such as (pmin = 0.1, α = 0.4, β = 0.6) and (pmin = 0.15, α = 0.1, β = 0.6). From this analysis,
we can conclude that: (i) theAdaptive Pursuit strategy selection technique, being rewarded by the normalized average
of relative fitness improvements, is not sensitive to its parameter setting whenpmin , 0.0; and (ii) the cooperation
of the multiple strategies is important to the performance of AP-AdapSS-JADE, since the “loss” of one strategy
(pmin = 0.0) significantly deteriorates the results.

5. Conclusions and Future Work

Many mutation strategies have been proposed for generatingnew solutions within DE in different ways. Although
allowing a very wide use of DE on many different fields of application, this number of available strategies creates
an extra difficulty to the user: it is not trivial to define which strategy should be used on a given problem in order to
achieve good performance. Besides, the strategies are not simply problem-dependent; indeed, their performance tends
to vary as the search goes on, according to the characteristics of the region of the search space that is being explored
by the current population.

Motivated by this difficulty, in this paper we extend our recent work [15] on investigating the use of the adaptive
strategy selection approach within DE,i.e., a method capable of automatically selecting which strategy should be
applied at each instant of the search, while solving the problem, according to how well each of the available strategies
have recently performed in the same search/optimization process, without any prior knowledge. In order to verify the
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performance of such approach, some different adaptive strategy selection combinations were coupled with JADE [50,
49], a recently proposed DE variant; the final method being referred to as AdapSS-JADE. Experiments were conducted
on 22 widely used benchmark functions. From the results and analysis previously mentioned, we can summarize that:

• To implement adaptive strategy selection, credit assignment, i.e., how to assign a reward to a strategy after its
application, is an important issue that needs to be addressed. In this work, four credit assignment methods
based on the relative fitness improvement were presented andtheir performance was analyzed. Although there
were no significant differences among these four methods on most of the functions, the normalized average
reward method was able to obtain the best results in terms of the averaged ranking. The reason might be that the
average reward is able to provide the reward for each strategy more exactly than the extreme reward in DE for
continuous problems, while the normalization can efficiently eliminate the magnitude differences between the
previous estimateqa(t) and the rewardra(t), and also between the very different fitness ranges (consequently
rewards) that might be found in the considered problems.

• The second and not less important issue in adaptive strategyselection is the strategy selection technique itself,
i.e., how to select the next strategy to be applied based on the rewards recently received by each of the available
ones. Two strategy selection techniques, theProbability Matching (PM) and theAdaptive Pursuit (AP), were
analyzed to address this issue. According to their performance using the normalized average reward of rela-
tive fitness improvements as credit assignment, we can conclude that both PM and AP based AdapSS-JADE
approaches are able to enhance the performance of DE and obtain better results than the baseline methods. In
addition, the AP technique converges more rapidly and accurately to an efficient strategy probability distribution
compared with the PM method, which is consistent with the conclusions presented in [41].

• According to the analysis of the strategy adaptation of the best resulting method, referred to as AP-AdapSS-
JADE, our approach is capable of efficiently selecting the most suitable strategy while solving the problem,
without any prior knowledge, performing consistently better than the JADE using a single strategy, for each of
the four available strategies. This latter conclusion confirms the assumption that thecompetition andcoopera-
tion between the available strategies are important to provide ahigher achievement.

• Besides, AP-AdapSS-JADE obtains highly competitive results when compared to other recent advanced DEs,
presenting a better performance on most of the functions, while not considerably augmenting the total compu-
tational complexity of the base JADE algorithm.

• Based on the analysis on large-scale problems, when the synergy of different strategies in the pool is invalid,
AP-AdapSS-JADE only obtains the second best results. It is reasonable because theAdaptive Pursuit technique
needs some generations to pursuit the most suitable strategy for a specific problem.

• Finally, the parameter analysis done shows that the AP-AdapSS-JADE approach is not sensitive to the setting
of its 3 hyper-parameters, the minimal probabilitypmin, the adaptation rateα, and the learning rateβ; several
different parameter settings were able to achieve similar good performance.

For further work, when tackling multimodal problems, the maintenance of a minimal level of diversity is also
important for the search process, and thus should also be taken into account for the rewarding of the strategies; the
Compass or the Pareto-based approaches, proposed in [22], could be analyzed for this purpose in the future. Addi-
tionally, using other strategy selection techniques, suchas the approaches based on Multi-Armed Bandits [10], could
also be an interesting direction for the strategy adaptation within DE. In addition, experimental results indicate that
synergy of strategies is very important for multiple-strategy DE. Thus, another direction of future work is performing
comprehensively empirical study to investigate how to select strategy to form the pool. Furthermore, in the future, we
will try to improve the performance of our approach on large-scale problems [46, 39, 17, 38].
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A. Benchmark Functions

The details of the first 13 functions (f01 − f13) used in this work are the following:
• f01 Sphere function:

f01 =

D
∑

i=1

x2
i , xi ∈ [−100, 100]

Minimize: f01(x) = f (0, · · · , 0) = 0.
• f02 Schwefel’s problem 2.22:

f02 =

D
∑

i=1

|xi| +
D

∏

i=1

|xi|, xi ∈ [−10, 10]

Minimize: f02(x) = f (0, · · · , 0) = 0.
• f03 Schwefel’s problem 1.2:

f03 =

D
∑

i=1

(

i
∑

j=1

x j

)2
, xi ∈ [−100, 100]

Minimize: f03(x) = f (0, · · · , 0) = 0.
• f04 Schwefel’s problem 2.21:

f04 = max
i
{|xi|, 1 ≤ i ≤ D}, xi ∈ [−100, 100]

Minimize: f04(x) = f (0, · · · , 0) = 0.
• f05 Generalized Rosenbrock’s function:

f05 =

D−1
∑

i=1

[

100(xi+1 − x2
i )2
+ (xi − 1)2

]

, xi ∈ [−30, 30]

Minimize: f05(x) = f (1, · · · , 1) = 0.
• f06 Step function:

f06 =

D−1
∑

i=1

(

⌊xi + 0.5⌋
)2
, xi ∈ [−100, 100]

Minimize: f06(x) = f (0, · · · , 0) = 0.
• f07 Quartic function with noise:

f07 =

D
∑

i=1

ix4
i + random[0, 1), xi ∈ [−1.28, 1.28]

Minimize: f07(x) = f (0, · · · , 0) = 0.
• f08 Generalized Schwefel’s problem 2.26:

f08 =

D
∑

i=1

(

− xi sin(
√

|xi|)
)

+ 418.98288727243369× D, xi ∈ [−500, 500]

Minimize: f08(x) = f (420.9687, · · · , 420.9687)= 0.
• f09 Generalized Rastrigin’s function:

f09 =

D
∑

i=1

(

x2
i − 10 cos(2πxi) + 10

)

, xi ∈ [−5.12, 5.12]
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Minimize: f09(x) = f (0, · · · , 0) = 0.
• f10 Ackley’s function:

f10 = −20 exp

(

− 0.2

√

√

√

1
D

D
∑

i=1

x2
i

)

− exp

(

1
D

D
∑

i=1

cos(2πxi)

)

+ 20+ exp(1), xi ∈ [−32, 32]

Minimize: f10(x) = f (0, · · · , 0) = 0.
• f11 Generalized Griewank function:

f11 =
1

4000

D
∑

i=1

x2
i −

D
∏

i=1

cos

(

xi√
i

)

+ 1, xi ∈ [−600, 600]

Minimize: f11(x) = f (0, · · · , 0) = 0.
• f12, f13 Generalized penalized functions:

f12 =
π
D

{

10 sin2(πy1) +
∑D−1

i=1 (yi − 1)2 · [1 + 10 sin2(πyi+1)] + (yD − 1)2
}

+

∑D
i=1 u(xi, 10, 100, 4)

, xi ∈ [−50, 50]

Minimize: f12(x) = f (1, · · · , 1) = 0.

f13 =
1
10

{

sin2(3πx1) +
∑D−1

i=1 (xi − 1)2[1 + sin2(3πxi+1)] + (xD − 1)2[1 + sin2(2πxD)]

}

+

∑D
i=1 u(xi, 5, 100, 4)

, xi ∈ [−50, 50]

Minimize: f13(x) = f (1, · · · , 1) = 0.
where

yi = 1+
1
4

(xi + 1)

and

u(xi, a, k,m) =



























k(xi − a)m, xi > a

0, −a ≤ xi ≤ a

k(−xi − a)m, xi < a
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[1] Birattari, M., Stützle, T., Paquete, L., Varrentrapp,K., 2002. A racing algorithm for configuring metaheuristics. In: W. B. Langdon et al.
(Ed.), Proc. Genetic and Evolutionary Computation Conference. Morgan Kaufmann, pp. 11–18.
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