Adaptive Strategy Selection in Differential Evolution fdumerical
Optimization: An Empirical Study

Wenyin Gon@®, Alvaro Fialhd, Zhihua Cai?, Hui Li?

aSchool of Computer Science,

China University of Geosciences, Wuhan 430074, P.R. China
bSate Key Laboratory of Software Engineering,
Wuhan University, 430072, P.R. China
®Nokia I nstitute of Technology,

69048-660 Manaus/AM, Brazil

Abstract

Differential evolution (DE) is a versatile and efficient éviionary algorithm for global numerical optimization, igh

has been widely used in different application fields. Howediferent strategies have been proposed for the genera-
tion of new solutions, and the selection of which of them $tidne applied is critical for the DE performance, besides
being problem-dependent. In this paper, we present two Diants with adaptive strategy selection: two different
techniques, namelgrobability Matching and Adaptive Pursuit, are employed in DE to autonomously select the most
suitable strategy while solving the problem, accordingh@irtrecent impact on the optimization process. For the
measurement of this impact, four credit assignment methoglgassessed, which update the known performance of
each strategy in different ways, based on the relative itimeprovement achieved by its recent applications. The per-
formance of the analyzed approaches is evaluated on tvtaotizenchmark functions. Experimental results confirm
that they are able to adaptively choose the most suitalategty for a specific problem in an efficient way. Compared
with other state-of-the-art DE variants, better resulesabtained on most of the functions in terms of quality of the
final solutions and convergence speed.
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1. Introduction

Differential evolution (DE), proposed by Storn and PricB][3s an efficient and versatile population-based direct
search algorithm that implements the evolutionary gei@raind-test paradigm for global optimization, using the
distance and direction informations from the current papah to guide the search. Among its advantages are its
simple structure, ease of use, speed, and robustness, artites its application on many real-world applications,
such as data mining, IIR design, neural network trainind,[@éwer systems [43], financial market dynamics mod-
eling [16], data mining [4], and so on. A good survey of DE carfdund in [5], where its basic concepts and major
variants, as well as some theoretical studies and apglitatiamples to complex environments, are reviewed in detail

In the seminal DE algorithm [35], a single mutation strate@s used for the generation of new solutions; later
on, Price and Storn suggested nine other different stegdgb, 36]. In addition, other mutation strategies are also
proposed in the DE literature [50, 3, 6, 8]. Although augnmenthe robustness of the underlying algorithm, these
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many available strategies led the user to the need of defiviinch of them would be most suitable for the problem at
hand — a difficult and crucial task for the performance of DE, [30, 23].

Off-line tuning techniques, such as the F-Race [1], couldibed to choose the mutation strategy to be used.
However, besides being computationally expensive, suaintques usually output a static setting; while, in pragtic
the performance of each mutation strategy does not depetitegrroblem itself, but rather on the characteristics of
the region of the search landscape being explored by thelagoguat each generation. Based on this, thus, in order
to be more efficient, the autonomous selection of the styatedpe used should be done in a continuous way, while
solving the problemi.e., dynamically adapting itself as the search goes on.

In order to contribute on remedying this drawback, in thipgrawe extend our recent work [15] on the use of
adaptive strategy selection within DE for global numerimatimization. To do adaptive strategy selectibe, to be
able to automatically select which is the best mutatiortepafor the generation of each offspring while solving the
problem, two elements need to be defined [48, 18]: (i) how kecsdetween the available strategies based on their
recent performance (strategy selection); and (ii) how tasnee the performance of the strategies after their applica
tion, and consequently update the empirical quality egémkept for each of them (credit assignment). In this work,
two strategy selection techniques, namehpbability Matching [12] and Adaptive Pursuit [41], are independently
analyzed in combination with each of four credit assignnieahniques based on the relative fitness improvement.
In addition, a parameter sensitivity analysis is condudtenhvestigate the impact of the hyper-parameters on the
performance of the resulting adaptive strategy selecgahrtique. Experiments have been conducted on 22 widely
used benchmark problems, including 9 test functions ptedén CEC-05 [37]. The results indicate that the analyzed
approach is able to select the most suitable strategy, whbliéng a problem at hand. Compared with other state-
of-the-art DE variants, better results are obtained on mbste functions in terms of quality of final solutions and
convergence speed.

Compared with our previous work in [15], the main contribug of this paper are two-fold: (i) in order to pursuit
the most suitable strategy at different search stages foe@f& problem more rapidly, th&daptive Pursuit technique
is used and its performance is compared withRhebability Matching-based DE variant; and (ii) the comprehensive
experiments are conducted to verify our approach and ifepeance is analyzed in detail.

The remainder of the paper is organized as follows. Sectibniefly introduces the background and related
work of this paper. In Section 3, we describe the adaptiateqly selection approaches in detail, followed by the
experimental results and discussions in Section 4. Finadlgtion 5 is devoted to conclusions and future work.

2. Background and Related Work

2.1. Problem Formulation
Without loss of generality, in this work, we consider thddaling numerical optimization problem:

Minimize f(x), X€S, Q)

whereS c RP is a compact sek = [x1, X2, - , Xp] ", andD is the dimensioni,.e., the number of decision variables.
Generally, for each variablg, it satisfies a boundary constraint, such that:

Lj<x<Uj,j=12---,D. @)

2.2. Differential Evolution

DE [35] is a simple evolutionary algorithm (EA) for global merical optimization. It creates new candidate
solutions by combining the parent individual and severakotindividuals of the same population. A candidate
replaces the parent only if it has an equal or better fitneksevaThe pseudo-code of the original DE algorithm
is shown in Algorithm 1, wheré® refers to the number of decision variables (or problem dsi); NP is the
population sizejF is the mutation scaling factoGR is the crossover ratey; ; is the j-th variable of the solution
X;; Uj is the offspring. The function rndint(D) returns a uniformly distributed random integer numbemlaen
1 andD, while rndreg|[0, 1) gives a uniformly distributed random real number inl1f) generated anew for each
value of j. With respect to the population initialization, the widelged method is uniformly random initialization
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Algorithm 1 The DE algorithm with DE/rand/1/bin strategy
1: Generate the initial population
2: Evaluate the fitness for each individual
3: while the termination criterion is not satisfield
4 fori=1toNPdo
5 Select uniform randomly, #r, #r3 # i
6: jrand = rndint(1 D)
7: for j=1toDdo
8:
9

if rndrea|[0, 1) < CRor j is equal t0jrang then

- Uij = Xepj + F - (Xepj = Xeg.j)
10: else

1L Uij = Xij

12: end if

13: end for

14:  end for

15.  fori=1toNPdo

16: Evaluate the offspring;
17: if f(u;) is better tharor equal tof(x;) then
18: Replacex; with u;

19: end if

20: end for

21: end while

within the search space. Other initialization methods e available, for example, orthogonal initialization J13
opposition-based initialization [32], chaotical inifedtion [27], etc.

From Algorithm 1, we can see that there are only three copaichmeters in DE. These akP, F andCR. As
for the terminal conditions, we can either fix the maximum bemof fithess function evaluations1éx NFFES) or
define a desired solution value to be reachér).

In DE, many schemes have been proposed that use differeatiorustrategies and/or recombination operations
in the reproduction stage [29, 36]. In order to distinguistoag its schemes, the notation “DE/a/b/c” is used, where
“DE” denotes the DE algorithm; “a” specifies the vector to batated; “b” is the number of difference vectors
used; and “c” denotes the crossover schebigomial or exponential, this latter being fixed to the binomial on the
remainder of this work. In line 9 of Algorithm 1, the mutatistrategy is called “DE/rand/1”, which is a classic
strategy of DE [29]. Other well-known mutation strategias te listed as follows.

1) “DE/best/1”:

Vi = Xpest + F- (sz - Xr3) (3)

2) “DE/best/2";
Vi = Xpest + F - (sz - Xf3) +F- (XU - Xr5) (4)

3) “DE/rand/2:
Vi =X, + F- (sz - er) +F- (XI'4 - st) (5)

4) “DE/current-to-best/1*

Vi = Xj + F- (Xbest - Xi) +F- (Xl’z - st) (6)
wherexpes represents the best individual in the current generatigng, r3, rq, andrs € {1,--- , NP}, andry # ry #

r3# g # s # 1.

1“DE/current-to-best” is also referred to as “DE/targettest/” [29, 3].
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Figure 1: General framework of adaptive strategy seleatiithin DE.

2.3. Adaptive Strategy Selection

Typically, the parameter setting in EAs is done before l&img the main runs that will be used to assess the
algorithm. In this case, the parameters are defined acaptdirthe user’'s experience, or by axternal tuning
method, which can be a standard statistical analysis, a emgaeered procedure, or even another optimization
algorithm. The main drawback of sudff-line methods is that they define a static setting, what genereslgld to
sub-optimal performance. Intuitively, as the algorithrageeds from a global (early) exploration of the landscaje to
more focused, exploitation-like behavior, the parametbaild be adjusted to take care of this new reality. Indeed, i
has been empirically and theoretically demonstrated tiff@reint values of parameters might be optimal at different
stages of the search process (&g, [7] and references therein).

Thus, to achieve better performance, the parameter settiogld be done while solving the problem, adapting
the behavior of the algorithm as needed. Following [7],ititernal control of the parameters can be done in different
ways. Deterministic methods modify the parameters values according to predefires; Self-Adaptive methods
encode the parameters within the genotype, which is thused@ parallel with the solution; and lastly, telaptive
methods use changes in some particular properties of tliehspeocess as an input signal to modify the parameter
values. While the first approach introduces the extra difficof defining the control rules, the second defines the
parameters, but the parameters space is merged with th@sslspace, thus augmenting the overall complexity of
the search.

This paper is focused on the latter approach, more spedbjfical the Adaptive Srategy Selection (AdapSS)
paradigm. Inspired by some recent works in the Genetic Atlgmis (GAs) community (seeg.g., [41, 10]), its
objective is to automatically select among the availabes¢bly ill-known) mutation strategies, according to thei
performance on the search up to now. To do so, as illustratédyure 1, there is the need for two components: the
credit assignment, that defines how the impact of the siegtemn the search should be assessed and transformed into
a numerical reward; and the strategy (or operator) selectiechanism that, based on the rewards received, selects
which strategy should be applied at the given moment of taeche

2.4. DE with Strategy Adaptation

In the context obn-line selection among multiple mutation strategies within DEne@pproaches can be found
in the literature. Xie and Zhang [45] presented a swarm élyarframework, in which a neural network is used
to adaptively update the weights of the DE strategies. éal. [31, 30] proposed a variant of DE, named SaDE,
that updates the weights of each strategy in the search lmas#ueir previous success rate. In [2, 47], strategy
adaptation techniques similar to SaDE are used to enhangeB&mance. In [21], both the mutation strategies and
the crossover operation are adaptively selected in DE.3h [fe proposed the use of a strategy adaptation method
for DE, based on th@robability Matching technique being fed by relative fithess improvements; winl&ong
et al. [14] a different family of strategy adaptation techniquessvpresented, where a strategy paramegierused
control the selection of different strategies, and two $strategy adaptation mechanisms are implemented toeipdat
the parameter. Based on their previous work in [21], Matlighest al. [20] presented a DE variant with ensemble of
parameters and mutation strategies, called EPSDE, in vth&ktrategy of each target vector is initialized randomly
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and, during the evolution process, if the generated offigpis better than its target vector, the strategy of the targe
vector is stored in the next generation; otherwise, theegiyeof the target vector is selected randomly from the pool
or from the previous successful strategies stored with lgopadoability. In [28], Panet al. presented an improved
DE, referred to as SspDE, in which a strategy list, a scalawgor list, and a crossover rate list are encoded in the
individual, being constantly updated during the evolutiora self-adaptive manner. Wargfjal. [42] proposed a
composite DE (CoDE). In CoDE, each strategy generatedatsviector with a parameter setting randomly selected
from the parameter candidate pool.

3. Adaptive Strategy Selection in DE

In order to automatically select the most suitable stratelije solving a problem without angrior knowledge,
in this work, we analyze the use of strategy adaptation nietioDE for numerical optimization problems. This is an
extension of our recent work in [15], which has been considigrenhanced, with the major differences being listed
as follows.

e In this work, two strategy selection techniques, nanihybability Matching (PM) [12] andAdaptive Pursuit
(AP) [41], are analyzed and empirically compared with thedtiae approaches, while in [15] only tReoba-
bility Matching was adopted.

o A different pool of four mutation strategies, proposed i,[89], is used.

e The parameter adaptation method3R andF proposed in [50] is adopted in this work, while in [1GR and
F were set to pre-defined values.

e The sensitivity of the parameters on the performance oftffegptive Pursuit technique is empirically investi-
gated.

The main objectives of this work are two-fold. Firstly, tReobability Matching and Adaptive Pursuit strategy
selection techniques are independently integrated inBBEJAnd compared to other existing approaches. Secondly,
four credit assignment techniques based on the relativesBtimprovement are compared. These components for
adaptive strategy selection, as well as the JADE algorithwitich they were combined to, are better described in the
following, in Sections 3.1 to 3.4.

3.1. Strategy Selection

Suppose we havé > 1 strategies in the pod\ = {a, - - - , ax} and a probability vectaP(t) = {ps(t),--- , p(t)}
(Yt © prmin < Pi®) < ;3K pi(t) = 1). In this work, theProbability Matching (PM) and Adaptive Pursuit (AP)
techniques are used to adaptively update the probapifty of strategya based on its known performance (frequently
updated by the rewards received). Deng{¢) as the reward that a strategyeceives after its application at tinte
0a(t) is the known quality (or empirical estimate) of a strategthat is updated as follows [41]:

Ga(t + 1) = da(t) + a - [ra(t) — Ga(V)]. (7)

wherea € (0, 1] is the adaptation rate.
Based on this common quality empirical estimate, the PM aRdrfethods differ on the way they use this infor-
mation to update the application probability of each sgwtas detailed in the following.

3.1.1. Probability Matching
The PM method updates the probabiliy(t) as follows [12, 41]:

Qa(t +1)
ZiKzl gi(t+1)
whereprin € (0, 1) is the minimal probability value of each strategy, useérisure that no operator gets lost [41].

From Equation (8), we can see that when only one strategynstdaeward during a long period of time and all other
strategies receive no reward, then its selection prolalpili{t) converges t®max = Pmin + (1 — K - Prin). Obviously,

2?:1 Pa(t) = 1 and 0< prin < %

Pa(t + 1) = Prin + (1 = K- Pmin) (8)
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3.1.2. Adaptive Pursuit

TheAdaptive Pursuit (AP) method is a pursuit algorithm recently introduced fdagptive operator selection in the
context of GAs [41], which was originally proposed for leimgnautomata [40]. After adapting the empirical quality
estimate of each strategy in the same way than the PM metkqateaented in Equation 7, the probability of each
strategy is updated as follows:

Par (t+1) = pa(t) + 8 - [Prmax — Pa ()] )
and
Ya#a' : pa(t+1)=pa(t) + 8- [Pmin — Pa(t)] (10)
where
a’ = argmay(ga(t + 1))
and

Prax = Pmin + 1= K- Prin

This constraint makes sure thatjfgzl pa(t) = 1, then the sum of the updated probabilities is also equal te.1
Yhot Pat+ 1) = 1[41].

As in the PM method, the minimal probabilipin is used to ensure that no operator gets lost, ardRin < %
Besides the adaptation rateused on the update of the empirical quality estimates (Eq.thé) AP has another
hyper-parameter, the learning rgte (0, 1], which basically controls how greedy the “winner-talstrategy will
behave.

3.2. Credit Assignment

Besides the strategy selection itself, another imporssuotg to implement the adaptive strategy selection paradigm
is the credit assignment, as shown in Figure 1. In this warlorder to assign the credit or reward for each strategy,
we adopt the relative fithess improvemenproposed in [26] as follows:

o cif. -|pfi = cfi|, for minimization
ni = cf; : ' . . (11)
= -|pfi —cfil, for maximization
wherei = 1,--- ,NP. § is the fitness of the best-so-far solution in the populatipfi.andcf; are the fitness of the

target parent and of its offspring, respectively. Note thab improvement is achieved.¢., the offspring is worse
than or equal to its target parent), the impact of the styadgplication is considered as nuf (= 0).

DenoteS, as the set of all relative fithess improvements achieved égjiplication of a strategy(a= 1, - - - ,K)
during generation At the end of the generation, an unique reward is used totafitla quality measure kept by the
PM and AP methods (Equation 7). Following [10], to extraattsteward fromS,, we analyze four different credit
assignment methods as follows:

e Average Absolute Reward(AvgAbs):

%121 Sali)
rat) = S (12)

where|S,| is the number of elements By. If |Sy| = 0,ra(t) = 0.

e Average Normalized Reward(AvgNorm):

i Sa() ra(t)
rat) = ==——=; andra(t) = —2>—— (13)
|Sal ,max ri(t)
e Extreme Absolute Reward(ExtAbs):
fat) =, _max Sq(i) (14)



e Extreme Normalized Reward (ExtNorm):

ra®

; (15)
pmax ry(t)

rat) = _max |Sa(i): andra(t) =

The reasons for adopting these four credit assignmentigpgoés are as follows:

e Intuitively, the first technique is reasonable, and theeenaany approaches using the average improvement[10].

e In [44], the extreme improvement, using a statistical measimed at outlier detection, is considered. This
method showed better performance than its competitors ehaf §enchmark problems. Based on this inspi-
ration, the third method is used herein.

e With respect to the second and fourth methods, the averagj¢ghanextreme improvements are respectively
normalized. The assumptions to justify such normalizatian be summarized in the following manner: (i)
there might be magnitude differences between rewardsvegtén two different time instants of the search,
with a later reward possibly affecting much less the updatin@® empirical quality estimate than it should,
as rewards tend to get smaller as the search goes on; artte(i) might also be magnitude differences in the
fithess ranges of different problems, what could complegt#gct the behavior of the adaptive strategy selection
method in case one uses the raw reward values.

3.3. Strategy Pool

As previously mentioned, there are many strategies praposBE [29, 36], each one presenting its own char-
acteristics. However, to the best of our knowledge, theeenartheoretical studies as of today on the choice of the
optimal number of available strategies (pool size) and enstlection of strategies to form the strategy pool [30].
In this work, we consider as the strategy pool the same foategjies used in the JADE method [50, 49], which are
described as follows.

1) “DE/current-topbest/1 (without archive)”:

Vi =X+ Fi - (Xhog = Xi) + Fi - (X, — Xr,) (16)
2) “DEl/current-topbest/1 (with archive)”:

Vi = Xi + Fi - (Xhog = Xi) + Fi - (Xr, = X1,) (17)

In the latter one, an archivk is used to store the inferior solutions recently explorethaevolutionary searcb(,g’est
refers to thepbest solution, which is randomly selected from the top@@Gsolutions, withp € (0, 1]. x;, Xr,, and
xt’)’eg are chosen from the current populat®yi,, is randomly chosen from the union between the archive anéwur
populationsP U A). Later on, in order to solve the large scale problems arttiénincrease the population diversity,
the same authors proposed other two strategies [49]:

3) “DE/rand-topbest/1 (without archive)”:

Vi = Xry + Fi - (Xhog = X0,) + Fi - (X, = Xry) (18)
4) “DE/rand-topbest/1 (with archive)”:

Vi = Xry + Fi - (Xhog = X0,) + Fi - (X, — &) (19)

The reasons for choosing these strategies are three-icdtlyRhey have individually obtained good performance
as shown in [50, 49]. Secondly, the two strategies withoctige converge faster and are more suitable to the low-
dimensional problems; on the other hand, the strategidsawithive can provide higher population diversity, hence
being more suitable to the high-dimensional problems. difithe JADE method is used as baseline for empirical
comparison (see Section 4); the use of the same strateggpantees that the performance improvements achieved
by our approaches with relation to JADE are solely due to ifferdnt proposed strategy adaptation mechanisms.
Note that other strategies could also be used, these 4ggegsitean be seen as a test-bed for the adaptive strategy
selection method.
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3.4. JADE with Adaptive Strategy Selection: AdapSS-JADE

By combining the above-mentioned three aspects with theEJAlQorithm [50, 49], the AdapSS-JADE method is
developed. Differently from our previous work [15], the CRdaF adaptation mechanism proposed in JAED] is
adopted in parallel with the adaptive strategy selectitiesee. From this point of view, this approach can be regarded
as an improved JADE variant. It is worth noting that our pregub strategy adaptation method can also be used in
other DE variants.

The pseudo-code is illustrated in Algorithm 2; modified steyith respect to the original JADE are marked with a
leftarrow “<". At each generatioh for each target parenta strategysl; is selected based on the probability of each
strategy. Then the offspring is generated by the applinaifathe selected strategy. After evaluating the offspring,
the relative fitness improvementis calculated and stored in the $&4;,. Consequently, the reward, quality, and
probability of each strategy are updated.

As previously mentioned, the study on multiple strategiéapsation in DE is scarce. Compared with the ap-
proaches proposed in [30, 14, 20, 28], in which several nantatrategies are also used within DE, the main differ-
ences between our proposed approach and theirs can bedsstelibws:

e In the SaDE method [30], therobability Matching strategy selection scheme is also implemented. However,
our approach is completely differentfrom SaDE in the cragifignment, using the relative fithess improvements
instead of the success and failure number of trials. It towigo be a completely different method when using
the Adaptive Pursuit for strategy selection.

e The SaJADE [14] is also based on the JADE method [50, 49]. Wewéhe strategy adaptation is controlled by
a strategy parameter. Two adaptive mechanisms are imptethenupdate this parameter, which are different
from the strategy selection methods (AP and PM) used in thikw

e In EPSDE [20], the strategy of each target vector is initedi randomly. In the evolution process, if the off-
spring is better than its target vector, the strategy ofdinget vector is stored in the next generation; otherwise,
it is randomly selected from the pool or from the previouscassful strategies stored with equal probability.

e In SspDE [28], the strategy for each target vector is setkfctan the strategy list of this vector, which is updated
during the search in a self-adaptive manner, thus being ety different from our proposed method.

From the previous subsections, we can see that our appreagthér based on the PM or on the AP strategy
selection techniques. In addition, the relative fitnessrompment is used to assign the reward of each strategy. In
general, our proposed approach is very different from tlow@tmentioned variants.

It is also worth noting that the use of our proposed appraaglitin JADE does not significantly increase the
overall computational complexity of the original algornthThe additional complexity of AdapSS-JADE is the adap-
tive strategy selection, as shown in Algorithm 2, which &®¢K - NP) operations, wher& is the total number of
strategies in the pool. Since the total complexity of JADB{& - NP - (D + log (NP))) [49], whereG is the maximal
number of generations, AdapSS-JADE has the total complekiO(G - NP - (D + log (NP)) + K - NP). Generally,

K <« G- (D + log (NP)), hence the overall complexity of our approactO& - NP - (D + log (NP))). In general,
the population sizé\P is set to be proportional to the problem dimens@nn the DE literature. Thus, the total
complexity of AdapSS-JADE i®(G - D?), which is the same as the classic DE algorithm, JADE, andyrotiver DE
variants.

4. Experimental Results

In order to evaluate the performance of our approach, 22Hmeark functions were selected as the test suit.
Functionsfo; — f13 are chosen from [48]. Functiorfs; — fo4 are unimodal. The Rosenbrock’s functiy is a multi-
modal function wherD > 3 [33]. Functionfyg is the step function, which has one minimum and is discootiisu
Function fy; is a noisy quartic function. Functiorfgg — f13 are multi-modal functions where the number of local

2More details about JADE can be found in [50, 49].



Algorithm 2 JADE with Adaptive Strategy Selection: AdapSS-JADE

1:
: Generate the initial population randomly
. Evaluate the fitness for each individual

. Set the generation countee 1
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Set/JCR = 05,/J|: =05

SetK = 4, ppin = 0.05,@ = 0.3, andB = 0.8 (if any)

: For each strategg, setgs(t) = 0 andp,(t) = 1/K
. while The halting criterion is not satisfietb

for i = 1toNPdo
Select the strateg$l; based on its probability
Select uniform randomly; #r, #r3 #ry #rs # i
jrand = rndint(1 D)
for j=1toDdo
if rndrea|[0,1) < CRor j == jrang then
if SI; == 1then
Ui j is generated by strategy (16)
else ifSl; == 2 then
Ui ; is generated by strategy (17)
else ifSl; == 3 then
Ui ; is generated by strategy (18)
else ifSl; == 4 then
Ui j is generated by strategy (19)
end if
else
Uij = X
end if
end for
end for
for i = 1toNPdo
Evaluate the offspring;
if f(u;) is better tharor equal tof (x;) then
Calculaten; using Equation (11)
CR — Scr; Fj — Sk
Replacex; with u;
else
Setni =0
end if
S 7
end for
Update theucr andur
Calculate the rewarrd(t) for each strategy
Update the qualityl(t) for each strategy
Update the probability,(t) for each strategy by PM or AP technique
t=t+1
end while

T
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minima increases exponentially with the problem dimensibime other 9 test function$(s — F14) were presented
in CEC-05 [37], being all multi-modal functions, with shatt and/or rotated features making them very difficult to
solve. Generally, these 22 functions can be categorizedtinée groups: (i) basic unimodal functiorfgi(— fo7); (ii)
basic multimodal functionsfgg — f13); and (iii) shifted and/or rotated multimodal functiorigy — F14). Functions
for — f13 are described in Appendix A. A detailed description of fumies Fos — F14 can be found in [37]. According
to the main objectives of this work, the experiments areiediwut with the following key aims.

1) To compare the performance of AdapSS-JADE using eacheofatlr different credit assignment techniques
described in Section 3.2.

2) With the best credit assignment technique found, to coeniee performance of AdapSS-JADE using different
strategy selection techniques.

3) The strategy adaptation characteristics of the besttzdagtrategy selection approach are analyzed, to demon-
strate that it is able of efficiently selecting the most dul#sstrategy to be applied, while solving the problem,
without any prior knowledge.

4) The sensitivity of the parameter settings of the bestegiseselection technique is studied, to indicate the effect
of these parameters on its performance.

The experimental settings and performance criteria uséldeoampirical analysis of these fourissues are presented
in the following, with the results concerning each of therimggresented in Sections 4.3 to 4.7.

4.1. Experimental Settings
For all experiments, we use the following parameters urdedsange is mentioned.
e Dimension of each functiorD = 30;
e Population sizeNP = 100 [50, 49];
e ucr = 0.5 andur = 0.5, [50, 49];
e c=0.1andp=0.05[50, 49];

e Number of strategieK = 4; minimal probability: pmin = 0.05; adaptation rater = 0.3; and learning rate in
AP: 5 = 0.8 (the parameter study will be discussed in Section 4.7);

¢ Value to Reach (VTR): For functionfg; — fos and fog — f13, VTR = 10°8; for functionsfo7, Fos — F14, VTR =
1072 [37, 50;

e Maximum Number of Fitness Function Evaluations (MEKFES): For fo1, foe, f10, f12, and fi3, Max NFFEs
= 15Q 000; for fo3 — fos, Max_-NFFEs = 500000; for fo; and f11, Max.NFFEs = 200000; for fo7 — foe, and
Fos — F14, Max NFFEs = 300000.

Moreover, in our experiments, each function is optimizedrd0 independent runs. We also use the same set of
initial random populations to evaluate different algamithin a similar way as done in [24]. All the algorithms are
implemented in standard C++.

3The Max NFFEs for functionsfo; — f13 are mainly set as in [48], except fdys, fos, and fog, for which the numbers used are smaller than the
original ones, since our approaches are able to obtain d@igbptimum of these functions within the M&EFESs. For functiongog — F14, the
Max_NFFEs are set as in [37].
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4.2. Performance Criteria

Four performance criteria are selected from the literaf87¢ to evaluate the algorithms. These criteria are de-
scribed as follows.

e Error : The error of a solution is defined ad (x) — f(x*), wherex* is the global minimum of the function. The
minimum error is recorded when the M&FFES is reached in 50 runs. The average and standard demiti
the error values are calculated as well.

e Number of Fitness Function Evaluatiofid~FESs). The NFFEs is also recorded when the VTR is reached. The
average and standard deviation of the NFFEs values ardai@du

e Successful Rate $;): A successful run of an algorithm indicates that the al@ponitcan result in a function
value no worse than the VTR before the MikFEs condition terminates the trial. The successful Bates
calculated as the number of successful runs divided by taériamber of runs.

e Convergence graphs The convergence graphs show tiedian error performance of the best solution over
the total runs, in the respective experiments.

4.3. Comparison on Different Credit Assignment Methods

In this section, the performance of different credit assignt methods described in Section 3.2 is compared. They
are referred to as being different AdapSS-JADE variant&glasvs:

1) AdapSS-JADEL: AdapSS-JADE with the averaged absolwtarceas shown in (12).
2) AdapSS-JADE2: AdapSS-JADE with the averaged normalige@rd as shown in (13).
3) AdapSS-JADES3: AdapSS-JADE with the extreme absolutaréwas shown in (14).
4) AdapSS-JADE4: AdapSS-JADE with the extreme normalieedard as shown in (15).

The results are shown in Table 1 for thdaptive Pursuit techniqué, all of them being averaged over 50 indepen-
dent runs. The same kind of conclusions can be gathered frese tresults, for the AP technique, as follows: (i) all
four credit assignment methods were able to provide veria@imveraged successful rates; (ii) JADE with the second
credit assignment methoide., the normalized average reward, obtained the best perfareria terms of the averaged
ranking. This latter confirms the assumptions listed in iBac3.2, showing that the normalization indeed increases
the robustness of the algorithm when tackling very diffém@oblems as the ones used in this work.

For the sake of simplicity, in the following section we onlgeuthe normalized average reward as the credit
assignment method, varying just the strategy selectioarseh

4.4. Comparison on Different Srategy Selection Methods

In order to compare the performance of different stratedgcsien techniques, the following five JADE variants
are considered:

1) Uniform-JADE: JADE with the uniform strategy selectianiimplemented as baseline: for the creation of each
offspring, a strategy is uniformly drawn from the pool.

2) SJADE: In this approach, the strategy adaptation tectenigoposed in [30] is used.

3) EPS-JADE: The strategy adaptation method presented$DER20] is used in EPS-JADE. Since the parameter
adaptation ofCR andF is implemented in JADE, in EPS-JADE the parameter adaptatiethod originally
proposed in EPSDE is not used.

4For the sake of the brevity, we omit the results of Brebability Matching technique. Interested reader can contact the first authandoe
details.
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Table 1: Comparison on the performance of different creditgnment methods withdaptive Pursuit for all functions atD = 30. “Rank” indicates

the ranking of the corresponding algorithm, obtained basethe mean values shown in the table.

E AP-AdapSS-JADE-1 AP-AdapSS-JADE-2 AP-AdapSS-JADE-3 AP-AdapSS-JADE-4
Mean+ Std S;) /Rank Mean+ Std S;) 7/ Rank Meanz+ Std S;) 7/ Rank Mean=+ Std ;) /Rank
for 2.46E+04+ 1.05E+03 (1.0) / 2 || 2.46E+04+ 9.75E+02(1.0) /1 2.68E+04+ 1.03E+03 (1.0) /4[| 2.65E+04+ 1.28E+03 (1.0)/3
foz 4.13E+04+ 2.47E+03 (1.0)/ 2 || 4.01E+04+ 1.96E+03(1.0)/ 1 4.44E+04+ 2.63E+03 (1.0)/ 4 || 4.35E+04+ 2.93E+03 (1.0) /3
fos 8.83E+04+ 4.77E+03(1.0) / 1 8.88E+04+ 5.95E+03 (1.0) /2 || 9.18E+04+ 8.47E+03(1.0) /4 || 8.95E+04+ 8.67E+03 (1.0)/3
foa 1.92E+05+ 9.90E+03 (1.0) / 2 || 1.85E+05+ 1.05E+04(1.0) / 1 2.20E+05+ 1.81E+04 (1.0)/3|| 2.34E+05+ 2.12E+04 (1.0)/ 4
fos 1.28E+05+ 6.68E+03 (.94) /2 || 1.26E+05+ 6.28E+03(.92) / 1 1.29E+05+ 1.21E+04 (.92) / 4 || 1.28E+05+ 1.33E+04 (.94)/3
foe 9.41E+03+ 3.46E+02(1.0) / 1 9.47E+03+ 3.76E+02 (1.0)/ 2 || 1.00E+04+ 6.15E+02(1.0)/3|| 1.01E+04+ 5.75E+02 (1.0)/4
for 9.41E+03+ 3.46E+02(1.0) / 1 9.47E+03+ 3.76E+02 (1.0)/ 2 || 1.00E+04+ 6.15E+02(1.0)/3|| 1.01E+04+ 5.75E+02 (1.0)/4
fos 9.64E+04+ 3.27E+03 (1.0) / 2 || 9.37E+04+ 4.06E+03(1.0) / 1 9.64E+04+ 6.05E+03 (1.0) /3|| 9.79E+04+ 7.34E+03 (1.0) / 4
fog 1.25E+05+ 3.22E+03 (1.0) / 3 || 1.23E+05+ 4.43E+03(1.0) / 1 1.24E+05+ 6.16E+03 (1.0) / 2 || 1.25E+05+ 7.14E+03 (1.0)/ 4
fi0 3.76E+04+ 1.40E+03(1.0) / 1 3.76E+04+ 1.77E+03 (1.0)/ 2 || 4.11E+04+ 1.92E+03 (1.0)/4|| 4.09E+04+ 2.19E+03 (1.0)/3
f11 2.59E+04+ 1.46E+03(1.0) / 1 2.60E+04+ 1.27E+03 (1.0)/ 2 || 2.75E+04+ 1.35E+03 (1.0)/3|| 2.82E+04+ 2.82E+03 (1.0)/4
fi2 2.21E+04+ 1.11E+03(1.0) / 2 || 2.17E+04+ 9.74E+02(1.0) /1 2.39E+04+ 1.53E+03 (1.0)/3|| 2.39E+04+ 1.54E+03 (1.0)/ 4
fi3 2.62E+04+ 1.64E+03 (1.0) /2 || 2.56E+04+ 1.34E+03(1.0) /1 2.90E+04+ 2.00E+03 (1.0)/ 4 || 2.87E+04+ 1.94E+03 (1.0)/3
Fos 1.12E+05+ 1.01E+04 (.94) /3 || 1.11E+05+ 8.56E+03(.88) /2 || 1.13E+05+ 1.29E+04 (.90) /4[| 1.10E+05+ 9.70E+03(.94) /1
Foz 3.64E+04+ 6.32E+03 (.76) / 2 || 3.57E+04+ 5.72E+03(.68) / 1 3.81E+04+ 6.83E+03 (.84) /4 || 3.81E+04+ 6.45E+03 (.86) /3
Fog* | 2.10E+01+ 4.54E-02 (0.0) /4 || 2.09E+01+ 4.76E-02(0.0) /1 2.09E+01+ 5.49E-02 (0.0) /2 || 2.10E+01+ 5.74E-02 (0.0) /3
Foo 1.05E+05+ 2.67E+03 (1.0) / 4 || 1.02E+05+ 5.17E+03(1.0) / 1 1.02E+05+ 6.33E+03 (1.0) / 2 || 1.02E+05+ 8.03E+03 (1.0)/3
F10* | 2.60E+01+ 4.81E+00 (0.0)/3|| 2.92E+01+ 6.61E+00 (0.0)/4 || 2.56E+01+ 4.17E+00 (0.0)/2|| 2.52E+01+ 4.66E+00(0.0)/1
F11* | 2.58E+01+ 1.65E+00 (0.0) /2 || 2.56E+01+ 2.11E+00(0.0) /1 2.62E+01+ 2.01E+00 (0.0)/3|| 2.63E+01+ 1.36E+00 (0.0)/ 4
Fi1o* | 1.12E+03+ 1.48E+03(.10) / 1 1.96E+03+ 1.81E+03 (.04) /2 || 2.11E+03+ 3.31E+03(.14)/3|| 2.33E+03t 2.86E+03 (.08)/4
Fi3* | 2.18E+00+ 1.72E-01(0.0)/1 2.19E+00+ 1.83E-01 (0.0)/2 || 2.21E+00+ 1.76E-01(0.0)/3 || 2.23E+00+ 1.62E-01 (0.0)/4
Fi4* | 1.23E+01+ 2.81E-01(0.0)/3 1.23E+01+ 2.79E-01 (0.0) /2 || 1.22E+01+ 2.89E-01(0.0) /1 1.23E+01+ 2.98E-01 (0.0) / 4
Avg (Sr) / Rank (Sr) / Rank (Sr) / Rank (Sr) / Rank
) (72)72.04 (71)71.54 (.72)73.09 (72)73.31

* indicates that the error values of the final solutions arel usiace the successful rates for all methods are lower tB&®m 5

4) PM-AdapSS-JADE: AdapSS-JADE with tReobability Matching strategy selection technique and the normal-
ized average credit assignment scheme.

5) AP-AdapSS-JADE: AdapSS-JADE with tielaptive Pursuit strategy selection technique and the normalized
average credit assignment scheme.

The parameters of all algorithms are used as mentioned itio8et1. The results are tabulated in Tables 2, 3,
and 4. In Tables 2 and 3, the paired Wilcoxon signed-rankatest= 0.05 is adopted to compare the significance
between two algorithms. The Wilcoxon signed-rank test iga-parametric statistical hypothesis test, which can
be used as an alternative to the paitadst when the results cannot be assumed to be normallybdistd [34]. In
Table 3, according to the Wilcoxon's test, the results ararsarized asw/t/1”, which means that the algorithm in
the row wins inw functions, ties irt functions, and loses ihfunctions, compared with the algorithm in the column.
Similar to the methods used in [50], titermediate results are reported for the functions where several dlyos
can obtain the global optimum within MaXFFEs. In these cases, the Wilcoxon signed-rank test cerssiohly these
intermediate results. In Table 4, the best and the secoriddmsts are highlighted, respectively, grey boldface
andboldface

With respect to the quality of the final results, from Tablesn® 3, we can see that:

e Compared with the baselinee., Uniform-JADE, SJADE showed to be competitive, with the 8ion’s test
resulting in §9/7. EPS-JADE obtains similar results compared with UnifaW8DE, the Wilcoxon'’s test re-
sulting in 512/5. Both PM-AdapSS-JADE and AP-AdapSS-JADE approachesigniisantly better than
Uniform-JADE on most of the functions. On 11 test functiodd-RdapSS-JADE significantly outperforms
Uniform-JADE, while on the other 11 functions there are mgn#icant differences between these two algo-
rithms. Uniform-JADE is significantly outperformed by ARJApSS-JADE on 12 functions. On 9 functions
AP-AdapSS-JADE provides the similar results to Uniforn2A Uniform-JADE only significantly outper-
forms AP-AdapSS-JADE on functidfys.

e According to the Wilcoxon'’s test shown in Table 3, it can bersthat both PM-AdapSS-JADE and AP-AdapSS-
JADE approaches significantly outperform SJADE on most eftést functions. PM-AdapSS-JADE is signif-
icantly better than SJADE on 12 functions. AP-AdapSS-JABEignificantly better than SJADE on 11 func-
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Table 2: Comparison on tHerror values of different strategy selection techniques forwaictions aD = 30. When several algorithms can obtain
the global optimum for a function, only thetermediate results for the function are reported, hereinafter.

F

NFFEs

Uniform-JADE

SJADE

EPS-JADE

PM-AdapSS-JADE

AP-AdapSS-JADE

for
foz
fos
foa
fos
fos
foz

150k
200k
500k
500k
500k

50k
300k

2.33E-60= 1.45E-59 (1.0)
3.51E-36+ 1.63E-35 (1.0)
4.33E-60= 1.81E-59 (1.0)
4.79E-16= 2.35E-16 (1.0)
2.39E-01= 9.56E-01 (.94)
1.38E+00« 1.15E+00 (1.0)
5.53E-04+ 1.52E-04 (1.0)

1.48E-60= 6.61E-60 (1.0)
1.24E-28+ 8.38E-28 (1.0)
7.34E-70z 2.23E-69(1.0)

5.27E-15: 3.67E-15 (1.0)
7.75E-30+ 2.63E-29(1.0)

1.78E+00« 1.04E+00 (1.0)
5.82E-04+ 2.79E-04 (1.0)

5.50E-50= 3.91E-58 (1.0)
1.40E-32+ 8.16E-32 (1.0)
2.15E-66+ 1.52E-65 (1.0)
1.07E-15+ 4.91E-15 (1.0)
1.59E-01+ 7.89E-01 (.96)
1.12E+00+ 8.63E-01 (1.0)
5.21E-04+ 2.26E-04(1.0)

1.66E-62 9.17E-62 (1.0)
2.97E-34+ 2.09E-33 (1.0)
1.79E-67+ 1.20E-66 (1.0)
2.74E-16+ 1.67E-16 (1.0)
7.97E-02+ 5.64E-01 (.98)
1.12E+00+ 1.05E+00 (1.0)
5.28E-04+ 1.74E-04 (1.0)

2.46E-75% 1.42E-74(1.0)
1.85E-44=+ 1.31E-43(1.0)
2.50E-68+ 8.35E-68 (1.0)
5.14E-22+ 5.40E-22 (1.0)
3.19E-01+ 1.09E+00 (.92)
4.00E-02+ 1.96E-01(1.0)
5.94E-04+ 1.89E-04 (1.0)

fos
foo
fio
f11
f12
fi3

100k
100k
50k
50k
50k
50k

2.51E-07+ 7.24E-07 (1.0)
3.56E-01+ 3.06E-01 (1.0)
3.15E-10+ 3.49E-10 (1.0)
1.72E-10+ 1.21E-09 (1.0)
5.96E-19+ 2.14E-18 (1.0)
1.91E-16+ 3.58E-16 (1.0)

1.51E-07+ 2.04E-07 (1.0)
9.09E-02+ 7.06E-02(1.0)
5.56E-10+ 6.45E-10 (1.0)
1.78E-17+ 1.10E-16 (1.0)
1.59E-18+ 2.59E-18 (1.0)
1.72E-14+ 8.15E-14 (1.0)

4.23E-06+ 2.09E-06 (1.0)
6.68E-01+ 3.30E-01 (1.0)
3.03E-10+ 2.77E-10 (1.0)
3.93E-16+ 2.75E-15 (1.0)
7.49E-19+ 2.00E-18 (1.0)
7.30E-16+ 2.34E-15 (1.0)

1.29E-07+ 1.89E-07 (1.0)
3.02E-01+ 4.52E-01 (1.0)
1.99E-10+ 2.01E-10 (1.0)
6.66E-18+ 4.66E-17 (1.0)
2.39E-19+ 7.64E-19 (1.0)
1.77E-16+ 3.70E-16 (1.0)

1.82E-08= 1.19E-07(1.0)
2.95E-01+ 5.69E-01 (1.0)
1.10E-11=+ 1.86E-11(1.0)
0.00E+00= 0.00E+00(1.0)
2.24E-22+ 7.79E-22(1.0)
3.76E-20+ 1.21E-19(1.0)

Foe
For
Fos
Fog
Fio
F11
F12
Fi3
Fiq

300k
300k
300k
100k
300k
300k
300k
300k
300k

3.99E-01= 1.21E+00 (.90)
1.13E-02+ 1.03E-02 (.74)
2.09E+01+ 6.79E-02 (0.0)
2.69E-01= 2.61E-01 (1.0)
2.87E+01+ 5.65E+00 (0.0)
2.83E+01+ 1.36E+00 (0.0)
1.61E+03+ 1.98E+03(.04)
2.09E+00: 1.68E-01 (0.0)
1.23E+01+ 2.94E-01 (0.0)

3.90E+00= 1.52E+01 (.88)
1.08E-02+ 9.04E-03 (.72)
2.09E+01+ 5.99E-02 (0.0)
6.54E-02+ 7.23E-02(1.0)

3.01E+01+ 5.02E+00 (0.0)
2.61E+01+ 1.18E+00 (0.0)
5.44E+03+ 5.09E+03 (.02)
2.45E+00% 2.38E-01 (0.0)
1.23E+01+ 2.74E-01 (0.0)

7.36E-01= 3.61E+00 (.92)
8.57E-03+ 8.00E-03(.84)

2.09E+01+ 5.66E-02 (0.0)
8.25E-01= 4.62E-01 (1.0)
2.60E+01+ 4.99E+00 (0.0)
2.66E+01+ 1.38E+00 (0.0)
3.21E+03+ 3.69E+03 (.14)
1.35E+00+ 1.03E-01(0.0)

1.23E+01+ 2.39E-01 (0.0)

6.92E-25< 4.22E-24(1.0)

9.01E-03+ 8.65E-03 (.82)
2.09E+01+ 4.96E-02 (0.0)
1.83E-01+ 1.65E-01 (1.0)
2.57E+01= 4.26E+00(0.0)
2.55E+01= 1.22E+00(0.0)
1.74E+03+ 1.92E+03 (.04)
2.06E+00x 1.73E-01 (0.0)
1.23E+01+ 2.75E-01 (0.0)

4.78E-01+ 1.31E+00 (.88)
1.31E-02+ 1.04E-02 (.68)
2.09E+01+ 4.76E-02 (0.0)
1.65E-01+ 2.54E-01 (1.0)
2.92E+01+ 6.61E+00 (0.0)
2.56E+01+ 2.11E+00 (0.0)
1.96E+03¢ 1.81E+03 (.04)
2.19E+00: 1.83E-01 (0.0)
1.23E+01x 2.79E-01(0.0)

Table 3: Wilcoxon’s test on thError values of different strategy selection techniques forwiictions atD = 30. The algorithm in the row is
compared with the algorithm in the column. The results asedeed as “wins/ties/losses”.

Uniform-JADE | SJADE | EPS-JADE | PM-AdapSS-JADE| AP-AdapSS-JADE
Uniform-JADE - - - - -
SJADE 7/9/6 — — — -
EPS-JADE 5/12/5 10/8/4 — — -
PM-AdapSS-JADE 11/11/0 12/8/2 9/11/2 — -
AP-AdapSS-JADE 12/9/1 11/9/2 11/6/5 11/9/2 -

tions. SJADE significantly dominates PM-AdapSS-JADE andA&RpSS-JADE on two functionsfdy and
Fog)®. On the rest of the functions, there are no significant difiees in terms of error values.

Considering EPS-JADE, it obtains overall better resulsmtS8JADE method. Compared EPS-JADE with PM-
AdapSS-JADE and AP-AdapSS-JADE, we can see that PM-Adap®E and AP-AdapSS-JADE are signifi-
cantly better than EPS-JADE in most of the cases.

Comparison on the results between PM-AdapSS-JADE and Adp88-JADE, the Wilcoxon's test result is
11/9/2. It means that AP-AdapSS-JADE is significantly better tRrAdapSS-JADE on 11 functions. On
9 functions, there are no significant differences betweesdtiwo algorithms. Only on 2 functions4( and
F13), AP-AdapSS-JADE is significantly worse than PM-AdapS®HBAThus, we can conclude that on most of
the functions thé\daptive Pursuit based AdapSS-JADE approach is better tharPtiobability Matching based
one, consequently being better than all the other methaatsinghis empirical comparison.

Generally, our proposed PM-AdapSS-JADE and AP-AdapSSEIApproaches obtain better results than SJADE
in terms of the error values and the convergence rate, whightimdicate that the relative fithess improvement based
credit assignment techniques are better than the methgobged in SaDE [30] (which is based on the frequency
of fitness improvements). Moreover, both PM-AdapSS-JADHE AR-AdapSS-JADE approaches are better than
Uniform-JADE and EPS-JADE, which means that #rebability Matching and Adaptive Pursuit techniques based
AdapSS-JADE are able of efficiently adjust the probabilitylee most suitable strategy while solving the problem.
With respect to the convergence rate, Table 4 shows that BEpBS-JADE and AP-AdapSS-JADE consistently
converge faster than Uniform-JADE, SJADE, and EPS-JADE ostrof the functions. In addition, AP-AdapSS-
JADE is capable of providing the fastest convergence ratepemed with the other three methods on most of the

5These two functions are the Rastrigin’s functioRgg is the shifted version ofgg.
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Table 4: Comparison on tHeFFEs values of different strategy selection techniques for tieeassful functions @ = 30. The results are only

reported for functions that are solved successfully withenMax NFFEs.

F Uniform-JADE SJADE EPS-JADE PM-AdapSS-JADE AP-AdapSS-JADE
fo1 2.77E+04+ 9.04E+02 | 2.82E+04+ 8.13E+02 | 2.77E+04+ 8.34E+02 | 2.74E+04+ 6.00E+02 | 2.46E+04+ 9.75E+02
fo2 4.73E+04+ 1.84E+03 | 4.88E+04+ 2.16E+03 | 4.72E+04+ 1.65E+03 | 4.63E+04+ 1.88E+03 | 4.01E+04+ 1.96E+03
fo3 9.02E+04+ 6.35E+03 | 8.86E+04+ 4.24E+03 | 8.30E+04+ 4.96E+03 | 8.79E+04+ 3.49E+03 | 8.88E+04+ 5.95E+03
foq 2.65E+05+ 6.40E+03 | 2.85E+05+ 7.66E+03 | 2.75E+05+ 3.57E+03 | 2.61E+05+ 6.58E+03 | 1.85E+05+ 1.05E+04
fos 1.31E+05+ 1.02E+04 | 1.26E+05+ 4.99E+03 | 1.19E+05+ 5.04E+03 | 1.25E+05+ 3.71E+03 | 1.26E+05+ 6.28E+03
fos 1.03E+04+ 3.16E+02 | 1.04E+04+ 2.93E+02 | 1.03E+04+ 2.95E+02 | 1.02E+04+ 3.30E+02 | 9.47E+03+ 3.76E+02
fo7 2.31E+04+ 5.82E+03 | 2.59E+04+ 6.02E+03 | 2.28E+04+ 4.91E+03 | 2.31E+04+ 5.18E+03 | 2.33E+04+ 5.74E+03
fos 1.03E+05+ 2.98E+03 | 1.04E+05+ 2.30E+03 | 1.18E+05+ 1.88E+03 | 1.03E+05+ 2.42E+03 | 9.37E+04+ 4.06E+03
foo 1.30E+05+ 2.36E+03 | 1.29E+05+ 2.25E+03 | 1.39E+05+ 1.93E+03 | 1.30E+05+ 5.04E+03 | 1.23E+05+ 4.43E+03
fi0 4.29E+04+ 1.40E+03 | 4.38E+04+ 1.47E+03 | 4.29E+04+ 1.26E+03 | 4.23E+04+ 1.29E+03 | 3.76E+04+ 1.77E+03
f11 4.26E+04+ 3.06E+03 | 2.97E+04+ 1.19E+03 | 2.95E+04+ 1.29E+03 | 2.89E+04+ 1.19E+03 | 2.60E+04+ 1.27E+03
f1o 2.51E+04+ 1.01E+03 | 2.59E+04+ 9.15E+02 | 2.52E+04+ 8.50E+02 | 2.45E+04+ 1.04E+03 | 2.17E+04+ 9.74E+02
fi3 3.05E+04+ 1.26E+03 | 3.16E+04+ 1.91E+03 | 3.03E+04+ 1.41E+03 | 3.03E+04+ 1.32E+03 | 2.56E+04+ 1.34E+03
Fos | 1.22E+05+ 1.97E+04 | 1.09E+05+ 6.49E+03 | 1.12E+05+ 1.51E+04 | 1.15E+05+ 1.19E+04 | 1.11E+05+ 8.56E+03
Fo7 | 3.64E+04+ 4.33E+03 | 3.66E+04+ 4.71E+03 | 3.60E+04+ 5.11E+03 | 3.48E+04+ 4.75E+03 | 3.57E+04+ 5.72E+03
Fog | 1.06E+05+ 2.18E+03 | 1.03E+05+ 2.32E+03 | 1.12E+05+ 1.38E+03 | 1.05E+05+ 2.83E+03 | 1.02E+05+ 5.17E+03

functions, while also showing to be better in terms of theevalues; the reason for this is that thdaptive Pursuit
technique is able to converge more rapidly to a strategyabitiby distribution that accurately reflects the quality
empirical estimates, confirming what was already shownerctintext of GAs [41].

For the experiments presented in the following sectionscaresider only the results of the best method found
here,i.e., the AP-AdapSS-JADE using the normalized average rewarelative fithess improvements.

4.5. Analysis of Strategy Adaptation

The adaptation characteristics of the PM method have bealgzad in [15], with the results showing that PM-
based DE is able to efficiently select the most suitableegisatvhile solving a given problem, globally achieving
better results than the baseline adaptive methods, andhkabE using a single strategy for each of the strategies
constituting the pool. In this section, the adaptation abtaristics of the AP method are analyzed experimentally.
Four variants of JADE are compared with AP-AdapSS-JADEhead¢hem using one of the strategies that constitute
the pool, as follows:

1) JADE-wo: JADE with the strategy shown in Equation 16.
2) JADE-w: JADE with the strategy shown in Equation 17.
3) rJADE-wo: JADE with the strategy shown in Equation 18.
4) rJADE-w: JADE with the strategy shown in Equation 19.

The parameter settings are kept the same as described ior5&dt The results are shown in Table 5. In Table 5,
only the intermediate results are reported for the funstiwhere several algorithms can obtain the global optimum
within the MaxNFFEs. In the last row of Table 5, according to the Wilcoxar'st, the results are summarized
as ‘w/t/I”, which means that AP-AdapSS-JADE wins\nfunctions, ties int functions, and loses ihfunctions,
compared with its competitors. Some typical convergencessiand the evolution of the probabilities of the selected
functions are plotted in Figure 2. All results are averagest 60 independent runs.

4.5.1. On the General Performance

From Table 5, it is clear to see that on most of the functions8dRapSS-JADE significantly outperforms JADE
with each single strategy in the pool. AP-AdapSS-JADE isiicantly better than JADE-wo, JADE-w, rJADE-wo,
and rJADE-w on 16, 12, 14, and 14 out of 22 functions, respelgti while being outperformed on 0, 2, 4, and 5
functions.

Considering the convergence rate, from Figure 2, we canrebsieat AP-AdapSS-JADE requires less NFFEs to
achieve the value-to-reach and converges faster than tindA®E variants on most of the functions.
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Table 5: Comparison on tHerror values between JADE with single strategy and AP-AdapSSEJAdD all functions aD = 30.

F | NFFEs JADE-WO JADE-W rJADE-WO rJADE-W AP-AdapSS-JADE
for 150K | 5.06E-59+ 3.18E-58 (1.0) | 7.14E-58+ 3.36E-57 (1.0) | 2.06E-50+ 1.46E-49 (1.0) | 1.89E-53+ 1.33E-52 (1.0) | 2.46E-75+ 1.42E-74(1.0)
foz 200k | 1.32E-29+5.99E-29 (1.0) | 3.64E-27+2.51E-26 (1.0) | 4.52E-31+2.24E-30 (1.0) | 1.63E-28+6.12E-28 (1.0) | 1.85E-44+ 1.31E-43(1.0)
fos 500k | 1.71E-60+ 6.68E-60 (1.0) | 9.28E-80+ 5.62E-79(1.0f | 1.64E+00+ 5.30E+00 (.88)| 1.69E+00+ 3.18E+00 (.76)| 2.50E-68+ 8.35E-68 (1.0)
fos 500k | 3.17E-14+ 1.53E-14 (1.0) | 5.02E-14+ 3.45E-14 (1.0) | 5.42E-16+ 3.00E-16 (1.0) | 1.15E-15+ 4.89E-16 (1.0) | 5.14E-22+ 5.40E-22(1.0)
fos 500k | 1.59E-01+ 7.89E-01(.96) | 1.59E-0l1+ 7.89E-01(.96) | 7.97E-02:+ 5.64E-01(.98) | 2.25E-30+ 4.78E-30(1.0) | 3.19E-01+ 1.09E+00 (.92)
fos 10k | 3.02E+00+ 1.24E+00 (1.0) | 5.70E+00+ 1.57E+00 (1.0) | 1.40E-01+ 4.00E-01 (1.0) | 1.22E+00+ 1.20E+00 (1.0)| 4.00E-02+ 1.96E-01(1.0)
for 300k | 6.57E-04+ 2.51E-04 (1.0) | 6.05E-04+ 2.06E-04 (1.0) | 4.93E-04+ 1.64E-04 (1.0) | 4.81E-04+ 1.42E-04(1.0f | 5.94E-04+ 1.89E-04 (1.0)
fos 100K | 1.71E-04x 2.27E-04 (1.0) | 2.60E-O4= 4.77E-04 (1.0) | 2.93E-09+ 5.12E-09(1.0) | 4.22E-09x 4.75E-00 (1.0) | 1.82E-08= 1.19E-07 (1.0)
foo 100k | 1.90E+00« 7.36E-01 (1.0) | 1.63E+00+ 7.62E-01 (1.0) | 6.85E-03+ 7.25E-03(1.0) | 1.22E-02+ 1.70E-02 (1.0) | 2.95E-01+ 5.69E-01 (1.0)
fi0 50k | 1.14E-09+ 1.20E-09 (1.0) | 2.91E-09+ 2.89E-09 (1.0) | 1.24E-10+ 1.41E-10(1.0) | 3.54E-10+ 2.79E-10(1.0) | 1.10E-11+ 1.86E-11(1.0)
f1y 25k | 2.71E-04+ 1.02E-03 (1.0) | 3.39E-04+ 1.44E-03 (1.0) | 2.24E-07+ 1.48E-07 (1.0) | 1.19E-06+ 1.27E-06 (1.0) | 1.49E-07+ 5.38E-07(1.0)
f1o 50K | 1.44E-17+3.65E-17 (1.0) | 1.68E-16+ 4.52E-16 (1.0) | 7.14E-20+ 2.17E-19 (1.0) | 1.81E-18+5.39E-18 (1.0) | 2.24E-22+ 7.79E-22(1.0)
f13 50k | 1.80E-11+ 1.09E-10(1.0) | 5.87E-12+ 2.40E-11 (1.0) | 1.34E-16+7.27E-16(1.0) | 1.53E-15+ 4.80E-15(1.0) | 3.76E-20+ 1.21E-19(1.0)
Fos 300k | 5.58E+00: 1.58E+01 (.70) | 4.26E+00= 1.57E+01 (.88) | 5.27E+00« 1.83E+01 (.88) | 2.84E+00+ 1.15E+01 (.90)| 4.78E-01x 1.31E-+00(.88)
For 300k | 1.40E-02+ 1.80E-02(.68) | 8.86E-03+9.58E-03 (.74) | 1.38E-02+ 1.13E-02(.74) | 6.16E-03+ 6.25E-03(.92) | 1.31E-02+ 1.04E-02 (.68)
Fos 300k | 2.09E+01+ 4.33E-02 (0.0) | 2.09E+01+ 4.50E-02 (0.0) | 2.09E+01:+ 8.20E-02 (0.0) | 2.09E+01+ 6.56E-02 (0.0) | 2.09E+01+ 4.76E-02 (0.0)
Fos 100k | 1.66E+00« 7.33E-01(1.0) | 1.21E+00+ 6.51E-01 (1.0) | 4.02E-03+ 6.17E-03(1.0f | 2.72E-03+ 2.81E-03 (1.0) | 1.65E-01+ 2.54E-01 (1.0)
Fio 300k | 3.14E+01+ 6.77E+00 (0.0) | 2.90E+01+ 4.02E+00(0.0) | 4.19E+01+ 2.38E+01 (0.0)| 4.00E+01+ 2.46E+01 (0.0)| 2.92E+01+ 6.61E+00 (0.0)
Fi 300k | 2.49E+01+ 1.17E+00(0.0) | 2.59E+01+ 1.77E+00 (0.0) | 3.08E+01+ 2.50E+00 (0.0)| 3.28E+01+ 5.29E+00 (0.0)| 2.56E+01+ 2.11E+00 (0.0)
Fio 300k | 4.56E+03+ 3.92E+03 (0.0) | 4.49E+03+ 4.19E+03 (.02) | 1.44E+04+ 1.13E+04 (0.0)| 1.08E+04+ 8.94E+03 (0.0)| 1.96E+03+ 1.81E+03(.04)
Fis 300k | 2.22E+00: 1.87E-01(0.0) | 2.19E+00+ 1.94E-01(0.0) | 2.62E+00+ 2.29E-01 (0.0) | 2.70E+00+ 2.07E-01 (0.0) | 2.19E+00+ 1.83E-01 (0.0)
Fis 300k | 1.23E+01+ 2.17E-01(0.0) | 1.24E+01+ 2.09E-01 (0.0) | 1.28E+01+ 4.90E-01(0.0) | 1.29E+01+ 2.41E-01(0.0) | 1.23E+01+ 2.79E-01(0.0)
Wil 16/6/0 12782 147474 14735 -

T indicates AP-AdapSS-JADE is significantly better than @mpetitor by the Wilcoxon signed-rank testat 0.05.
# means that AP-AdapSS-JADE is significantly outperformedtsgompetitor.

4.5.2. On the Adaptation Characteristics

In order to analyze the adaptation characteristics of ARpS5-JADE, the evolution trend of the probability of
each strategy for some selected functions is shown in tin¢ cigumns of Figure 2. According to the results shown
in Table 5 and Figure 2, it can be observed that:

e Similar to memetic algorithms, the competition and coopend25, 26] can also be observed in AP-AdapSS-

JADE. Different strategies of JADE are working together ¢te@nplish the shared optimization goal and re-
sulting in a higher achievement [26]. On most of the funatioAP-AdapSS-JADE obtains the best results
compared with the four JADE variants. This means thatAtieptive Pursuit based AdapSS-JADE is capable
of enhancing the performance of JADE w.r.t. quality of finallsions and convergence speed.

Comparing the results of JADE with each single strategg,difficult to say which one is the best. For example,
for function fog rJADE-wo and rJADE-w provide better results than JADE-wd dADE-w. Oppositely, for
functionF1;, JADE-wo and JADE-w are better than JADE-wo and JADE-w imtgof quality of final solutions
and convergence rate. This phenomenon can also be obsenatiér test functions.

Figure 2 indicates that AP-AdapSS-JADE is able to adaptiselect the most suitable strategy while solving
the problem at hand. Thidaptive Pursuit technique can converge rapidly to a strategy probabilgjrithiution
that results in a much higher probability of selecting therent optimal strategy. For example, for func-
tion f13 rJADE-wo converges fastest, followed by rJADE-w. Accoglio Figure 2 (d), we can observe that
“DE/rand-topbest/1 (without archive)” obtains the highest probabiéitsnost in the whole evolution process,
followed by “DE/rand-tgbest/1 (with archive)”. The probabilities of “DE/currettpbest/1 (without archive)”
and “DE/current-tpbest/1 (without archive)” are very small for this functio@n the contrary, for function
F14, JADE-wo and JADE-w converge faster than rJADE-wo and rJAMDH hus, from Figure 2 (g) and (h) we
can see that strategies “DE/currenplest/1 (without archive)” and “DE/currentfibest/1 (without archive)”
get higher probabilities than “DE/randgbest/1 (without archive)” and “DE/rand-pbest/1 (without archive)”.
By carefully looking at the results in Figure 2, it can be st for some functions the evolution trend of the
probability of each strategy is oscillatory. For functifn, the reason might be that this function is relatively
simple. One of the four strategies may provide a higher réwzan the others in the evolution process, hence
being assigned with a higher probability.
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Table 6: Comparison on tHerror values between JADE with single strategy and AP-AdapSSE#dD functionsfy; — fi3 at D = 100 and for
functionsFgg — F14 at D = 50.

D = 100
F | NFFEs JADE-WO JADE-W TJADE-WO TJADE-W AP-AdapSS-JADE
for | 1000k | 9.50E-62+ 1.97E-61 (1.0) | 9.67E-84+ 1.85E-83 (1.0) | 1.77E-83+ 4.30E-83 (1.0) | 1.53E-96+ 1.07E-96 (1.0) | 2.41E-109+ 6.62E-109(1.0)
foo | 1000k | 7.28E-36+ 8.44E-36 (1.0) | 1.16E-41+ 1.44E-41(1.0) | 1.95E-46+ 1.36E-45(1.0) | 1.33E-54+ 1.68E-54(1.0f | 4.20E-50+ 9.92E-50 (1.0)
fos | 1000k | 9.13E-04x 7.02E-04 (0.0) | 3.91E-05: 4.62E-05(0.0f | 3.81E+04+ 2.81E+04 (0.0) | 4.02E+04+ 2.61E+04 (0.0)| 2.34E-04+ 3.90E-04 (0.0)
fos | 1000k | 8.08E-02+ 1.06E-01(0.0) | 7.10E-03+8.53E-03 (0.0) | 2.20E-02+8.87E-02 (0.0) | 1.40E-04x+ 2.68E-04(0.0f | 9.86E-03+ 1.11E-03 (0.0)
fos | 1000k | 4.96E+01+ 1.22E+01 (0.0) | 3.08E+01+ 1.36E+01(0.0)| 4.51E+01x 2.26E+00 (0.0) | 1.87E+01+ 1.98E+00(0.0F | 2.91E+01+ 7.99E+00 (0.0)
fos 50K | 2.93E+01+ 4.68E+00 (1.0) | 2.57E+01L+ 3.78E+00 (1.0)| 2.38E+00+ 1.28E+00(1.0) | 5.86E+00:+ 1.97E+00 (1.0) | 4.90E+00+ 2.57E+00 (1.0)
for | 1000k | 1.86E-03+ 3.58E-04 (1.0) | 1.62E-03+ 2.90E-04 (1.0) | 8.99E-04+ 1.76E-04 (1.0) | 8.83E-04+ 1.82E-04(1.0f | 1.20E-03+ 2.58E-04 (1.0)
fos | 1000k | 9.71E+03t 3.53E+02 (0.0) | 9.12E+03t 3.31E+02 (0.0)| 9.30E+03x 2.92E+02 (0.0) | 8.13E+03t 3.65E+02 (0.0) | 7.74E+03z 3.42E+02(0.0)
foo | 1000k | 1.91E+02+ 7.68E+00 (0.0) | 1.84E+02: 7.48E+00 (0.0)| 1.62E+02:+ 8.13E+00 (0.0)| 1.59E+02+ 7.56E+00 (0.0)| 1.54E+02+ 6.61E-+00(0.0)
fi0 100k | 1.40E-02+ 2.54E-03 (1.0) | 6.64E-03+ 1.21E-03 (1.0) | 9.67E-04+ 1.30E-04(1.0) | 1.09E-03+ 1.53E-04(1.0) | 1.01E-03+ 3.87E-04 (1.0)
f11 100k | 1.27E-02+ 7.56E-03 (.92) | 2.50E-03+ 1.90E-03 (.98) | 4.88E-05+ 1.62E-05 (1.0) | 4.70E-05+ 1.52E-05(1.0) | 1.13E-05: 1.05E-05(1.0)
f1o 100k | 5.27E-05+ 2.24E-05 (1.0) | 1.46E-05+ 6.74E-06 (1.0) | 2.88E-07+ 9.49E-08(1.0f | 3.08E-07+ 9.00E-08 (1.0) | 3.01E-07:+ 5.38E-08 (1.0)
fi3 100k | 4.32E-01+ 1.22E+00 (1.0) | 3.04E-02+ 6.44E-02 (1.0) | 1.35E-04+ 1.04E-04(1.0§ | 2.38E-04+ 5.38E-04(1.0) | 2.09E-04+ 1.89E-04 (1.0)
D =50
F | NFFEs JADE-WO JADE-W TJADE-WO TJADE-W AP-AdapSS-JADE
Foo 500k | 1.60E+00: 1.99E+00 (.56) | 4.78E-O1+ 1.32E+00 (.88) | 6.38E-01 1.49E+00 (.84) | 3.19E-Olt 1.10E+00(.92) | 3.19E-O1x 1.10E+00(.92)
For 500k | 4.04E-03+5.68E-03 (.88) | 6.20E-03+ 1.12E-02 (.76) | 1.77E-03+ 4.18E-03 (.92) | 8.87E-04+ 3.09E-03(.92) | 9.85E-04+ 3.48E-03 (.92)
Fos 500k | 2.11E+01+ 3.82E-02 (0.0) | 2.11E+01+ 4.90E-02 (0.0) | 2.11E+01+ 3.51E-02(0.0) | 2.11E+01+ 3.77E-02 (0.0) | 2.11E+01+ 3.27E-02 (0.0)
Fos 500k | 1.62E-01+ 1.62E-01(.02) | 1.56E-02+ 1.87E-02(.68) | 5.62E-10+9.73E-10 (1.0) | 1.88E-12+ 3.06E-12 (1.0) | 4.84E-13+ 1.13E-12(1.0)
Fio 500k | 1.04E+02+ 9.08E+00 (0.0) | 9.76E+01+ 8.32E+00 (0.0)| 8.40E+01+ 7.77E+01(0.0) | 9.46E+01+ 8.20E+01 (0.0) | 8.65E+01+ 1.14E+01 (0.0)
F1 500k | 5.26E+01+ 1.94E+00(0.0) | 5.32E+01+ 1.49E+00 (0.0) | 6.25E+01+ 4.64E+00 (0.0) | 6.25E+01+ 4.64E+00 (0.0) | 5.39E+01+ 1.66E+00 (0.0)
Fio 500k | 1.22E+04+ 1.89E+04 (0.0) | 1.04E+04+ 1.66E+04 (0.0)| 5.89E+04+ 5.30E+04 (0.0) | 5.52E+04+ 5.25E+04 (0.0) | 7.05E+03+ 8.22E+03(0.0)
Fis 500k | 7.72E+00: 3.99E-01 (0.0) | 7.87E+00+ 3.39E-01 (0.0) | 7.87E+00« 4.79E-01 (0.0) | 8.13E+00= 4.38E-01 (0.0) | 7.38E+00+ 5.33E-01(0.0)
Fis 500k | 2.18E+01+ 2.69E-01(0.0) | 2.17E+01+ 2.47E-01 (0.0) | 2.27E+01+ 1.99E-01 (0.0) | 2.28E+01+ 1.59E-01 (0.0) | 2.16E+01+ 3.29E-01(0.0)
Wil 18/3/1 15/6/1 Ta747% 13745 =

T indicates AP-AdapSS-JADE is significantly better than @mpetitor by the Wilcoxon signed-rank testat 0.05.
# means that AP-AdapSS-JADE is significantly outperformedtsgompetitor.

In summary, from the above analysis we can conclude thatmpnoach is able to efficiently select the suitable
strategy for a specific problem. For each function, one ofstha&tegies was empirically found to be the best. The
AP-AdapSS-JADE was able to automatically select betweemthwithout any externa priori knowledge, thus
enhancing the performance of the JADE algorithm.

4.6. Scalability Study

In order to better understand the performance of our appraachis section, the scalability study is conducted.
For functionsfp; — f13, the dimensions are scaled@t= 100, 200, 500. While for functiond=gs — F14, D = 50 is

used, since these functions are defined up te 50 in [37].

4.6.1. Performance on Moderate-Dimensional Problems
In this section, AP-AdapSS-JADE is compared again with the JADE variants for all functions considering,
but considering a higher dimensionality, as done in theimaigreference of the baseline JADE method [50]. For
functionsfo; — f13, D = 100 is considered. For functioigs — F14, D = 50 is used, as in [37]. The population size
NP = 400, MaxNFFEs= D x 10,000. All other parameters are kept unchanged as describ®edtion 4.1. The
results are reported in Table 6. From the results shown setheo tables, we can observe that:

e When the dimensionality of the problems increase, theirperity increase consistently, especially for the
multimodal functions. Thus, the overall successful rateath algorithm decreases for higher dimensional
problems. For example, the over&ll of JADE-wo is 938, and AP-AdapSS-JADE obtains the ovefll=

10.84.

e For higher dimensional problems, a higher population diteris required and, hence, the strategy which
provides higher perturbation is able to obtain better perémce. This is verified in Table 6, where JADE with
archive (JADE-w and rJADE-w) is better than JADE withouttave (JADE-wo and rJADE-wo); JADE with
rand-topbest/1 mutation (rJADE-wo and rJADE-w) obtains better perfance than JADE with current-to-
pbest/1 mutation (JADE-wo and JADE-w).
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Table 7: Comparison on therror values among different JADE variants for functiofag — f13 at D = 200.

F

JADE-w

rJADE-w

SJADE

EPS-JADE

SaJADE

AP-AdapSS-JADE

fox
foz
fos
foa
fos
fos™
foz

3.95E-45+ 7.65E-45
1.24E-17+ 3.30E-17
1.26E+00+ 4.36E-0F
7.23E+00+ 6.14E-01
2.04E+02+ 4.64E+01
1.17E+01+ 4.16E+00
1.02E-02+ 1.41E-03

5.47E-65+ 9.91E-65
1.15E-25+ 3.87E-25
3.47E+05+ 1.07E+05
5.54E+00+ 5.17E-0%
1.49E+02+ 1.53E+01
2.40E+00+ 1.80E+00
3.99E-03+ 7.42E-04

2.96E-54+ 5.17E-54
3.09E-21+ 1.75E-20
2.80E+00+ 9.57E-01
6.28E+00+ 5.55E-01
1.82E+02+ 2.98E+01
7.18E+00+ 3.42E+00
6.08E-03+ 1.03E-03

1.04E-52+ 1.54E-52
1.19E-20+ 2.70E-20
6.43E+00+ 5.34E+00
6.18E+00+ 5.80E-01
1.84E+02+ 3.45E+01
7.76E+00+ 3.14E+00
6.31E-03+ 1.14E-03

2.14E-63+ 3.88E-63
2.29E-25+ 6.79E-25
1.35E+00+ 4.81E-0F
6.09E+00+ 6.30E-01
1.65E+02+ 3.14E+01
5.10E+00+ 2.40E+00
5.21E-03+ 8.30E-04

4.87E-64+ 6.00E-64
1.89E-25+ 5.43E-25
2.53E+00+ 9.91E-01
5.98E+00+ 7.05E-01
1.55E+02+ 2.03E+01
2.04E+00+ 1.26E+00
4.97E-03+ 1.07E-03

fos
foo
f10*
fir*
f12*
fi3*

1.66E+04+ 5.57E+02
2.34E+02+ 6.18E+00
1.42E+00+ 1.55E-01
6.77E-01+ 8.58E-02
1.95E-01+ 8.85E-02
8.77E+01+ 4.73E+01

1.38E+04+ 3.99E+07
1.93E+02+ 5.86E+00
2.52E-02+ 1.58E-02
2.92E-02+ 8.05E-03
1.62E-03+ 4.00E-03
7.12E+00+ 4.98E+00

1.53E+04+ 4.80E+02
2.10E+02+ 8.63E+00
4.40E-01+ 2.67E-01
1.92E-01+ 6.74E-02
2.79E-02+ 2.54E-02
3.06E+01+ 1.58E+01

1.54E+04+ 5.32E+02
2.13E+02+ 6.27E+00
6.52E-01+ 2.62E-01
2.36E-01+ 3.99E-02
3.41E-02+ 2.83E-02
3.14E+01+ 1.87E+01

1.42E+04+ 4.92E+07
2.00E+02+ 7.19E+00
1.34E-01+ 1.26E-01
9.67E-02+ 2.12E-02
8.94E-03+ 1.25E-02
1.90E+01+ 1.31E+01

1.44E+04+ 5.79E+02
1.98E+02+ 8.97E+00
2.33E-02+ 8.91E-03
3.22E-02+ 7.83E-03
2.13E-03+ 6.85E-03

12/0/1

2/3/8

13/0/0

13/0/0

8/3/2

9.84E+00+ 8.52E+00

* indicates that the intermediate error values at NFEE$Q 000 of the function are used, since several algorithms ctairothe global optimum in the function.
T indicates our approach is significantly better than its cetitgr by the Wilcoxon signed-rank testat= 0.05.

# means that our approach is significantly worse than its ctitopby the Wilcoxon signed-rank test at= 0.05.

Table 8: Comparison on therror values among different JADE variants for functiofag — f13 at D = 500.

F

JADE-w

rJADE-w

SJADE

EPS-JADE

SaJADE

AP-AdapSS-JADE

for
foz
fos
foa
fos
fos™
foz

1.40E-40+ 1.48E-40
4.02E-08+ 1.40E-07
1.73E+02+ 2.86E+0%
1.50E+01+ 6.32E-01
6.66E+02+ 7.65E+01
1.54E+03+ 1.76E+02
5.43E-02+ 4.65E-03

9.88E-59+ 1.26E-58
6.25E-09+ 4.40E-08
1.83E+06+ 3.96E+05
1.38E+01+ 5.41E-0F
6.02E+02+ 7.02E+01
4.18E+02+ 4.32E+0%
2.71E-02+ 3.00E-03

3.55E-49+ 4.96E-49
1.42E-09+ 6.79E-09
2.57E+02+ 3.81E+01
1.45E+01+ 6.76E-01
6.33E+02+ 8.91E+01
7.94E+02+ 8.84E+01
3.55E-02+ 4.03E-03

1.75E-47+ 2.40E-47
7.23E-09+ 3.08E-08
3.47E+02+ 1.23E+02
1.44E+01+ 6.73E-01
6.48E+02+ 8.00E+01
8.64E+02+ 1.09E+02
3.75E-02+ 4.35E-03

1.70E-57+ 4.11E-57
3.54E-11+ 1.54E-10
2.17E+02+ 4.44E+0F
1.45E+01+ 7.05E-01
6.30E+02+ 8.99E+01
6.72E+02+ 6.95E+01
3.09E-02+ 3.59E-03

1.50E-57+ 2.11E-57
3.06E-11+ 9.24E-11
2.44E+02+ 3.92E+01
1.42E+01+ 7.44E-01
5.82E+02+ 7.69E+01
4.48E+02+ 5.46E+01
3.30E-02+ 3.86E-03

fos
fog
f10
fin*
f12
fi3

5.20E+04+ 8.83E+02
6.40E+02+ 1.25E+01
3.03E+00+ 1.86E-01
1.34E+01+ 1.43E+00
8.83E-03+ 9.66E-03
1.41E+02+ 2.33E+01

4.61E+04+ 8.73E+02
5.37E+02+ 1.38E+0%
2.65E+00+ 1.50E-0F
3.47E+00+ 2.91E-01
5.60E-03+ 7.57E-03
3.02E+01+ 7.21E+00

4.92E+04+ 8.67E+02
5.83E+02+ 1.35E+01
3.13E+00+ 2.05E-01
7.04E+00+ 7.08E-01
8.34E-03+ 1.26E-02
6.88E+01+ 1.59E+01

4.94E+04+ 7.78E+02
5.87E+02+ 1.32E+01
3.16E+00+ 1.81E-01
7.69E+00+ 9.17E-01
1.02E-02+ 1.21E-02
7.49E+01+ 1.37E+01

4.66E+04+ 8.63E+02
5.53E+02+ 1.35E+0F
3.09E+00+ 1.64E-01
5.73E+00+ 7.24E-01
6.47E-03+ 8.70E-03
5.56E+01+ 1.26E+01

4.81E+04+ 9.88E+02
5.68E+02+ 1.90E+01
2.73E+00+ 1.29E-01
3.63E+00+ 3.04E-01
8.21E-03+ 1.61E-02
3.60E+01+ 9.76E+00

12/0/1

3/2/8

11/2/0

13/0/0

6/3/4

* indicates that the intermediate error values at NFEE$Q 000 of the function are used, since several algorithms ctairothe global optimum in the function.
 indicates our approach is significantly better than its cetitgr by the Wilcoxon signed-rank testat= 0.05.

# means that our approach is significantly worse than its ctitopey the Wilcoxon signed-rank test at= 0.05.

For the basic unimodal functiondpf — fo7), they are easy to be solved by all five JADE variants. rJADE-w

obtains the best results, AP-AdapSS-JADE obtains the sklgest results, followed by rJADE-wo, JADE-w,

and JADE-wo.

For the basic multimodal function§g— f13), our approach obtains the best overall results, rJADEsvgtightly
worse than AP-AdapSS-JADE, followed by rJADE-w, JADE-wg&@ADE-wo.

For functionsFos — F14, the shift and/or rotated features make them more difficulie solved. AP-AdapSS-

JADE gets the best overall results in terms of error valugs5@ut of 9 functions, it obtains the best results,

and on two functionsHo7, F19), it obtains the second best results.

In general, with respect to the error value shown in Tableu approach is able to provide the best results in

the most of the cases. It significantly performs better teDE}wo, JADE-w, rJADE-wo, and rJADE-w on
18 15,14, and 13 functions (out of 22 functions), respectively.

4.6.2. Analysison Large-scale Problems

According to the results described in Section 4.6.1, we eantlsat for the high-dimensional problems the per-

formance of JADE variants benefits from the archive. Thuthismsection, we only select “current-febest/1” with
archive and “rand-tgbest/1” with archive to form the strategy pool. The popwaizeNP = 400, MaxNFFEs=

D x 5,000. All other parameters are the same as mentioned in Settlo For functiondy; — f13, D = 200 and
D = 500 are tested, respectively. Six JADE variants are condpass JADE-w [50], rJADE-w [49], SJADE [30],
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Figure 3: Convergence curves for different JADE varianta) f(1(D = 200); (b) foz3(D = 200); (c) fog(D = 200); (d) fos(D = 500); (e)
f10(D = 500); (a)f13(D = 500).

EPS-JADE [20], SaJADE [14], and AP-AdapSS-JADE. For theterfive algorithms, some specific parameters are
set as in the original literature. The results are shown €7 and 8. The convergence curves of some selected
functions are plotted in Figure 3.

The results shown in Tables 7, 8 and Figure 3 indicate thddE}v obtains the best overall results. Our proposed
approach obtains the second best results. While JADE-weisvthrst one. The reason is that “randgbest” with
archive is capable of providing higher diversity than “@ant-topbest” with archive. When the two strategies form
the strategy pool, “rand-tpbest” with archive is able to provide higher reward in the {ehevolution process; and
the synergy of these two strategies is invalid. Only one ptiog is for functionfos, where JADE-w obtains the best
results. AP-AdapSS-JADE is significantly better than rJADE fos.

It is worth noting that although AP-AdapSS-JADE is worsath3ADE-w in the large-scale problems, it is bet-
ter than other three multiple-strategy JADE variangs, SJADE, EPS-JADE, and SaJADE. The reason is that the
Adaptive Pursuit technique is able to pursuit the best available strateghiémpbol more quickly than other strategy
adaptation techniques used in the three algorithms.

4.7. Parameter Study

In the previous experiments, the parametess, (pmin, @, andg) of the Adaptive Pursuit method are predefined
for AP-AdapSS-JADE. In this section, the influence of diffier parameter settings of tielaptive Pursuit method
on AP-AdapSS-JADE is discussed. For each parameter, wevesediues,.e., pmin = {0.0,0.1,0.15 0.2, 0.24}5,
a,B8=1{0.1,0.4,0.7,0.9,1.0}. Therefore, in this manner, following the experimentaligepresented in [19, 9], there
areK = 3 factors, and each factor h@s= 5 levels; the resulting total number of parameter combamatisQX = 125.
Since experimental design methods are capable of sampBntah number of well representative combinations for
testing [9], in this section, we only employ the orthogonesign withL,5(3%) to sample the parameters of AP. The
algorithm for constructing the orthogonal arrays can babin [9]. The number of sampled parameter combinations
is 25, and these combinations are shown in Table 9. All othesupeters of AP-AdapSS-JADE are kept unchanged

6Note that in Section 3.1.2 we sphin € (0,1] to ensure that no strategy gets lost. However, in this x@at, to evaluate the influence
pmin = 0.0 is used; this means that when the probability of a strategyale 00, the strategy will be inactive in the following of the evidn
process.
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Table 9: Parameter sensitivity analysis: AP-AdapSS-JADtE the default parameter settings,{n = 0.05,a = 0.3,8 = 0.8) is compared with

AP-AdapSS-JADE with different parameter settings.

(Pmim@.8) | (0.00,0.10,0.10)] (0.00,0.40,0.40)] (0.00,0.60,0.60)] (0.00,0.80,0.80)] (0.00,1.00,1.00)
R 163 175 176 167 160
R 27 15 14 23 30
p-value 4.58E-03 5.23E-04 4.20E-04 2.40E-03 1.69E-01
significant YES YES YES YES NO
(Pmim@.8) | (0.10,0.10,0.40)] (0.10,0.40,0.60)] (0.10,0.60,0.80)] (0.10,0.80,1.00)] (0.10,1.00,0.10)
R* 82 76 96 97 83
R 89 95 94 74 88
p-value 8.99E-01 7.02E-01 9.84E-01 6.40E-01 9.32E-01
significant NO NO NO NO NO
(Pmin, @,5) | (0.15,0.10,0.60)| (0.15,0.40,0.80)| (0.15,0.60,1.00)| (0.15,0.80,0.10)| (0.15,1.00,0.40)
R 70 91 95 122 96
R 101 99 76 68 75
p-value 5.23E-01 8.91E-01 7.02E-01 2.93E-01 6.71E-01
significant NO NO NO NO NO
(Pmin. @,8) | (0.20,0.10,0.80)[ (0.20,0.40,1.00)[ (0.20,0.60,0.10)[ (0.20,0.80,0.40)] (0.20,1.00,0.60)
R 110 108 123 97 109
R 80 63 67 93 62
p-value 5.68E-01 3.47E-01 2.75E-01 9.53E-01 3.25E-01
significant NO NO NO NO NO
(Pmim@.8) | (0.24,0.10,1.00)] (0.24,0.40,0.10)] (0.24,0.60,0.40)] (0.24,0.80,0.60)] (0.24,1.00,0.80)
R* 109 125 140 124 142
R 62 46 50 66 48
p-value 3.25E-01 8.98E-02 7.28E-02 2.58E-01 6.02E-02
significant NO NO NO NO NO

as shown in Section 4.1. The experiments of each parametarination are conducted over 50 independent runs.
The multiple-problem Wilcoxon signed-rank test [11] is ptidl to compare the performance of AP-AdapSS-JADE
with default parameter settings to that of AP-AdapSS-JADIR different parameter settings. Note that when several
algorithms can obtain the global optimum of a specific funrttivithin the Max NFFEs, the NFFEs used in the
second column of Table 2 are considered for the intermetkatdts, from which the mean values are extracted. The
results are presented in Table 9;Rf is higher thanR™, it means that AP-AdapSS-JADE with default parameter
settings is better than the compared algorithm, worst atser

According to the results we can see that for 4 out of 25 paransettings there are significant differences when
different parameters are used, all the four applying mihjnabability pmn = 0.0. Whenpgin # 0.0, there are no
significant differences for all the other 20 parameter sg#ti The default parameter settinge.( prin = 0.05,a =
0.3, = 0.8) in AP-AdapSS-JADE are reasonable but not optimal, sineectare other parameter settings that showed
to obtain better results, such gsi, = 0.1, @ = 0.4,8 = 0.6) and Qnin = 0.15,« = 0.1, 8 = 0.6). From this analysis,
we can conclude that: (i) th&daptive Pursuit strategy selection technique, being rewarded by the nizretbhverage
of relative fitness improvements, is not sensitive to itsapagter setting whepni, # 0.0; and (ii) the cooperation
of the multiple strategies is important to the performantéB-AdapSS-JADE, since the “loss” of one strategy
(pmin = 0.0) significantly deteriorates the results.

5. Conclusions and Future Work

Many mutation strategies have been proposed for generagingolutions within DE in different ways. Although
allowing a very wide use of DE on many different fields of apation, this number of available strategies creates
an extra difficulty to the user: it is not trivial to define whistrategy should be used on a given problem in order to
achieve good performance. Besides, the strategies arenmyproblem-dependent; indeed, their performance tends
to vary as the search goes on, according to the charaatsridtthe region of the search space that is being explored
by the current population.

Motivated by this difficulty, in this paper we extend our retwork [15] on investigating the use of the adaptive
strategy selection approach within Dig., a method capable of automatically selecting which stsagwpuld be
applied at each instant of the search, while solving thelpropaccording to how well each of the available strategies
have recently performed in the same search/optimizatioogss, without any prior knowledge. In order to verify the
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performance of such approach, some different adaptiveegiraelection combinations were coupled with JADE [50,
49], arecently proposed DE variant; the final method beifeyred to as AdapSS-JADE. Experiments were conducted
on 22 widely used benchmark functions. From the results aatysis previously mentioned, we can summarize that:

To implement adaptive strategy selection, credit assignyne., how to assign a reward to a strategy after its
application, is an important issue that needs to be addiedsethis work, four credit assignment methods
based on the relative fitness improvement were presentethamgerformance was analyzed. Although there
were no significant differences among these four methods ast of the functions, the normalized average
reward method was able to obtain the best results in ternieafteraged ranking. The reason might be that the
average reward is able to provide the reward for each stratege exactly than the extreme reward in DE for
continuous problems, while the normalization can effidiealiminate the magnitude differences between the
previous estimate,(t) and the reward,(t), and also between the very different fitness ranges (coesely
rewards) that might be found in the considered problems.

The second and not less important issue in adaptive stratdggtion is the strategy selection technique itself,
i.e, how to select the next strategy to be applied based on therdswecently received by each of the available
ones. Two strategy selection techniques,Rhabability Matching (PM) and theAdaptive Pursuit (AP), were
analyzed to address this issue. According to their perfoo@aising the normalized average reward of rela-
tive fitness improvements as credit assignment, we can edachat both PM and AP based AdapSS-JADE
approaches are able to enhance the performance of DE arid bbtter results than the baseline methods. In
addition, the AP technique converges more rapidly and atelyrto an efficient strategy probability distribution
compared with the PM method, which is consistent with thectusions presented in [41].

According to the analysis of the strategy adaptation of &t besulting method, referred to as AP-AdapSS-
JADE, our approach is capable of efficiently selecting thestnsoiitable strategy while solving the problem,
without any prior knowledge, performing consistently bethan the JADE using a single strategy, for each of
the four available strategies. This latter conclusion cordgithe assumption that tlsempetition andcoopera-

tion between the available strategies are important to providgleer achievement.

Besides, AP-AdapSS-JADE obtains highly competitive tsswhen compared to other recent advanced DEs,
presenting a better performance on most of the functiondewbt considerably augmenting the total compu-
tational complexity of the base JADE algorithm.

Based on the analysis on large-scale problems, when thegsyokdifferent strategies in the pool is invalid,
AP-AdapSS-JADE only obtains the second best results. égisonable because thdaptive Pursuit technique
needs some generations to pursuit the most suitable striateg specific problem.

Finally, the parameter analysis done shows that the AP-88apADE approach is not sensitive to the setting
of its 3 hyper-parameters, the minimal probabilify,, the adaptation rate, and the learning ratg; several
different parameter settings were able to achieve simdadgerformance.

For further work, when tackling multimodal problems, theim@nance of a minimal level of diversity is also
important for the search process, and thus should also lee iato account for the rewarding of the strategies; the
Compass or the Pareto-based approaches, proposed in¢2f],lme analyzed for this purpose in the future. Addi-
tionally, using other strategy selection techniques, sactihe approaches based on Multi-Armed Bandits [10], could
also be an interesting direction for the strategy adaptatibhin DE. In addition, experimental results indicatettha
synergy of strategies is very important for multiple-stggt DE. Thus, another direction of future work is performing
comprehensively empirical study to investigate how todelrategy to form the pool. Furthermore, in the future, we
will try to improve the performance of our approach on lasgade problems [46, 39, 17, 38].
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A. Benchmark Functions

The details of the first 13 functiondyf — f13) used in this work are the following:
e fo1 Sphere function:

D
for = Z 2, X € [~100,100]
i=1
Minimize: fp1(x) = f(0,---,0)=0
o fo, Schwefel’s problem 2.22:

D D
fo= > Ixl+[ [IxI, X e[-1010]
i=1 i=1

Minimize: fop(x) = f(0,---,0)=0

o fo3 Schwefel’s problem 1.2:
D i

fa= > (D)’ % €[~100100]

i=1 =1

Minimize: foz(x) = f(0,---,0)=0
o fo4 Schwefel’s problem 2.21:

fos = max{|x|,1<i <D}, x €[-100 100]
I

Minimize: fos(x) = f(0,---,0)=0
¢ fo5 Generalized Rosenbrock’s function:

D-

|_‘

[2004,2 = %)% + (x = 17]. % € [~30.30]
i=1
Minimize: fos(x) = f(1,---,1)=0

o fog Step function:
D-

|_‘

Lx. +0. 5J X € [-100Q,100]
i=1
Minimize: foe(x) = f(0,---,0)=0
e fo7 Quartic function with noise:

D
fo7 = Z iX' + random[01), X € [-1.28,1.28]
i=1
Minimize: fo7(x) = f(0,---,0)=0
o fog Generalized Schwefel’s problem 2.26:

D
= Z (- xsin(+ix)) + 41898288727243362 D, x € [-50Q 500]
i=1
Minimize: fog(X) = (4209687 - - -, 4209687)= 0.
e fog Generalized Rastrigin’s function:

D

foo = Z (X’ - 10cos(@x) + 10), X € [-5.125.12]
i=1
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Minimize: foo(x) = f(0,---,0) = 0.
o f10 Ackley’s function:

D
fio = —20 exp( -02 &2) - exp(% > cos(znq)) +20+exp(l) x €[-3232]
i=1

Minimize: fio(x) = f(0,---,0) = 0.
o f11 Generalized Griewank function:

D D
1 2 Xi e -
1‘11_4000;xi li_l[cos(\ﬁ)+1, X € [-600 600]

Minimize: fi1(x) = f(0,---,0) = 0.
e f15, f13 Generalized penalized functions:

fz = %{10 sirf(nys) + £25" 0 = 17 [1+ 10 sirf(nyia)] + (Vo ~ 1)2}
+ Y2, u(x,10,100 4)

X € [-50,50]

Minimize: fio(x) = f(L,---,1) = 0.

fi3 = %{ sir(3mxg) + 227 (% — 1)?[1 + sir?(3nxi,1)] + (%o — 1)?[1 + sin2(27rxD)]}
+ 3P, u(x, 5,100, 4)

Minimize: fis(x) = f(L,---,1) = 0.

% € [-50,50]

where 1
yi=1l+ Z(Xi +1)
and
k(x—a)™,  x>a
u(x,a k,m) =<0, —a<x<a
k(-x -a", x <a
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