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Differential evolution (DE) is a simple yet powerful evolutionary algorithm for global
numerical optimization over continuous domain, which has been widely used in many
areas. Although DE is good at exploring the search space, it is slow at the exploitation
of the solutions. To alleviate this drawback, in this paper, we propose a generalized
hybrid generation scheme, which attempts to enhance the exploitation and accelerate
the convergence velocity of the original DE algorithm. In the hybrid generation scheme
the operator with powerful exploitation is hybridized with the original DE operator. In
addition, a self-adaptive exploitation factor is introduced to control the frequency of the
exploitation operation. In order to evaluate the performance of our proposed generation
scheme, two operators, the migration operator of biogeography-based optimization and
the “DE/best/1” mutation operator, are employed as the exploitation operator. More-
over, 23 benchmark functions (including 10 test functions provided by CEC2005 special
session) are chosen from the literature as the test suite. Experimental results confirm
that the new hybrid generation scheme is able to enhance the exploitation of the original
DE algorithm and speed up its convergence rate.
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ration; self-adaptive control parameter.
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1. Introduction

Differential Evolution (DE), proposed by Storn and Price,45 is a simple yet powerful
population-based, direct search algorithm with the generation-and-test feature for
global optimization using real-valued parameters. In DE, the mutation operator is
based on the distribution of solutions in the current population. New candidates
are created by combining the parent solution and the mutant. A candidate replaces
the parent only if it has a better fitness value. In Ref. 45, Price and Storn gave the
working principle of DE with single mutation strategy. Later on, they suggested
10 different mutation strategies of DE.46,37 Among DE’s advantages are its sim-
ple structure, ease of use, speed and robustness. Due to these advantages, it has
many real-world applications, such as data mining,1,9 IIR design,10 neural network
training,18 pattern recognition, digital filter design, engineering design, etc.37,16,8

Most recently, DE has also been used for the global permutation-based combinato-
rial optimization problems.36

Although the DE algorithm has been widely used in many fields, it has been
shown to have certain weaknesses, especially if the global optimum should be located
using a limited number of fitness function evaluations (NFFEs). In addition, DE
is good at exploring the search space and locating the region of global minimum,
but it is slow at the exploitation of the solutions.33 To remedy this drawback,
this paper proposes a new hybrid generation scheme, which attempts to balance
the exploration and exploitation of DE. The proposed hybrid generation scheme,
which is based on the binomial recombination operator of DE, is hybridized with
the exploitative operation. Thus, the new hybrid generation scheme is able to
enhance the exploitation of the original DE algorithm. Additionally, a self-adaptive
exploitation factor, η, is introduced to control the frequency of the exploitation
operation.

The main aim of this paper is to present an alternative generation scheme
of DE. This generation scheme attempts to enhance the exploitation and accel-
erate the convergence rate of the original DE algorithm. To verify the expecta-
tion of our proposed generation scheme, two operators, the migration operator of
biogeography-based optimization (BBO)43 and the “DE/best/1” mutation opera-
tor, are employed as the exploitation operator. Moreover, 23 benchmark functions
(including 10 new test functions provided by CEC2005 special session47) are cho-
sen from the literature as the test functions. Experimental results confirm that the
new hybrid generation scheme is able to enhance the exploitation and accelerate
the convergence speed of the original DE algorithm. To increase the experiment
confidence, DE with the new generation scheme is also compared with the orig-
inal DE algorithm, the adaptive hill-climbing SPX-based DE method,33 and the
opposition-based DE method.40 The results show that our approach performs bet-
ter, or at least comparably, in terms of the quality of the final solutions and the
convergence rate.
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The rest of this paper is organized as follows. Section 2 briefly describes the
DE and BBO algorithms. In Sec. 3, some related works of DE are presented. Our
proposed approach is presented in detail in Sec. 4. In Sec. 5, we verify our approach
through 23 benchmark functions. Moreover, the experimental results are compared
with several other DE approaches. The last section, Sec. 6, is devoted to conclusions
and future work.

2. DE and BBO

In this work, we consider the following global numerical optimization problem:

Minimize f(�x), �x ∈ S (1)

where S ⊆ RD is a compact set, �x = [x1, . . . , xD]T, and D is the dimension of the
decision variables. Generally speaking, for each variable xi it satisfies a constrained
boundary

Li ≤ xi ≤ Ui, i = 1, . . . , D (2)

In global numerical optimization problems, the major challenge is that an algo-
rithm may be trapped in the local optima of the objective function. This issue
is particularly challenging when the dimension is high. Recently, using the Evolu-
tionary Computation (EC)4 to solve the global optimization has been very active,
producing different kinds of EC for optimization in the continuous domain, such as
genetic algorithms,3,24 evolutionary programming,52 evolution strategy,13 particle
swarm optimization,28 immune clonal algorithm,20 differential evolution,45 etc.

2.1. Differential evolution

The DE algorithm45 is a simple evolutionary algorithm (EA)4 for global numerical
optimization. It creates new candidate solutions by combining the parent individ-
ual and several other individuals of the same population. A candidate replaces the
parent only if it has a better fitness value. This is a rather greedy selection scheme
that often outperforms traditional EAs. The pseudo-code of the original DE algo-
rithm is shown in Algorithm 1. D is the number of decision variables. NP is the
population size. F is the mutation scaling factor. CR is the probability of crossover
operator. xi,j is the jth variable of the solution �xi. �ui is the offspring. rndint(1, D)
is a uniformly distributed random integer number between 1 and D. rndrealj [0, 1)
is a uniformly distributed random real number in [0, 1); it is generated anew for
each value of j. Many schemes to create a candidate are available. In Algorithm 1,
the classic “DE/rand/1/bin” scheme is adopted (see lines 6–13 of Algorithm 1).
More details on “DE/rand/1/bin” and other DE schemes can be found in Refs. 46
and 37.
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Algorithm 1. DE with DE/rand/1/bin scheme.

1: Generate the initial population
2: Evaluate the fitness for each individual
3: while The halting criterion is not satisfied do
4: for i = 1 to NP do
5: Select uniform randomly r1 �= r2 �= r3 �= i

6. jrand = rndint(1, D)
7: for j = 1 to D do
8: if rndrealj [0, 1) < CR or j == jrand then
9: ui,j = vi,j = xr1,j + F · (xr2,j − xr3,j)

10: else
11: ui,j = xi, j

12: end if
13: end for
14: end for
15: for i − 1 to NP do
16: Evaluate the offspring �ui,
17: if �ui is better than �xi then
18: Replace �xi, with �ui

19: end if
20: end for
21: end while

From Algorithm 1, we can see that there are only three control parameters in
this algorithm. These are NP, F, and CR. As for the terminal conditions, we can
either fix the maximum NFFEs Max NFFEs or the precision of a desired solution
VTR (value to reach).

In the original DE algorithm, many schemes have been proposed46,37 that use
different learning strategies and/or recombination operations in the reproduction
stage. In order to distinguish among its schemes, the notation “DE/a/b/c” is used,
where “DE” denotes the DE algorithm; “a” specifies the vector to be mutated
(which can be random or the best vector); “b” is the number of difference vectors
used; and “c” denotes the crossover scheme, binomial or exponential. In line 9
of Algorithm 1, the mutation strategy is called “DE/rand/1”, which is a classic
strategy of DE.37 Other well-known mutation strategies are listed as follows.

(i) “DE/best/1”:

�vi = �xbest + F (�xr1 − �xr2). (3)

(ii) “DE/best/2”:

�vi = �xbest + F (�xr1 − �xr2) + F (�xr3 − �xr4). (4)
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(iii) “DE/rand/2”:

�vi = �xr1 + F (�xr2 − �xr3) + F (�xr4 − �xr5). (5)

(iv) “DE/current-to-best/1”:

�vi = �xi + F (�xbest − �xi) + F (�xr1 − �xr2), (6)

where �xbest represents the best individual in the current generation,
r1, . . . , r5 ∈ {1, . . . , NP}, and r1 �= r2 �= r3 �= r4 �= r5 �= i.

2.2. Biogeography-based optimization

Since we will use the migration operator of BBO as the exploitation operator in
this work, the BBO algorithm will briefly be introduced in this section. BBO43

is a new population-based, biogeography inspired global optimization algorithm.
BBO is a generalization of biogeography to EA. In BBO, it is modeled after the
immigration and emigration of species between islands in search of more friendly
habitats. The islands represent the solutions and they are ranked by their island
suitability index (ISI), where a higher ISI signifies a superior fitness value. The
islands are comprised of solution features named suitability index variables (SIV),
equivalent to GA’s genes.

In BBO, the kth (k = 1, . . . , NP) individual has its own immigration rate λk

and emigration rate µk. A good solution has higher λk and lower µk, vice versa. The
immigration rate and the emigration rate are functions of the number of species in
the habitat. They can be calculated as follows:

λk = I

(
1 − k

n

)
, (7)

µk = E

(
k

n

)
, (8)

where I is the maximum possible immigration rate; E is the maximum possible
emigration rate; k is the number of species of the kth individual; and n = NP is
the maximum number of species. Note that Eqs. (8) and (9) are just one method
for calculating λk and µk. There are other different options to assign them based
on different specie models.43

There are two main operators in BBO, the migration and the mutation. One
option for implementing the migration operator can be described in Algorithm 2,a

where rndreal(0, 1) is a uniformly distributed random real number in (0, 1). With
the migration operator, BBO can share the information among solutions. Poor
solutions tend to accept more useful information from good solutions. This makes
BBO good at exploiting the information in the current population. More details
about the two operators can be found in Ref. 43 and in the Matlab code.44

a Since the mutation operator of BBO is not used in our approach, we do not describe it here.
Interested readers can refer to Refs. 43 and 44.
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Algorithm 2. Habitat migration of BBO.

1: for i = 1 to NP do
2: Select �xi with probability ∝ λi

3: if rndreal(0, 1) < λi then
4: for j = 1 to NP do
5: Select �xj with probability ∝ µj

6: if rndreal(0, 1) < µj then
7: Randomly select a variable σ from �xj

8: Replace the corresponding variable in �xj with σ

9: end if
10: end for
11: end if
12: end for

3. Related Work to DE

Several previous researches pointed out that there are three main drawbacks of the
original DE algorithm. First, the parameters of DE are problem dependent and the
choice of them is often critical for the performance of DE.19,29 Second, choosing
the best among different mutation strategies available for DE is also not easy for a
specific problem.39,38 Third, DE is good at exploring the search space and locating
the region of global minimum, but it is slow at the exploitation of the solution.33

Due to these drawbacks, many researchers are now working on the improvement of
DE, and many variants are presented.

Adapting the DE’s control parameters is one possible improvement. Zaharie53

proposed a parameter adaptation for DE based on the idea of controlling the popu-
lation diversity. Zaharie also implemented a multi-population approach of the pro-
posed adaptive DE. Liu and Lampinen29 proposed a Fuzzy Adaptive DE (FADE),
which employs fuzzy logic controllers to adapt the search parameters for the muta-
tion operation and crossover operation. Das et al.11 proposed two variants of DE,
DERSF and DETVSF, that use varying scaling factors. Brest et al.6 proposed self-
adapting control parameter settings of DE (jDE). Their proposed approach encodes
the F and CR parameters into the chromosome and uses a self-adaptive control
mechanism to change them. Based on jDE, Brest et al. proposed an improved self-
adaptive DE (jDE-2).5 The jDE-2 algorithm uses two strategies “DE/rand/1/bin”
and “DE/current-to-best/1/bin” as the candidate strategies. Each strategy has
its own control parameters F and CR. These parameters are also encoded into
the chromosome like jDE. In Ref. 5, detailed performance comparisons of some
adaptive or self-adaptive DE algorithms on the benchmark functions were studied.
Salman et al.41 proposed a self-adaptive DE (SDE) algorithm that eliminates the
need for manual tuning of control parameters. In SDE, the mutation scaling factor
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F is self-adapted by a mutation strategy similar to the mutation operator of DE.
The crossover rate CR in Ref. 41 is generated for each individual from a normal
distribution N(0.5, 0.15). Nobakhti and Wang32 proposed a Randomized Adap-
tive DE (RADE) method, where a simple randomized self-adaptive scheme was
proposed for the mutation scaling factor F . Neri and Tirronen31 proposed a scale
factor local search DE (SFLSDE). SFLSDE is a DE-based memetic algorithm35

which used, within the self-adaptive scheme proposed in Ref. 6, two local search
algorithms to detect a value of the scaling factor F corresponding to an offspring
with a high performance. Teo49 presented a DE algorithm with a dynamic pop-
ulation sizing strategy, where the population size is self-adapting. Through five
De Jong’s test functions, they showed that DE with self-adaptive populations pro-
duced highly competitive results compared with the original DE algorithm. Brest
and Maucec7 proposed an improved DE method, where the population size is grad-
ually reduced. The authors concluded that their approach improves efficiency and
robustness of DE.

As mentioned above, there are many generation schemes of DE, however choos-
ing the best among different mutation strategies available for DE is not easy for
a specific problem.39,38 To have a better choice of DE’s strategies, Feoktistov
and Janaqi17 introduced a generalization of DE’s strategies. Their approach led
to a new universal formula of differentiation. In Ref. 25, Iorio and Li proposed
a rotation-invariant strategy “DE/current-to-rand/1” to solve the rotated multi-
objective optimization problems. Qin and Suganthan39 proposed a self-adaptive
DE algorithm. The aim of their work was to allow DE to switch between two
schemes: “DE/rand/1/bin” and “DE/best/2/bin” and also to adapt the F and CR
values. Mezura-Montes et al.30 presented an empirical comparison of the genera-
tion schemes of DE. Ali and Fatti2 proposed a point generation scheme that uses
an approximation to the probability distribution of trial points in DE. Recently,
Qin et al.38 extended their previous work.39 In their proposed SaDE approach, four
mutation strategies were adopted. Different CR values were also used for different
strategies. Their proposed algorithm outperformed the original DE algorithm and
some others compared adaptive/self-adaptive DE variants.38

Hybridization with other different algorithms is another direction for the
improvement of DE. Fan and Lampinen15 proposed a modified version of DE, where
the trigonometric mutation was embedded into the DE algorithm. The modifica-
tion made the algorithm to get a better trade-off between the convergence rate and
the robustness.15 Zhang and Xie54 proposed a DEPSO hybrid to solve optimization
problems by incorporating the “DE/rand/1/bin” mutation operator inside the PSO
algorithm. Sun et al.48 proposed a new hybrid algorithm based on a combination
of DE with Estimation of Distribution Algorithm (EDA).27 This technique uses
a probability model to determine promising regions in order to focus the search
process on those areas. Gong et al.21 employed the two level orthogonal crossover
to improve the performance of DE. Noman and Iba34 proposed fittest individual
refinement, a crossover-based local search DE method to solve the high dimensional
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problems. Based on their previous work,34 they proposed an adaptive hill-climbing
SPX-based DE (DEahcSPX).33 In DEahcSPX, the SPX technique50 is integrated
into DE to solve the optimization problems by adaptively adjusting the length of
the search, using a hill-climbing heuristic. Through the experiments, they showed
that the proposed new version of DE performs better, or at least comparably, to
classic DE algorithm. Kaelo and Ali26 adopted the attraction–repulsion concept
of electromagnetism-like algorithm to boost the mutation operation of DE. Wang
et al.51 proposed a dynamic clustering-based DE for global optimization, where
a hierarchical clustering method is dynamically incorporated in DE. Rahnamayan
et al.40 proposed an opposition-based DE (ODE) which employs opposition-based
learning to generate initial population and also for generation jumping. Through
a comprehensive set of benchmark functions they showed that replacing the ran-
dom initialization with the opposition-based population initialization in DE can
accelerate the convergence speed.

4. Our Proposed Hybrid Generation Scheme

From the literature reviewed, we can observe that there are many DE variants
to remedy some pitfalls of DE mentioned above. In this study, we will propose
a novel hybrid generation scheme to enhance the exploitation of the original DE
algorithm. Our approach, which is different from the above-mentioned DE variants,
is presented in detail as follows.

4.1. Motivations

The DE’s behavior is determined by the trade-off between the exploration and
exploitation. As stated in Ref. 33, DE is good at exploring the search space, but it
is slow at the exploitation of the solutions. Recently, hybridization of EAs is getting
more popular due to their capabilities in handling several real world problems.23

Thus, hybridization of DE with another algorithm, which has powerful exploitation,
might balance the exploration and exploitation of the DE algorithm. Based on this
consideration, we propose a new hybrid generation scheme, where the operator with
powerful exploitation is hybridized with the binomial recombination operator of the
original DE algorithm.

As we briefly described in Sec. 2.2, the migration operator of BBO has good
exploitation; it can share the useful information among individuals. Since the BBO
algorithm is biogeography theoretical support, we will first hybridize the migration
operator with DE to verify the performance of our proposed hybrid generation
scheme. Moreover, the “DE/best/1” mutation strategy usually has fast convergence
speed and favors the exploitation of the best individual in the current population.
We will also hybridize this strategy with other DE strategy to test the performance
of the hybrid generation scheme.
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4.2. Hybrid generation scheme

The new hybrid generation scheme of DE is based on the binomial recombination
operator of the original DE algorithm. The trial vector �ui is possibly composed of
three parts: the mutant variables generated by the DE mutation, variables generated
by the exploitative operation, and the variables inherited from the target vector�xi.
The pseudo-code of the hybrid generation scheme is described in Algorithm 3.

From Algorithm 3, we can observe that:

(i) The proposed hybrid generation scheme is able to enhance the exploitation of
DE because of the exploitative operation.

(ii) It is a generalized scheme. For example, in line 6 of Algorithm 3, it is the
explorative operation. The mutation strategy of DE, which is good at exploring
the search space, can be used here, such as “DE/rand/1”, “DE/rand/2”, and
so on. In line 8, the operator with powerful exploitation can be employed, such
as the migration operator of BBO, “DE/best/1”, etc.

(iii) Compared with the original DE generation scheme, our proposed scheme is
also very simple and easy to implement.

(iv) The hybrid generation scheme maintains the main property of the original
DE generation scheme. The crossover rate CR mainly controls the whole gen-
eration scheme. If the CR value is higher, the explorative operation plays a
more important role, and the exploitative operation has less influence to the
offspring. Especially, when CR is close to 1.0, the generation scheme is more
rotationally invariant,37 and hence it can be used to solve the parameter-
dependent problems.

Algorithm 3. The new hybrid generation scheme.

1: for i = 1 to NP do
2: Select uniform randomly r1 �= r2 �= r3 �= i

3: jrand = rndint(1, D)
4: for j = 1 to D do
5: if rndrealj [0, 1) < CR or j == jrand then
6: ui,j is generated by the mutation strategy of DE {explorative

operation}
7: else if rndreal j [0, 1) < η then
8: ui,j is generated by the operator with powerful exploitation

{exploitative operation}
9: else

10: ui,j = xi,j

11: end if
12: end for
13: end for
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(v) An additional parameter, i.e., the exploitation factor η, is introduced to control
the frequency of the exploitative operation. Setting properly of this parameter
can make the algorithm get a well-found trade-off between exploration and
exploitation. In this work, we will present a self-adaptive strategy to control
this parameter next.

4.3. Self-adaptive exploitation factor

In our proposed hybrid generation scheme shown in Algorithm 3, we introduced
an additional parameter, i.e., exploitation factor η. The parameter is used to con-
trol the frequency of the exploitative operation. If η is set higher, it may lead to
over-exploitation. The algorithm may trap into the local optimum. Contrarily, if
η is lower, it may result in under exploitation. The algorithm cannot exploit the
solutions sufficiently.

Self-adaptation14 is highly beneficial for adjusting control parameters, especially
when done without any user interaction.5 Thus, in this study, we propose a self-
adaptive strategy to control the exploitation factor η. This strategy is similar to
the parameter control method proposed in Ref. 6. In our proposed method, η is
encoded into the chromosome. The ith individual Xi is represented as follows.

Xi = 〈�xi, ηi〉 = 〈x1, . . . , xD, ηi〉, (9)

where ηi is the exploitation factor of the ith individual; and it is initially randomly
generated between 0 and 1. The new parameter is calculated as:

ηi =
{

rndreal[0, dynamic gen], if rndreal[0, 1] < δ

ηi, otherwise,
(10)

where rndreal[a, b] is a uniform random value generated in [a, b]. δ indicates the
probability to adjust the exploitation factor ηi. It is similar to the parameters τ1

and τ2 used in Ref. 6. The effect of δ will be empirically discussed in Sec. 5.6.
dynamic gen is calculated as:

dynamic gen =
gen

Max gen
, (11)

where gen is the current generation, and Max gen is the maximum generation.
The reason of calculating ηi = rndreal[0, dynamic gen] is that at the beginning
of the evolutionary process the useful information of the population is less, and
hence, exploiting more information might degrade the performance of the algorithm,
especially for the multi-modal functions. As the evolution progresses, the population
contains more and more useful information, thus the probability of the exploitative
operation needs to be increased to utilize the useful information.
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4.4. Handling the boundary constraint of variables

After using the generation scheme to generate a new solution, if one or more of the
variables in the new solution are outside their boundaries, i.e., xi /∈ [Li, Ui], the

Algorithm 4. DE with the proposed hybrid generation scheme.

1: Generate the initial population
2: Evaluate the fitness for each individual
3: Initialize the current generation counter gen = 1
4: while The halting criterion is not satisfied do
5: dynamic-gen = gen

Max gen

6: for i = 1 to NP do
7: Select uniform randomly r1 �= r2 �= r3 �= i

8: jrand = rndint(1, D)
9: if rndreal[0, 1] < δ then

10: η′
i = rndreal[0, dynamic gen]

11: else
12: η′

i = ηi

13: end if
14: for j = 1 to D do
15: if rndrealj [0, 1) < CR or j == jrand then
16: ui,j is generated by the mutation strategy of DE {explorative

operation}
17: else if rndrealj[0, 1) < η′

j then
18: ui,j is generated by the operator with powerful exploitation

{exploitative operation}
19: else
20: ui,j = xi,j

21: end if
22: end for
23: end for
24: for i = 1 to NP do
25: Evaluate the offspring �ui

26: if �ui is better than �xi then
27: Replace �xi with �ui

28: ηi = η′
i

29: end if
30: end for
31: gen = gen + 1
32: end while
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following repair rule is applied:

xi =

{
Li + rndreali[0, 1]× (Ui − Li) if xi < Li

Ui − rndreali[0, 1] × (Ui − Li) if xi > Ui

, (12)

where rndreali[0, 1] is the uniform random variable from [0, 1] in the ith dimension.

4.5. DE with the hybrid generation scheme

By incorporating the above-mentioned hybrid generation scheme and the self-
adaptive exploitation factor into the original DE framework shown in Algorithm 1,
an improved DE algorithm is developed. The pseudo-code of this algorithm is
described in Algorithm 4, where η′

i is the exploitation factor of the offspring. Based
on the exploitation factor η, the algorithm can self-adaptively control the exploita-
tive operation.

5. Experimental Results and Analysis

In this section, we verify the performance of our proposed hybrid generation scheme.
To verify the performance we first choose the migration operator of BBO43 as the
exploitation operator; and the algorithm is referred to as DE-BBO. The reason
is that the BBO algorithm is well supported theoretically. We will also use the
“DE/best/1” mutation as the exploitation operator to test the performance of the
new generation scheme in Section 5.7; and the algorithm is referred to as DE–
DE. In addition, 23 functions are selected from the literature as the benchmark
problems.

5.1. Test functions

In this work, we have carried out different experiments using a test suite, con-
sisting of 23 unconstrained single-objective benchmark functions with different
characteristics chosen from the literature. All of the functions are minimization
and scalable problems. The first 13 functions, f01–f13, are chosen from Ref. 52.
The rest of the 10 functions, F01–F10, are the new test functions provided by the
CEC2005 special session.47 Since we do not make any changes to these problems,
we only briefly describe them in Table 1. More details can be found in Refs. 52
and 47.

Functions f01–f04 are unimodal. The generalized Rosenbrock’s function f05 is
a multimodal function when D > 3.42 Function f06 is the step function, which
has one minimum and is discontinuous. Function f07 is a noisy quartic function.
Functions f08–f13 are multimodal functions where the number of local minima
increases exponentially with the problem dimension. They appear to be the most
difficult class of problems for many optimization algorithms. Functions F01–F05
are unimodal. Functions F06–F10 are multi-modal. Functions F01 and F09 are
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Table 1. Benchmark functions used in our experimental studies.

Prob Name D S Optimal

f01 Sphere Model Scalable [−100, 100]D 0
f02 Schwefel’s Problem 2.22 Scalable [−10, 10]D 0
f03 Schwefel’s Problem 1.2 Scalable [−100, 100]D 0
f04 Schwefel’s Problem 2.21 Scalable [−100, 100]D 0
f05 Generalized Rosenbrock’s Functions Scalable [−30, 30]D 0
f06 Step Function Scalable [−100, 100]D 0
f07 Quartic Function Scalable [−1.28, 1.28]D 0
f08 Generalized Schwefel’s Problem 2.26 Scalable [−500, 500]D −418.9829 × D
f09 Generalized Rastrigin’s Function Scalable [−5.12, 5.12]D 0
f10 Ackley’s Function Scalable [−32, 32]D 0
f11 Generalized Griewank Function Scalable [−600, 600]D 0
f12 Generalized Penalized Function 1 Scalable [−50, 50]D 0
f13 Generalized Penalized Function 2 Scalable [−50, 50]D 0
F01 Shifted Sphere Function Scalable [−100, 100]D 0
F02 Shifted Schwefel’s Problem 1.2 Scalable [−100, 100]D 0
F03 Shifted Rotated High Conditioned

Elliptic Function
Scalable [−100, 100]D 0

F04 Shifted Schwefel’s Problem 1.2 with Noise
in Fitness

Scalable [−100, 100]D 0

F05 Schwefel’s Problem 2.6 with Global
Optimum on Bounds

Scalable [−100, 100]D 0

F06 Shifted Rosenbrock’s Function Scalable [−100, 100]D 0
F07 Shifted Rotated Griewank’s Function

without Bounds
Scalable R 0

F08 Shifted Rotated Ackley’s Function with
Global Optimum on Bounds

Scalable [−32, 32]D 0

F09 Shifted Rastrigin’s Function Scalable [−5, 5]D 0
F10 Shifted Rotated Rastrigin’s Function Scalable [−5, 5]D 0

separable, and the remaining eight functions are non-separable. The shifted and/or
rotated features make these 10 functions very difficult to solve.

5.2. Experimental setup

In this work, we will mainly use the DE-BBO algorithm to evaluate the perfor-
mance of our proposed hybrid generation scheme. For DE-BBO, we have chosen a
reasonable set of value and have not made any effort in finding the best parame-
ter settings. For all experiments, we use the following parameters unless a change
is mentioned. When DE and DE-BBO adopt the self-adaptive control parameter
proposed in Ref. 6 for CR and F values, they are referred to as jDE and jDE-BBO,
respectively.

— Dimension of each function: D = 30;
— Population size: NP = 10033,52,6,40;
— Maximum immigration rate: I = 1.043;
— Maximum emigration rate: E = 1.043;
— Probability of adjusting η: δ = 0.1 (discussed in Sec. 5.6);
— DE mutation scheme: DE/rand/1/bin45,33,29,49,40;
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— Value to reach: VTR = 10−8,47,40 except for f07 of VTR = 10−2;
— Max NFFEsb: For f01, f06, f10, f12, and f13, Max NFFEs = 150,000; for f03–

f05, Max NFFEs = 500, 000; for f02 and f11, Max NFFEs = 200,000; for f07–f09
and F01–F10, Max NFFEs = 300,000.

Moreover, in our experiments, each function is optimized over 50 independent
runs. We also use the same set of initial random populations to evaluate different
algorithms in a similar way done in Ref. 33. All the algorithms are implemented in
standard C++.

5.3. Performance criteria

Five performance criteria are selected from the literature47,40 to evaluate the per-
formance of the algorithms. These criteria are described as follows.

— Error47: The error of a solution �x is defined as f(�x − �x∗), where �x∗ is the global
minimum of the function. The minimum error is recorded when the Max NFFEs
is reached in 50 runs. The average and standard deviation of the error values
are calculated as well.

— NFFEs47: The number of fitness function evaluations (NFFEs) is also recorded
when the VTR is reached. The average and standard deviation of the NFFEs
values are calculated.

— Number of successful runs (SR)47: The number of successful runs is
recorded when the VTR is reached before the Max NFFEs condition termi-
nates the trial.

— Convergence graphs47: The convergence graphs show the average error per-
formance of the best solution over the total runs, in the respective experiments.

— Acceleration rate (AR)40: This criterion is used to compare the convergence
speeds between our approach and other algorithms. It is defined as follows:
AR = NFFEsother/NFFEsour, where AR > 1 indicates our approach is faster
than its competitor.

5.4. Influence of different CR values

As mentioned in Sec. 4.2, the crossover rate CR plays an important role in the
performance of our proposed hybrid generation scheme. In this section, we verify
the influence of different CR values (CR = 0.1, 0.5, 0.9) to DE and DE-BBO. For
DE and DE-BBO, the scaling factor F = rndreal(0.1, 1.0).37,8 Other parameters
used for DE-BBO and DE are the same as described in Sec. 5.2. To save space,
only 13 functions, f01–f13, are chosen to compare the results. The results are shown
in Table 2. Additionally, the results of jDE and jDE-BBO are also reported in this
table. The best results are highlighted in boldface.

bTheMax NFFEs for functions f01–f13 are set as in Ref. 52, except for f05, f08, and f09; they are
less than the values in Ref. 52. For functions F01–F10, the Max NFFEs are set as in Ref. 47.
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Since all algorithms start with the same initial population for each problem over
each independent run, we use the paired t-test22 to compare the results. The t-test
is also used by other researchers in evolutionary computation, such as Refs. 52, 6,
38, etc.

From Table 2, we can observe that the CR value is sensitive to different problems
for both DE and DE-BBO. For the majority of functions, DE-BBO outperforms
DE in terms of the final best error values. The t-test results show that for CR = 0.1,
0.5, 0.9 DE-BBO is significantly better than DE on 8, 7, 7 (out of 13) functions,
respectively. When using the self-adaptive control parameter for DE and DE-BBO,
both jDE and jDE-BBO are more robust than DE and DE-BBO, respectively. For
six functions, jDE-BBO is significantly better than jDE. Only for function f04, jDE
is better than jDE-BBO. For other six functions, jDE-BBO obtains similar results
to jDE.

Since the self-adaptive control parameter is more robust for both DE and
DE-BBO, we only report the results of the self-adaptive control parameter-based
DE variants in the following experiments.

5.5. General performance of jDE-BBO

In order to show the performance of jDE-BBO, we compare it with the jDE and
BBO algorithms. The parameters used for jDE-BBO and jDE are the same as
described in Sec. 5.2. The parameters of BBO are set as in Ref. 43, and the mutation
operator with mmax = 0.005 is also used in our experiments. All functions are
conducted for 50 independent runs. Table 3 summarizes the results of jDE-BBO
and jDE on all test functions.c In addition, some representative convergence graphs
of jDE-BBO, jDE, and BBO are shown in Fig. 1.

With respect to the best error values shown in Table 3, it can be seen that jDE-
BBO significantly outperforms jDE on nine out of 23 functions. For seven functions
(f02, f06, f08, f09, f11, F01, and F09), both jDE-BBO and jDE can obtain the global
optimum within the Max NFFEs. For functions f05, F06, F07, and F10, jDE-BBO
is slightly better than jDE. Only for two functions, f04 and F05, jDE is slightly
better than jDE-BBO.

With respect to the NFFEs to reach the VTR, Table 3 indicates that jDE-
BBO requires fewer NFFEs to reach the VTR for 14 functions. For functions f05
and F07, jDE is slightly faster than jDE-BBO. However, for these two functions,
jDE-BBO obtains higher SR values than jDE. For the rest of the seven functions
(F02–F06, F08, and F10), both jDE-BBO and jDE cannot reach the VTR within
the Max NFFEs. In addition, for the successful 16 functions the overall average AR
value is 1.171, which indicates that jDE-BBO is on average 17.1% faster than jDE
for these functions.

cFor the sake of clarity and brevity, in Table 3 the results of BBO are not reported, because BBO
is significantly outperformed by both jDE and jDE-BBO for all test functions. The reader may
contact the authors for details.
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(a) (b)

(c) (d)

(e) (f)

Fig. 1. Mean error curves of BBO, jDE, and jDE-BBO for selected functions. (a) f01, (b) f03,
(c) f08, (d) f12, (e) F02, (f) F03, (g) F06, (h) F07, (i) F09.
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(g) (h)

(i)

Fig. 1. (Continued )

From Fig. 1, it is apparent that in the early stages BBO converges faster than
jDE and jDE-BBO, since the migration operator of BBO is good at exploiting
the solutions. As the evolution progresses, both jDE and jDE-BBO are faster than
BBO. Moreover, jDE-BBO achieves faster convergence rate than jDE.

In general, the performance of jDE-BBO is highly competitive with jDE. Our
proposed hybrid generation scheme combined with the migration operator of BBO
is able to enhance the exploitation of DE, and hence it can accelerate the original
DE algorithm.

5.6. Effect of different δ values

Similar to τ1 and τ2 used in Ref. 6, the parameter δ is introduced to control the
probability of adjusting the exploitation factor η. In this section, we make addi-
tional experiments to evaluate the effect of different δ values on the performance
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of jDE-BBO. The best error values are reported in Table 4 for δ = 0.1, 0.3, 0.6,
and 0.9. All other parameters are kept unchanged as mentioned in Sec. 5.2. In
the last column of Table 4, the paired t-tests are used to compare the means of
the results between the best and the worst algorithms. Where “+” means the t

value of 49 degrees of freedom is significant at α = 0.05 by two-tailed test, and
“≈” indicates the difference of means is indifferent. In addition, the influence of δ

from 0.1 to 1.0 with step size 0.1 is reported for six functions (f03, f08, f09, F03,
F06, and F07) in Fig. 2. Note that for functions f03, f08, and f09 the NFFEs are
reported, since both jDE-BBO (with different δ values) and jDE can solve these
functions.

From Table 4 we can see that only for four functions the statistical results are
significantly different between the best and the worst algorithms. For the rest of
the 19 out of 23 functions, there is no significant difference. Moreover, Fig. 2 shows
that the results are not significantly different for different δ values. In summary,
the performance of jDE-BBO is not very sensitive to the choice of the parameter
δ, especially for 0.1 ≤ δ ≤ 0.4.

5.7. Effect of “DE/best/1” exploitative operation

Since our proposed hybrid generation scheme is a generalized scheme, other opera-
tors with powerful exploitation can also be employed as the exploitative operation.
In this section, the “DE/best/1” mutation is chosen as the exploitative operator.
The algorithm is called jDE-DE. For the sake of simplicity, for “DE/best/1” in
Eq. (3), F = rndreal[0.1, 1.0], r2 and r3 are the same as in the “DE/rand/1” muta-
tion. Table 5 shows the best error values for all test functions, where jDEbest is
the algorithm using the “DE/best/1” mutation in Algorithm1. In the columns 5
and 6 of Table 5, the t-test results are listed, where “+”, “−”, and “≈” indicate
that jDE-DE is significantly better, significantly worse, and indifferent, respectively.
The average and standard deviation of NFFEs are shown in Table 6. Table 6 only
reports the results when both jDE and jDE-DE achieve the VTR over all 50 runs.

Compared with jDE, jDE-DE is significantly better than jDE for 11 functions
in terms of the best error values. jDE-DE is significantly worse than jDE only
for function F10. For seven functions, both jDE-DE and jDE can obtain the global
optimum over all 50 runs. For the remaining four functions (f04, F05, F07, and F08),
jDE-DE provides similar results to jDE. Moreover, from Table 5, we can see that the
sum of SR values for jDE-DE is 858, which is larger than that of jDE (707). From
Table 6, we can observe that jDE-DE needs less NFFEs than jDE to reach the VTR.

With respect to jDEbest, for 15 functions jDE-DE significantly outperforms
jDEbest in terms of the best error values. For four functions (f03, F02, F03, and
F04), jDEbest is significantly better than jDE-DE. The four functions are all uni-
modal functions. For the rest of the four functions, jDE-DE is slightly better than
jDE. The sum of SR values of jDEbest is 410 which is less than half of that of
jDE-DE (858).
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(a) (b)

(c) (d)

(e) (f)

Fig. 2. Influence of jDE-BBO to different δ values for selected functions. (a) f03, (b) f08, (c) f09,
(d) F03, (e) F06, (f) F07.
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In summary, the jDE-DE algorithm is more robust than jDE and jDEbest. The
hybrid generation scheme combined with “DE/best/1” is also able to enhance the
exploitation and accelerate the original DE algorithm.

5.8. Comparison with other DE hybrids

In this work, the main purpose is to introduce an alternative generation scheme
of DE and demonstrate its benefits. In general, many other improvements of DE
and other exploitative operators are also likely to be used to incorporate the hybrid
generation scheme, such as the self-adaptive parameter control6 and the strategy
adaptation38 of DE. Thus, the improvement of DE in this work should not be
regarded as a competitor to other DE variants. However, to increase the experi-
ment confidence, we compare jDE-BBO and jDE-DE with other DE hybrids in this
section.

Since there are many DE variants, we only compare jDE-BBO and jDE-DE
with DEahcSPX proposed in Ref. 33 and ODE proposed in Ref. 40. In DEahcSPX,
a crossover-based adaptive local search operation is proposed to accelerate DE.
The authors concluded that DEahcSPX outperforms the original DE algorithm in
items of convergence rate in all experimental studies. In ODE, the opposition-based
learning is used for the population initialization and generation jumping. Compared
with the original DE algorithm and FADE, ODE performs better in terms of the
convergence speed and solution accuracy. All of the parameter settings are the same
as mentioned in Sec. 5.2. For DEahcSPX, the number of parents in SPX sets to be
np = 3.33 For ODE, the jump rate Jr = 0.3.40 In order to make a fair comparison
between jDE-BBO and jDE-DE, both DEahcSPX and ODE adopt the self-adaptive
parameter control proposed in Ref. 6 for CR and F values. The two algorithms are
referred to as jDEahcSPX and jODE, respectively.

The results are described in Table 7.d To save space, only the mean values are
reported herein. “[a]” indicates the mean NFFEs required to reach the VTR. In the
columns 6 through 9 of Table 7, the t-test results are listed, where “+”, “−”, and
“≈” indicate that jDE-BBO or jDE-DE is significantly better, significantly worse,
and indifferent, respectively, compared with jDEahcSPX or jODE. When all of the
four algorithms achieve the VTR within theMax NFFEs over all 50 runs, the AR
is calculated in the columns 6 through 9.

With respect to jDE-BBO, for 13 functions jDE-BBO, jDEachSPX, and jODE
are able to reach the VTR within theMax NFFEs over all 50 runs. Only for function
f07, jDE-BBO converges slower than jDEachSPX and jODE. For 12 functions, jDE-
BBO obtains faster convergence rate than jDEachSPX and jODE. On average, jDE-
BBO is 19%and 18% faster than jDEachSPX and jODE, respectively. In terms
of the best error values for the remaining 10 functions (f04, f05, F02–F08, and

dDue to the tight space limitation, in Table 7 we only reported the summary results of all algo-
rithms. For detailed results, the readers can contact the authors.
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F10), jDE-BBO is significantly better than jDEahcSPX for four functions. For six
functions there are no significant differences between jDE-BBO and jDEahcSPX.
Compared with jODE, jDE-BBO significantly outperforms jODE for five functions.
For function F10, jODE is significantly better than jDE-BBO. For the rest of the
four functions, the results are indifferent.

With respect to jDE-DE, a similar conclusion to jDE-BBO can be drawn about
the relative performance of jDE-DE, jDEahcSPX, and jODE, i.e., jDE-DE outper-
forms jDEahcSPX and jODE on the majority of functions. jDE-DE is on average
30% and 27% faster than jDEachSPX and jODE, respectively.

5.9. Discussion

The DE algorithm is a simple yet powerful population-based, direct search algo-
rithm for global optimization. It is good at exploring the search space; however it
lacks the exploitation of the solutions. Hence, there are many DE variants attempt-
ing to remedy this drawback. In this study, we propose a hybrid generation scheme
to enhance the exploitation of DE. This improvement is different from the previous
DE variants. To demonstrate the benefits of the proposed hybrid generation scheme,
a comprehensive set of experiments were conducted. From the experimental results
we can summarize that:

(1) Experimental results confirm our expectation that the proposed hybrid genera-
tion scheme is able to enhance the exploitation and accelerate the convergence
speed of the original DE algorithm. Incorporating the self-adaptive exploita-
tion factor, the hybrid generation scheme makes the original DE algorithm
more effective.

(2) The enhancement of the exploitation of the hybrid generation scheme is not
influenced by the parameter settings of CR, according to the results shown in
Table 2.

(3) The parameter study of δ shows that the influence of δ is not significant, espe-
cially for 0.1 ≤ δ ≤ 0.4.

(4) Since the proposed generation scheme is a generalized scheme, two exploitative
operators, the migration operator of BBO and the “DE/best/1” mutation, are
chosen to test the performance of the scheme. The results indicate that both the
operators can enhance the exploitation of DE. Moreover, by looking carefully
at the results in Table 7, we can see that jDE-DE can obtain better results
on 17 out of 23 functions than jDE-BBO. Hence, we can expect that other
exploitative operators may still work well in our proposed scheme.

(5) Compared with other DE variants, the results show that our approach performs
better, or at least comparably, in terms of the quality of the final solutions and
the convergence rate.

(6) From the previous experiments, we can obtain that for some highly-complex
problems (e.g., F05 and F10), the performance of jDE-BBO or jDE-DE is worse
than jDE. Our future work will dedicate to improving it.
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6. Conclusion and FutureWork

In this paper, we propose a generalized hybrid generation scheme of DE. The hybrid
generation scheme is based on the binomial recombination operator of DE, where
an additional exploitative operation is incorporated in the original DE generation
scheme. Hence, our proposed hybrid generation scheme has the ability to enhance
the exploitation and accelerate the convergence rate of DE. Compared with the
original DE generation scheme, the hybrid generation scheme is also very simple
and easy to implement. In addition, an exploitation factor η is introduced to con-
trol the frequency of the exploitative operation. Through a comprehensive set of
experimental verifications of our hybrid generations scheme, the results confirm the
enhancement of the exploitation by the scheme. The hybrid generation scheme is
able to make the original DE algorithm more effective in terms of the quality of the
final results and the reduction of the NFFEs. On the error criterion, our approach
can provide the smallest error values on the majority of the functions. On the SR
criterion, our approach still obtains the highest overall SR values. With respect to
NFFEs, convergence graph, and AR criteria, the results show that our approach
converges faster compared with other DE variants considered in this paper. Thus,
our proposed hybrid generation scheme can be regarded as an alternative scheme
of DE for further research.

Since the proposed generation scheme is a generalized scheme, other exploitation
operators (e.g., the SPX operator50 and the PCX operator12) can also be used to
enhance the performance of the original DE algorithm. Our future work is required
to verify this expectation. Additionally, combination with the constraint-handling
techniques is one possible future study using the proposed generation scheme for
the constrained problems.
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