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ABSTRACT
In this paper, we propose a hybrid Differential Evolution (DE) algo-
rithm based on the fuzzy C-means clustering algorithm, referred to
as FCDE. The fuzzy C-means clustering algorithm is incorporated
with DE to utilize the information of the population efficiently, and
hence it can generate good solutions and enhance the performance
of the original DE. In addition, the population-based algorithm-
generator is adopted to efficiently update the population with the
clustering offspring. In order to test the performance of our ap-
proach, 13 high-dimensional benchmark functions of diverse com-
plexities are employed. The results show that our approach is ef-
fective and efficient. Compared with other state-of-the-art DE ap-
proaches, our approach performs better, or at least comparably, in
terms of the quality of the final solutions and the reduction of the
number of fitness function evaluations (NFFEs).

Categories and Subject Descriptors
G.1.6 [Numerical Analysis]: Optimization; F.2.1 [Analysis of Al-
gorithms and Problem Complexity]: Numerical Algorithms and
Problems

General Terms
Algorithms

Keywords
Differential evolution, fuzzy C-means clustering, global optimiza-
tion
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1. INTRODUCTION
Without loss of generality, the global minimization problem can

be formalized as a pair (S, f) , where S ⊆ RD is a bounded set
on RD and f : S → R is a D-dimensional real-valued function.
The problem is to find a point X∗ ∈ S such that f(X∗) is the
global minimum on S [16]. More specifically, it is required to find
an X∗ ∈ S such that

∀X ∈ S : f(X∗) ≤ f(X) (1)

where f does not need to be continuous but it must be bounded.
This paper only considers unconstrained function optimization. Gen-
erally, for each variable xi it satisfies

li ≤ xi ≤ ui, i = 1, 2, · · · , D (2)

Global optimization problems are frequently arisen in almost ev-
ery field of engineering design, applied sciences, molecular biology
and other scientific applications.

Differential evolution (DE) [13] algorithm is a novel evolution-
ary algorithm (EA) for global optimization, where the mutation op-
erator is based on the distribution of solutions in the population.
It won the third place at the first International Contest on Evolu-
tionary Computation on a real-valued function test-suite [14]. DE
is a simple yet powerful population-based, direct search algorithm
with the generation-and-test feature for globally optimizing func-
tions using real-valued parameters. Among DE’s advantages are
its simple structure, ease of use, speed and robustness. Price &
Storn [13] gave the working principle of DE with single scheme.
Later on, they suggested ten different schemes of DE [14], [10].
The DE algorithm has been successfully applied to a whole host
of engineering problems including the design of digital filters, me-
chanical design optimization, aerodynamic design and multipro-
cessor synthesis [14], [10], [2]. However, DE has been shown to
have certain weaknesses, especially if the global optimum requires
to be located using a limited number of fitness function evaluations
(NFFEs). In addition, DE is good at exploring the search space and
locating the region of global minimum, but it is slow at exploitation
of the solution [9].

To remedy some weaknesses of DE, in this paper, we present a
hybrid Differential Evolution (DE) algorithm, referred to as FCDE,
which is based on the fuzzy C-means clustering algorithm. The
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Table 1: Best error values of FCDE and DE on all test functions with D = 30, where “Mean” indicates the mean best error values
found in the last generation, “Std Dev” stands for the standard deviation.

F D Max NFFEs
FCDE DE FCDE-DE

Mean Std Dev SR Mean Std Dev SR t-test

f01 30 150 000 1.84E-29 1.84E-29 50 1.24E-12 6.65E-13 50 -13.14†

f02 30 200 000 0.00E+00 0.00E+00 50 3.76E-09 1.76E-09 50 -15.14†

f03 30 500 000 6.36E-19 1.52E-18 50 8.04E-10 8.86E-10 50 -6.42†

f04 30 500 000 3.32E+00 1.42E+00 0 4.70E-01 1.09E+00 6 11.26†

f05 30 500 000 3.43E-11 2.04E-10 50 9.58E-09 1.89E-08 39 -3.58†

f06 30 150 000 0.00E+00 0.00E+00 50 0.00E+00 0.00E+00 50 0
f07 30 300 000 1.57E-03 6.22E-04 50 5.13E-03 1.39E-03 50 -16.49†

f08 30 300 000 9.40E+02 3.93E+02 0 6.64E+03 5.47E+02 0 -59.83†

f09 30 300 000 1.30E+01 4.64E+00 0 1.50E+02 2.12E+01 0 -44.71†

f10 30 150 000 3.08E-15 1.64E-15 50 4.11E-07 1.54E-07 0 -18.85†

f11 30 200 000 0.00E+00 0.00E+00 50 0.00E+00 0.00E+00 50 0
f12 30 150 000 2.95E-31 2.51E-31 50 1.58E-13 1.46E-13 50 -7.66†

f13 30 150 000 2.27E-24 1.51E-23 50 2.86E-11 2.81E-11 50 -7.18†

† The value of t with 49 degrees of freedom is significant at α = 0.05 by two-tailed test.

fuzzy C-means clustering algorithm acts as several multi-parent
crossover operators to utilize the information of the population effi-
ciently. In addition, the population-based algorithm-generator pro-
posed in [5] is adopted to efficiently update the population with the
clustering offspring. To validate the performance of our approach,
13 high-dimensional benchmark functions of a wide range of diver-
sity complexities are employed. Experimental results indicate that
our approach is effective and efficient. Compared with other state-
of-the-art DE approaches, our approach performs better, or at least
comparably, in terms of the quality of the final solutions and the
reduction of the number of fitness function evaluations (NFFEs).

The rest of this paper is organized as follows. The DE is briefly
introduced in Section 2. Section 3 briefly describes the fuzzy C-
means clustering algorithm used in this work. In Section 4, the
proposed fuzzy C-means clustering-based DE (FCDE) is described
in detail. In Section 5, we verify our approach through 13 bench-
mark functions, and compare it with those of some state-of-the-art
DE approaches. The last section, Section 6, is devoted to conclu-
sions and future work.

2. DIFFERENTIAL EVOLUTION
The DE algorithm [13] is a simple EA that creates new candi-

date solutions by combining the parent individual and several other
individuals of the same population. A candidate replaces the par-
ent only if it has better fitness. This is a rather greedy selection
scheme that often outperforms the traditional EAs. In addition, DE
is a simple yet powerful population-based, direct search algorithm
with the generation-and-test feature for globally optimizing func-
tions using real-valued parameters. Among DE’s advantages are its
simple structure, ease of use, speed and robustness. Due to these
advantages, it has many real-world applications, such as data min-
ing [1], [4], pattern recognition, digital filter design, neural network
training, etc. [10], [2].

The DE algorithm in pseudo-code is shown in Algorithm 1. D

is the number of decision variables, NP is the size of the parent
population P ; F is the mutation scaling factor; CR is the prob-
ability of crossover operator; U i is the offspring; rndint(1, D) is
a uniformly distributed random integer number between 1 and D;

X
r1

j is the j-th variable of solution Xr1 ; and rndj [0, 1) is a uni-
formly distributed random real number in [0, 1). Many schemes
of creation of a candidate are possible. We use the DE/rand/1/bin
scheme (see lines 6 - 13 of Algorithm 1) described in Algorithm 1
(more details on DE/rand/1/bin and other DE schemes can be found
in [14] and [10]).

Algorithm 1 DE algorithm with DE/rand/1/bin
1: Generate the initial population P

2: Evaluate the fitness for each individual in P

3: while The halting criterion is not satisfied do
4: for i = 1 to NP do
5: Select uniform randomly r1 �= r2 �= r3 �= i

6: jrand = rndint(1, D)
7: for j = 1 to D do
8: if rndj [0, 1) > CR or j == jrand then
9: U i

j = X
r1

j + F × (Xr2

j − X
r3

j )
10: else
11: U i

j = Xi
j

12: end if
13: end for
14: Evaluate the offspring U i

15: if U i is better than P i then
16: P i = U i

17: end if
18: end for
19: end while

From Algorithm 1, we can see that there are only three control
parameters in this algorithm. These are NP , F and CR. As for
the terminal conditions, one can either fix the maximum NFFEs
Max NFFEs or the precision of a desired solution VTR (value to
reach).

3. FUZZY C-MEANS CLUSTERING ALGO-
RITHM

Clustering algorithms proposed in literature can be divided into
two main categories: crisp (or hard) clustering procedures where
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Table 2: NFFEs Required to obtain accuracy levels less than V TR. “NA” indicates the accuracy level is not obtained after the
Max NFFEs.

F D Max NFFEs
FCDE DE FCDE-DE

Mean Std Dev SR Mean Std Dev SR t-test

f01 30 150 000 5.52E+04 1.67E+03 50 1.14E+05 1.98E+03 50 -161.01†

f02 30 200 000 8.46E+04 1.48E+03 50 1.91E+05 3.15E+03 50 -216.67†

f03 30 500 000 2.50E+05 1.58E+04 50 4.53E+05 1.70E+04 50 -61.57†

f04 30 500 000 NA NA 0 3.70E+05 7.70E+03 6 NA
f05 30 500 000 4.19E+05 4.40E+04 50 4.80E+05 1.18E+04 39 NA
f06 30 150 000 1.88E+04 8.58E+02 50 4.25E+04 1.33E+03 50 -105.86†

f07 30 300 000 4.32E+04 1.67E+04 50 1.48E+05 3.22E+04 50 -20.48†

f08 30 300 000 NA NA 0 NA NA 0 NA
f09 30 300 000 NA NA 0 NA NA 0 NA
f10 30 150 000 8.66E+04 1.70E+03 50 NA NA 0 NA
f11 30 200 000 5.71E+04 1.33E+03 50 1.20E+05 3.89E+03 50 -107.75†

f12 30 150 000 4.62E+04 1.84E+03 50 1.05E+05 3.37E+03 50 -107.77†

f13 30 150 000 5.88E+04 7.22E+03 50 1.25E+05 3.31E+03 50 -59.02†

† The value of t with 49 degrees of freedom is significant at α = 0.05 by two-tailed test.

each data point belongs to only one cluster, and fuzzy clustering
techniques where every data point belongs to every cluster with a
specific degree of membership [8].

Fuzzy C-means (FCM) clustering algorithm [8] is based on a
fuzzy extension of the least-square error criterion. The advantage
of FCM over K-means is that FCM assigns each pattern to each
cluster with some degree of membership (i.e. fuzzy clustering).
This is more suitable for real applications where there are some
overlaps between the clusters in the data set. The objective function
that the FCM optimizes is

Jm =
N∑

i=1

C∑
j

u
m
ij ‖ xi − cj ‖2 (3)

where N is the number of patterns; C is the number of cluster cen-
ters; xi is the i-th pattern; cj is the j-th center; m is the fuzziness
exponent, with m ≥ 1 (m = 2 used in this workd); and ‖ • ‖ is
any norm expressing the similarity between any measured data and
the center. Increasing the value of m will make the algorithm more
fuzzy; ui,j is the membership value for the i-th pattern in the j-th
cluster.

Fuzzy partitioning is carried out through an iterative optimiza-
tion of the objective function shown above, with the update of
membership uij and the cluster centers cj by:

uij =
1

∑C

k=1

(
‖xi−cj‖

‖xi−ck‖

) 2

m−1

(4)

cj =

∑N

i=1
(ui,j · xi)∑N

i=1
ui,j

(5)

4. FUZZY C-MEANS CLUSTERING BASED-
DE: FCDE

As mentioned above, the DE algorithm is good at exploring the
search space and locating the region of global minimum, however,
it is slow at exploitation of the solution [9]. In order to acceler-
ate the convergence rate and balance the exploration and exploita-
tion of the original DE, in this work, we attempt to improve DE

by integrating the one-step fuzzy C-means clustering algorithm.
Our proposed DE algorithm is referred to as FCDE. The pseu-
docode of FCDE is described in Algorithm 2, where t is the gener-
ation counter, cp is the clustering period, NP is the population size,
and rndint[2,

√
NP ] is a random integer number from [2,

√
NP ].

Compared with the original DE, three crucial issues of FCDE will
be discussed as follows.

Algorithm 2 Fuzzy C-means Clustering-based DE: FCDE
1: Generate the initial population P randomly
2: Evaluate the fitness for each individual in P

3: Initialize the generation counter t = 1
4: while The halting criterion is not satisfied do
5: Use DE to update the population (see lines 4 - 18 in Algo-

rithm 1)
6: if t%cp == 0 then
7: Randomly generate C = rndint[2,

√
NP ]

8: Adopt the one-step fuzzy C-means clustering to create C

offspring (the set A)
9: Choose C parents (the set B) randomly from the popula-

tion P

10: From the combined set A ∪ B, choose C best solutions
and put them in B

′ . Update P as P = (P\B) ∪ B
′

11: end if
12: t = t + 1
13: end while

4.1 One-step Fuzzy C-Means Clustering
In this study, one-step fuzzy C-means clustering is used to en-

hance the performance of DE. It acts as several multi-parent crossover
operators to utilize the information of the population efficiently,
and hence it can balance the exploration and exploitation in the
evolutionary process. The one-step fuzzy C-means clustering is
described as follows.

1) Choose C individuals as the initial cluster centers c1, c2, · · · , cC

randomly from the current population {X1, X2, · · · , XNP }.

2) Calculate the U = [uij ] matrix with Eqn. (4).
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Table 3: Comparison of the best error values of DE, FCDE, DEahcSPX, and ODE on all test functions with D = 30.

F FCDE DE DEahcSPX ODE

f01 1.84E-29 ± 1.84E-29 (50) 1.24E-12 ± 6.65E-13 (50)† 9.93E-14 ± 9.21E-14 (50)† 4.53E-26 ± 9.27E-26 (50)†

f02 0.00E+00 ± 0.00E+00 (50) 3.76E-09 ± 1.76E-09 (50)† 6.01E-10 ± 2.74E-10 (50)† 8.16E-11 ± 7.14E-11 (50)†

f03 6.36E-19 ± 1.52E-18 (50) 8.04E-10 ± 8.86E-10 (50)† 7.44E-11 ± 1.05E-10 (50)† 2.68E-10 ± 3.10E-10 (50)†

f04 3.32E+00 ± 1.42E+00 (0) 4.70E-01 ± 1.09E+00 (6)‡ 5.43E-01 ± 1.08E+00 (2)‡ 3.44E-15 ± 1.01E-14 (50)‡

f05 3.43E-11 ± 2.04E-10 (50) 9.58E-09 ± 1.89E-08 (39)† 5.88E-08 ± 3.64E-07 (46)† 2.57E+01 ± 8.19E-01 (0)†

f06 0.00E+00 ± 0.00E+00 (50) 0.00E+00 ± 0.00E+00 (50) 0.00E+00 ± 0.00E+00 (50) 0.00E+00 ± 0.00E+00 (50)
f07 1.57E-03 ± 6.22E-04 (50) 5.13E-03 ± 1.39E-03 (50)† 3.84E-03 ± 1.10E-03 (50)† 9.69E-04 ± 3.04E-04 (50)‡

f08 9.40E+02 ± 3.93E+02 (0) 6.64E+03 ± 5.47E+02 (0)† 5.92E+03 ± 8.31E+02 (0)† 6.79E+03 ± 3.72E+02 (0)†

f09 1.30E+01 ± 4.64E+00 (0) 1.50E+02 ± 2.12E+01 (0)† 1.15E+02 ± 2.13E+01 (0)† 5.60E+01 ± 1.84E+01 (0)†

f10 3.08E-15 ± 1.64E-15 (50) 4.11E-07 ± 1.54E-07 (0)† 8.52E-08 ± 3.24E-08 (0)† 1.26E-13 ± 1.27E-13 (50)†

f11 0.00E+00 ± 0.00E+00 (50) 0.00E+00 ± 0.00E+00 (50) 0.00E+00 ± 0.00E+00 (50) 0.00E+00 ± 0.00E+00 (50)
f12 2.95E-31 ± 2.51E-31 (50) 1.58E-13 ± 1.46E-13 (50)† 8.36E-15 ± 9.15E-15 (50)† 3.00E-27 ± 5.66E-27 (50)†

f13 2.27E-24 ± 1.51E-23 (50) 2.86E-11 ± 2.81E-11 (50)† 1.14E-12 ± 1.11E-12 (50)† 4.35E-23 ± 1.36E-22 (50)†

†, ‡ The value of t with 49 degrees of freedom is significant at α = 0.05 by two-tailed test.
‡ means that the corresponding algorithm is better than our proposed FCDE method.

3) Compute new cluster centers c
′
1, · · · , c′

C using Eqn. (5).

4) Replace each ci with c
′
i, i = 1, 2, · · · , C, and evaluate these

C individuals. The process is terminated.

We choose the one-step fuzzy C-means clustering for its simplicity.
Other clustering approaches can also be employed as well. Note
that C is generated from [2,

√
NP ] randomly. Here, the upper

bound of the number of clusters is taken to be
√

NP , which is
a rule of thumb used by many investigators in the literature [12]. In
addition, the Euclidean distance is used as the distance measure.

4.2 Population Update
After using one-step fuzzy C-means clustering to create C off-

spring, the population needs to be updated. Deb [5] proposed a
generic population-based algorithm-generator for real-parameter op-
timization, where the optimization task is divided into four inde-
pendent plans: i) selection plan, ii) generation plan, iii) replace-
ment plan, and iv) update plan. In lines 8 - 10 of Algorithm 2,
our improvement can also be described with the population-update-
algorithm proposed in [5].

• Selection plan: Choose C individuals from current popula-
tion randomly as the C initial cluster centers.

• Generation plan: Create C offspring (the set A) using the
one-step fuzzy C-means clustering.

• Replacement plan: Choose C solutions (the set B) from
current population randomly for replacement.

• Update plan: From the combined set A∪B, choose C best
solutions and put them in B

′ . Update P as P = (P\B) ∪
B

′ .

The population-update-algorithm used in this work is similar to the
G3 model in [5]. In the update plan, the C best solutions are chosen
from the combined set A ∪ B, thereby the elite-preservation is
ensured.

4.3 Clustering Period
In order to exploit the search space efficiently, the clustering is

performed periodically in our proposed hybrid DE. It is similar to

the method used in [3]. The reason for performing the clustering
periodically is that DE needs time to explore the search place and
form clusters. An attempt to perform the clustering very early will
lead to a false identification of clusters [3]. Consequently, it is im-
portant to choose a clustering period that is large enough so that DE
has time to completely form stable clusters.

It is worth to point out that the clustering period used in FCDE
approach is similar to Damavandi’s technique proposed in [3]. Com-
pared with Damavandi’s technique, our approach has two main dif-
ferences: i) We don’t use the deterministic method to refine the
cluster centers; and ii) We propose a population update method to
update the population after the clustering technique is conducted.

5. EXPERIMENTAL RESULTS AND ANAL-
YSIS

13 high-dimensional benchmark functions (D = 30) from [16]
were chosen to test the performance of our proposed FCDE algo-
rithm. Functions f01 - f05 are unimodal. Function f06 is the step
function, which has one minimum and is discontinuous. Function
f07 is a noisy quartic function, where random [0,1) is a uniformly
distributed random variable in [0,1). Functions f08 - f13 are multi-
modal functions where the number of local minima increases expo-
nentially with the problem dimension. They appear to be the most
difficult class of problems for many optimization algorithms. Note
that, in the experiment, all functions have a small modification, i.e.,
to make a linear shift as follows

Y = X − exp (1) (6)

The new problem is to solve

argminf(Y ) (7)

rather than argminf(X). This modification does not change the
difficulty in degree of optimization problems. However, it can
avoid the influence of the symmetrical initialization and the cen-
troid calculation of the clustering [6].

5.1 Experimental Setup
For FCDE, there are four control parameters. Three of them be-

long to the original DE, namely, population size NP, scaling factor

526



Table 4: Comparison of the required NFFEs to obtain accuracy levels less than V TR for the four algorithms. “NA” indicates the
accuracy level is not obtained after the Max NFFEs.

F FCDE DE DEahcSPX ODE

f01 5.52E+04 ± 1.67E+03 (50) 1.14E+05 ± 1.98E+03 (50)† 1.06E+05 ± 2.31E+03 (50)† 6.18E+04 ± 2.02E+03 (50)†

f02 8.46E+04 ± 1.48E+03 (50) 1.91E+05 ± 3.15E+03 (50)† 1.78E+05 ± 3.15E+03 (50)† 1.64E+05 ± 4.49E+03 (50)†

f03 2.50E+05 ± 1.58E+04 (50) 4.53E+05 ± 1.70E+04 (50)† 4.18E+05 ± 1.61E+04 (50)† 4.36E+05 ± 1.93E+04 (50)†

f04 NA ± NA (0) 3.70E+05 ± 7.70E+03 (6) 3.35E+05 ± 8.36E+03 (2) 7.15E+04 ± 2.77E+03 (50)
f05 4.19E+05 ± 4.40E+04 (50) 4.80E+05 ± 1.18E+04 (39) 4.73E+05 ± 1.69E+04 (46) NA ± NA (0)
f06 1.88E+04 ± 8.58E+02 (50) 4.25E+04 ± 1.33E+03 (50)† 3.89E+04 ± 2.10E+03 (50)† 2.43E+04 ± 1.81E+03 (50)†

f07 4.32E+04 ± 1.67E+04 (50) 1.48E+05 ± 3.22E+04 (50)† 1.22E+05 ± 2.92E+04 (50)† 3.32E+04 ± 1.12E+04 (50)‡

f08 NA ± NA (0) NA ± NA (0) NA ± NA (0) NA ± NA (0)
f09 NA ± NA (0) NA ± NA (0) NA ± NA (0) NA ± NA (0)
f10 8.66E+04 ± 1.70E+03 (50) NA ± NA (0) NA ± NA (0) 9.99E+04 ± 3.31E+03 (50)†

f11 5.71E+04 ± 1.33E+03 (50) 1.20E+05 ± 3.89E+03 (50)† 1.10E+05 ± 2.52E+03 (50)† 7.08E+04 ± 7.12E+03 (50)†

f12 4.62E+04 ± 1.84E+03 (50) 1.05E+05 ± 3.37E+03 (50)† 9.71E+04 ± 2.89E+03 (50)† 5.63E+04 ± 2.22E+03 (50)†

f13 5.88E+04 ± 7.22E+03 (50) 1.25E+05 ± 3.31E+03 (50)† 1.15E+05 ± 3.22E+03 (50)† 7.27E+04 ± 3.48E+03 (50)†

†, ‡ The value of t with 49 degrees of freedom is significant at α = 0.05 by two-tailed test.
‡ means that the corresponding algorithm is better than our proposed FCDE method.

F, and crossover probability CR. These parameters are problem de-
pendent [7]. Another parameter is the clustering period cp, which
will be discussed later. For all experiments, we use the following
parameters unless a change is mentioned.

• Population size: NP = 100;

• Scaling factor: F = 0.5;

• Crossover probability: CR = 0.9;

• Clustering period: cp = 10;

• DE scheme: DE/rand/1/bin;

• Value to reach: VTR = 10−8, except for f07 of VTR = 10−2;

• Maximum NFFEs1: For f01, f06, f10, f12, and f13, Max NFFEs
= 150000; for f03 - f05, Max NFFEs = 500000; for f02 and
f11, Max NFFEs = 200000; For f07 - f09, Max NFFEs =
300000.

Moreover, in our experiments, each function is optimized over 50
independent runs. We also use the same set of initial random popu-
lations to evaluate different algorithms in a similar way done in [9].
All the algorithms are implemented in standard C++.

5.2 Performance Criteria
Four performance criteria are selected from [15] to evaluate the

performance of the algorithms. These criteria are also used in [9]
and described as follows.

• Error: The error of a solution X is defined as f(X) −
f(X∗), where X∗ is the global optimum of the function. The
minimum error is recorded when the Max NFFEs is reached
in 50 runs and the average and standard deviation of the error
values are calculated.

• NFFEs: The number of fitness function evaluations (NFFEs)
is also recorded when the VTR is reached. The average and
standard deviation of the NFFEs values are calculated.

1The function evaluations required to process the cluster points are
added in the Maximum NFFEs.

• Number of successful runs (SR): The number of success-
ful runs is recorded when the VTR is reached before the
max NFFEs condition terminates the trial.

• Convergence graphs: The convergence graphs show the mean
error performance of the total runs, in the respective experi-
ments.

5.3 Comparison of DE and FCDE
In this experiment, we compare the performance between the

original DE and FCDE to show the superiority of FCDE. Table 1
shows the best error values of DE and FCDE on all test functions.
The average and standard deviation of NFFEs are shown in Table 2.
Additionally, some representative convergence graphs of DE and
FCDE are shown in Fig. 1 and Fig. 2.

With respect to the best error values of DE and FCDE, from Ta-
ble 1, it can be seen that FCDE is significantly better than DE on 10
out of 13 functions. For function f04, FCDE is worse than DE due
to the premature of FCDE shown in Fig. 1 (d). The reason might
be that the unreasonable setting of cp makes FCDE converge pre-
maturely. For the rest two functions (f06 and f11), both FCDE and
DE can obtain the global optimum over all 50 runs.

From Table 2, we can see that FCDE requires less NFFEs to
reach the accuracy levels on ten functions. Only for function f04,
DE is better than FCDE. For f08 and f09, both FCDE and DE fail
to obtain the accuracy levels.

Considering the convergence rate of FCDE and DE, Fig. 1 and
Fig. 2 show that FCDE is faster than DE on 11 functions out of the
selected 12 functions. For function f04, FCDE is faster in the early
evolution process, however, it stagnates after 20000 NFFEs. The
reason might be the loss of the diversity of the population.

5.4 Comparison with Other DE Hybrids
In this section, we make a comparison with other DE hybrids.

Since there are many variants of DE, we only compare our ap-
proach with DEahcSPX proposed in [9] and ODE proposed in [11].
In DEahcSPX, a crossover-based adaptive local search operation
to accelerate the original DE. The authors concluded that DEahc-
SPX outperforms the original DE in items of convergence rate in
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Figure 1: Mean error curves of DE, FCDE, DEahcSPX, and ODE for six unimodal functions. (a) f01. (b) f02. (c) f03. (d) f04. (e) f05.
(f) f06. Log-scale of Y axis is to make the comparison more clearly for some functions.
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Figure 2: Mean error curves of DE, FCDE, DEahcSPX, and ODE for six multimodal functions. (a) f08. (b) f09. (c) f10. (d) f11. (e)
f12. (f) f13. Log-scale of Y axis is to make the comparison more clearly for some functions.
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all experimental studies. In ODE, the opposition-based learning is
used for the population initialization and generation jumping. In
this section, we compare our proposed CDE with the original DE,
DEahcSPX and ODE. All the parameter settings are the same as
mentioned in Section 5.1. For DEahcSPX, the number of parents in
SPX sets to be np = 3 [9]. For ODE, the jump rate Jr = 0.3 [11].

The results are given in Table 3 and 4. Some selected represen-
tative convergence graphs are shown in Fig. 1 and 2.

When Compared with DEahcSPX: FCDE is significantly better
than DEahcSPX on 10 functions in terms of the best error values.
FCDE convergence faster than DEahcSPX on 11 functions shown
in Fig. 1 - 2 and Table 4. Only for function f04, DEahcSPX is better
than FCDE in terms of all four performance criteria.

When Compared with ODE: Similar conclusions can be obtained
from Table 3 - 4 and Fig. 1 - 2, FCDE is better than ODE on the
majority test functions (9 out of 13) in terms of the best error val-
ues. Moreover, FCDE converges faster than ODE on the majority
functions. However, for functions f04 and f07, ODE is significantly
better than FCDE for all four criteria.

6. CONCLUSIONS
To make the DE algorithm more effective and more efficient,

a hybrid DE algorithm, which combines the fuzzy C-means clus-
tering algorithm, is proposed in this paper. The proposed FCDE
method can balance the exploration and the exploitation in the evo-
lutionary process. Furthermore, the population-based algorithm-
generator is adopted to efficiently update the population with the
clustering offspring. To evaluate the performance of our approach,
13 high-dimensional benchmark functions and four performance
criteria are selected from the literature. Experimental results indi-
cate that FCDE is effective and efficient, it can obtain the optimal,
or near-optimal, solutions for all test functions. Compared with the
original DE, DEahcSPX, and ODE, FCDE performs better, or at
least comparably, in terms of the quality of the final solutions and
the reduction of the NFFEs.

One additional parameter, clustering period cp, is included in
FCDE. In our future work, the effect will be studied in more detail
by varying the population size and the problem dimensionality. In
addition, another possible direction is applying the one-step fuzzy
C-means method to other EC algorithms, such as GAs, PSO, etc.

Acknowledgments
The authors would like to thank the anonymous reviewers for their
advice. This work was partly supported by the Fund for Outstand-
ing Doctoral Dissertation of CUG, China Scholarship Council un-
der Grant No. 2008641008, and the National High Technology
Research and Development Program of China under Grand No.
2009AA12Z117.

7. REFERENCES
[1] B. Alatas, E. Akin, and A. Karci. Modenar: Multi-objective

differential evolution algorithm for mining numeric
association rules. Applied Soft Computing, 8(1):646–656,
January 2008.

[2] U.K. Chakraborty. Advances in Differential Evolution.
Springer-Verlag, Berlin, 2008.

[3] N. Damavandi and S. Safavi-Naeini. A hybrid evolutionary
programming method for circuit optimization. IEEE
Transaction on Circuits ans Systems-I, 52(5):902–910, May
2005.

[4] S. Das, A. Abraham, and A. Konar. Automatic clustering
using an improved differential evolution algorithm. IEEE
Transaction on Systems Man and Cybernetics: Part A,
38(1):218–237, February 2008.

[5] K. Deb. A population-based algorithm-generator for
real-parameter optimization. Soft Computing - A Fusion of
Foundations, Methodologies and Applications,
9(4):236–253, 2005.

[6] D. B. Fogel and H.-G. Beyer. A Note on the Empirical
Evaluation of Intermediate Recombination. Evolutionary
Computation, 3(4):491–495, 1996.
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