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ABSTRACT

Differential evolution (DE) is a simple yet powerful evolutionary
algorithm for global numerical optimization. Different strategies
have been proposed for the offspring generation; but the selection
of which of them should be applied is critical for the DE perfor-
mance, besides being problem-dependent. In this paper, the proba-
bility matching technique is employed in DE to autonomously se-
lect the most suitable strategy while solving the problem. Four
credit assignment methods, that update the known performance of
each strategy based on the relative fitness improvement achieved
by its recent applications, are analyzed. To evaluate the perfor-
mance of our approach, thirteen widely used benchmark functions
are used. Experimental results confirm that our approach is able
to adaptively choose the suitable strategy for different problems.
Compared to classical DE algorithms and to a recently proposed
adaptive scheme (SaDE), it obtains better results in most of the
functions, in terms of the quality of the final results and conver-
gence speed.

Categories and Subject Descriptors

I.2.8 [Computing Methodologies]: Artificial Intelligence: Prob-
lem Solving, Control Methods, and Search; G.1.6 [Numerical Anal-

ysis]: Optimization

General Terms

Algorithms

1. INTRODUCTION
Differential evolution (DE), proposed by Storn and Price [20],

is an efficient and versatile population-based, direct search algo-
rithm for global optimization. Among DE advantages are its simple
structure, ease of use, speed, and robustness, which allows its ap-
plication on many real-world applications, such as data mining [1,
4], pattern recognition, digital filter design, neural network train-
ing, etc. [15, 6, 3]. Most recently, DE has also been used for the
global permutation-based combinatorial problems [13].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’10, July 7–11, 2010, Portland, Oregon, USA.
Copyright 2010 ACM 978-1-4503-0072-8/10/07 ...$10.00.

In the seminal DE algorithm [20], a single mutation strategy was
used. Later on, Price and Storn suggested ten other different strate-
gies in [15, 21]. However, the selection of which of such strategies
should be used is a difficult and crucial task for the performance
of the DE, besides being problem-dependent [17, 16]. Some ap-
proaches have already been proposed to do this strategy selection
in an autonomous way, as follows. Xie and Zhang [24] presented
a swarm algorithm framework, in which a neural network is used
to adaptively update the weights of the DE strategies. In [27], Za-
muda et al. used a fixed parameter rs to choose the strategy among
three available ones. Qin et al. [17, 16] proposed a variant of DE,
namely SaDE, that implements different strategies and also updates
their weights in the search based on their previous success rate.
They also used SaDE on constrained problems [9]. In [2] and [25]
strategy adaptation techniques similar to SaDE are also used to en-
hance DE performance. To the best of our knowledge, the study on
adaptive strategy selection in DE is still scarce.

In order to alleviate this drawback, in this paper, the probability
matching technique is integrated into DE to implement the adaptive
strategy selection for different problems. Four credit assignment
methods, that reward each strategy based on the relative fitness im-
provement achieved by its recent applications, are analyzed.

Experiments have been conducted on 13 widely used benchmark
problems. The results confirm that our approach is able to effi-
ciently select which strategy should be mostly applied at each stage
of the search, while solving the problem. Compared to what would
be the choices of a naïve user (i.e., a DE applying a single strategy,
and a DE that uniformly selects between the available ones), and to
a different adaptive scheme recently proposed, the SaDE [16], our
approach was able to obtain better results in most of the functions,
in terms of convergence speed and quality of the final results.

The rest of the paper is organized as follows. In Section 2, we
briefly introduce the background and related work of this paper.
Section 3 describes our proposed approach in detail, followed by
the experimental results and discussions in Section 4. Finally, Sec-
tion 5 is devoted to conclusions and future work.

2. BACKGROUND AND RELATED WORK

2.1 Problem Formulation
Without loss of generality, in this work, we consider the follow-

ing numerical optimization problem:

Minimize f(x), x ∈ S, (1)

where S ⊆ R
D is a compact set, x = [x1, x2, · · · , xD]T , and D

is the dimension, i.e., the number of decision variables. Generally,
for each variable xj , it satisfies a boundary constraint, such that:

Lj ≤ xj ≤ Uj , j = 1, 2, · · · , D. (2)
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2.2 Differential Evolution
DE [20] is a simple evolutionary algorithm (EA) for global nu-

merical optimization. It creates new candidate solutions by com-
bining the parent individual and several other individuals of the
same population. A candidate replaces the parent only if it has
an equal or better fitness value. The pseudo-code of the original
DE algorithm is shown in Algorithm 1, where D is the number
of decision variables; NP is the population size; F is the muta-
tion scaling factor; CR is the crossover rate; xi,j is the j-th vari-
able of the solution xi; ui is the offspring; rndint(1, D) is a uni-
formly distributed random integer number between 1 and D; and
rndrealj [0, 1) is a uniformly distributed random real number in
[0, 1), generated anew for each value of j. Many mutation strate-
gies to create a candidate are available. In Algorithm 1, the use of
the classic “DE/rand/1/bin” strategy is illustrated (see line 9).

Algorithm 1 The DE algorithm with DE/rand/1/bin strategy
1: Generate the initial population
2: Evaluate the fitness for each individual
3: while the halting criterion is not satisfied do
4: for i = 1 to NP do

5: Select uniform randomly r1 6= r2 6= r3 6= i
6: jrand = rndint(1, D)
7: for j = 1 to D do
8: if rndrealj [0, 1) < CR or j is equal to jrand then

9: ui,j = xr1,j + F ·
`

xr2,j − xr3,j

´

10: else
11: ui,j = xi,j

12: end if

13: end for

14: end for
15: for i = 1 to NP do

16: Evaluate the offspring ui

17: if f(ui) is better than or equal to f(xi) then
18: Replace xi with ui

19: end if

20: end for

21: end while

From Algorithm 1, we can see that there are only three control
parameters in DE, being them NP , F and CR. As for the terminal
conditions, we can either fix the maximum number of fitness func-
tion evaluations (Max_NFFEs) or define a desired solution value to
be reached (VTR).

2.3 Adaptive Strategy Selection
Typically, the parameter setting in EAs is done before launching

the main runs that will be used to assess the algorithm, accord-
ing to the user’s experience, or by an external tuning method. The
main drawback of such off-line methods is that they define a static
setting, what leads to sub-optimal performance. Intuitively, as the
algorithm proceeds from a global (early) exploration of the land-
scape to a more focused, exploitation-like behavior, the parameters
should be adjusted to take care of this new reality. Indeed, it has
been empirically and theoretically demonstrated that different val-
ues of parameters might be optimal at different stages of the search
process (see [5, p.21] and references therein).

Following [5], the internal control of the parameters can be done
in different ways. Deterministic methods modify the parameters
values according to predefined rules; Self-Adaptive methods encode
the parameters within the genotype, which is thus evolved in paral-
lel with the solution; and lastly, the Adaptive methods use changes
in some particular properties of the search process as an input signal
to modify the parameter values. While the first approach introduces
the extra difficulty of defining the control rules, the second defines

the parameters for free, but the parameters space is merged with
the solutions space, thus augmenting the overall complexity of the
search.

This paper is focused on the latter approach, more specifically,
on the Adaptive Strategy Selection (AdapSS). Inspired by some re-
cent works in the Genetic Algorithms community (see, e.g., [23,
7]), its objective is to automatically select between the available
(possibly ill-known) mutation strategies, according to their perfor-
mance on the current search/optimization process. To do so, there
is the need for two components: the credit assignment, that defines
how the impact of the strategies on the search should be assessed
and transformed into a numerical reward; and the strategy (or op-
erator) selection mechanism that, based on the rewards received,
select which strategy should be applied at the given moment of the
search.

Algorithm 2 Probability matching-based DE with adaptive strategy
selection: PM-AdapSS-DE
1: Set CR = 0.9, F = 0.5 and NP = 100
2: Generate the initial population
3: Evaluate the fitness for each individual
4: Set the generation counter t = 1
5: Set K = 4, pmin = 0.05, and α = 0.3 ⇐
6: For each strategy a, set qa(t) = 0 and pa(t) = 1/K ⇐
7: while The halting criterion is not satisfied do
8: for i = 1 to NP do

9: Select the strategy SIi based on its probability ⇐
10: Select uniform randomly r1 6= r2 6= r3 6= r4 6= r5 6= i
11: jrand = rndint(1, D)
12: for j = 1 to D do

13: if rndrealj [0, 1) < CR or j == jrand then

14: if SIi == 1 then
15: ui,j is generated by “DE/rand/1” strategy
16: else if SIi == 2 then

17: ui,j is generated by “DE/rand/2” strategy
18: else if SIi == 3 then

19: ui,j is generated by “DE/rand-to-best/2” strategy
20: else if SIi == 4 then

21: ui,j is generated by “DE/current-to-rand/1”
22: end if

23: else

24: ui,j = xi,j

25: end if
26: end for

27: end for

28: for i = 1 to NP do
29: Evaluate the offspring ui

30: if f(ui) is better than or equal to f(xi) then

31: Calculate ηi using Eqn. (5) ⇐
32: Replace xi with ui

33: else

34: Set ηi = 0 ⇐
35: end if
36: SSIi

← ηi ⇐
37: end for

38: Calculate the reward ra(t) for each strategy ⇐
39: Update the quality qa(t) for each strategy ⇐
40: Update the probability pa(t) for each strategy ⇐
41: t = t + 1
42: end while

3. OUR APPROACH: PM-ADAPSS-DE
As previously mentioned, there are many mutation strategies in

DE, each one presenting different characteristics and being suitable
for different problems. However, choosing the best strategy for a
problem at hand is a difficult task. In this work, we propose the uti-
lization of Probability Matching (PM) [8] for the autonomous strat-
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egy selection on the DE, what we refer to as PM-AdapSS-DE. The
main objectives of this work are two-fold. First, the PM method
is integrated into DE to implement the adaptive strategy selection.
Second, four credit assignment techniques based on the relative fit-
ness improvement are compared. Three crucial issues behind the
PM-AdapSS-DE algorithm are elucidated as follows.

3.1 Strategy Selection: Probability Matching
Suppose we have K > 1 strategies in the pool A = {a1, · · · , aK}

and a probability vector P(t) = {p1(t), · · · , pK(t)} (∀t : pmin ≤

pi(t) ≤ 1;
PK

i=1
pi(t) = 1). In this work, the PM technique is

used to adaptively update the probability pa(t) of each strategy a
based on its known performance (frequently updated by the rewards
received). Denote ra(t) as the reward that a strategy a receives af-
ter its application at time t. qa(t) is the known quality (or empirical
estimate) of a strategy a, that is updated as follows [23]:

qa(t + 1) = qa(t) + α[ra(t) − qa(t)], (3)

where α ∈ (0, 1] is the adaptation rate. Based on this quality es-
timate, the PM method updates the probability pa(t) of applying
each operator as follows [8], [23]:

pa(t + 1) = pmin + (1 −K · pmin)
qa(t + 1)

PK
i=1

qi(t + 1)
. (4)

where pmin ∈ (0, 1) is the minimal probability value of each strat-
egy, used to ensure that no operator gets lost [23].

3.2 Credit Assignment
In order to assign the credit for each strategy, we adopt the rela-

tive fitness improvement ηi proposed in [12] as follows:

ηi =
δ

cfi

· |pfi − cfi| (5)

where i = 1, · · · , NP . δ is the fitness of the best-so-far solution in
the population. pfi and cfi are the fitness of the target parent and
of its offspring, respectively. Note that if no improvement (i.e., the
offspring is worse than or equal to its target parent) is achieved, a
null credit is assigned.

Denote Sa as the set of all relative fitness improvements achieved
by the application of a strategy a(a = 1, · · · , K) during generation
t. At the end of the generation, an unique reward is used to update
the quality measure kept by the PM method (Eq. 3). Following [7],
to extract such reward from Sa, we analyze four different credit
assignment methods as follows:

• AverageAbsoluteReward (AvgAbs):

ra(t) =

P|Sa|
i=1

Sa(i)

|Sa|
(6)

where |Sa| is the number of elements in Sa. If |Sa| = 0,
ra(t) = 0.

• AverageNormalizedReward (AvgNorm):

r′a(t) =

P|Sa|
i=1

Sa(i)

|Sa|
; and ra(t) =

r′a(t)

max
b=1,··· ,K

r′
b
(t)

(7)

• ExtremeAbsoluteReward (ExtAbs):

ra(t) = max
i=1,··· ,|Sa|

Sa(i) (8)

• ExtremeNormalizedReward (ExtNorm):

r′a(t) = max
i=1,··· ,|Sa|

Sa(i); and ra(t) =
r′a(t)

max
b=1,··· ,K

r′
b
(t)

(9)

3.3 Strategy Pool
In DE, many schemes have been proposed [15, 21], applying

different mutation strategies and/or recombination operations in the
reproduction stage. In order to constitute the strategy pool used in
this work, we have chosen four strategies that were also used in
SaDE [16], listed as follows:

1) “DE/rand/1”:

vi = xr1
+ F ·

`

xr2
− xr3

´

(10)

2) “DE/rand/2”:

vi = xr1
+ F ·

`

xr2
− xr3

´

+ F ·
`

xr4
− xr5

´

(11)

3) “DE/rand-to-best/2”:

vi = xr1
+F ·

`

xbest−xr1

´

+F ·
`

xr2
−xr3

´

+F ·
`

xr4
−xr5

´

(12)

4) “DE/current-to-rand/1”:

vi = xi + F ·
`

xr1
− xi

´

+ F ·
`

xr2
− xr3

´

(13)

where xbest is the best individual in the current generation, r1, r2,
r3, r4, r5 ∈ {1, · · · , NP}, and r1 6= r2 6= r3 6= r4 6= r5 6= i. F
is the scaling factor. NP is the population size.

All of them are controlled by the DE crossover rate CR. Note
that other strategies could also be introduced in the pool; these four
strategies can be seen as instances used as test-bed for the evalua-
tion of the proposed method.

3.4 DE with Adaptive Strategy Selection
By combining the above-mentioned three aspects with the DE

algorithm, the PM-AdapSS-DE method is developed. The pseudo-
code of PM-AdapSS-DE is illustrated in Algorithm 2. Modified
steps with respect to the classical DE algorithm are marked with
a left arrow “⇐”. At each generation t, for each target parent i,
a strategy SIi is selected based on the probability of each strat-
egy. Then the offspring is generated by the application of the se-
lected strategy. After evaluating the offspring, the relative fitness
improvement ηi is calculated and stored in the set SSIi

. Conse-
quently, the reward, quality, and probability of each strategy are
updated at the end of each generation.

Note that in SaDE [16], the strategy adaptation is also imple-
mented. However, our approach is completely different from SaDE
in the credit assignment. In SaDE, the success and failure number
of runs are considered, while the relative fitness improvement is
used in our approach.

4. EXPERIMENTAL ANALYSIS
In order to evaluate the performance of our approach, 13 bench-

mark functions (f01 − f13) were selected from [26] as the test suit.
Functions f01 − f04 are unimodal. The Rosenbrock’s function f05

is a multi-modal function when D > 3 [18]. Function f06 is the
step function, which has one minimum and is discontinuous. Func-
tion f07 is a noisy quartic function. Functions f08 − f13 are multi-
modal functions where the number of local minima increases expo-
nentially with the problem dimension. They appear to be the most
difficult class of problems for many optimization algorithms. Due
to the space limitation, we omit their descriptions here, more details
can be found in [26].

in
ria

-0
04

71
26

8,
 v

er
si

on
 1

 - 
7 

Ap
r 2

01
0



Table 1: Comparison on the Error values of different credit assignment methods for all functions at D = 30.

F Uniform-DE SaDE PM-AdapSS-DE-1 PM-AdapSS-DE-2 PM-AdapSS-DE-3 PM-AdapSS-DE-4
f01 2.35E-32 ± 1.45E-32† 7.64E-41 ± 1.02E-40† 3.38E-48 ± 5.37E-48 3.08E-48 ± 3.24E-48 1.13E-45 ± 1.26E-45† 3.66E-45 ± 5.06E-45†

f02 3.10E-21 ± 1.22E-21† 1.28E-26 ± 6.22E-27† 3.57E-31 ± 6.30E-31 8.41E-32 ± 5.14E-32 5.71E-29 ± 1.01E-28† 1.28E-29 ± 6.24E-30†

f03 6.69E-27 ± 2.07E-26† 3.93E-32 ± 8.30E-32† 3.84E-36 ± 9.37E-36† 7.47E-36 ± 3.08E-35† 2.12E-37 ± 4.39E-37 7.11E-37 ± 2.70E-36

f04 3.44E-10 ± 1.24E-09† 2.55E-06 ± 5.34E-06† 3.17E-09 ± 9.70E-09† 8.50E-08 ± 4.42E-07† 7.37E-11 ± 2.95E-10 3.53E-10 ± 1.20E-09
f05 1.24E-29 ± 2.79E-29 2.39E-01 ± 9.56E-01 2.39E-01 ± 9.56E-01 7.97E-02 ± 5.64E-01 1.59E-01 ± 7.89E-01 2.39E-01 ± 9.56E-01
f06 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00
f07 1.68E-03 ± 4.16E-04† 1.52E-03 ± 4.63E-04† 9.78E-04 ± 3.21E-04 9.61E-04 ± 2.68E-04 9.82E-04 ± 3.69E-04 9.63E-04 ± 2.93E-04

f08 7.42E+03 ± 2.51E+02† 7.36E+03 ± 2.26E+02† 7.28E+03 ± 2.53E+02 7.18E+03 ± 3.05E+02 7.18E+03 ± 3.56E+02 7.19E+03 ± 3.25E+02
f09 1.53E+02 ± 9.73E+00† 1.51E+02 ± 8.90E+00† 1.40E+02 ± 1.09E+01 1.42E+02 ± 9.79E+00† 1.38E+02 ± 1.02E+01 1.40E+02 ± 9.33E+00

f10 4.14E-15 ± 0.00E+00 4.14E-15 ± 0.00E+00 4.14E-15 ± 0.00E+00 4.07E-15 ± 5.02E-16 4.14E-15 ± 0.00E+00 4.14E-15 ± 0.00E+00
f11 1.97E-04 ± 1.39E-03 1.97E-04 ± 1.39E-03 3.45E-04 ± 1.73E-03 3.94E-04 ± 1.95E-03 1.48E-04 ± 1.05E-03 0.00E+00 ± 0.00E+00

f12 1.59E-32 ± 9.04E-34 1.57E-32 ± 0.00E+00 1.57E-32 ± 0.00E+00 1.57E-32 ± 0.00E+00 1.57E-32 ± 0.00E+00 1.57E-32 ± 0.00E+00

f13 1.35E-30 ± 7.87E-30† 1.35E-32 ± 0.00E+00 1.35E-32 ± 0.00E+00 1.35E-32 ± 0.00E+00 1.35E-32 ± 0.00E+00 1.35E-32 ± 0.00E+00

† indicates the best algorithm is significantly better than its competitor by the Wilcoxon signed-rank test at α = 0.05.

Table 2: Comparison on the NFFEs of different credit assignment methods for all functions at D = 30. Since all of the algorithms

obtain similar Sr values, we omit to report them in this table.

F Uniform-DE SaDE PM-AdapSS-DE-1 PM-AdapSS-DE-2 PM-AdapSS-DE-3 PM-AdapSS-DE-4
f01 5.18E+04 ± 8.46E+02 4.28E+04 ± 7.31E+02 3.57E+04± 7.92E+02 3.57E+04 ± 6.63E+02 3.77E+04 ± 6.78E+02 3.80E+04 ± 6.79E+02
f02 8.96E+04 ± 1.06E+03 7.35E+04 ± 9.73E+02 6.18E+04± 4.31E+03 6.06E+04 ± 1.03E+03 6.56E+04 ± 5.14E+03 6.47E+04 ± 8.52E+02
f03 1.97E+05 ± 7.28E+03 1.65E+05 ± 8.13E+03 1.46E+05 ± 6.02E+03 1.47E+05 ± 6.01E+03 1.44E+05± 7.09E+03 1.43E+05 ± 8.14E+03

f04 3.52E+05 ± 6.93E+04 4.29E+05 ± 3.18E+04 3.94E+05 ± 4.42E+04 4.25E+05 ± 4.50E+04 3.31E+05 ± 5.68E+04 3.59E+05 ± 5.47E+04
f05 2.32E+05 ± 7.88E+03 2.29E+05 ± 8.66E+03 2.00E+05± 6.60E+03 1.99E+05 ± 6.43E+03 2.01E+05 ± 8.16E+03 2.02E+05 ± 7.73E+03
f06 1.91E+04 ± 5.50E+02 1.63E+04 ± 4.68E+02 1.28E+04 ± 4.93E+02 1.28E+04± 5.53E+02 1.35E+04 ± 5.83E+02 1.37E+04 ± 6.30E+02
f07 5.39E+04 ± 1.45E+04 4.52E+04 ± 1.05E+04 3.04E+04 ± 8.26E+03 2.92E+04 ± 7.73E+03 2.59E+04 ± 6.52E+03 2.67E+04± 6.64E+03

f10 8.09E+04 ± 7.85E+02 6.60E+04 ± 9.39E+02 5.56E+04 ± 9.26E+02 5.58E+04± 9.66E+02 5.98E+04 ± 6.66E+02 6.00E+04 ± 1.10E+03
f11 5.34E+04 ± 9.05E+02 4.45E+04 ± 9.16E+02 3.72E+04 ± 7.86E+02 3.74E+04± 1.40E+03 3.94E+04 ± 9.00E+02 3.96E+04 ± 8.21E+02
f12 4.68E+04 ± 8.64E+02 3.86E+04 ± 7.59E+02 3.12E+04 ± 1.22E+03 3.14E+04± 7.79E+02 3.17E+04 ± 9.16E+02 3.26E+04 ± 7.86E+02
f13 5.58E+04 ± 1.87E+03 4.60E+04 ± 1.14E+03 3.81E+04 ± 1.12E+03 3.84E+04± 1.31E+03 3.87E+04 ± 1.50E+03 3.96E+04 ± 1.26E+03

4.1 Experimental Settings
In the first set of experiments, presented in Section 4.3, we com-

pare the performance of PM-AdapSS-DE implementing each of
the different credit assignment methods described in Section 3.2.
Therefore, there are four PM-AdapSS-DE variants: PM-AdapSS-
DE-1 with AvgAbs, PM-AdapSS-DE-2 with AvgNorm, PM-AdapSS-
DE-3 with ExtAbs, and PM-AdapSS-DE-4 with ExtNorm. In addi-
tion, a DE algorithm with the uniform strategy selection (Uniform-
DE) is also implemented as baseline: for the creation of each off-
spring, a strategy is uniformly drawn from the pool. Our approach
is also compared with SaDE [16]; but since the objective here is to
assess their performance w.r.t. adaptive strategy selection under the
same conditions, the SaDE is applied with fixed CR and F , and its
fourth strategy is also controlled by CR.

In the second set of experiments, presented in Section 4.4, the
performance gain obtained by the adaptive selection of strategies is
analyzed by comparing the PM-AdapSS-DE with the classical DE
algorithm, that implements just one of the strategies.

For all experiments, we use the following parameters unless a
change is mentioned.

• Dimension of each function: D = 30;

• Population size: NP = 100, Crossover rate: CR = 0.9,
Mutation scaling factor F = 0.5;

• Number of strategies: K = 4; PM minimal probability:
pmin = 0.05, and adaptation rate: α = 0.3;

• Value to reach (VTR): For functions f01−f06 and f08−f13,
VTR = 10−8; for functions f07, VTR = 10−2;

• Max_NFFEs1: For f01, f06, f10, f12, and f13, Max_NFFEs
1The Max_NFFEs for all functions are mainly set as in [26], except
for f05, f08, and f09, they are less than the values used in [26].

= 150, 000; for f03 − f05, Max_NFFEs = 500, 000; for f02

and f11, Max_NFFEs = 200, 000; for f07−f09, Max_NFFEs
= 300, 000.

Moreover, in our experiments, each function is optimized over
50 independent runs. To avoid any initialization bias, we also use
the same set of initial random populations to evaluate the different
algorithms, as done in [11].

4.2 Performance Criteria
Four performance criteria were selected from the literature [22]

to evaluate the performance of the algorithms. These criteria are
described as follows.

• Error: The error of a solution x is defined as f(x)− f(x∗),
where x

∗ is the global minimum of the function. The min-
imum error is recorded when the Max_NFFEs is reached in
50 runs. The average and standard deviation of the error val-
ues are calculated as well.

• NFFEs: The NFFEs is also recorded when the VTR is reached.
The average and standard deviation of the NFFEs values are
calculated.

• Successful rate (Sr): A run is considered successful if the
algorithm is able to reach a function value no worse than the
VTR before the Max_NFFEs condition terminates the trial.
The successful rate Sr is calculated as the number of suc-
cessful runs divided by the total number of runs.

• Convergence graphs: The convergence graphs show the me-
dian error performance of the best solution over the total
runs, in the respective experiments.
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Figure 1: Convergence graph of Uniform-DE, SaDE, PM-AdapSS-DE-1, PM-AdapSS-DE-2, PM-AdapSS-DE-3, and PM-AdapSS-

DE-4 on the selected functions. (a) f01. (b) f03. (c) f05. (d) f08. (e) f10. (f) f13.

4.3 Comparison on Different Credit Assign-
ment Methods

In this section, we compare the performance of different credit
assignment methods proposed in Section 3.2. In addition, Uniform-
DE and SaDE are also compared. The results are shown in Ta-
bles 1 and 2. All results are averaged over 50 independent runs.
The best and the second best results are highlighted, respectively,
in grey boldface and boldface. In Table 1, the paired Wilcoxon
signed-rank test at α = 0.05 is adopted to compare the signifi-
cance between two algorithms. The Wilcoxon signed-rank test is a
non-parametric statistical hypothesis test, which can be used as an
alternative to the paired t-test when the results cannot be assumed
to be normally distributed [19]. Additionally, some representative
convergence graphs are plotted in Figure 1.

With respect to the quality of the final results, Table 1 indicates
that our proposed PM-AdapSS-DE (with different credit assign-
ment methods) is able to obtain better results than Uniform-DE
and SaDE on most of the test functions. Exceptionally, on func-
tion f05, Uniform-DE provides the best results; however, there is
no significant difference w.r.t. the other five algorithms.

Considering the convergence speed, Table 2 and Figure 1 indi-
cate that PM-AdapSS-DE consistently converges faster than Uniform-
DE and SaDE on most of the functions.

In general, our proposed PM-AdapSS-DE approach obtains bet-
ter results than Uniform-DE and SaDE in terms of the error val-
ues and the convergence rate, which might reflect that the relative
fitness improvement based credit assignment techniques are better
than the method used in SaDE (based on the frequency of fitness
improvements). In addition, from Tables 1 and 2, it can be seen
that PM-AdapSS-DE with the averaged reward (PM-AdapSS-DE-1

and PM-AdapSS-DE-2) is better than PM-AdapSS-DE with the ex-
treme reward (PM-AdapSS-DE-3 and PM-AdapSS-DE-4) in most
of the functions. Both PM-AdapSS-DE-1 and PM-AdapSS-DE-2
provide the most competitive results. Thus, in the following sec-
tion, we only analyze the adaptation characteristics of PM-AdapSS-
DE-1 (referred to as PM-AdapSS-DE for the sake of clearness).

4.4 Analysis of Strategy Adaptation
In this section, we compare the performance of PM-AdapSS-DE

with the classical DE algorithm. In the classical DE algorithm,
each single strategy in the pool used in this work is implemented
and compared with PM-AdapSS-DE, in order to analyze the adap-
tation characteristics of our approach. For the classical DE al-
gorithm, the parameter settings are kept the same as described in
Section 4.1. The results are shown in Tables 3 and 4. Some rep-
resentative convergence graphs are shown in Figure 2. The evo-
lution trend of the probability of each strategy is plotted in Fig-
ure 3. In the last row of Table 3, according to the Wilcoxon’s
test, the results are summarized as “w/t/l”, which means that PM-
AdapSS-DE wins in w functions, ties in t functions, and loses
in l functions, compared with its competitors. In Tables 3 and 4,
“Strategy1” means DE with “DE/rand/1/bin” strategy; “Strategy2”
means DE with “DE/rand/2/bin” strategy; “Strategy3” means DE
with “DE/rand-to-best/2/bin” strategy; and “Strategy4” means DE
with “DE/current-to-rand/1/bin” strategy.

4.4.1 Analysis of the general performance

From Table 3, the results clearly indicate that PM-AdapSS-DE
is significantly better than DE with each single strategy in the pool
on most of the functions. It is better than DE with the first, second,
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Table 3: Comparison on the Error values between the classical DE with single strategy and PM-AdapSS-DE for all functions at

D = 30.
F Strategy1 Strategy2 Strategy3 Strategy4 PM-AdapSS-DE

f01 4.77E-14 ± 3.84E-14† 1.38E+02 ± 3.83E+01† 2.45E-25 ± 1.84E-25† 2.16E+00 ± 2.43E+00† 3.38E-48 ± 5.37E-48

f02 4.19E-10 ± 1.95E-10† 1.50E+01 ± 4.04E+00† 2.54E-16 ± 1.16E-16† 2.90E-02 ± 2.28E-02† 3.57E-31 ± 6.30E-31

f03 2.59E-11 ± 3.18E-11† 1.46E+03 ± 4.10E+02† 1.24E-19 ± 2.22E-19† 2.86E+01 ± 2.01E+01† 3.84E-36 ± 9.37E-36

f04 6.47E-02 ± 1.78E-01† 6.77E+00 ± 9.29E-01† 3.09E-20 ± 2.99E-20‡ 3.12E+00 ± 1.38E+00† 3.17E-09 ± 9.70E-09

f05 1.14E-11 ± 7.18E-11† 2.93E+01 ± 1.64E+00† 7.97E-02 ± 5.64E-01 9.17E+01 ± 6.20E+01† 2.39E-01 ± 9.56E-01
f06 0.00E+00 ± 0.00E+00 1.42E+02 ± 3.52E+01† 0.00E+00 ± 0.00E+00 3.56E+00 ± 3.67E+00† 0.00E+00 ± 0.00E+00

f07 4.89E-03 ± 1.27E-03† 7.03E-02 ± 1.86E-02† 2.83E-03 ± 8.25E-04† 9.21E-04 ± 3.25E-04 9.78E-04 ± 3.21E-04

f08 6.61E+03 ± 6.54E+02‡ 7.34E+03 ± 2.65E+02 7.45E+03 ± 2.35E+02† 7.85E+03 ± 2.69E+02† 7.28E+03 ± 2.53E+02

f09 1.32E+02 ± 2.46E+01‡ 2.21E+02 ± 1.04E+01† 1.67E+02 ± 1.03E+01† 1.31E+02 ± 7.63E+00‡ 1.40E+02 ± 1.09E+01
f10 7.35E-08 ± 3.18E-08† 4.55E+00 ± 3.79E-01† 1.70E-13 ± 6.46E-14† 3.94E-01 ± 3.59E-01† 4.14E-15 ± 0.00E+00

f11 0.00E+00 ± 0.00E+00 1.22E+00 ± 7.31E-02† 1.77E-03 ± 4.31E-03† 5.14E-01 ± 3.46E-01† 3.45E-04 ± 1.73E-03

f12 5.07E-15 ± 6.72E-15† 3.37E+01 ± 3.94E+01† 6.77E-26 ± 6.48E-26† 1.57E-03 ± 3.60E-03† 1.57E-32 ± 0.00E+00

f13 7.40E-13 ± 8.87E-13† 5.49E+03 ± 6.55E+03† 6.43E-23 ± 9.54E-23† 3.32E-02 ± 1.62E-01† 1.35E-32 ± 0.00E+00

w/t/l 9/2/2 12/1/0 10/2/1 11/1/1 −

† indicates PM-AdapSS-DE is significantly better than its competitor by the Wilcoxon signed-rank test at α = 0.05.
‡ means that the corresponding algorithm is significantly better than our proposed PM-AdapSS-DE method.

Table 4: Comparison on the NFFEs between the classical DE algorithm with single strategy and PM-AdapSS-DE for all functions at

D = 30. For each function, the successful rate Sr is shown in parenthesis.

F Strategy1 Strategy2 Strategy3 Strategy4 PM-AdapSS-DE
f01 1.05E+05 ± 2.67E+03 (1.00) NA ± NA (0.00) 6.44E+04 ± 1.05E+03 (1.00) NA ± NA (0.00) 3.57E+04 ± 7.92E+02 (1.00)
f02 1.76E+05 ± 3.38E+03 (1.00) NA ± NA (0.00) 1.15E+05 ± 1.76E+03 (1.00) NA ± NA (0.00) 6.18E+04 ± 4.31E+03 (1.00)
f03 4.06E+05 ± 1.66E+04 (1.00) NA ± NA (0.00) 2.65E+05 ± 6.23E+03 (1.00) NA ± NA (0.00) 1.46E+05 ± 6.02E+03 (1.00)
f04 3.36E+05 ± 5.61E+03 (0.06) NA ± NA (0.00) 2.29E+05 ± 5.35E+03 (1.00) NA ± NA (0.00) 3.94E+05 ± 4.42E+04 (0.92)
f05 4.35E+05 ± 1.49E+04 (1.00) NA ± NA (0.00) 1.95E+05 ± 5.52E+03 (0.98) NA ± NA (0.00) 2.00E+05 ± 6.60E+03 (0.94)
f06 3.95E+04 ± 1.88E+03 (1.00) NA ± NA (0.00) 2.51E+04 ± 9.51E+02 (1.00) 1.10E+04 ± 1.24E+03 (0.14) 1.28E+04 ± 4.93E+02 (1.00)
f07 1.44E+05 ± 4.10E+04 (1.00) NA ± NA (0.00) 8.82E+04 ± 2.64E+04 (1.00) 1.91E+04 ± 5.01E+03 (1.00) 3.04E+04 ± 8.26E+03 (1.00)
f10 NA ± NA (0.00) NA ± NA (0.00) 1.01E+05 ± 1.60E+03 (1.00) NA ± NA (0.00) 5.56E+04 ± 9.26E+02 (1.00)
f11 1.09E+05 ± 2.80E+03 (1.00) NA ± NA (0.00) 6.92E+04 ± 5.38E+03 (0.84) NA ± NA (0.00) 3.72E+04 ± 7.86E+02 (0.96)
f12 9.59E+04 ± 2.94E+03 (1.00) NA ± NA (0.00) 6.15E+04 ± 1.31E+03 (1.00) NA ± NA (0.00) 3.12E+04 ± 1.22E+03 (1.00)
f13 1.14E+05 ± 4.03E+03 (1.00) NA ± NA (0.00) 7.64E+04 ± 1.92E+03 (1.00) NA ± NA (0.00) 3.81E+04 ± 1.12E+03 (1.00)

P

Sr 9.06 0.00 10.82 1.14 10.82

third, and fourth strategy on 9, 12, 10, and 11 out of 13 functions,
respectively.

With respect to the convergence speed, Table 4 and Figure 2
show that on most of the test functions PM-AdapSS-DE is capa-
ble of producing the fastest convergence speed compared with the
four DE algorithms.

4.4.2 Analysis of the adaptation characteristics

In order to analyze the adaptation characteristics of PM-AdapSS-
DE, the evolution trend of the probability of each strategy is shown
in Figure 3. According to the results shown in Tables 3, 4 and
Figures 2, 3, we can observe that:

• Compared the results of DE with each single strategy, the
strategy 3 obtains the overall best results, followed by the
strategy 1. The results of the strategy 2 are the worst due
to the high diversity produced by it. By carefully looking
at the convergence speed in Figure 2, it can be seen that on
all functions the strategy 4 converges faster at the beginning
of the evolution. However, it may cause stagnation rapidly.
The reason might be that the fourth strategy is based on the
current solution and performs local search around it [14].

• From Figure 3, we can see that on most of the functions, the
strategy 4 obtains the greatest probability, followed by the
third, the first, and the second one. This phenomenon is rea-
sonable. Since the strategy 4 does local search around the
target solution, it is able to produce the highest relative fit-
ness improvement and, hence, obtains the greatest probabil-
ity. On the other hand, the strategy 3 is capable of providing

the best results individually, so that in PM-AdapSS-DE it can
generate promising offspring and obtains a greater probabil-
ity. As the strategy 2 performs the worst, it gets the lowest
probability on most of the functions.

• According to the results in Tables 3, 4 and Figure 2, we
can see that on the majority of the functions PM-AdapSS-
DE obtains the best results compared with the single strategy
based DE. This is because of the cooperation among the dif-
ferent strategies in PM-AdapSS-DE. For example, the fourth
strategy performs the local search around each target parent
and converges faster; meanwhile, the third strategy generates
more promising solutions and prevents the stagnation caused
by the fourth strategy.

In summary, from the above analysis we can conclude that our
approach is able to efficiently select the suitable strategy for dif-
ferent problems. For each function, one of the strategies was em-
pirically found to be the best. The PM-AdapSS-DE was able to
automatically select between them, without any external a priori

knowledge, thus enhancing the performance of the classical DE.

5. CONCLUSIONS AND FUTURE WORK
In this paper, the probability matching method and the relative

fitness improvement based credit assignment techniques are inte-
grated into the classical DE algorithm. By implementing the Adap-
tive Strategy Selection paradigm, it is capable of efficiently adapt-
ing to the characteristics of the region of the landscape that is cur-
rently being explored by the algorithm, by efficiently selecting be-
tween the strategies while solving the problem.
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Figure 2: Convergence graph of DE with single strategy and PM-AdapSS-DE on the selected functions. (a) f02. (b) f04. (c) f07. (d)

f09. (e) f10. (f) f12.
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Figure 3: Adaptation characteristics of the probability of each strategy on the selected functions. (a) f02. (b) f04. (c) f07. (d) f09. (e)

f10. (f) f12.
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In our proposed PM-AdapSS-DE algorithm, four different credit
assignment techniques are analyzed in combination with the Prob-
ability Matching selection rule. Their performances are compared
with Uniform-DE and SaDE. In addition, PM-AdapSS-DE is com-
pared with the classical DE algorithm using each of the strategies
alone. The results indicate that PM-AdapSS-DE obtains better re-
sults in terms of the quality of the final solutions and convergence
speed.

Besides the Probability Matching for strategy selection, the Adap-
tive Pursuit [23] and the Multi-Armed Bandit [7] approaches are
also used for this purpose in the EA literature, achieving better re-
sults than PM in the analyzed cases. In the future work, we shall
also analyze these techniques in the context of adaptive strategy
selection within DE.

Another important issue that should be further analyzed is the
credit assignment. The methods used in this work consider just the
relative fitness improvement. When tackling multimodal problems,
the maintenance of a minimal level of diversity is also important for
the search process, and thus should also be taken into account for
the rewarding of the strategies. The Compass or the Pareto-based
approaches, proposed in [10], could be used.

Lastly, the on-line adaptation of CR and F was already shown
to be beneficial for DE (e.g., in the SaDE method), and should also
be considered in the near future. In addition, the sensitivity of the
two parameters pmin and α should also be studied in the future.
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