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Abstract

To improve the design and control of fuel cell (FC) models, itis important to extract their unknown parameters. Gener-
ally, the parameter extraction problems of FC models can be transformed as nonlinear and multi-variable optimization
problems. To extract the parameters of different FC models exactly and fast, in this paper, we propose a transferred
adaptive differential evolution (DE) framework, in which the successful parameters of the adaptive DE solving pre-
vious problems are properly transferred to solve new optimization problems in the similar problem-domains. Based
on this framework, an improved adaptive DE method (TRADE, inshort) is presented as an illustration. To verify the
performance of our proposal, TRADE is used to extract the unknown parameters of two types of fuel cell models,
i.e., proton exchange membrane fuel cell (PEMFC) and solid oxidefuel cell (SOFC). The results of TRADE are also
compared with those of other state-of-the-art evolutionary algorithms (EAs). Even though the modification is very
simple, the results indicate that TRADE can extract the parameters of both PEMFC and SOFC models exactly and
fast. Moreover, theV-I characteristics obtained by TRADE agree well with the simulated and experimental data in all
cases for both types of fuel cell models. Also, it improves the performance of the original adaptive DE significantly
in terms of both the quality of final solutions and the convergence speed in all cases. Additionally, TRADE is able to
provide better results compared with other EAs.
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1. Introduction

In recent years, the fuel cell (FC) technology has received considerable attention because of the low emission to
environment, superior durability, good transient responses, high energy efficiency, high scalability, and so on [39].
There are several different types of fuel cells based on the nature of the electrolyte used, such as proton exchange
membrane fuel cell (PEMFC), molten carbonate fuel cell (MCFC), solid oxide fuel cell (SOFC), and so on. Among
them, PEMFC and SOFC have been widely studied and used in promising area for different applications[12, 61].
More details can be found in the following representative review papers [54, 41, 70, 40].

Although many PEMFC and SOFC models have been developed, their model parameters must be accurately
extracted and optimized all the time to obtain high-performance system control. Generally, parameter extraction of
PEMFC and SOFC models can be converted into numerical optimization problems. However, due to the nonlinear
and multi-variable features, it may cause difficulties to traditional optimization techniques. Recently, the heuristic
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optimization techniques have been used to solve the problems [2], for example such as genetic algorithms [49],
simulated annealing [51], particle swarm optimization [78], harmony search [5], seeker optimization algorithm [17],
artificial immune system [4], P systems based optimization algorithm [76], differential evolution [13] for PEMFC,
and genetic algorithm [75], differential evolution [29] for SOFC, etc. However, in order to exactly and fast solve the
parameter extraction problems of PEMFC and SOFC models, it is necessary to investigate more efficient optimization
techniques to reduce the necessary computational efforts to achieve an optimal design [62].

In the similar problem-domains, different optimization problems always have similar features. For example, the
parameter extraction problems of PEMFC and SOFC models can be converted into the optimization problems that
have similar objective functions [49, 75]. Therefore, whenthe optimization techniques are used to find the optimal
solutions for similar problems, the previous problem-solving experiences maybe benefit to solve new problems.

Differential evolution (DE), proposed by Storn and Price [65], is a simple and efficient evolutionary algorithm
(EA) for global numerical optimization. It has been obtained many successful applications in diverse fields [19], such
as engineering design, digital filter design [58], optimal power flow [66], simulation of solar-thermal refrigeration
systems [23], hydrothermal generation scheduling [72, 79], etc. In DE, the parameter settings of the crossover rate
CR and the scaling factorF are crucial to DE’s performance [24]. To improve its performance, different parameter
adaptation techniques have been proposed in the DE literature [45, 11, 59, 80]. However, in the current work, there is
an apparent impediment,i.e., the successful parameters solving previous problems do not be reused and transferred to
solve new problems. For example, in JADE [80], the parameters ofµCR andµF are usually initialized to be 0.5 when
solving new optimization problems, but without considering their previous problem-solving experiences.

In machine learning, transfer learning [53] is a new learning framework that can transfer knowledge across dif-
ferent problems to improve the performance of learning. Inspired by the success of transfer learning, in this paper, a
transferred adaptive DE framework is proposed, where the successful parameters of the adaptive DE solving previous
problems are properly reused and transferred to solve new optimization problems in the similar problem-domains. As
an example, based on the proposed framework, the parametersof µCR andµF in JADE [80] are initialized based on
their previous problem-solving experiences when solving new encountered problems. The improved JADE method
is referred to as TRADE, in short. TRADE is used to extract theunknown parameters of two different types of FC
models,i.e., PEMFC model and SOFC model [39]. The reasons of selecting these two models are two-fold: i) The
parameter extraction problems of PEMFC and SOFC models are very important to improve the performance of these
two FC models, and hence, they have obtained considerable attention recently [51, 8, 75]. ii) Both of these problems
can be formulated as the optimization problems, and they have similar objective functions. To the best of our knowl-
edge, it is the first attempt to combine DE with transfer learning to solve the parameter extraction problems of both
PEMFC and SOFC models simultaneously.

The main contributions of this paper are three-fold:

i) A framework of transferred adaptive differential evolution is proposed, which is simple and generic.

ii) Based on the framework, an improved JADE method, referred to as TRADE, is presented to extract the param-
eters of two different FC models.

iii) TRADE is highly efficient and effective to extract the parameters of both PEMFC and SOFC models, which
can be an efficient alternative to other complex optimization problems of FC models.

The rest of this paper is organized as follows. Section 2 briefly introduces the parameter adaptation technique of
JADE and the problem formulations of PEMFC and SOFC models used in this work. In Section 3, the related work
is presented. The proposed transferred adaptive DE framework and the TRADE method are elucidated in Section 4.
Followed by Section 5, the results are described and analyzed in this section. Finally, Section 6 concludes the work
and points out some possible future work.

2. Preliminaries

In this section, the problem formulations of PEMFC and SOFC models and the parameter adaptation technique of
JADE proposed in [80] are briefly introduced.
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2.1. Problem Formulations

A fuel cell (FC) is an electrochemical device that converts chemical energy directly into electrical energy [39].
According to the nature of used electrolyte, there are several different types of FCs. However, among various types of
FCs, PEMFC and SOFC have obtained considerable attention inrecent years. In this section, the two FC models are
briefly introduced as follows.

2.1.1. Mathematical Formulation of PEMFC Stack Model
In this work, the PEMFC stack model presented in [49] is used.For ncell cells connected in series to form a stack,

the terminal voltage of the stack can be calculated by [16],

VPEMFC= ncell ·
(

ENernst− Vact− Vohm− Vcon
)

(1)

whereENernst is the thermodynamic potential defined by

ENernst= 1.229− 0.846× 10−3 · (T − 298.15)+ 4.3085× 10−5 · T · ln
(

P∗H2

√

P∗O2

)

The activation overpotentialVact, including anode and cathode, can be expressed by the following formula [48]

Vact = −

[

ξ1 + ξ2 · T + ξ3 · T · ln

( P∗O2

5.08× 106 · exp(−498/T )

)

+ ξ4 · T · ln (icell)

]

The ohmic voltage dropVohm can be determined by the following expression [48]

Vohm = (icell + in) ·
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The concentration overpotentialVcon caused by the change in the concentration of the reactants atthe surface of the
electrodes as the fuel is calculated by [15]

Vcon = −B · ln

(

1−
icell + in

imax

)

In the above equations, the temperatureT , the hydrogen partial pressureP∗H2
, and the oxygen partial pressure

P∗O2
are measurable and dependent on the operating conditions ofthe system.icell is the cell current. The other 11

parametersξ1, ξ2, ξ3, ξ4, λ,RC , B, in, imax, ℓ, and A are unknown that need to be extracted to improve the design of
PEMFC model. When the optimization techniques are used to the parameter extraction problems of PEMFC model,
the objective function should be defined at first. In the literature, the mean squared error (MSE) between the output
voltage of theactual PEMFC stack and the model output voltage are used as the objective function [49]:

min fPEMFC(x) =
1
N
·

N
∑

k=1

(

VPEMFC,sa,k − VPEMFC,so,k
)2 (2)

wherex = {ξ1, ξ2, ξ3, ξ4, λ,RC, B, in, imax, ℓ, A}, VPEMFC,sais the output voltage of the actual PEMFC stack,VPEMFC,so

is the model output voltage calculated by Equation (1), andN is the number of the data points. The search ranges of
these unknown parameters are reported in Table 1. Note that,in Table 1,Jn = in × A is the current density of the cell,
andJmax = imax× A.

Table 1: Search Ranges of the Unknown Parameters to Be Optimized for the PEMFC Model.

Parameter ξ1 ξ2 ξ3 ξ4 λ Rc (Ω) B (V) Jn (mA/cm2) Jmax (mA/cm2) ℓ (µm) A (cm2)
Lower bound -1.1997 0.001 -3.60E-05 -2.60E-04 10 0.0001 0.0136 1 500 20 20
Upper bound -0.8532 0.005 -9.80E-05 -9.54E-05 24 0.0008 0.5 30 1500 200 100
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2.1.2. Mathematical Formulation of SOFC Stack Model
To implement the control of an SOFC stack for the output performance, a simple electrochemical model is pre-

sented in [39, 14, 29], which is modeled by:

VSOFC= Ncell ·

[

E0 − ASOFCsinh−1

(

I
2I0,a

)

− ASOFCsinh−1

(

I
2I0,c

)

− IRohm+ BSOFCln

(

1−
I
IL

)]

(3)

whereNcell is the number of cells in the SOFC stack,E0 is the open-circuit voltage,ASOFC is the slope of Tafel line,
Rohm is the area-specific resistance in kΩ, BSOFC is a constant that depends on the fuel cell and its operating state,I is
the current in mA, andIL is the limit current in mA.

In the above SOFC electrochemical model formulated by Equation (3), there are seven unknown parameters,
i.e., E0, ASOFC, I0,a, I0,c, Rohm, BSOFC, andIL, which should be extracted by the optimization algorithm. When the
optimization techniques are used to the parameter extraction problems of SOFC model, the mean squared error (MSE)
is used as the objective function [75]:

min fSOFC(x) =
1
N
·

N
∑

k=1

(

VSOFC,sa,k − VSOFC,so,k
)2 (4)

subject to
Ik < IL, k = 1, · · · ,N

wherex = {E0, ASOFC, I0,a, I0,c,Rohm, BSOFC, IL}, N is the number of the sample data, andIk is thekth current in the
sample data.VSOFC,sais the output voltage of the actual SOFC stack andVSOFC,sois the model output voltage calculated
by Equation (3). For the seven unknown parameters, the search ranges are tabulated in Table 2.

Table 2: Search Ranges of the Unknown Parameters to Be Optimized for the SOFC Model.

Parameter E0 (V) ASOFC (V) I0,a (mA) I0,c (mA) R (kΩ) BSOFC (V) IL (mA)
Lower bound 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Upper bound 1.2 1.0 30.0 30.0 1.0 1.0 200.0

2.2. Parameter Adaptation in JADE

Differential evolution (DE), which was firstly proposed by Storn and Price in 1995 [64, 65], is one of the most
powerful evolutionary algorithms for global numerical optimization. The advantages of DE are its ease of use, simple
structure, speed, efficacy, and robustness. In the last few years, DE has obtained many successful applications in
diverse domains, such as engineering optimal design, digital filter design, image processing, data mining, multisensor
fusion, and so on [58, 19]. However, the performance of DE is sensitive to its parameter settings [24]. Based on this
consideration, some researchers studied the parameter adaptation techniques to improve DE’s performance, such as
jDE [11], SaDE [59], JADE [80], SaJADE [28], and so on. Because the parameter adaptation technique in JADE is
used in this work, it is briefly described as follows.

In JADE [80], the parametersCR andF are adaptively controlled byµCR andµF , respectively. Initially,µCR = 0.5
andµF = 0.5 are used for new problems when there is no prior knowledge. Subsequently, they are updated based on
their previous successful parameters during the evolutionprocess.

At each generation, for each target vector, its crossover rateCRi is independently generated as follows:

CRi = rndni(µCR, 0.1) (5)

and truncated to the interval [0, 1], whereµCR is the mean value of the normal distribution used to generateCRi, with
standard deviation 0.1. TheµCR is updated as follows:

µCR = (1− c) · µCR + c ·meanA(S CR) (6)

wherec is a constant in [0, 1]; meanA(·) is the usual arithmetic mean operation; andS CR is the set of all successful
crossover ratesCRi at generationg.
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In order to maintain some level of population diversity, foreach target vector, the mutation factorFi is indepen-
dently calculated as:

Fi = rndci(µF , 0.1) (7)

and then truncated to be 1.0 if Fi > 1.0 or regenerated ifFi ≤ 0. rndci(µF , 0.1) is a random number generated
according to the Cauchy distribution with location parameterµF and scale parameter 0.1. The location parameterµF

is updated in the following manner:
µF = (1− c) · µF + c ·meanL(S F ) (8)

whereS F is the set of all successful mutation factorsFi at generationg; and meanL(·) is the Lehmer mean:

meanL(S F) =

∑|S F |

i=1 F2
i

∑|S F |

i=1 Fi

(9)

3. Related Work

3.1. EA-based Parameter Extraction of FC Models

As shown in Equations (1) and (3), there are some unknown parameters in both PEMFC and SOFC models. For
the control of high performance, these important unknown parameters need to be extracted and optimized. However,
there are two challenges to extract the parameters [51, 4, 75]: i) there is no sufficient exact procedure for parameter
extraction; and ii) it is a complex nonlinear and multi-variable problem. These challenges make the traditional opti-
mization techniques difficult to solve the parameter extraction problems of FC models effectively. Therefore, the use
of evolutionary algorithms for these problems has obtainedconsiderable attention recently.

3.1.1. Parameter Extraction of PEMFC Model
In [49], Mo et al. presented a niche hybrid genetic algorithm (HGA) for parameter optimization of PEMFC model,

where the niche techniques and Nelder-Mead’s simplex method are merged into GA. Outeiroet al. [51, 52] applied
the simulated annealing (SA) as optimization technique to extract the parameters of PEMFC model. In [78], a par-
ticle swarm optimizer (PSO)-based parameter optimizationtechnique of PEMFC model was presented according to
theV-I characteristics. Ohenoja and Leiviskä [50] conducted comprehensively experiments to indicate how the pa-
rameter range, the validation strategy, and the selected algorithm influence on the performance of GAs in parameter
optimization of PEMFC model. In [42], Liet al. firstly presented an effective informed adaptive PSO (EIA-PSO) to
balance the global and local search. Then, EIA-PSO was employed for the PEMFC model parameter optimization.
Askarzadeh and Rezazadeh [7] proposed a modified PSO (MPSO) to optimize the parameters of PEMFC model,
where a modified method is presented for the PSO’s inertia weight in MPSO. In [6], an artificial bee swarm optimiza-
tion algorithm is proposed for optimizing the parameters ofa steady-state PEMFC stack model suitable for electrical
engineering applications. In [5, 38, 8], the grouping-based global harmony search (HS), tournament selection based
HS, and elite-based global HS were respectively presented for the PEMFC model parameter optimization. To optimize
the PEMFC model parameters, Daiet al. [17] proposed a novel seeker optimization algorithm (SOA),which is based
on the concept of simulating human searching behaviors. In [4], the artificial immune system (AIS)-based parameter
extraction of PEMFC model was present, and its results is compared with those of GAs and PSO. Yang and Wang [76]
proposed a novel bio-inspired P systems-based optimization algorithm (BIPOA) to solve the PEMFC model parameter
optimization problems. In [13], a DE variant,i.e., DEGL [18], was employed for the parameter optimization problem
of PEMFC stack. Inspired by the mechanism of biological RNA,Zhang and Wang [81] presented an adaptive RNA
GA (ARNA-GA) for estimating the PEMFC model parameters. In [9], Askarzadeh and Rezazadeh proposed a bird
mating optimizer (BMO), which is inspired by the intelligent behavior of birds during mating season. In [25], the
ranking-based DE [26] is employed for the parameter extraction of PEMFC model. Ensemble of different improve-
ments of DE, Gong and Cai [27] developed the rank-MADE, wherethe multi-strategy adaptation and ranking-based
vector selection techniques are synergized, to extract theparameters of PEMFC model. In [3], a backtracking search
algorithm combined with Burger’s chaotic map was proposed to efficiently estimate the unknown parameters of the
PEMFC electrochemical-based model.
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3.1.2. Parameter Extraction of SOFC Model
In [73, 74], Wuet al. proposed a GA-RBF neural network method for modeling and predictive control of SOFC,

where the genetic algorithm (GA) is used to optimize the parameters of RBF neural networks. Yanget al. [75]
presented an improved GA (IGA) method for parameter optimization of tubular SOFC stack. In [75], the IGA method
is used to optimize the parameters of a simple electrochemical model to fit the simulated data of the dynamic SOFC
model. Li et al. proposed a model predictive control strategy based on GA forthe SOFC control problem [43],
where a support vector machine model is identified to approximate the behavior of the SOFC system and GA is
used to solve the constrained predictive control problem. In [10], Bozorgmehri and Hamedi proposed an artificial
neural network (ANN) and a GA-based method to model and optimize cell parameters to improve the performance of
singular, intermediate-temperature SOFCs (IT-SOFCs). The ANN is used to model the SOFC performance through
using experimental data, and GA is employed to optimize the SOFC parameters,i.e., anode support thickness, anode
support porosity, electrolyte thickness, and functional layer cathode thickness [10]. In [63], GA is utilized to estimate
the electrode microstructure distributions in NASA Bi-electrode supported SOFCs. Gonget al. [29] proposed an
adaptive DE, in which the ranking-based vector selection and crossover rate repairing technique are combined to
optimize the parameters of SOFC model.

3.2. EAs with Knowledge Reusage

As stated in [47], “Problems seldom exist in isolation”. If previous problem-solving knowledge can be reused
to solve new similar problems, the performance of the optimization techniques may be enhanced. Recently, some
researchers tried to improve the performance of EAs by reusing the knowledge. It can be briefly classified into two
categories: i) EAs based on case-based reasoning (CBR), andii) EAs based on transfer learning.

3.2.1. CBR-based EAs
In [46], Louis and Li presented a learning system that combines a genetic algorithm (GA) solver with a case-base

of past problem-solving attempts to increase performance with experience when solving similar traveling salesman
problems (TSPs). Borrowing ideas from CBR, Louis and McDonnel [47] proposed the case-injected genetic al-
gorithms (CIGAR). In CIGAR, some appropriate intermediatesolutions to similar previously solved problems are
periodically injected into GA’s population. CIGAR is used to solve three combinational problems,i.e., combination-
al circuit design, asset allocation, and job shop scheduling problem (JSSP) [47]. Pérezet al. [57] presented a CBR
scheme where the design patterns extracted from a GA are reused to reduce convergence times when optimizing com-
binational logic circuits at the gate level. In [35, 36], based on CBR an improved Bayesian optimization algorithm
(BOA) is proposed for biasing BOA, where the previous solutions and the Bayesian network obtained by BOA are
stored in the case, and then reused for new problem-solving.The proposed method is mainly used for solving the
knapsack problem, TSP, and minimum spanning tree problem [35, 36].

3.2.2. Transfer Learning-based EAs
Besides the CBR-based EAs, very recently, transfer learning is combined with EAs to reuse previous problem-

solving knowledge to improve EAs’ performance. Fenget al. developed a memetic computational paradigm for
search [21, 22] that models how human solves problems. In theproposed approach [21, 22], the knowledge learned
from previous problem-solving experiences can be transferred to enhance future evolutionary searches. Two challeng-
ing NP-hard routing problems,i.e., capacitated vehicle routing (CVR) and capacitated arc routing (CAR), are used
to verify the performance the proposal [21, 22]. In [31, 56],to improve the performance of BOA, the probabilistic
models previously obtained by BOA are reused and transferred across problems to speed up the solution of similar
problems in the future. Pelikan and Hauschild [55] presented a framework to improve efficiency of model-directed
optimization techniques by combining a distance metric with information mined from previous optimization runs on
similar problems. In [31, 56, 55], different combinationaloptimization problems are used to evaluate the performance
of the proposed methods. Santanaet al. [60] proposed a framework for transfer learning between related optimization
problems by means of structural transfer. Then, the proposed method is used for the multi-marker tagging single-
nucleotide polymorphism selection problem [60]. Hacibeyoglu et al. [30] combined transfer learning with artificial
bee colony (ABC) algorithm for the numerical optimization problems. In [30], the obtained solutions of previously
solved problems are transferred as some solutions in the initial population for solving similar shifted problems. In [33],
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Iqbalet al. presented a genetic programming based learning classifier system, in which the useful building blocks are
extracted from smaller problems and then they are reused to learn more complex, large-scale problems in the domain.
The proposed method is evaluated on four different Boolean problem domains,i.e., multiplexer, majority-on, carry,
and even-parity problems [33].

4. Our Proposal

In this section, we firstly introduce the motivations of thiswork, followed by the framework of the transfer learning
based DE. Based on the proposed framework, an improved JADE method (i.e., transferred adaptive DE, TRADE, in
short) is proposed to solve the parameter extraction problems of PEMFC and SOFC models.

4.1. Motivations

As reviewed in Section 3.1, in the literature, some researchers tried to reuse previous problem-solving knowledge
to improve the performance of EAs when solving new similar problems. However, most of the work only considered
to solve the combinational problems. Although Hacibeyogluet al. [30] proposed the transfer learning based ABC
algorithm for the numerical optimization problems, the previously obtained solutions only transferred to solve the
same shifted functions. Therefore, the method proposed in [30] may not be used across different problems, especially
when the decision variables of the problems have different physical meanings or different dimensions, such as the
unknown parameters in PEMFC and SOFC models.

As described in Equations (2) and (4), the parameter extraction problems of PEMFC and SOFC models by the
optimization techniques share the similar objective functions. In addition, for the same FC model, if the conditions of
the model (such as temperature, hydrogen and oxygen partialpressures, etc.) are different, the extracted parameters are
also different. However, for these problems they have the same objective functions. Thus, the algorithmic parameters
and operators of the optimization techniques may be reused and transferred to solve the parameter extraction problems
of PEMFC and SOFC models.

Since DE is among the most powerful optimization algorithmsfor numerical problems, based on the above con-
siderations, we will try to combine transfer learning with DE to extract the unknown parameters of PEMFC and SOFC
models., where the algorithmic parameters obtained from previous problem-solving experiences will be reused and
transferred across different problems.

Problem 

pool

DE algorithm

Algorithmic 

parameters

Parameter 

database

Save parameters 

to database

Reuse 

parameters

Figure 1: The framework of adaptive DE based on transfer learning

4.2. The Framework

The framework of the proposed adaptive differential evolution based on transfer learning is shown in Figure 1.
Firstly, when a new problem in the problem pool will be optimized by the DE algorithm, DE inquires the parameter
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database. If the database is empty, the default algorithmicparameters (such asCR andF) given by the user will be set
in DE to optimize the problem; otherwise, theReuse() procedure will be activated to reuse and transfer the parameters
saved in the database as the initial parameters of DE. Then, DE optimizes the problem and updates its parameters
according to a specific adaptation technique. When the stopping criterion is met, theSave() procedure is activated to
save the final parameters into the database.

As shown in Figure 1, the proposed framework has the following advantages:

• Simplicity: Compared with the original DE algorithm, only two additional procedures,i.e., Reuse() andSave(),
are used in the framework. These two procedures can be implemented by very simple techniques as shown in
Section 4.3.

• Generality: The proposed framework is generic, it might be used for different adaptive DE variants, such as
jDE [11], SaDE [59], JADE [80], and so on.

• Interactivity: In the framework, the expert knowledge can be added into theparameter database. In this way, if
we have prior knowledge about the problems, we can provide more accurate parameters for the problems and
save them into the database to accelerate the optimization process.

4.3. TRADE: An Improved JADE Approach
Based on the proposed framework as shown in Figure 1, as an illustration, we propose an improved JADE method,

referred to as TRADE. In TRADE, the parameter database contains theµCR andµF values obtained from previously
solved problems. If the database is empty, bothµCR andµF are initialized to be 0.5; otherwise, theReuse() procedure
will reuse and transfer the parameters in the database to be the initialµCR andµF .

4.3.1. Parameter Saving: Save()
In TRADE,µCR andµF are saved to the parameter database. In this work, they are appended to the database when

the following one of two conditions is satisfied: i) If the best solution in the current population is unchanged in the
last continuous 500 generations; or ii) if the stopping criterion of the algorithm is met.

4.3.2. Parameter Reusage: Reuse()
Suppose that there aren items of (µCR, µF ) in the parameter database,i.e., |µCR | = |µF | = n. In order to reuse these

knowledge and transfer them to be the initialµCR0 andµF0 in TRADE to solve new encountered problems, in this
work, we adopt the following simple techniques.

The initialµCR0 is calculated by
µCR0 = rndn(µCR, σµCR ) (10)

and truncated to [0, 1], whereµCR is the mean value of allµCR values in the database,σµCR is their standard deviation,
and rndn(µCR, σµCR ) is a random number generator according to the normal distribution.

The initialµF0 is also calculated in the similar way:

µF0 = rndn(µF , σµF ) (11)

and truncated to [0, 1], whereµF is the mean value of allµF values in the database andσµF is their standard deviation.
In TRADE, when a new problem is encountered, the initialµCR0 andµF0 are obtained according to Equations (10)

and (11), respectively. In this manner, the previous problem-solving knowledge can be reused to bias the values of
CR andF in the beginning of the evolution process. Note that ifn = 1 in the database, in this case, we setµCR0 = µCR

andµF0 = µF , whereµCR andµF are the values saved in the database.

4.3.3. The TRADE Method
The pseudo-code of TRADE is presented in Algorithm 1, whereN p is the population size, NFEs is the num-

ber of function evaluations, MaxNFEs is the maximal NFEs,c andp are two parameters in JADE [80]. Compared
with JADE proposed in [80], the only differences in TRADE arethe Reuse() and Save() procedures as shown in
Algorithm 1. Therefore, the proposed TRADE method does not increase the overall complexity of JADE signifi-
cantly. Although the modifications are minor between TRADE and JADE, TRADE can significantly improves the
performance of JADE when solving the parameter extraction problems of PEMFC and SOFC models as revealed in
Section 5.

8



Algorithm 1: The pseudo-code of the TRADE algorithm
Input: Control parameters:N p and MaxNFEs
Output: The best final solution

1 Setc = 0.1, p = 0.05 as presented in [80];
2 Initialize the population randomly;
3 Calculate the objective function value of each solution in the population;
4 NFEs= N p;
5 if The parameter database is empty then
6 SetµCR = 0.5 andµF = 0.5;
7 else
8 Activate theReuse() procedure as shown in Section 4.3.2 to set the initialµCR andµF ;

9 while NFEs < Max NEFs do
10 S CR = φ, S F = φ;
11 Sort the population from the best to the worst based on the objective function value of each solution;
12 for i = 1 to N p do /* Calculate parameters */
13 GenerateCRi andFi with Equations (5) and (7), respectively;

14 for i = 1 to N p do /* Generate the trial vector ui */
15 Produce the trial vectorui with “DE/current-to-pbest/1/bin” strategy;
16 Apply the boundary constraint-handling to the violated solution;
17 Calculate the objective function value of the trial vectorui;

18 for i = 1 to N p do /* Survival selection */
19 if ui is better than its parent xi then
20 xi = ui;
21 CRi → S CR;
22 Fi → S F ;

23 Update theµCR andµF with Equations (6) and (8), respectively;
24 NFEs= NFEs+ N p;

25 Activate theSave() procedure as shown in Section 4.3.1 to saveµCr andµF into the database;

5. Results and Analysis

In this section, to evaluate the performance of TRADE, it is applied to extract the unknown parameters of PEMFC
and SOFC models as presented in Section 2.1. Totally, eighteenV-I datasets are used, containing 7 PEMFC datasets
and 11 SOFC datasets, which will be described in Section 5.2.The results of TRADE are compared with those
of 9 state-of-the-art EAs, including the real-coded genetic algorithm (rcGA) [32], fast evolutionary programming
(FEP) [77], artificial bee colony (ABC) [37], comprehensivelearning PSO (CLPSO) [44], jDE [11], SaDE [59],
DEGL [18], CoDE [71], and JADE [80].

5.1. Parameter Settings

In this work, the parameter settings of the above-mentioned10 algorithms are shown in Table 3, unless a changed
is mentioned.

All algorithms are coded in standard C++. The maximal numberof function evaluations (MaxNFEs) are set to
30, 000 and 150, 000 for PEMFC and SOFC models, respectively. Since all of theten algorithms are the stochastic
algorithms, in order to make the comparison meaningful, each problem is optimized over 100 independent runs1.

1Note that, in TRADE, for each problem only the parametersµCR andµF obtained in the first run are saved in the database.
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Table 3: Parameter settings for the ten compared algorithms.

Algorithm Parameter settings
rcGA [32] Np = 100, pc = 0.9, pm = 0.15
FEP [77] Np = 100, q = 10

ABC [37] Np = 50, limit = 500
CLPSO [44] Np = 10,m = 7, c = 1.49445

jDE [11] Np = 50, τ1 = 0.1, τ2 = 0.1
SaDE [59] Np = 50, LP = 50

DEGL [18] Np = 10× D,Cr = 0.9,F = 0.8
CoDE [71] Np = 30
JADE [80] Np = 100 for PEMFC model;Np = 50 for SOFC model

TRADE Np = 100 for PEMFC model;Np = 50 for SOFC model

Table 4: Parameter Values and Operation Conditions of PEMFCand SOFC Stacks.

Item Fuel Cell Name ncell T (K) P∗H2
(atm) P∗O2

(atm) Number of Data Points

P01 WNS-PEMFC [68] 48 313 1.5 1 144
P02 WNS-PEMFC [68] 48 333 1.5 1 147
P03 WNS-PEMFC [68] 48 353 1.5 1 148
P04 Ballard Mark V PEMFC [15] 1 343 1 1 14
P05 SR-12 PEM Generator [15] 48 323 1.47628 0.2095 37
P06 BCS 500-W PEMFC [15] 32 333 1 0.2095 7
P07 Temasek PEMFC [34] 20 323 0.5 0.5 50

P08 WN-SOFC [67] 96 1073 3 3 317
P09 WN-SOFC [67] 96 1173 3 3 317
P10 WN-SOFC [67] 96 1273 3 3 317
P11 ASC-SOFC [20] 1 873 NA NA 9
P12 ASC-SOFC [20] 1 923 NA NA 17
P13 ASC-SOFC [20] 1 923 NA NA 21
P14 ASC-SOFC [20] 1 973 NA NA 21

P15 - P18 ASC-SOFC [20] 1 923 NA NA 9

5.2. Data Description

To evaluate the performance of our proposal, sevenV-I datasets obtained from different PEMFC models and
elevenV-I datasets obtained from different SOFC models are used. The parameter values and operation conditions
of PEMFC and SOFC stacks are briefly presented in Table 4. For the seven PEMFC datasets (P01 - P07), P01 - P03
are simulated data generated by the WNS-PEMFC MATLAB/SIMULINK [69], and the other 4 data are experimental
data obtained from the literature. For the eleven SOFC datasets (P08 - P11), there are three simulated data generated
by WN-SOFC MATLAB/SIMULINK [69] (P08 - P10), and the rest 8 data are experimental data obtained from [20],
which are generated by the Elcogen 10× 10 cm2 ASC-10B planar single cell under different operation conditions
and/or parameter values.
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Figure 2: The fitting results of TRADE on the training data.

10



5.3. Training of TRADE

When TRADE is used to solve the first problem, if there is noprior knowledge about the problem, the param-
eter database is empty. In this case, TRADE is the same as JADE[80], andµCR = µF = 0.5 is set. In this work,
since TRADE is used to extract the parameters of PEMFC and SOFC models, TRADE can be trained by using the
simple training data to getµCR andµF . Afterwards, the saved parameters are able to be reused in the subsequent
experiments. Based on this consideration, we adopt the PEMFC model shown in Equation (1) to generate the training
data. The operation conditions are:T = 343 K, P∗H2

= 1.0 atm,P∗O2
= 1.0 atm, andncell = 1. The input parameters

x∗ = {−0.85596174, 0.0026494826, 4.0359126E−5, −0.00015, 24, 0.0008, 0.072756043, 30, 862.27683, 199.59928, 100}. For the
training purpose, the training data contains fifteenV-I data points. TRADE is used to extract the parameters from
the V-I data points for the PEMFC model. The MaxNFEs is set to be 500, 000 to obtain better values ofµCR and
µF . After running TRADE on this dataset, the extracted parametersx = {−0.85523964, 0.0034407883, 9.6971264E −
5,−0.00015035437, 24, 0.0008, 0.072751056, 29.997848, 862.2696, 199.62503, 100} with fPEMFC(x) = 6.019E − 14. The fit-
ting curve is plotted in Figure 2. The results clearly indicate that TRADE fit the simple training data very well. Finally,
the finalµCR andµF are saved in the database.

5.4. Compared with Other EAs

In this section, TRADE is compared with other state-of-the-art EAs through the 18 datasets for the parameter
extraction problems of PEMFC and SOFC models. For all of the compared algorithms, the parameter settings are
shown in Table 3.

Table 5: Comparison on the objective function values of all algorithms in all datasets.

P01 P02 P03 P04 P05 P06
rcGA 1.83E-01± 2.6E-02‡ 2.29E-01± 3.8E-02‡ 2.81E-01± 3.9E-02‡ 8.86E-05± 3.0E-05‡ 0.357013± 1.1E-01‡ 0.127354± 9.0E-03‡

FEP 1.80E-01± 3.7E-02‡ 2.07E-01± 4.2E-02‡ 2.80E-01± 5.1E-02‡ 7.82E-05± 1.5E-05‡ 0.361469± 1.0E-01‡ 0.111526± 1.0E-02‡

ABC 2.65E-02± 1.9E-02‡ 2.60E-02± 2.1E-02‡ 3.22E-02± 2.4E-02‡ 5.08E-05± 3.8E-06‡ 0.153940± 3.3E-02‡ 0.099237± 1.1E-02‡

CLPSO 1.92E-02± 1.9E-02‡ 2.18E-02± 2.4E-02‡ 1.66E-02± 2.0E-02‡ 4.74E-05± 1.1E-05‡ 0.095182± 4.8E-03‡ 0.082603± 2.7E-04‡

jDE 1.08E-02± 5.8E-03‡ 8.06E-03± 4.6E-03‡ 7.26E-03± 1.2E-02‡ 4.47E-05± 5.9E-07‡ 0.102931± 6.2E-03‡ 0.083856± 6.1E-04‡

SaDE 6.93E-05± 1.2E-04‡ 2.96E-05± 5.7E-05‡ 1.58E-05± 3.4E-05‡ 4.29E-05± 1.7E-07‡ 0.088684± 1.8E-03‡ 0.081871± 2.1E-05‡

DEGL 3.34E-05 ± 3.5E-05‡ 1.70E-05 ± 1.3E-05‡ 5.82E-06 ± 4.8E-06‡ 4.28E-05 ± 6.9E-08‡ 0.087195 ± 2.8E-04‡ 0.081864 ± 1.5E-05‡

CoDE 1.50E-04± 2.5E-04‡ 9.16E-05± 1.8E-04‡ 5.73E-05± 1.5E-04‡ 4.31E-05± 2.4E-07‡ 0.089896± 2.8E-03‡ 0.081964± 6.0E-05‡

JADE 4.71E-04± 3.0E-03‡ 4.38E-04± 3.6E-03‡ 1.17E-04± 9.1E-04‡ 4.28E-05± 2.8E-07‡ 0.088036± 3.1E-03‡ 0.081873± 9.0E-05‡

TRADE 2.74E-05 ± 2.7E-05 1.34E-05 ± 8.8E-06 4.43E-06 ± 1.3E-06 4.28E-05 ± 2.7E-11 0.087126 ± 7.0E-06 0.081862 ± 8.7E-09

P07 P08 P09 P10 P11 P12
rcGA 2.05E-01± 1.2E-01‡ 6.60E+03± 1.0E+04‡ 3.17E+03± 2.3E+03‡ 2.24E+03± 2.3E+03‡ 2.68E-02± 5.0E-02‡ 1.04E-01± 1.0E-01‡

FEP 3.37E-02± 9.8E-03‡ 6.51E-01± 2.2E+00‡ 4.78E-01± 4.4E-01‡ 5.64E-01± 6.3E-01‡ 1.16E-04± 9.4E-05‡ 5.94E-05± 9.8E-05‡

ABC 5.70E-03± 3.7E-03‡ 9.37E-01± 7.0E-01‡ 9.79E-01± 6.6E-01‡ 1.02E+00± 7.9E-01‡ 7.26E-05± 4.5E-05‡ 4.40E-05± 3.1E-05‡

CLPSO 2.73E-03± 4.0E-03‡ 4.89E+02± 4.9E+03‡ 5.28E+02± 5.3E+03‡ 5.50E+02± 5.5E+03‡ 1.02E-05± 3.6E-05‡ 1.26E-05± 6.2E-05‡

jDE 1.24E-03± 3.1E-04‡ 1.33E-01± 6.6E-02‡ 1.16E-01± 5.1E-02‡ 9.75E-02± 4.3E-02‡ 7.45E-06± 3.9E-06‡ 3.55E-06± 1.8E-06‡

SaDE 6.25E-04± 2.4E-05‡ 2.73E-03± 3.6E-03‡ 1.50E-03± 3.1E-03‡ 3.05E-04± 7.9E-04‡ 4.05E-06 ± 2.7E-08‡ 1.45E-06± 1.5E-08‡

DEGL 6.01E-04 ± 8.2E-06‡ 1.19E-02± 2.1E-02‡ 6.88E-03± 1.7E-02‡ 5.04E-03± 1.4E-02‡ 4.53E-06± 4.1E-06‡ 1.45E-06± 3.7E-08‡

CoDE 6.43E-04± 3.0E-05‡ 1.15E-02± 1.1E-02‡ 7.96E-03± 6.9E-03‡ 5.08E-03± 5.2E-03‡ 4.34E-06± 2.1E-07‡ 1.61E-06± 1.4E-07‡

JADE 6.17E-04± 6.1E-05‡ 1.70E-03 ± 3.4E-03‡ 6.24E-04 ± 3.8E-03‡ 2.55E-04 ± 1.9E-03‡ 4.05E-06± 5.1E-08‡ 1.44E-06 ± 1.4E-08‡

TRADE 5.97E-04 ± 1.7E-06 1.35E-03 ± 2.4E-14 1.67E-04 ± 4.9E-14 4.85E-05 ± 3.3E-12 4.04E-06 ± 3.2E-13 1.44E-06 ± 1.0E-15

P13 P14 P15 P16 P17 P18
rcGA 1.46E-01± 1.8E-01‡ 1.29E-01± 1.8E-01‡ 3.54E-02± 2.7E-02‡ 2.54E-02± 2.7E-02‡ 2.30E-02± 2.5E-02‡ 2.47E-02± 2.7E-02‡

FEP 3.57E-05± 4.0E-05‡ 2.24E-05± 8.2E-05‡ 2.91E-04± 2.0E-03‡ 6.22E-06± 4.2E-05‡ 1.49E-05± 1.2E-04‡ 2.41E-06± 2.3E-06‡

ABC 5.19E-05± 2.6E-05‡ 2.65E-05± 1.8E-05‡ 5.46E-05± 3.6E-05‡ 4.50E-06± 4.0E-06‡ 5.50E-06± 7.6E-06‡ 7.10E-06± 6.0E-06‡

CLPSO 3.23E-05± 8.9E-05‡ 2.32E-05± 1.8E-04‡ 8.73E-06± 4.0E-05‡ 6.14E-07± 1.3E-07‡ 1.73E-07± 5.8E-08‡ 1.49E-06± 1.7E-07‡

jDE 6.07E-06± 2.6E-06‡ 2.97E-06± 2.0E-07‡ 3.93E-06± 3.4E-06‡ 6.01E-07± 1.5E-08‡ 1.81E-07± 1.9E-08‡ 1.52E-06± 4.4E-08‡

SaDE 2.42E-06± 6.2E-08‡ 2.53E-06± 1.7E-08‡ 1.07E-06± 1.5E-08‡ 5.75E-07 ± 1.8E-09‡ 1.55E-07± 1.3E-09‡ 1.42E-06± 1.8E-08‡

DEGL 2.43E-06± 2.2E-07‡ 2.52E-06± 3.9E-08‡ 2.67E-06± 1.1E-05‡ 5.75E-07± 5.8E-09‡ 1.53E-07 ± 7.9E-10‡ 1.40E-06 ± 1.8E-08‡

CoDE 2.59E-06± 1.6E-07‡ 2.63E-06± 7.8E-08‡ 1.18E-06± 6.0E-08‡ 5.83E-07± 3.9E-09‡ 1.58E-07± 3.5E-09‡ 1.45E-06± 2.7E-08‡

JADE 2.38E-06 ± 2.4E-08‡ 2.51E-06 ± 4.0E-09‡ 1.06E-06 ± 5.5E-09‡ 5.76E-07± 4.7E-09‡ 1.54E-07± 2.0E-09‡ 1.40E-06 ± 1.8E-08‡

TRADE 2.34E-06 ± 6.4E-08 2.51E-06 ± 6.0E-15 1.06E-06 ± 2.9E-20 5.73E-07 ± 4.3E-10 1.52E-07 ± 6.0E-10 1.38E-06 ± 6.5E-10

“‡” indicates TRADE is significantly better than its competitor according to the Wilcoxon signed-rank test atα = 0.05.
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5.4.1. On the Quality of Final Solutions
The quality of final solutions of all algorithms are reportedin Table 5, where the overall best and the second best

results are highlighted inboldface anditalic, respectively. All results are averaged over 100 runs. In Table 5, the mean
and standard deviation values are provided. To make the comparison statistically meaningful, the Wilcoxon test is
used to compare TRADE with other EAs. In Table 5, “‡” indicates TRADE is significantly better than its competitor
according to the Wilcoxon signed-rank test atα = 0.05. Moreover, based on the mean values of all datasets, the
Friedman test2 is used to calculate the average rankings of all algorithms.The results are given in Figure 3.

According to the results shown in Table 5 and Figure 3, it can be clearly observed that:

• TRADE consistently gets the best results in all problems in terms of the mean objective function values. It
significantly outperforms other 9 algorithms based on the Wilcoxon test atα = 0.05 in all problems. In addition,
TRADE is the most robust algorithm according to the standarddeviation values. Figure 3 also reveals that
TRADE obtains the first average ranking among all algorithm by the Friedman test.

• Compared the results between TRADE and JADE, TRADE can improve the performance of JADE significantly
in all problems. Even in the first dataset P01, there only contains one item of (µCR, µF ) in the database, TRADE
is still able to provide significantly better results than those of JADE. This phenomenon indicates the benefits
of properly reusing previous parameters for extracting theparameters of FC models effectively.

It is worth pointing out that although the objective function values of SaDE, DEGL and JADE are very close to
those of TRADE in some problems, however, since the simulated data and experimental data are generated from the
different FC models, no information is available about the accurate values of the parameters of them; therefore, any
reduction in the objective function value is significant because it results in improvement in the knowledge about the
real values of the parameters.

5.4.2. On the Convergence Speed
In this section, the convergence curves of all algorithms are compared and plotted in Figure 4. For the sake of

brevity, only some representative problems are chosen. From Figure 4, we can see that TRADE is able to consistently
converge to the approximate optimal solutions in all problems. It obtains faster convergence speed than its predecessor
JADE. In addition, compared with other EAs, TRADE also provides the fastest convergence speed in overall. By
carefully looking at the results, we find that: i) For the PEMFC model, DEGL converges fastest in the beginning of
the evolution process, however, it converges slowly after NFEs = 5, 000. ii) For the SOFC model, both ABC and
CLPSO converge faster than TRADE in early evolution process, however, they stagnate quickly and get the poor
quality of the final solutions as shown in Table 5.

2The results of the Wilcoxon and Friedman tests are calculated by the KEEL software [1].
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Figure 4: Comparison on the convergence speed among different EAs for the selected problems.

5.5. On the V-I Characteristics

In this work, TRADE is used to extract the unknown parametersof PEMFC and SOFC models. Therefore, to
further evaluate the performance of TRADE, it is important to check theV-I characteristics obtained by TRADE. To
achieveV-I characteristics, the optimal parameter values extracted by TRADE are fed back to the PEMFC and SOFC
mathematical models as shown in Equations (1) and (3), respectively. Figure 5 provides comparisons between the
data of different FC models and the data obtained by TRADE forall problems. As shown in Figure 5, it is clear that
theV-I characteristics obtained by TRADE are highly coincide withthe data of FC models in all cases. Thus, we can
conclude that TRADE can be an effective and efficient alternative for the parameter extraction problems of PEMFC
and SOFC models.
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Figure 5: Comparisons between the data of different FC models and the data obtained by TRADE for all problems. (a): P01 - P03; (b)-(e): P04 -
P07; (f): P08 - P10; (g): P11 - P14; (h): P15 - P18.
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Table 6: Comparison on the reported results in [3] with thoseof TRADE for the Ballard Mark V PEMFC model.

Parameter BMO BSA BSABCM-1 BSABCM-2 BSABCM-3 TRADE
A 85.52841 85.66426 90.41865 78.62501 63.67867 100

ℓ (µm) 162.36927 200 132.9658 186.9986 176.17291 199.59871
Rc (Ω) 0.000491 0.0008 0.000194 0.0008 0.000735 0.0008
ξ1 -1.081107 -1.16954 -0.98686 -0.91636 -1.09537 -1.196411
ξ2 0.003311 0.003612 0.003395 0.003497 0.003623 0.004153
ξ3 4.239E-05 5.671E-05 6.879E-05 9.665E-05 6.927E-05 7.684E-05
ξ4 -1.469E-04 -9.540E-05 -1.476E-04 -1.193E-04 -1.192E-04 -1.504E-04

Jn (mA/cm2) 29.99945 1.1147 2.6467 0.93234 4.07185 30
Jmax (mA/cm2) 1020.70957 872.68143 847.72451 953.4404 1170.406 862.27594

λ 21.71831 13.92213 10.01962 17.07371 19.54295 24
B (V) 0.08265 0.020932 0.025832 0.027605 0.024743 0.072756

fPEMFC(x) 9.2823E-05 8.4986E-05 8.6210E-05 8.3398E-05 8.4455E-05 4.2751E-05

Table 7: Comparison on the reported results in [3] with thoseof TRADE for the SR-12 modular PEM generator.

Parameter BMO BSA BSABCM-1 BSABCM-2 BSABCM-3 TRADE
A 97.07073 100 100 81.157156 100 99.999988
ℓ (µm) 20.0004 20 23.1476 34.7919 20 20.000014
Rc (Ω) 0.000107 0.000214 0.0001 0.0001 0.0001 0.0001
ξ1 -1.181004 -0.8532 -1.182389 -0.987138 -0.85712 -0.937314
ξ2 0.003986 0.002777 0.004269 0.00301 0.002584 0.003465
ξ3 7.805E-05 6.493E-05 9.582E-05 5.475E-05 5.179E-05 9.308E-05
ξ4 -9.540E-05 -9.540E-05 -9.540E-05 -9.540E-05 -9.540E-05 -9.540E-05
Jn (mA/cm2) 29.99993 30 30 30 30 29.999998
Jmax (mA/cm2) 510.66316 500 500 599.33339 503.1227 500.45661
λ 23.99247 24 24 24 20.81857 23.999991
B (V) 0.23399 0.24 0.237949 0.22379 0.241591 0.237502

fPEMFC(x) 0.088359 0.10572 0.087957 0.089777 0.089114 0.087124

5.6. Compared with Reported Results

In the previous sections, TRADE is used to extract the unknown parameters for both PEMFC and SOFC models
under different conditions. Additionally, TRADE is also compared with other advanced EAs directly. In this section,
to further understand the performance of TRADE, it is compared with the reported results presented in [3], because
both of them use the same PEMFC model with 11 unknown parameters. In [3], two datasets in Table 4 (i.e., P04 and
P05) are used, and the extracted parameters by BMO, BSA, BSABCM-1, BSABCM-2, and BSABCM-3 are reported.
The extracted parameters and their corresponding objective function values are described in Table 6 and Table 7,
respectively. Note that, to make a fair comparison, the objective function values of different algorithms in [3] are
re-calculated by using the parameters in Tables 6 and 7. The reason is that the data in P04 and P05 originates from
the graphical diagrams in [49], this procedure may lead to some extra variability. The results in Tables 6 and 7 clearly
reveal that TRADE is able to provide the best objective function values for both P04 and P05 compared with other
five methods in [3].

6. Conclusions and Future Work

In general, no problems exist in isolation, which always share some similar features. Based on this consideration,
in this paper, we propose a transferred adaptive differential evolution framework, where the previous problem-solving
parameters of DE can be reused and transferred to solve new similar problems. According to the framework, we
present an improved JADE method, in which the parametersµCR andµF are transferred across different problems.
The modifications in TRADE are simple and minor compared withits predecessor JADE. Afterwards, the proposed
TRADE method is used to solve the parameter extraction problems of two different fuel cell models,i.e., PEMFC
and SOFC models. EighteenV-I datasets generated by different PEMFC and SOFC models are used to evaluate the
performance of TRADE, and the experimental results indicate that

• By transferring the previous problem-solving parameters saved in the database, TRADE yields significantly
better results than JADE in terms of the quality of final solutions and the convergence speed in all problems.
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• Compared with other state-of-the-art EAs, TRADE also provides very promising results. It is able to obtain the
first average ranking among all compared methods.

• TheV-I characteristics obtained by TRADE fit both the simulated data and experimental data pretty well in all
cases. Therefore, it may be used to solve other complex optimization problems of fuel cell models.

Even with minor modifications on JADE, TRADE is capable of providing very promising results when solving
similar problems. This motivates us to investigate more generic improved EAs based on transfer learning for the
numerical optimization problems in the near future.

The source code of TRADE can be obtained from the first author upon request.
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