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Abstract

To improve the design and control of fuel cell (FC) models important to extract their unknown parameters. Gener-
ally, the parameter extraction problems of FC models cardmstormed as nonlinear and multi-variable optimization
problems. To extract the parameters of different FC modedstéy and fast, in this paper, we propose a transferred
adaptive differential evolution (DE) framework, in whidhet successful parameters of the adaptive DE solving pre-
vious problems are properly transferred to solve new ogation problems in the similar problem-domains. Based
on this framework, an improved adaptive DE method (TRADEslort) is presented as an illustration. To verify the
performance of our proposal, TRADE is used to extract thenownk parameters of two types of fuel cell models,
i.e., proton exchange membrane fuel cell (PEMFC) and solid diidecell (SOFC). The results of TRADE are also
compared with those of other state-of-the-art evolutigradgorithms (EAs). Even though the modification is very
simple, the results indicate that TRADE can extract the patars of both PEMFC and SOFC models exactly and
fast. Moreover, th&-1 characteristics obtained by TRADE agree well with the sated and experimental data in all
cases for both types of fuel cell models. Also, it improvesplerformance of the original adaptive DE significantly
in terms of both the quality of final solutions and the coneerce speed in all cases. Additionally, TRADE is able to
provide better results compared with other EAs.
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1. Introduction

In recent years, the fuel cell (FC) technology has receivatsiclerable attention because of the low emission to
environment, superior durability, good transient respsn$igh energy efficiency, high scalability, and so on [39].
There are several different types of fuel cells based on &tere of the electrolyte used, such as proton exchange
membrane fuel cell (PEMFC), molten carbonate fuel cell (MEFsolid oxide fuel cell (SOFC), and so on. Among
them, PEMFC and SOFC have been widely studied and used inigingmarea for different applications[12, 61].
More details can be found in the following representativeéaw papers [54, 41, 70, 40].

Although many PEMFC and SOFC models have been developeid,ntioglel parameters must be accurately
extracted and optimized all the time to obtain high-perfance system control. Generally, parameter extraction of
PEMFC and SOFC models can be converted into numerical agtioh problems. However, due to the nonlinear
and multi-variable features, it may cause difficulties dttional optimization techniques. Recently, the heiarist
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optimization techniques have been used to solve the prabl@in for example such as genetic algorithms [49],
simulated annealing [51], particle swarm optimization][f&rmony search [5], seeker optimization algorithm [17],
artificial immune system [4], P systems based optimizatigori¢thm [76], differential evolution [13] for PEMFC,
and genetic algorithm [75], differential evolution [29]rfSOFC, etc. However, in order to exactly and fast solve the
parameter extraction problems of PEMFC and SOFC modetspédessary to investigate more efficient optimization
techniques to reduce the necessary computational eféoaishieve an optimal design [62].

In the similar problem-domains, different optimizatioroplems always have similar features. For example, the
parameter extraction problems of PEMFC and SOFC models eaotwerted into the optimization problems that
have similar objective functions [49, 75]. Therefore, whilea optimization techniques are used to find the optimal
solutions for similar problems, the previous problem-gajhexperiences maybe benefit to solve new problems.

Differential evolution (DE), proposed by Storn and Pric&][ds a simple and efficient evolutionary algorithm
(EA) for global numerical optimization. It has been obtaimeany successful applications in diverse fields [19], such
as engineering design, digital filter design [58], optimaiver flow [66], simulation of solar-thermal refrigeration
systems [23], hydrothermal generation scheduling [72, &} In DE, the parameter settings of the crossover rate
CR and the scaling factdf are crucial to DE’s performance [24]. To improve its perfarme, different parameter
adaptation techniques have been proposed in the DE litergh, 11, 59, 80]. However, in the current work, there is
an apparent impedimerite., the successful parameters solving previous problems doen®used and transferred to
solve new problems. For example, in JADE [80], the pararseaificr andur are usually initialized to be.B when
solving new optimization problems, but without considgriheir previous problem-solving experiences.

In machine learning, transfer learning [53] is a new leagrfirmamework that can transfer knowledge across dif-
ferent problems to improve the performance of learningpihesl by the success of transfer learning, in this paper, a
transferred adaptive DE framework is proposed, where tbeessful parameters of the adaptive DE solving previous
problems are properly reused and transferred to solve némiaption problems in the similar problem-domains. As
an example, based on the proposed framework, the paranoéjess andur in JADE [80] are initialized based on
their previous problem-solving experiences when solvieg encountered problems. The improved JADE method
is referred to as TRADE, in short. TRADE is used to extractuhknown parameters of two different types of FC
models,i.e, PEMFC model and SOFC model [39]. The reasons of selectiegettbwo models are two-fold: i) The
parameter extraction problems of PEMFC and SOFC modelseayamportant to improve the performance of these
two FC models, and hence, they have obtained consideradétgiah recently [51, 8, 75]. ii) Both of these problems
can be formulated as the optimization problems, and theg bawilar objective functions. To the best of our knowl-
edge, it is the first attempt to combine DE with transfer l@agrio solve the parameter extraction problems of both
PEMFC and SOFC models simultaneously.

The main contributions of this paper are three-fold:

i) A framework of transferred adaptive differential evadut is proposed, which is simple and generic.

i) Based on the framework, an improved JADE method, retetoeas TRADE, is presented to extract the param-
eters of two different FC models.

iii) TRADE is highly efficient and effective to extract the p@aneters of both PEMFC and SOFC models, which
can be an efficient alternative to other complex optimizaficoblems of FC models.

The rest of this paper is organized as follows. Section Xligrietroduces the parameter adaptation technique of
JADE and the problem formulations of PEMFC and SOFC modedd irsthis work. In Section 3, the related work
is presented. The proposed transferred adaptive DE frankeamal the TRADE method are elucidated in Section 4.
Followed by Section 5, the results are described and andiyzehis section. Finally, Section 6 concludes the work
and points out some possible future work.

2. Preliminaries

In this section, the problem formulations of PEMFC and SOFRdglets and the parameter adaptation technique of
JADE proposed in [80] are briefly introduced.



2.1. Problem Formulations

A fuel cell (FC) is an electrochemical device that convehsroical energy directly into electrical energy [39].
According to the nature of used electrolyte, there are sé¢déferent types of FCs. However, among various types of
FCs, PEMFC and SOFC have obtained considerable attentieeémt years. In this section, the two FC models are
briefly introduced as follows.

2.1.1. Mathematical Formulation of PEMFC Stack Model
In this work, the PEMFC stack model presented in [49] is uS@inge cells connected in series to form a stack,
the terminal voltage of the stack can be calculated by [16],

VPEMFC = Ncell - (ENernst_ Vact - Vohm - Vcon) (1)
whereEnemstis the thermodynamic potential defined by
Enemst= 1.229— 0.846x 1073 - (T — 29815) + 4.3085x 107°-T - In (P*H2 /sz)

The activation overpotentidl,;, including anode and cathode, can be expressed by the fofjdarmula [48]
Po,

Vact = —
act 5.08x 106 - exp(—498/T)

§1+§2~T+§3-T-In( )+§4~T~In(ice”)}

The ohmic voltage dro,nm can be determined by the following expression [48]

Vohm = (icetl +in) - | =

A [1-0634-3 ()] exp[4.18- (T22)]

+Rc

The concentration overpotentid},, caused by the change in the concentration of the reactatits atirface of the
electrodes as the fuel is calculated by [15]
icell + 1
Veon = —B - In(l— M)
Imax

In the above equations, the temperatlitethe hydrogen partial pressufg, , and the oxygen partial pressure
sz are measurable and dependent on the operating conditidhe g/stem.iey is the cell current. The other 11
parametersy, &2, &3, €4, 4, Re, B, in, imax £, @and A are unknown that need to be extracted to improve the design of
PEMFC model. When the optimization techniques are usedetpainameter extraction problems of PEMFC model,
the objective function should be defined at first. In the ditere, the mean squared error (MSE) between the output
voltage of theactual PEMFC stack and the model output voltage are used as thetivbjamction [49]:

N
. 1
min  fpemrc(X) = N Z (Vpemrc sk — VPEMEC k) (2)
=1

wherex = {&1, &2, &3, €4, 4, Re, B, in, imax €, A}, VPEMEC saiS the output voltage of the actual PEMFC stakgmec so

is the model output voltage calculated by Equation (1), ldrigl the number of the data points. The search ranges of
these unknown parameters are reported in Table 1. NotarhEble 1,J, = iy x Ais the current density of the cell,
andJmax = imax X A.

Table 1: Search Ranges of the Unknown Parameters to Be @ptinfior the PEMFC Model.

Parameter & & &3 A 1 R (Q) | B(V) Jn (MAICm?) | Jmax (MAcn?) | € (um) | A(cnP)
Lower bound | -1.1997 | 0.001 | -3.60E-05 | -2.60E-04 | 10 | 0.0001 | 0.0136 | 1 500 20 20
Upper bound | -0.8532 | 0.005 | -9.80E-05 | -9.54E-05 | 24 0.0008 | 0.5 30 1500 200 100




2.1.2. Mathematical Formulation of SOFC Stack Model
To implement the control of an SOFC stack for the output perénce, a simple electrochemical model is pre-
sented in [39, 14, 29], which is modeled by:

. . |
Vsorc = Neell - [Eo — ASOFCS|nhl( ) - ASOFCS|nhl( ) — IRohm + Bsorcln (1 - —)] 3

2lpa 2loc I

whereNgg is the number of cells in the SOFC stag, is the open-circuit voltagédsorc is the slope of Tafel line,
Ronm is the area-specific resistance R ,Bsorcis a constant that depends on the fuel cell and its operatiibe;, s is
the currentin mA, andi,_ is the limit current in mA.

In the above SOFC electrochemical model formulated by EopdB8), there are seven unknown parameters,
i.e., Eo, Asorc loas loc: Rohms Bsorc @andl, which should be extracted by the optimization algorithmhé#' the
optimization techniques are used to the parameter exdraptbblems of SOFC model, the mean squared error (MSE)
is used as the objective function [75]:

N
) 1
min  fsordX) = N Z (Vsorc,s& — Vsorc,sk)’ (4)
P

subject to
lk<l, k=1,---,N

wherex = {Eg, Asorc lo,a l0,c: Ronm Bsorc 1L}, N is the number of the sample data, dpds the k" current in the
sample dataVsorc sdS the output voltage of the actual SOFC stack ¥sgkc sdS the model output voltage calculated
by Equation (3). For the seven unknown parameters, thelseanges are tabulated in Table 2.

Table 2: Search Ranges of the Unknown Parameters to Be @ptirfor the SOFC Model.

Parameter Eo (V) | Asorc(V) | loa(mA) | loc(MA) | R(KQ) | Bsorc(V) | I (MA)
Lower bound | 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Upper bound | 1.2 1.0 30.0 30.0 1.0 1.0 200.0

2.2. Parameter Adaptationin JADE

Differential evolution (DE), which was firstly proposed byog and Price in 1995 [64, 65], is one of the most
powerful evolutionary algorithms for global numerical mpization. The advantages of DE are its ease of use, simple
structure, speed, efficacy, and robustness. In the last &ssy DE has obtained many successful applications in
diverse domains, such as engineering optimal designatifdier design, image processing, data mining, multisenso
fusion, and so on [58, 19]. However, the performance of DEeissgive to its parameter settings [24]. Based on this
consideration, some researchers studied the paramefaiatida techniques to improve DE’s performance, such as
jDE [11], SaDE [59], JADE [80], SaJADE [28], and so on. Beaatise parameter adaptation technique in JADE is
used in this work, it is briefly described as follows.

In JADE [80], the parameteGR andF are adaptively controlled hycr andug, respectively. Initiallyucr = 0.5
andur = 0.5 are used for new problems when there is no prior knowledgbs&juently, they are updated based on
their previous successful parameters during the evolytioness.

At each generation, for each target vector, its crossoveQRg, is independently generated as follows:

CR = rndn(ucr,0.1) (5)

and truncated to the interval,[0], whereucr is the mean value of the normal distribution used to gen&Rtewith
standard deviation.0. Theucr is updated as follows:

tcr = (1-C) - ucr + € - mean(Scr) (6)

wherec is a constant in [01]; mearn(-) is the usual arithmetic mean operation; &k is the set of all successful
crossover rate€R; at generationy.
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In order to maintain some level of population diversity, &éach target vector, the mutation fackgris indepen-
dently calculated as:
Fi = rndg(ur, 0.1) (7

and then truncated to be(QLif F; > 1.0 or regenerated iF; < 0. rndg(ur,0.1) is a random number generated
according to the Cauchy distribution with location paraengt and scale parameterl0 The location parametgg
is updated in the following manner:

ur = (1 —-¢) - ur + c-mean(Sg) (8)
whereSk is the set of all successful mutation factéisat generationy; and meap(-) is the Lehmer mean:

Sel 2
mean (Sg) = ——— 9)
L\OF Z

3. Related Work

3.1. EA-based Parameter Extraction of FC Models

As shown in Equations (1) and (3), there are some unknowmpeteas in both PEMFC and SOFC models. For
the control of high performance, these important unknowaipters need to be extracted and optimized. However,
there are two challenges to extract the parameters [51,]4j)tbere is no sufficient exact procedure for parameter
extraction; and ii) it is a complex nonlinear and multi-edolie problem. These challenges make the traditional opti-
mization techniques difficult to solve the parameter exibagroblems of FC models effectively. Therefore, the use
of evolutionary algorithms for these problems has obtaomtsiderable attention recently.

3.1.1. Parameter Extraction of PEMFC Model

In [49], Mo et al. presented a niche hybrid genetic algorithm (HGA) for par@meptimization of PEMFC model,
where the niche techniques and Nelder-Mead’s simplex ndetine merged into GA. Outeiret al. [51, 52] applied
the simulated annealing (SA) as optimization techniquextcaet the parameters of PEMFC model. In [78], a par-
ticle swarm optimizer (PSO)-based parameter optimizagchnique of PEMFC model was presented according to
theV-I characteristics. Ohenoja and Leiviska [50] conductedmaimensively experiments to indicate how the pa-
rameter range, the validation strategy, and the selectgditim influence on the performance of GAs in parameter
optimization of PEMFC model. In [42], Lét al. firstly presented an effective informed adaptive PSO (EBGRto
balance the global and local search. Then, EIA-PSO was gmglior the PEMFC model parameter optimization.
Askarzadeh and Rezazadeh [7] proposed a modified PSO (MRS@ptimize the parameters of PEMFC model,
where a modified method is presented for the PSO’s inertight@ MPSO. In [6], an artificial bee swarm optimiza-
tion algorithm is proposed for optimizing the parametera sfeady-state PEMFC stack model suitable for electrical
engineering applications. In [5, 38, 8], the grouping-lobeglebal harmony search (HS), tournament selection based
HS, and elite-based global HS were respectively preseatedd PEMFC model parameter optimization. To optimize
the PEMFC model parameters, Bil. [17] proposed a novel seeker optimization algorithm (SQ#jich is based
on the concept of simulating human searching behaviorst]|nije artificial immune system (AIS)-based parameter
extraction of PEMFC model was present, and its results ipeoed with those of GAs and PSO. Yang and Wang [76]
proposed a novel bio-inspired P systems-based optimizatgmrithm (BIPOA) to solve the PEMFC model parameter
optimization problems. In [13], a DE variantg., DEGL [18], was employed for the parameter optimizationgbem
of PEMFC stack. Inspired by the mechanism of biological RMAang and Wang [81] presented an adaptive RNA
GA (ARNA-GA) for estimating the PEMFC model parameters. 9 [Askarzadeh and Rezazadeh proposed a bird
mating optimizer (BMO), which is inspired by the intelligdpehavior of birds during mating season. In [25], the
ranking-based DE [26] is employed for the parameter extraaf PEMFC model. Ensemble of different improve-
ments of DE, Gong and Cai [27] developed the rank-MADE, wiileeemulti-strategy adaptation and ranking-based
vector selection techniques are synergized, to extragidhemeters of PEMFC model. In [3], a backtracking search
algorithm combined with Burger’s chaotic map was proposeefficiently estimate the unknown parameters of the
PEMFC electrochemical-based model.



3.1.2. Parameter Extraction of SOFC Model

In [73, 74], Wuet al. proposed a GA-RBF neural network method for modeling andiptige control of SOFC,
where the genetic algorithm (GA) is used to optimize the patars of RBF neural networks. Yamjal. [75]
presented an improved GA (IGA) method for parameter optition of tubular SOFC stack. In [75], the IGA method
is used to optimize the parameters of a simple electroctemiodel to fit the simulated data of the dynamic SOFC
model. Lietal. proposed a model predictive control strategy based on GAherSOFC control problem [43],
where a support vector machine model is identified to appmate the behavior of the SOFC system and GA is
used to solve the constrained predictive control problem[10], Bozorgmehri and Hamedi proposed an atrtificial
neural network (ANN) and a GA-based method to model and dpéicell parameters to improve the performance of
singular, intermediate-temperature SOFCs (IT-SOFCsg AKN is used to model the SOFC performance through
using experimental data, and GA is employed to optimize tDEG parameters.e., anode support thickness, anode
support porosity, electrolyte thickness, and functioagél cathode thickness [10]. In [63], GA is utilized to esttm
the electrode microstructure distributions in NASA Bialede supported SOFCs. Goegal. [29] proposed an
adaptive DE, in which the ranking-based vector selectioth @ossover rate repairing technique are combined to
optimize the parameters of SOFC model.

3.2. EAswith Knowledge Reusage

As stated in [47], “Problems seldom exist in isolation”. Hegious problem-solving knowledge can be reused
to solve new similar problems, the performance of the oatidon techniques may be enhanced. Recently, some
researchers tried to improve the performance of EAs by ngusie knowledge. It can be briefly classified into two
categories: i) EAs based on case-based reasoning (CBRY)) &#s based on transfer learning.

3.2.1. CBR-based EAs

In [46], Louis and Li presented a learning system that combangenetic algorithm (GA) solver with a case-base
of past problem-solving attempts to increase performaritte@xperience when solving similar traveling salesman
problems (TSPs). Borrowing ideas from CBR, Louis and McDarfA7] proposed the case-injected genetic al-
gorithms (CIGAR). In CIGAR, some appropriate intermedistdéutions to similar previously solved problems are
periodically injected into GA's population. CIGAR is usamdolve three combinational problenig,, combination-
al circuit design, asset allocation, and job shop schedudioblem (JSSP) [47]. Péretal. [57] presented a CBR
scheme where the design patterns extracted from a GA aredéuseduce convergence times when optimizing com-
binational logic circuits at the gate level. In [35, 36], bdn CBR an improved Bayesian optimization algorithm
(BOA) is proposed for biasing BOA, where the previous solusiand the Bayesian network obtained by BOA are
stored in the case, and then reused for new problem-solviihg.proposed method is mainly used for solving the
knapsack problem, TSP, and minimum spanning tree probl&n8g.

3.2.2. Transfer Learning-based EAs

Besides the CBR-based EAs, very recently, transfer legrisitombined with EAs to reuse previous problem-
solving knowledge to improve EAsS’ performance. Fesi@l. developed a memetic computational paradigm for
search [21, 22] that models how human solves problems. Iprbgosed approach [21, 22], the knowledge learned
from previous problem-solving experiences can be trarefido enhance future evolutionary searches. Two challeng-
ing NP-hard routing problems.e., capacitated vehicle routing (CVR) and capacitated artmngCAR), are used
to verify the performance the proposal [21, 22]. In [31, §6]improve the performance of BOA, the probabilistic
models previously obtained by BOA are reused and transfexceoss problems to speed up the solution of similar
problems in the future. Pelikan and Hauschild [55] presgatéramework to improve efficiency of model-directed
optimization techniques by combining a distance metritiwiformation mined from previous optimization runs on
similar problems. In [31, 56, 55], different combinationatimization problems are used to evaluate the performance
of the proposed methods. Santatal. [60] proposed a framework for transfer learning betweeateel optimization
problems by means of structural transfer. Then, the prapossthod is used for the multi-marker tagging single-
nucleotide polymorphism selection problem [60]. Hacilgdycet al. [30] combined transfer learning with artificial
bee colony (ABC) algorithm for the numerical optimizatioroplems. In [30], the obtained solutions of previously
solved problems are transferred as some solutions in tti@ jpdpulation for solving similar shifted problems. Ir8]3
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Igbalet al. presented a genetic programming based learning classifieams, in which the useful building blocks are
extracted from smaller problems and then they are reusedito more complex, large-scale problems in the domain.
The proposed method is evaluated on four different Booleahlpm domainsi.e., multiplexer, majority-on, carry,
and even-parity problems [33].

4. Our Proposal

In this section, we firstly introduce the motivations of thigrk, followed by the framework of the transfer learning
based DE. Based on the proposed framework, an improved JA&ERau (.e., transferred adaptive DE, TRADE, in
short) is proposed to solve the parameter extraction pnabtef PEMFC and SOFC models.

4.1. Motivations

As reviewed in Section 3.1, in the literature, some reseagctiied to reuse previous problem-solving knowledge
to improve the performance of EAs when solving new similaryems. However, most of the work only considered
to solve the combinational problems. Although Hacibeyaajlal. [30] proposed the transfer learning based ABC
algorithm for the numerical optimization problems, thevioesly obtained solutions only transferred to solve the
same shifted functions. Therefore, the method propose®limay not be used across different problems, especially
when the decision variables of the problems have differbgsigal meanings or different dimensions, such as the
unknown parameters in PEMFC and SOFC models.

As described in Equations (2) and (4), the parameter eigraproblems of PEMFC and SOFC models by the
optimization techniques share the similar objective fiomg. In addition, for the same FC model, if the conditions of
the model (such as temperature, hydrogen and oxygen gaeisgures, etc.) are different, the extracted parameters a
also different. However, for these problems they have theesabjective functions. Thus, the algorithmic parameters
and operators of the optimization techniques may be reusgttansferred to solve the parameter extraction problems
of PEMFC and SOFC models.

Since DE is among the most powerful optimization algoritfiorsnumerical problems, based on the above con-
siderations, we will try to combine transfer learning witk b extract the unknown parameters of PEMFC and SOFC
models., where the algorithmic parameters obtained fraeipus problem-solving experiences will be reused and
transferred across different problems.

Problem
pool
Reuse
parameters

. Parameter

DE algorithm database
Algorithmic
parameters

Save parameters
to database

Figure 1: The framework of adaptive DE based on transfeniegr

4.2. The Framework
The framework of the proposed adaptive differential evolubased on transfer learning is shown in Figure 1.
Firstly, when a new problem in the problem pool will be optied by the DE algorithm, DE inquires the parameter
7



database. If the database is empty, the default algoritharemeters (such &R andF) given by the user will be set
in DE to optimize the problem; otherwise, tReuse() procedure will be activated to reuse and transfer thematers
saved in the database as the initial parameters of DE. ThEmgdlimizes the problem and updates its parameters
according to a specific adaptation technique. When the stgmpiterion is met, th&ave() procedure is activated to
save the final parameters into the database.

As shown in Figure 1, the proposed framework has the follgveidvantages:

e Simplicity: Compared with the original DE algorithm, only two additédprocedures,e., Reuse() andSave(),
are used in the framework. These two procedures can be inepkeith by very simple techniques as shown in
Section 4.3.

e Generality: The proposed framework is generic, it might be used foediiit adaptive DE variants, such as
jDE [11], SaDE [59], JADE [80], and so on.

e Interactivity: In the framework, the expert knowledge can be added intp#nameter database. In this way, if
we have prior knowledge about the problems, we can provide mccurate parameters for the problems and
save them into the database to accelerate the optimizaicegs.

4.3. TRADE: An Improved JADE Approach

Based on the proposed framework as shown in Figure 1, asiatrdtion, we propose an improved JADE method,
referred to as TRADE. In TRADE, the parameter database twntheucr andur values obtained from previously
solved problems. If the database is empty, heihandur are initialized to be &; otherwise, th&euse() procedure
will reuse and transfer the parameters in the database teebgitial ucr andur.

4.3.1. Parameter Saving: Save()

In TRADE, ucr andur are saved to the parameter database. In this work, they pemded to the database when
the following one of two conditions is satisfied: i) If the beslution in the current population is unchanged in the
last continuous 500 generations; or ii) if the stoppingeciitn of the algorithm is met.

4.3.2. Parameter Reusage: Reuse()

Suppose that there angtems of {ucr, ug) in the parameter database, |ucrl = lug| = n. In order to reuse these
knowledge and transfer them to be the inifigk, andug, in TRADE to solve new encountered problems, in this
work, we adopt the following simple techniques.

The initial ucr, is calculated by

HcRr, = MAN{UCR, 0 cq) (10)

and truncated to [A], wherepcr is the mean value of alicg values in the database,, is their standard deviation,
and rndnficr, 0,.c) is @ random number generator according to the normal loligioin.
The initial g, is also calculated in the similar way:

Hr, = mdnfug, o) (12)

and truncated to [A], whereur is the mean value of allr values in the database angl. is their standard deviation.

In TRADE, when a new problem is encountered, the injiigd, andug, are obtained according to Equations (10)
and (11), respectively. In this manner, the previous prokéelving knowledge can be reused to bias the values of
CRandF in the beginning of the evolution process. Note thai # 1 in the database, in this case, we@ggt, = ucr
andug, = ur, whereucg andur are the values saved in the database.

4.3.3. The TRADE Method

The pseudo-code of TRADE is presented in Algorithm 1, whéeis the population size, NFEs is the num-
ber of function evaluations, MaXFEs is the maximal NFEg and p are two parameters in JADE [80]. Compared
with JADE proposed in [80], the only differences in TRADE dhe Reuse() and Save() procedures as shown in
Algorithm 1. Therefore, the proposed TRADE method does notdase the overall complexity of JADE signifi-
cantly. Although the modifications are minor between TRAD®E dADE, TRADE can significantly improves the
performance of JADE when solving the parameter extractioblpms of PEMFC and SOFC models as revealed in
Section 5.
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Algorithm 1: The pseudo-code of the TRADE algorithm

Input: Control parameterd\p and MaxNFEs

Output: The best final solution
1 Setc = 0.1, p=0.05 as presented in [80];
2 Initialize the population randomly;
3 Calculate the objective function value of each solutiorhie population;
4 NFEs= Np;
5 if The parameter databaseis empty then
6 | Setucr =0.5andur = 0.5;
7
8

ese
L Activate theReuse() procedure as shown in Section 4.3.2 to set the initiglandur;

9 while NFEs < Max_NEFs do

10 | Scr=¢,SF=¢;

11 Sort the population from the best to the worst based on thectitg function value of each solution;

12 fori=1toNpdo /* Cal cul ate paraneters */
13 L Generat€€R, andF; with Equations (5) and (7), respectively;

14 fori=1toNpdo |+ Generate the trial vector u; */
15 Produce the trial vectar; with “DE/current-topbest/1/bin” strategy;

16 Apply the boundary constraint-handling to the violatedisoh;

17 Calculate the objective function value of the trial veaigr

18 fori=1toNpdo [+ Survival selection /
19 if uj isbetter than its parent x; then

20 Xi = Ui,

21 CR, - SCR;

22 Fi — Sg;

23 U_pdate theucr andur with Equations (6) and (8), respectively;
2 | NFEs= NFEs+ Np;

25 Activate theSave() procedure as shown in Section 4.3.1 to sayeandur into the database;

5. Resultsand Analysis

In this section, to evaluate the performance of TRADE, ifgpleed to extract the unknown parameters of PEMFC
and SOFC models as presented in Section 2.1. Totally, @ghtd datasets are used, containing 7 PEMFC datasets
and 11 SOFC datasets, which will be described in Section Bt results of TRADE are compared with those
of 9 state-of-the-art EAs, including the real-coded genatgorithm (rcGA) [32], fast evolutionary programming
(FEP) [77], artificial bee colony (ABC) [37], comprehensiearning PSO (CLPSO) [44], DE [11], SaDE [59],
DEGL [18], CoDE [71], and JADE [80].

5.1. Parameter Settings

In this work, the parameter settings of the above-mentid@ealgorithms are shown in Table 3, unless a changed
is mentioned.

All algorithms are coded in standard C++. The maximal nundfdunction evaluations (MaXFESs) are set to
30,000 and 150000 for PEMFC and SOFC models, respectively. Since all otéhealgorithms are the stochastic
algorithms, in order to make the comparison meaningfulygaoblem is optimized over 100 independent funs

INote that, in TRADE, for each problem only the parameteiis andur obtained in the first run are saved in the database.



Table 3: Parameter settings for the ten compared algorithms

Algorithm Parameter settings
rcGA[32] | Np=100Q p; =0.9, pn =0.15
FEP [77] | Np=100q= 10
ABC [37] | Np=50,Ilimit = 500
CLPSO [44] | Np=10,m= 7,c = 149445
JDE[11] | Np=50,71 =011, =01
SaDE [59] | Np =50,LP = 50
DEGL[18] | Np=10xD,Cr =09,F = 0.8
CoDE [71] | Np=30
JADE [80] | Np =100 for PEMFC modelNp = 50 for SOFC model
TRADE | Np =100 for PEMFC modellNp = 50 for SOFC model

Table 4: Parameter Values and Operation Conditions of PERECSOFC Stacks.

Item Fuel Cell Name | nNgen T (K) P;;Z (atm) sz (atm) Number of Data Points
PO1 WNS-PEMFC [68 48 313 15 1 144
P02 WNS-PEMFC [68 48 333 1.5 1 147
P03 WNS-PEMFC [68 48 353 1.5 1 148
P04 Ballard Mark V PEMFC [15 1 343 1 1 14
P05 SR-12 PEM Generator [15] 48 323 1.47628 0.2095 37
P06 BCS 500-W PEMFC [15] 32 333 1 0.2095 7
P07 Temasek PEMFC [34]] 20 323 0.5 0.5 50
P08 WN-SOFC [67 96 1073 3 3 317
P09 WN-SOFC [67 96 1173 3 3 317
P10 WN-SOFC [67 96 1273 3 3 317
P11 ASC-SOFC [20 1 873 NA NA 9
P12 ASC-SOFC [20 1 923 NA NA 17
P13 ASC-SOFC [20 1 923 NA NA 21
P14 ASC-SOFC [20 1 973 NA NA 21
P15 - P18 ASC-SOFC [20 1 923 NA NA 9

5.2. Data Description

To evaluate the performance of our proposal, sevendatasets obtained from different PEMFC models and
elevenV-I datasets obtained from different SOFC models are used. atsneter values and operation conditions
of PEMFC and SOFC stacks are briefly presented in Table 4.Hecséven PEMFC datasets (P01 - P07), PO1 - P03
are simulated data generated by the WNS-PEMFC MATLAB/SINNK [69], and the other 4 data are experimental
data obtained from the literature. For the eleven SOFC det¢B08 - P11), there are three simulated data generated
by WN-SOFC MATLAB/SIMULINK [69] (P08 - P10), and the rest 8tdeare experimental data obtained from [20],
which are generated by the ElcogenxQ0 cn? ASC-10B planar single cell under different operation ctinds
and/or parameter values.

1 : :

+ training data
0ol =—©— TRADE fitting curve
081

Voltage (V)
o o
o ~

o
o1

0.4

0 20 40 60 80
Current (A)

Figure 2: The fitting results of TRADE on the training data.
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5.3. Training of TRADE

When TRADE is used to solve the first problem, if there ispnmr knowledge about the problem, the param-
eter database is empty. In this case, TRADE is the same as @Q)Eanducr = ur = 0.5 is set. In this work,
since TRADE is used to extract the parameters of PEMFC andCS@Oédels, TRADE can be trained by using the
simple training data to geicr andur. Afterwards, the saved parameters are able to be reusee isutteequent
experiments. Based on this consideration, we adopt the RENM&del shown in Equation (1) to generate the training
data. The operation conditions are:= 343 K, P, = 1.0 atm,P;, = 1.0 atm, andhee = 1. The input parameters
x* = {—0.855961740.00264948264.035912¢ — 5, —0.00015 24, 0.0008 0.07275604330, 86227683 19959928 100}. For the
training purpose, the training data contains fifté&h data points. TRADE is used to extract the parameters from

the V-1 data points for the PEMFC model. The MAKEs is set to be 50000 to obtain better values ptr and
ue. After running TRADE on this dataset, the extracted paramset = {-0.855239640.00344078839.6971264& -

5,-0.0001503543;724,0.0008 0.07275105629.997848 8622696 19962503 100} with fpemrc(X) = 6.019% — 14. The fit-
ting curve is plotted in Figure 2. The results clearly indécinat TRADE fit the simple training data very well. Finally,

the finalucr andur are saved in the database.

5.4. Compared with Other EAs

In this section, TRADE is compared with other state-of-#iteEAs through the 18 datasets for the parameter
extraction problems of PEMFC and SOFC models. For all of tepgared algorithms, the parameter settings are

shown in Table 3.

Table 5: Comparison on the objective function values oflglbdathms in all datasets.

PO1

P02

P03

P04

P05

P06

rcGA

1.83E-01+ 2.6E-02

2.29E-01+ 3.8E-07

2.81E-01+ 3.9E-07

8.86E-05+ 3.0E-05

0.357013+ 1.1E-0F

0.127354+ 9.0E-03

FEP

1.80E-01+ 3.7E-02

2.07E-01+ 4.2E-07

2.80E-01+ 5.1E-07

7.82E-05+ 1.5E-05

0.361469+ 1.0E-0F

0.111526+ 1.0E-02

ABC

2.65E-02+ 1.9E-07

2.60E-02+ 2.1E-07

3.22E-02+ 2.4E-07

5.08E-05+ 3.8E-06

0.153940+ 3.3E-02

0.099237+ 1.1E-02

CLPSO

1.92E-02+ 1.9E-02

2.18E-02+ 2.4E-07

1.66E-02+ 2.0E-02

4.74E-05+ 1.1E-05

0.095182+ 4.8E-03

0.082603+ 2.7E-04

DE

1.08E-02+ 5.8E-03

8.06E-03+ 4.6E-03

7.26E-03+ 1.2E-07

4.47E-05+ 5.9E-07

0.102931+ 6.2E-03

0.083856+ 6.1E-04

SaDE

6.93E-05+ 1.2E-04

2.96E-05+ 5.7E-05

1.58E-05+ 3.4E-05

4.29E-05+ 1.7E-07

0.088684+ 1.8E-03

0.081871+ 2.1E-05

DEGL

3.34E-05 + 3.5E-05

1.70E-05 + 1.3E-05°

5.82E-06 + 4.8E-06

4.28E-05 + 6.9E-08

0.087195 + 2.8E-04°

0.081864 + 1.5E-05°

CoDE

1.50E-04+ 2.5E-04

9.16E-05+ 1.8E-04

5.73E-05+ 1.5E-04

4.31E-05+ 2.4E-07

0.089896+ 2.8E-03

0.081964+ 6.0E-05

JADE

4.71E-04+ 3.0E-03

4.38E-04+ 3.6E-03

1.17E-04+ 9.1E-04

4.28E-05+ 2.8E-07

0.088036+ 3.1E-03

0.081873+ 9.0E-05

TRADE

2.74E-05 + 2.7E-05

1.34E-05 + 8.8E-06

4.43E-06 + 1.3E-06

4.28E-05 + 2.7E-11

0.087126 + 7.0E-06

0.081862 + 8.7E-09

P07

P08

P09

P10

P11

P12

rcGA

2.05E-01+ 1.2E-0F

6.60E+03+ 1.0E+04

3.17E+03+ 2.3E+03

2.24E+03+ 2.3E+03

2.68E-02+ 5.0E-02

1.04E-01+ 1.0E-0F

FEP

3.37E-02+ 9.8E-03

6.51E-01+ 2.2E+00

4.78E-01+ 4.4E-0T

5.64E-01+ 6.3E-0T

1.16E-04+ 9.4E-05

5.94E-05+ 9.8E-05

ABC

5.70E-03+ 3.7E-03

9.37E-01+ 7.0E-0F

9.79E-01+ 6.6E-0T

1.02E+00+ 7.9E-0F

7.26E-05+ 4.5E-05

4.40E-05+ 3.1E-05

CLPSO

2.73E-03+ 4.0E-03

4.89E+02+ 4.9E+03

5.28E+02+ 5.3E+03

5.50E+02+ 5.5E+03

1.02E-05+ 3.6E-05

1.26E-05+ 6.2E-05

iDE

1.24E-03+ 3.1E-04

1.33E-01+ 6.6E-02

1.16E-01+ 5.1E-02

9.75E-02+ 4.3E-07

7.45E-06+ 3.9E-06

3.55E-06+ 1.8E-06

SaDE

6.25E-04+ 2.4E-05

2.73E-03+ 3.6E-03

1.50E-03+ 3.1E-03

3.05E-04+ 7.9E-04

4.05E-06 + 2.7E-08*

1.45E-06+ 1.5E-08

DEGL

6.01E-04 + 8.2E-06

1.19E-02+ 2.1E-0Z

6.88E-03+ 1.7E-07

5.04E-03+ 1.4E-07

4.53E-06+ 4.1E-06

1.45E-06+ 3.7E-08

CoDE

6.43E-04+ 3.0E-05

1.15E-02+ 1.1E-02

7.96E-03+ 6.9E-03

5.08E-03+ 5.2E-03

4.34E-06+ 2.1E-07

1.61E-06+ 1.4E-07

JADE

6.17E-04+ 6.1E-05

1.70E-03 + 3.4E-03°

6.24E-04 + 3.8E-03

2.55E-04 + 1.9E-03

4.05E-06+ 5.1E-08

1.44E-06 + 1.4E-08°

TRADE

5.97E-04 + 1.7E-06

1.35E-03 + 2.4E-14

1.67E-04 + 4.9E-14

4.85E-05 + 3.3E-12

4.04E-06 + 3.2E-13

1.44E-06 + 1.0E-15

P13

P14

P15

P16

P17

P18

rcGA

1.46E-01+ 1.8E-0F

1.29E-01+ 1.8E-0F

3.54E-02+ 2.7E-07

2.54E-02+ 2.7E-07

2.30E-02+ 2.5E-02

2.47E-02+ 2.7E-0Z

FEP

3.57E-05+ 4.0E-05

2.24E-05+ 8.2E-05

2.91E-04+ 2.0E-03

6.22E-06+ 4.2E-05

1.49E-05+ 1.2E-04

2.41E-06+ 2.3E-06

ABC

5.19E-05+ 2.6E-05

2.65E-05+ 1.8E-05

5.46E-05+ 3.6E-05

4.50E-06+ 4.0E-06

5.50E-06+ 7.6E-06

7.10E-06+ 6.0E-06

CLPSO

3.23E-05+ 8.9E-05

2.32E-05+ 1.8E-04

8.73E-06+ 4.0E-05

6.14E-07+ 1.3E-07

1.73E-07+ 5.8E-08

1.49E-06+ 1.7E-07

JDE

6.07E-06+ 2.6E-06

2.97E-06+ 2.0E-07

3.93E-06+ 3.4E-06

6.01E-07+ 1.5E-08

1.81E-07+ 1.9E-08

1.52E-06+ 4.4E-08

SaDE

2.42E-06+ 6.2E-08

2.53E-06+ 1.7E-08

1.07E-06+ 1.5E-08

5.75E-07 + 1.8E-097

1.55E-07+ 1.3E-09

1.42E-06+ 1.8E-08

DEGL

2.43E-06+ 2.2E-07

2.52E-06+ 3.9E-08

2.67E-06+ 1.1E-05

5.75E-07+ 5.8E-09

1.53E-07 + 7.9E-10°7

1.40E-06 + 1.8E-08°

CoDE

2.59E-06+ 1.6E-07

2.63E-06+ 7.8E-08

1.18E-06+ 6.0E-08

5.83E-07+ 3.9E-09

1.58E-07+ 3.5E-09

1.45E-06+ 2.7E-08

JADE

2.38E-06 + 2.4E-08"

2.51F-06 + 4.0E-097

1.06E-06 + 5.5E-09°

5.76E-07+ 4.7E-09

1.54E-07+ 2.0E-09

1.40E-06 + 1.8E-08°

TRADE

2.34E-06 + 6.4E-08

2.51E-06 + 6.0E-15

1.06E-06 + 2.9E-20

5.73E-07 + 4.3E-10

1.52E-07 + 6.0E-10

1.38E-06 + 6.5E-10

“1” indicates TRADE is significantly better than its competigmcording to the Wilcoxon signed-rank testat 0.05.
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Figure 3: The average rankings of all algorithms by the Fniad test.

5.4.1. Onthe Quality of Final Solutions

The quality of final solutions of all algorithms are reportedable 5, where the overall best and the second best
results are highlighted inoldface anditalic, respectively. All results are averaged over 100 runs. bi€la, the mean
and standard deviation values are provided. To make the @gsop statistically meaningful, the Wilcoxon test is
used to compare TRADE with other EAs. In Table 5, indicates TRADE is significantly better than its compaetito
according to the Wilcoxon signed-rank testaat= 0.05. Moreover, based on the mean values of all datasets, the
Friedman testis used to calculate the average rankings of all algoritifhs.results are given in Figure 3.

According to the results shown in Table 5 and Figure 3, it caalbarly observed that:

e TRADE consistently gets the best results in all problemsims of the mean objective function values. It
significantly outperforms other 9 algorithms based on thiedXon test atr = 0.05 in all problems. In addition,
TRADE is the most robust algorithm according to the standbadation values. Figure 3 also reveals that
TRADE obtains the first average ranking among all algorithynthe Friedman test.

e Compared the results between TRADE and JADE, TRADE can ingitee performance of JADE significantly
in all problems. Even in the first dataset P01, there onlyaiastone item oficr, ur) in the database, TRADE
is still able to provide significantly better results thangh of JADE. This phenomenon indicates the benefits
of properly reusing previous parameters for extractingodm@meters of FC models effectively.

It is worth pointing out that although the objective functiealues of SaDE, DEGL and JADE are very close to
those of TRADE in some problems, however, since the simdildéta and experimental data are generated from the
different FC models, no information is available about tbheusate values of the parameters of them; therefore, any
reduction in the objective function value is significant &dese it results in improvement in the knowledge about the
real values of the parameters.

5.4.2. On the Convergence Speed

In this section, the convergence curves of all algorithnescampared and plotted in Figure 4. For the sake of
brevity, only some representative problems are chosem Figure 4, we can see that TRADE is able to consistently
converge to the approximate optimal solutions in all profdelt obtains faster convergence speed than its predecesso
JADE. In addition, compared with other EAs, TRADE also po®s the fastest convergence speed in overall. By
carefully looking at the results, we find that: i) For the PEBMmodel, DEGL converges fastest in the beginning of
the evolution process, however, it converges slowly afteEsI= 5,000. ii) For the SOFC model, both ABC and
CLPSO converge faster than TRADE in early evolution prochssvever, they stagnate quickly and get the poor
quality of the final solutions as shown in Table 5.

2The results of the Wilcoxon and Friedman tests are calalilayethe KEEL software [1].
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Figure 4: Comparison on the convergence speed among diffErs for the selected problems.

5.5. Onthe V-l Characteristics

In this work, TRADE is used to extract the unknown paramet¢rBEMFC and SOFC models. Therefore, to
further evaluate the performance of TRADE, it is importantheck the/-1 characteristics obtained by TRADE. To
achieveV-I characteristics, the optimal parameter values extragtdtRADE are fed back to the PEMFC and SOFC
mathematical models as shown in Equations (1) and (3), cdgply. Figure 5 provides comparisons between the
data of different FC models and the data obtained by TRADERliggroblems. As shown in Figure 5, it is clear that
theV-1 characteristics obtained by TRADE are highly coincide itk data of FC models in all cases. Thus, we can
conclude that TRADE can be an effective and efficient altirador the parameter extraction problems of PEMFC
and SOFC models.
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Figure 5: Comparisons between the data of different FC nscated the data obtained by TRADE for all problems. (a): P013; fi)-(e): P04 -
PO7; (f): PO8 - P10; (g): P11 - P14; (h): P15 - P18.

14



Table 6: Comparison on the reported results in [3] with thafSERADE for the Ballard Mark V PEMFC model.

Parameter BMO BSA | BSABCM-1 | BSABCM-2 | BSABCM-3 TRADE
A 85.50841 | ©85.66426 | 90.41865|  78.62501|  63.67867 100

T(um) | 162.36927 200 132.9658 | 186.9986 | 176.17291| 199.59871

R @ 0.000491 0.0008 0.000194 0.0008 0.000735 0.0008

& | -1.081107 | -1.16954 -0.98686 -0.91636 -1.09537 | -1.196411

& 0.003311| 0003612 | 0.003395| 0.003497 |  0.003623 | 0.004153

& | 4.239E-05| 5.671E-05| 6.879E-05| O.665E-05| 6.027E05| 7.684E-05

& | -1.469E-04 | O.540E-05| -1.476E-04| -1.103E-04| -1.102E-04| -1.504E-04

Jn (mAJcn?) 29.99945 11147 2.6467 0.93234 4.07185 30
Jmax (MAJC?) | 1020.70957 | 872.68143 | 847.72451|  953.4404|  1170.406 | 862.27594

1 2171831 | 13.92213| 10.01962 | 17.07371| 1954295 24

BV 0.08265 | 0.020932 |  0.025832 | _ 0.027605|  0.024743| _ 0.072756

| foemrc(X) | 9.2823E-05] B8.4986E-05] B8.6210E-05] B8.3398E05 | B.4455E-05] 4.2751E-05 |

Table 7: Comparison on the reported results in [3] with thafSERADE for the SR-12 modular PEM generator.

Parameter BMO BSA | BSABCM-1 | BSABCM-2 | BSABCM-3 TRADE
A 97.07073 100 100 | 8L.157156 100 | 99.999988
7 um) 20.0004 20 23.1476 34.7919 20 | 20.000014
R @ 0.000107 | _0.000214 0.0001 0.0001 0.0001 0.0001
& -1.181004 -0.8532 | -1.182389| -0.987138 -0.85712 | -0.937314
& 0.003986 | 0.002777 | _ 0.004269 0.00301 |  0.002584 | 0.003465
& 7.805E-05 | 6.493E-05| 9.582E:05| 5.475E-05| 5.179E-05| 9.308E-05
& -0.540E-05 | -0.540E-05 | -0.540E-05| -9.540E-05| -9.540E-05| -9.540E-05
Jn (MAJcn?) 29.99993 30 30 30 30 | 29.999998
Jmax (MAJCN?) | 510.66316 500 500 | 599.33339 |  503.1227 | 500.45661
1 23.99247 24 24 24 20.81857 | 23.999991
B(Y) 0.23399 0.24 0.237949 022379 | 0241591 | 0.237502

[ Trewmrc® [ 0088359 0.10572] 0087957 |  0.089777] 0.089114 | 0.087124 |

5.6. Compared with Reported Results

In the previous sections, TRADE is used to extract the unknparameters for both PEMFC and SOFC models
under different conditions. Additionally, TRADE is alsorapared with other advanced EAs directly. In this section,
to further understand the performance of TRADE, it is coredawith the reported results presented in [3], because
both of them use the same PEMFC model with 11 unknown parameéte[3], two datasets in Table 4¢, PO4 and
PO05) are used, and the extracted parameters by BMO, BSA, BSAB, BSABCM-2, and BSABCM-3 are reported.
The extracted parameters and their corresponding obgefitivction values are described in Table 6 and Table 7,
respectively. Note that, to make a fair comparison, theaibje function values of different algorithms in [3] are
re-calculated by using the parameters in Tables 6 and 7. 8&son is that the data in PO4 and P05 originates from
the graphical diagrams in [49], this procedure may lead oesextra variability. The results in Tables 6 and 7 clearly
reveal that TRADE is able to provide the best objective fiorcvalues for both P04 and P05 compared with other
five methods in [3].

6. Conclusions and Future Work

In general, no problems exist in isolation, which alwaysstsmme similar features. Based on this consideration,
in this paper, we propose a transferred adaptive diffesbentidlution framework, where the previous problem-sajvin
parameters of DE can be reused and transferred to solve nalarsproblems. According to the framework, we
present an improved JADE method, in which the parameiggsandur are transferred across different problems.
The modifications in TRADE are simple and minor compared vtglpredecessor JADE. Afterwards, the proposed
TRADE method is used to solve the parameter extraction proslof two different fuel cell models,e., PEMFC
and SOFC models. Eighte&fil datasets generated by different PEMFC and SOFC models edetaigvaluate the
performance of TRADE, and the experimental results inditiaat

e By transferring the previous problem-solving parametexsed in the database, TRADE yields significantly
better results than JADE in terms of the quality of final siolus and the convergence speed in all problems.
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o Compared with other state-of-the-art EAs, TRADE also pilesivery promising results. Itis able to obtain the
first average ranking among all compared methods.

e TheV-I characteristics obtained by TRADE fit both the simulatecdatd experimental data pretty well in all
cases. Therefore, it may be used to solve other complex @atiion problems of fuel cell models.

Even with minor modifications on JADE, TRADE is capable ofyiding very promising results when solving

similar problems. This motivates us to investigate moreegenmproved EAs based on transfer learning for the
numerical optimization problems in the near future.

The source code of TRADE can be obtained from the first authonuequest.
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