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Abstract

Parameter identification of proton exchange membrane (F&&ell model is a very active area of research. Gen-
erally, it can be treated as a numerical optimization pnobleith complex nonlinear and multi-variable features.
Differential evolution (DE), which has been successfubgd in various fields, is a simple yet efficient evolutionary
algorithm for global numerical optimization. In this papeith the objective of accelerating the process of paramete
identification of PEM fuel cell models and reducing the neaeg computational efforts, we firstly present a generic
and simple ranking-based mutation operator for the DE dlgar Then, the ranking-based mutation operator is incor-
porated into five highly-competitive DE variants to solve fiEM fuel cell model parameter identification problems.
The main contributions of this work are the proposed rardiaged DE variants and their application to the param-
eter identification problems of PEM fuel cell models. Expeents have been conducted by using both the simulated
voltage-current data and the data obtained from the lileedbd validate the performance of our approach. The results
indicate that the ranking-based DE methods provide betserdts with respect to the solution quality, the convergenc
rate, and the success rate compared with their correspgpodiginal DE methods. In addition, the voltage-current
characteristics obtained by our approach are in good agmeenith the original voltage-current curves in all cases.

Key words: Proton exchange membrane fuel cell, parameter identiicadiptimization, differential evolution,
ranking-based mutation operator

1. Introduction

Due to the high energy efficiency, superior durability, lomigsion, high scalability, good transient responses
of the fuel cell (FC) technology, it has received a heighteresearch focus in recent years [1, 2]. Among various
types of fuel cells, the proton exchange membrane fuel BEMFCs) have obtained an increasing interest for both
mobile and stationary applications because of their hifjbieficy, low noise, no waste, low operating temperature,
low pressure, etc [3]. Also, due to their advantages, theybeaused to build hybrid energy generation systems, such
as wind/hydrogen hybrid systems to provide consistenagusble energy supply [4].

Within different fields of research in PEMFC, the modelindP&MFC has attracted considerable attention among
researchers of different backgrounds, and different neooePEMFC are available in the literature [5, 6, 7, 8]. Mo
et al. [9] classified different PEMFC models into two approach@améchanistic models and ii) models based on
empirical or semi-empirical equations. However, no mattbat type of models, the parameters of models need
to be identified in order to improve the accuracy of the modeld make the models indicate the actual PEMFC
performance better [9, 10]. For example, the parameténgstof the hydrogen flow rate, air flow rate, inlet hydrogen
pressure, membrane dehydration, catalyst layer floodiagsrmansport, and fluid flow regimes affect the performance
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of PEMFC models significantly [11, 12]. Identifying the pareters of PEMFC models can be treated as numerical
optimization problems. However, since the PEMFC systemdsraplex nonlinear and multi-variable system, the
parameter identification of PEMFC models is hard to be ttdetay conventional methods. Therefore, it is essential
to identify the parameters of PEMFC models using advancéthgation techniques.

In recent years, the use of heuristic optimization techesdfior parameter identification of PEMFC models have
received increasing interest, such as genetic algoritf®ass) [9, 13, 14], simulated annealing [15, 16], particle
swarm optimization (PSO) [17, 18], harmony search [19, 2G&xker optimization algorithm [21], artificial immune
system [22], P systems based optimization algorithm [23)stvecently, differential evolution is also used to solve
the parameter identification of PEMFC models [24]. Howeugrder to efficiently and fast solve the parameter
identification problems in PEMFC models, it is necessarynte@estigate more efficient optimization techniques to
reduce the necessary computational efforts to achieve imamesign [25].

Differential evolution (DE), proposed by Storn and Pric&][2is a simple, efficient, and versatile numerical
optimization algorithm. The advantages are its simplectting, ease of use, speed, and robustness. Due to these ad-
vantages, DE has been successfully applied in diverse fidh as engineering design, digital filter design [27, 28],
optimal power flow [29], simulation of solar-thermal refeigition systems [30], hydrothermal generation schedul-
ing [31, 32], and so on. With the objective of accelerating pnocess of parameter identification of PEMFC models
and reducing the necessary computational efforts, in thikwa generic and simple ranking-based mutation opera-
tor is presented for the DE algorithm. The ranking-basedatiari operator does not increase the complexity of the
original DE algorithm significantly, and it can be combinei¢himost of advanced DE variants. Based on this consid-
eration, it is incorporated into five highly-competitive D&riantsj.e., DE [33], SaDE [34], JADE [35], CoDE [36],
and DEGL [37]. The five ranking-based DE variants togethén tie five original DE variants are validated by using
the simulated voltage-current data of PEMFC model and the alatained from [9]. Numerical results indicate that
the ranking-based DE methods provide better results wihaet to the solution quality, the convergence rate, and
the success rate compared with their corresponding ofiBiBanethods. In addition, the voltage-current character-
istics obtained by our approach are in good agreement wétloiginal voltage-current curves in all cases. Thus, the
ranking-based DE approaches can be an efficient alterrfatiaher complex parameter identification problems of
FC models.

The rest of this paper is organized as follows. Section Zlpreeescribes the PEMFC stack model used in this
work and the objective function to be optimized. Next, int8et3 we introduces the original DE algorithm in brief.
In Section 4 our proposed ranking-based mutation operatprasented in detail, followed by the experiments and
discussions in Section 5. Finally, Section 6 draws the a@ichs from this work.

2. Problem Formulation

In this section, we first briefly introduce the PEMFC stack elagsed in this work. Then, the objective function
to be optimized is specified.

2.1. PEMFC stack model

In this work, the PEMFC stack model presented in [9] is used nfeells connected in series to form a stack, the
terminal voltage of the stack can be calculated by [38],

Vs =n-Vec (1)
whereVec is the output voltage of a single cell, which can be formuate [7]
Vec = Enemst— Vact — Vohm — Veon 2)
Enemstis the thermodynamic potential defined by

Enernst=1.229— 0.85x 1073 - (T — 29815)

+43085x10°-T-In(Py, Py,
2

3)



whereT is the cell temperature (KR}, andP, are the hydrogen and oxygen partial pressures (atm), riesglgc
They are given by [5]
1

RH. P, 1,635 cen/A
Pa 2 exp( Tla?::?illl/ ))

Py, = 0.5- RHa- P2, - -1 (4)

1
Py, = RH; - PR - -t ©
A 2 RH,-Ps&t
PCH20 exp( 4.19Tzl§303ey/A) )

whereRH, andRH, are the relative humidity of vapor in the anode and cathBdendP, are the anode and cathode
inlet pressures (atm), respectivelyis the effective electrode area (€nandice is the cell current (A).Pﬁ;‘o is the
saturation pressure of water vapor (atm), which is definedfaaction of the temperatuiie as follows [9, 24]
logy, (P5,) =2.95% 1072 - (T — 27315)
—~9.19x107° . (T — 27315 (6)
+1.44%x 10" (T -273155°-2.18

According to [6], the activation overpotentM.;, including anode and cathode, can be expressed by the fotiow
formula

Vacr=—[é1+& - T+&-T-In(Co)+&-T-In(icen)| (7

whereéy, &2, &3, €4 are the parametric coefficients for each cell model, @ad (mol/cn?) is the concentration of
oxygen in the catalytic interface of the cathode, given hya]7

"
* Poz

Co: = 508 108 exp(—498/T)

(8)
The ohmic voltage droponm can be determined by the following expression [6]

Vohm = icell - (Rm + Re) 9)

whereRy, is the equivalent membrane resistance to proton condy&imR: is the equivalent contact resistance to
electron conductiorRy, is defined by [9]

Rm = (10)

1816 [1+0.03- () + 0062- () - (%5)”"|

oM = (11)

[4-0634-3- ()] exp[4.18- (15%2)|
wherepy is the membrane specific resistivity for the flow of hydratestpns 2 - cm ), andf is the thickness of the
membrane (cm), which serves as the electrolyte of the ck.parametet is an adjustable parameter with a possible
range of [1024].

The concentration overpotentid,, caused by the change in the concentration of the reactatite atirface of
the electrodes as the fuel is calculated by [7]

Veon = —B-In(l— J ) (12)
max

whereB (V) is a parametric coefficient, which depends on the cell émaperation stateJ is the actual current
density of the cell (A/cn°'1), andJmax is the maximum value al.

The purpose of parameter identification is to extract thenomln parameters of the PEMFC stack model so that
a model can better fit a given PEMFC stack model. Similar toathek presented in [9, 13, 23], in this work, seven
parameters,e., &1, &2, &3, 4, A, Re, and B, will be identified by the DE algorithm. Other parametersiaed PEMFC
stack and the operation conditions are shown in Table 1.
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Table 1:

PEMFC stack parameters and operation conditions.
Parameter | Value
Number of cells in series | 24
Cell’s effective active area 27 cn?
Nafion 115:5 mil¢ 127um
Maximum current densitynax | 860 mA/cn?

Relative humidity in anod&H, 1

Relative humidity in cathodBH. 1

Inlet Anode pressurB, 3 bar
Inlet Cathode pressui@. 5 bar
Stack temperaturé 353.15K

Table 2: Ranges of model parameter [13] and parameters oggshérate th¥s [9, 24].

Parameter| Lower boundl; | Upper boundJ; actual value
& -1.19969 -0.8532 -0.944957
& 0.001 0.005 0.00301801
& 36x10° 9.8x10° 7.401x10°
& —2.60x 1077 -9.54x10° -1.88x 1077
1 10 24 23
Re (Q) 0.0001 0.0008 0.0001
B (V) 0.0136 05 0.02914489

2.2. Objective function

In order to identify the optimal values of the seven unknownameters mentioned above by the optimization
techniques, it needs to define a objective function to barapéd. In this work, the sum of the squared error (SSE)
between the output voltage of thetual PEMFC stack and the model output voltage are used as thetivbjémc-
tion [9]:

N
min £() = > (Vemk = Veak)’ (13)
k=1

wherex = {£1,&, &3, &4, 4, Re, B} is the vector of the unknown parameteygy, is the output voltage of the actual
PEMFC stackVy, is the model output voltage, amdlis the number of the experimental data point.

3. Differential Evolution

The DE algorithm is initially proposed for the numerical iopization problems. The main procedure of DE are
described as follows.

3.1. Initialization

The DE population consists &fP vectors. Initially, the population is generated at rand&r. example, for the
i-th vectory; it is initialized as follows:

x.j = Lj +rdreal(01)- (U; - L)) (14)
wherelL; and U; are respectively the lower bound and upper boun«jofi.e, x; € [Lj,Uj]. i = 1,---,NP,
j = 1,---,D, and rndreal(01) is a uniformly distributed random real number in ID. In this work, for parame-

ter identification of PEMFC modeD) = 7, and the parameter ranges of the seven unknown paramegesiscavn in
Table 2, which originally presented in [13] and also used@#i [



3.2. Mutation

After initialization, the mutation operator is applied tergerate the mutant vectey for each target vectox; in
the current population. There are many mutation stratemragable in the literature [27, 35], the classical one is
“DE/rand/1":
Vi =Xy + F - (X, = Xrg) (15)

whereF is the mutation scaling factory, r,,r3 € {1,---, NP} are mutually different integers randomly generated,
andry # rp # r3 # i. Inthis work, we will try to improve the selection of vectanghe mutation operator to accelerate
the process of parameter identification of PEMFC model.

3.3. Crossover

In order to diversify the current population, following matibn, DE employs the crossover operator to produce the
trial vectoru; betweerx; andv;. The most commonly used operator is tiiromialor uniformcrossover performed
on each component as follows:

B {vi,;, if (rndreal(Q1) < CROr j = jrand) (16)

U= .
"7 1%, otherwise

whereCRis the crossover rate arjdnqis a randomly generated integer withiy D}. It is worth noting that there are
other crossover operators in DE, such asekigonentiatrossover [27]. However, in this paper, we only focus on the
binomial crossover mentioned above due to its promisinfpp@ance obtained.

3.4. Selection

Finally, to keep the population size constant in the follogvgenerations, the selection operation is employed to
determine whether the trial or the target vector survivethéonext generation. In DE, trene-to-one tournament
selectionis used as follows:

. {ui, it f(u) < f(x)
=

. a7
Xi, otherwise

wheref(x) is the objective function to be optimized.

4. Ranking-based mutation operator

In order to accelerate the parameter identification procEBEMFC model and reduce the necessary computa-
tional efforts (measured by the number of function evabretito find an acceptable solution) to achieve an optimal
design, in this work, we present the ranking-based mutatanator for the DE algorithm [39]. The key points of our
approach are described in detail as follows.

4.1. Rankings Assignment

Firstly, the population is sorted in ascent ordeg.(from the best to the worst) based on the fitnésg of each
vector. Then, the ranking; of thei-th vector is assigned as follows:

R =NP-i, i=212---,NP (18)

whereNP is the population size. According to Equation (18), the bestor in the current population will obtain the
highest ranking.

4.2. Selection Probability
After assigning the ranking for each vector, the selecti@bability p; of thei-th vectory; is calculated as

2

n=(rs) (19
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4.3. Vector Selection

After calculating the selection probability of each vedtoEquation (19), the other issue is that in the mutation
operator which vectors should be selected according toeleetion probabilities. In this work, we select thase
vector and theéerminalpoint of the difference vector based on their selection phdliies, while other vectors in the
mutation operator are selected randomly as the original D&righm. For example, for the “DE/rand/1” mutation
the vectors are selected as shown in Algorithm 1. Note tleahtitation ‘@ == b” indicatesa is equal tob. From
Algorithm 1 we can see that the vectors with higher rankimgsélection probabilities) are more likely to be chosen
as the base vector or the terminal point in the mutation apersote that in Algorithm 1 we only illustrate the vector
selection for “DE/rand/1”, for other mutation operators trector selection is similar to Algorithm 1.

Algorithm 1 Ranking-based vector selection for “DE/rand/1”
1: Input: The target vector indeix

2: Output: The selected vector indexesr,, rs
3: Randomly seleat; € {1, NP} {base vector index
4: whilerndreal[Q1) > p;, or ry ==ido
5.  Randomly seleat; € {1, NP}
6: end while
7: Randomly seleat, € {1, NP} {terminal vector indek
8: whilerndreal[Q1) > pr, or rp ==rj 0r rp ==ido
9:  Randomly seleat; € {1, NP}

10: end while

11: Randomly seleat; € {1, NP}

12: whilerz==r,orrz==ryor r; ==ido

13:  Randomly seleat; € {1, NP}

14: end while

According to Algorithm 1, we can see that the only differebeéween the original DE mutation and the ranking-
based mutation is that in the original DE mutation (see Hqudfl5))ry,r,, r3 are only selected randomly, while in
our proposed ranking-based DE mutatigyr, are chosen according to their rankings. In summary, theimgrtased
mutation operator has the following advantages:

1) It is very simple, generic, and easy to be implemented.hig;way, it can be incorporated into most of DE
variants. In this work, the ranking-based mutation operatcombined with five highly-competitive DE vari-
ants,i.e,, jDE [33], SaDE [34], JADE [35], CoDE [36], and DEGL [37] tolse the parameter identification
problems of PEMFC models.

2) It does not significantly increase the complexity of thegioal DE variants. This makes our approach be
suitable for real-world applications, such as the optitidzaproblems in fuel cell models.

5. Experiments and discussions

In this section, the performance of our approach for paramiéentification of PEMFC models is validated
through both the simulated voltage-current data and the alatiained from [9]. Totally, 10 DE variants (jDE [33],
SaDE [34], JADE [35], CoDE [36], DEGL [37], and their correspling ranking-based variants) are executed. All al-
gorithms are coded in standard C+¥he parameter settings for these DE variants are showrbie Ba The maximal
number of function evaluations (MaXFEs) are set to 1000°. Because the DE algorithms belong to the stochastic
algorithm, to make the comparison among different algorgtstatistically meaningful, each problem is optimized
over 100 independent runs. The programs are executed oolltnihg platform: CPU: Inter Core i7-3770 3.40GHz;
RAM: 8.00 GB; Operating system: Microsoft Windows 7 Hometiedti; Compiler: Microsoft Visual C++ 6.0.

1The source codes of these methods can be obtained from theufiner upon request.
?Note that we do not used the maximal generations as the tatimircondition, since for different algorithms the consahmumber of function
evaluations may be not the same in one generation.
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Table 3: Parameter settings for all DE variants.

Algorithm Parameter settings
iDE, rank-jDE NP =1007; =0.1,7, = 0.1[33]
SaDE, rank-SaDE | NP =50, LP = 50 [34]
JADE, rank-JADE | NP =100 p = 0.05,c = 0.1[35]
CoDE, rank-CoDE | NP =30 [36]
DEGL, rank-DEGL | NP=10x D,CR=0.9,F = 0.8 [37]

Table 4: Numerical results (meanstandard deviation) on simulated data with noise free. @tget fitness (x*) is 0.

Algorithm SSE NFEs time in seconds| SR AR
DE 0.0117176+ 0.0074171 8233.33+ 1225.49 0.104 +0.007 | 0.45 1.47
rank-jJDE 5.06E-04 + 7.49E-04 + 5592.00 + 984.08 0.108+ 0.007 | 1.00 '
SaDE 1.91E-07+ 1.38E-06 3623.50+ 387.00 0.108 +0.006 | 1.00 151
rank-SaDE 2.55E-12 + 8.98E-12 + 2397.00 + 328.36 0.117+ 0.008 1.00 i
JADE | 0.0016386: 0.0011805 6717.00+ 1266.75 | 0.108 +0.006 | 1.00 110
rank-JADE 7.44E-04 + 8.34E-04 + 6096.00 + 1082.45 0.114+ 0.008 1.00 i
CoDE 4.65E-05+ 5.04E-05 4684.80+ 766.04 0.101 +0.008 | 1.00 157
rank-CoDE 6.19E-08 + 1.01E-07 + 2980.20 + 415.61 0.107+ 0.005 1.00 i
DEGL 1.81E-08+ 1.29E-07 | | 1492.40+214.75 0.112 + 0.006 1.00 1.08
rank-DEGL 5.06E-12 + 1.81E-11 + 1388.10 + 167.09 0.122+ 0.006 1.00 i

Hereinafter, “+” indicates that ranking-based DE is sigifit better than its corresponding non-ranking-based
DE according to the Wilcoxon signed-rank testat 0.05.

Similar to [24], in this work, the PEMFC stack model presenite Section 2.1 and its parameters and operation
conditions shown in Table 1 are used. In addition, the ranfjfse seven parameters to be identified are tabulated in
Table 2. The actual values of parameters used to generasintéate data o¥/s are also shown in Table 2 [9, 24].
Both the simulated data (including noise free, low noisé ligh noise) and the data obtained from [9] are used to
evaluate the capability of our approach to identify the pagters of PEMFC model. The simulated data is used so
as to measure the accuracy of the identified parameters hyptiraization technique. The data obtained from the
PEMFC literature is chosen to evaluate the practicabilitthe optimization technique for parameter identification
when prior knowledge is not available for the PEMFC models.

5.1. Performance criteria
In order to compare the performance of different algorithimghis work, we adopt the following performance

criteria:

e SSE [24]: Itis calculated by Equation (13) to measure the solutjuality of a method obtained.

e NFEs[24]: Itis used to record the number of function evaluatiomsach run for finding a solution satisfying
f(x) — f(x*) < 1le—- 2, wheref(x*) is the target fithess to be reached of a specific problem.

e Successrate (SR: Itis equal to the number of success runs over total runsudkess run means that within
Max_NFEs the algorithm finds a solutionsatisfyingf(x) — f(x*) < 1le— 2.

e Acceleration rate (AR) [40]: This criterion is used to compare the convergencedetween two algorithms.
It is defined as follows: ANFE

_ S
AR= ANFEs3 (20)

where ANFEg is the average NFEs of algorithm AR > 1 indicates algorithm B converges faster than
algorithm A.

e TheCPU timein seconds: It records the running time (in seconds) of a method whevtlie NFEs is reached.

e Convergencegraphs: The graphs show the averaged SSE performance of the totl ru



Table 5: Numerical results on simulated data with low noidee target fitnes$(x*) is 0.29607692.

Algorithm SSE NFEs time in seconds| SR AR
DE 0.3188408t 0.0096381 9175.00+ 923.89 0.101 + 0.008 | 0.08 131
rank-JDE | 0.2983047 + 0.0016221 | + | 6979.00 = 1086.31 | 0.109+ 0.006 | 1.00 )
SaDE 0.296128+ 4.68E-05 4362.50+ 516.90 0.108 +0.005 | 1.00 1.49
rank-SaDE | 0.2960771 + 2.14E-07 + 2928.00 + 330.47 0.116+ 0.008 1.00 i
JADE | 0.3012747+ 0.0030127 8317.20+ 1048.67 0.108 + 0.006 | 0.93 1.12
rank-JADE | 0.2987938 + 0.0016073 | + 7445.00 + 902.56 0.114+ 0.007 | 1.00 )
CoDE | 0.2969736t 4.45E-04 5719.80+ 734.80 0.100 +0.008 | 1.00 1.60
rank-CoDE | 0.2960983 + 1.14E-05 + 3573.30 + 453.47 0.107+ 0.006 1.00 i
DEGL 0.2960806¢ 7.28E-06 1866.20+ 303.45 0.111 +0.005 | 1.00 113
rank-DEGL 0.296078 + 4.20E-06 + 1652.70 + 258.66 0.122+ 0.006 | 1.00 )

Table 6: Numerical results on simulated data with high nol$ee target fithes$(x*) is 1.19101079.

Algorithm SSE NFEs time in seconds| SR AR
DE 1.2243306+ 0.0147351 9850.00+ 212.13 0.102 + 0.008 | 0.02 131
rank-jDE | 1.1939761+ 0.0019916 | + | 7539.39 +1032.22 | 0.108+0.005 | 0.99 )
SaDE | 1.1910959 7.72E-05 4702.00+ 463.79 0.108 +0.006 | 1.00 152
rank-SaDE | 1.1910112 + 1.33E-06 + 3086.00 + 280.70 0.117+ 0.008 1.00 i
JADE | 1.1986425t+ 0.0043916 8689.61+ 724.49 0.108 +0.005 | 0.77 105
rank-JADE | 1.1956602 + 0.0024067 + 8237.76 + 884.40 0.114+ 0.007 0.98 i
CoDE | 1.1923034+ 7.88E-04 6440.70+ 820.37 0.101 +0.008 | 1.00 166
rank-CoDE 1.191045 + 2.24E-05 + 3882.00 + 495.60 0.107+ 0.005 | 1.00 )
DEGL 1.1910227 2.25E-05 1960.70+ 341.12 0.111 +0.004 | 1.00 1.16
rank-DEGL 1.191013 + 8.05E-06 + 1687.70 + 203.39 0.119+ 0.008 | 1.00 )

5.2. Parameter identification with simulated data

In this section, the identifying power of our approach isemsed by the simulated data. The actual values and
ranges of the seven parameters are presented in Table 2oateteip [24]. These parameters are used to generate the
noise free dat¥s via Equation (1). Then, similar to [24], the noise data arated as follows:

Vso = Vs + N(0, 6) (22)

whereN(0, 6) indicates a Gaussian noise with mean zero and standaratided. In this work, the simulated data
with noise free, low noises(= 1/6), and high noises(= 1/3) are used. In Equation (2), the valueEemnstis set to
be 1.197374 V.

The numerical results for all DE variants are reported inldal, 5, and 6 for the simulated data with noise free,
low noise, and high noise, respectively. All results areraged over 100 independent runs. In these tablesAie
values are calculated by Equation (20), where “A” means thenanking-based DE, and “B” means the ranking-
based DEAR > 1 indicates that the ranking-based DE converges fasterithamrresponding non-ranking-based
DE. The overall best results within all DE variants are higfled in grey boldface. The boldface means that
ranking-based DE is better than its corresponding noningrRE. In addition, the convergence graphs are plotted in

Gonvergence curves innoise-ree. ‘Convergence curves i low-noise with 5-116 Convergence curves in high-naise wih &=112

SSE (og)
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(a) (b) (c)
Figure 1: Convergence graphs of all DE variants on simuldtgd. 1(a) for noise free; 1(b) for low noise; and 1(c) forhhimise.
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Figure 2: Comparisons between the simulated data and thelroales obtained from the identified parameters by the-BiE&L method. 2(a)

@)

for noise free; 2(b) for low noise; and 2(c) for high noise.

(b)

Table 7: Identified parameters by the rank-DEGL method.

Parameter| Actual value noise free low noise high noise data obtained from [9]
&1 -0.944957 -1.055896+ 0.1041354 | -1.03897+ 0.1305666 | -1.013888+ 0.1251215 -1.028024+ 0.132893

& 0.00301801 0.0031815+ 3.54E-04 | 0.0028223t 3.83E-04 | 0.0027366+ 3.54E-04 0.0032816+ 4.10E-04
&3 7.401E-05 6.20E-05+ 1.56E-05 3.78E-05+ 5.83E-06 3.73E-05+ 4.63E-06 9.31E-05+ 1.28E-05
& -1.88E-04 -1.88E-04+ 1.47E-10 -1.82E-04+ 6.42E-09 -1.75E-04+ 1.16E-08 -1.33E-04+ 3.28E-09

A 23 23.000272+ 7.49E-04 | 23.999999+ 3.76E-06 | 23.999999:+ 5.35E-06 13.176884+ 0.0011191
R: (Q) 0.0001 1.00E-04+ 3.33E-07 1.00E-04+ 6.77E-10 1.00E-04+ 3.43E-10 8.00E-04+ 2.02E-09
B (V) 0.02914489 || 0.0291449: 6.93E-08 | 0.0342694: 1.49E-06 | 0.038843t 2.89E-06 0.0145172+ 2.38E-06
SSE 5.06E-12+ 1.81E-11 0.2960783+ 4.20E-06 | 1.1910132+ 8.05E-06 0.1931168+ 4.14E-07

Figure 1. The comparisons between the simulated data anddblel curve obtained from the identified parameters
by the rank-DEGL method are given in Figure 2. Note that inlds#, 5, and 6, “+” means that the ranking-based DE
is significant better than its corresponding non-rankiagdal DE in terms of the SSE value according to the Wilcoxon
signed-rank test at = 0.05. The Wilcoxon'’s test [41] is a non-parametric statidtteat to evaluate the differences
between two algorithms.

According to the results shown in Tables 4, 5, and 6, it isrdleat our proposed ranking-based DEs consistently
provide better results than their corresponding non-ragikiased DEs with respect to the SSE and NFEs values in
all cases. It means that the ranking-based mutation opesaéble to enhance the performance of the DE variants.
The ranking-based DEs not only obtain more accurate solsitiout also they require less NEFs to reach the target
fitness. Considering the standard deviation of SSE and NF&sge that all ranking-based DEs obtain smaller stan-
dard deviation values than their corresponding non-ragikiased DEs, which mean that the ranking-based mutation
operator is able to enhance the robustness of the originahBods. In addition, thARvalues and the convergence
graphs shown in Figure 1 indicate that the ranking-based ¢Eserge faster compared with their corresponding
non-ranking-based DEs. For example, in Table 4, rank-jDéhiaverage 47% faster than jDE, sinfkR = 1.47. Al-
so, rank-SaDE, rank-JADE, rank-CoDE, and rank-DEGL cayw&l % 10% 57%, and 8% faster than SaDE, JADE,
CoDE, and DEGL, respectively. In terms of the success raten Tables 4, 5, and 6, we can see that the ranking-
based DEs get higher, or equal ®Rvalue compared with their corresponding non-ranking-8&xes in all cases.
Considering the CPU time consumed by each DE method, we csemabthat the ranking-based DEs only require a
bit higher time than their corresponding non-ranking-lbd3Es.

From Tables 4, 5, and 6, it is clear to see that rank-DEGL obtifie best results among all 10 DE variants in terms
of the SSE and NFEs criteria. Therefore, in order to veriélrformance of parameter identification of rank-DEGL,
the identified parameters in the simulated data with noese, flow noise, and high noise are reported in Table 7. All
results are statistically calculated over 100 times. Thimogd parameters are returned to the mathematical model,
and theV-I characteristics are plotted in Figure 2. As shown in the &gutheV-1 curves obtained by rank-DEGL
are highly coincide with the simulated data even in the presef noise. Moreover, in the noise free case, Table 7
shows that the mean values of the identified parameters lkyD&GL are very close to their corresponding actual
values in 5 out of 7 parametelise(, &, &4, A, R, andB). Only in two parameterst{ andé&s), their mean values are
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Table 8: Numerical results on the data obtained from [9]. fEinget fitnesd (x*) is 0.19311665.

Algorithm SSE NFEs time in seconds| SR AR
DE 0.2192032+ 0.0175238 9205.00+ 1222.80 | 0.102 + 0.008 | 0.20 1.46
rank-jJDE | 0.1942431 + 0.0012399 + 6292.00 + 1016.50 0.109+ 0.004 1.00 i
SaDE | 0.1931228+ 3.40E-05 4220.00+ 768.18 0.107 +0.006 | 1.00 157
rank-SaDE | 0.1931167 + 5.27E-08 + 2684.50 + 380.97 0.115+ 0.008 | 1.00 )
JADE 0.195819+ 0.0024981 7624.74+ 1057.42 0.107 +0.006 | 0.97 1.13
rank-JADE | 0.1946224 + 0.0012402 + 6742.00 + 1201.78 0.114+ 0.008 1.00 i
CoDE | 0.1933435: 1.85E-04 5293.20+ 778.79 0.101 +0.008 | 1.00 163
rank-CoDE | 0.1931182 + 1.23E-06 + 3245.70 + 464.20 0.107+ 0.006 1.00 i
DEGL 0.1931171+ 5.92E-07 1645.70+ 303.98 0.111 + 0.005 1.00 1.16
rank-DEGL 0.193117 + 4.14E-07 + | 1423.80 +157.38 0.117+0.008 | 1.00 )
. Convergence curves in experimental data
10 T T T T T T T
- = =DE
= © = rank-DE
v SaDE
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Figure 3: Convergence graphs of all DE variants on the detziradgl from [9].

not close to their corresponding actual values. The reasirat there are wider ranges for these two parameters when
the optimized SSE value obtained [13]. Also, in this case nlean and standard deviation values of SSE obtained by
rank-DEGL are respectively®6E — 12 and 181E — 11, which indicate that rank-DEGL is able to get the neairoal

SSE value over all 100 runs.

5.3. Parameter identification with the data obtained frorh [9

As shown in Section 5.2, our proposed ranking-based DE ggtpr@mising results for parameter identification
of PEMFC model with simulated data. In this section, the efeentioned DE variants are further used to identify
the parameters of PEMFC model with tfid data obtained from the PEMFC literature. The data origsatam the
graphical diagrams in [9]. Originally, in [9] there are falata sets. In this work, we only choose one out of four data
set. In this data set, the PEMFC stack parameter values ardtopy conditions are shown in Table 1. The 10 DE
variants are applied to optimize the seven parameters offREModel with parameter ranges shown in Table 2. Each
algorithm is performed over 100 independent runs. The teané shown in Table 8, and the identified parameters by
rank-DEGL is reported in Table 7. The convergence graphsteeid-1 characteristics of rank-DEGL are respectively
plotted in Figures 3 and 4.

From Table 8, we can see that in this case our proposed rabkisgd DEs also consistently obtain better per-
formance than their corresponding non-ranking-based DEsy can provide more accurate solutions and converge
faster. Moreover, as shown in Figure 4, the voltage-curchatacteristics obtained by the rank-DEGL method are
in very good agreement with the data obtained from [9]. Wbpect to thd/-1 data obtained from the literature,
even without the prior knowledge, the rank-DEGL methodiisstacticable for parameter identification of PEMFC
models.

5.4. Comparison with other evolutionary algorithms
In the previous subsections, the performance of rankirsgth®E variants has been verified to identify the pa-
rameters of PEMFC model, and rank-DEGL obtains the oveest kesults. In order to make our technique be more
10



Figure 4: Comparisons between the data obtained from [9itencthodel curve obtained from the identified parameters éyahk-DEGL method.
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Table 9: Comparison on the SSE values among different évohuty algorithms.

Item rcGA FEP ABC CLPSO rank-DEGL

noise-free 1.1885488+ 0.910582 | 0.8799576+ 0.6026365 | 0.0361158 0.0358517 | 0.0115714 + 0.0166569F | 5.06E-12 + 1.81E-11
low-noise 1.2601279: 0.7159975 | 1.1679728 0.5156267 | 0.3442355: 0.0512642 | 0.3172881 + 0.0234083" | 0.296078 + 4.20E-06
high-noise 2.101808+ 0.7200706 | 2.1187793 0.5195852 | 1.2323664+ 0.0381407 | 1.2157016 + 0.0246971* | 1.191013 + 8.05E-06
data obtained from [9]| 1.9418167 1.9568087 | 1.082015Q- 0.5892504 | 0.2606866+ 0.0569356 | 0.2051803 + 0.02139067 | 0.193117 + 4.14E-07

f indicates that rank-DEGL is significant better than its cetiipr according to the Wilcoxon signed-rank testrat 0.05.

Table 10: Compared the SSE value of rank-DEGL with the reporésults for the data obtained from [9].

Algorithm & & & &4 A R: (Q) B (V) SSE

rank-DEGL -1.0192 | 3.3186E-03 | 9.7999E-05| -1.3285E-04 | 13.1772 | 8.0000E-04 | 0.0145 | 0.1931
HGA [9] -0.9450 | 3.0180E-03 | 7.4010E-05| -1.8800E-04 | 23.0000 | 1.0000E-04 | 0.0291 | 4.8469
SGA[9 -0.9473 | 3.0641E-03 | 7.7134E-05| -1.9390E-04 | 19.7650 | 2.7197E-04 | 0.0240 | 5.6530
AIS [22 -0.9518 | 3.0823E-03| 7.7430E-05| -1.8800E-04| 22.9121 | 1.0179E-04 | 0.0330 | 2.6895
MPSO [18] -0.9480 | 3.0857E-03| 7.7990E-05| -1.8800E-04| 20.7624 | 2.8666E-04 [ 0.0297 | 3.3881
BIPOA [23] -0.8016 | 2.6673E-03 | 8.1288E-05| -1.2713E-04| 13.5158 | 8.0000E-04 | 0.0324 | 1.9350
ARNA-GA[14] | -0.9470 | 3.0586E-03 | 7.6059E-05| -1.8800E-04 | 23.0000 | 1.1026E-04 | 0.0329 | 2.9518

evident, the performance of rank-DEGL is further compar&t wther evolutionary algorithms (EAs). Four repre-
sentative EAs are selected: i) real-coded genetic algor{tcGA) [42], fast evolutionary programming (FEP) [43],
artificial bee colony (ABC) [44], and comprehensive leagnPSO (CLPSO) [45]. The parameter settings of these
four algorithms are set as recommended in their originaddiiure. The SSE values of different algorithms are report-
ed in Table 9. All results are averaged over 100 runs. Theatidest and the second best results within all compared
EAs are highlighted i grey boldface andboldface, respectively. In addition, the Wilcoxon'’s test is also pial to

test the significance between rank-DEGL and other EAS.irfdicates that rank-DEGL is significant better than its
competitor according to the Wilcoxon signed-rank test at 0.05.

From Table 9, it is clear to observe that rank-DEGL gets theral/best results compared with other four EAs
in all cases. Moreover, the SSE values of rank-DEGL are mocarate and significantly better than other EAs.
Additionally, rank-DEGL provides the smallest standardidiéon values of the SSE values over 100 runs in the four
cases, which means that rank-DEGL is the most robust one@therfive EAs.

5.5. Compared with reported results

In Section 5.3, th&/-I data is obtained from [9]. In the PEMFC literature, there @treer studies that used the
data reported in [9]. Therefore, in order to further indécttie superior performance of rank-DEGL, its identified
parameters and SSE value are compared with the reportelisre§tiHGA [9], SGA [9], AIS [22], MPSO [18],
BIPOA [23], and ARNA-GA [14]. Note that since the data usedhis work are digitized from th¥-I curve in [9],
there may be some deviations between the data used in the kieoature. To make a fair comparison, the parameters
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reported in the above literature are fed back to the PEMFCeinwih theV-I data used in this work to calculate
the SSE values. The results are shown in Table 10. The beghargbcond best SSE values are highlighted in
grey boldface andboldface, respectively. From the results, it is clearly to obsenag the proposed rank-DEGL
method is able to obtain the best SSE value, and the seconis$ ¢ine BIPOA. However, the SSE value of rank-
DEGL is one order of magnitude less than that of BIPOA. Theeefwe can conclude that rank-DEGL is also very
competitive compared with the reported results of the nasthpublished in the PEMFC literature.

6. Conclusions

In this paper, we present the ranking-based mutation apei@tthe DE algorithm. Our proposed ranking-based
mutation is very simple and generic, and it does not signiflgancrease complexity of the original DE algorithm.
The ranking-based mutation is incorporated into five regmegtive DE variants to solve the parameter identificatfon o
PEMFC model. The main contributions of this work are the ps&al ranking-based DE variants and their application
to the parameter identification problems of PEMFC modelspdexents have been conducted on both simulated
data and the data obtained from the literature to verify #mégomance of our approach. According to the numerical
results, we can conclude that

e Our proposed ranking-based mutation operator accelettagsrocess of parameter identification of PEMFC
model, and hence, it can reduce the computational effodsligeve an optimal design.

e The ranking-based mutation operator can consistentlyrezghéne performance of most of DE variants when
solving the parameter identification of PEMFC model in tewhshe solution quality, the convergence rate,
and the success rate. More specifically, ranking-based BE®btain smaller SSE values, smaller standard
deviation values of SSE, less NFEs, higher success ratéasieil convergence speed when comparing with the
corresponding non-ranking-based DEs.

e In overall, the rank-DEGL method obtains the best resultsragrall compared DE variants. In addition, it
obtains significantly better results compared with othesEA

e The voltage-current characteristics obtained by the @BEKL method are in very good agreement with both
the simulated data and the data originated from the litegatu

Due to the superior performance obtained by the rank-DEGthatk it can be an efficient alternative to other
complex parameter identification problems of fuel cell med&herefore, we recommend using rank-DEGL for other
complex optimization problems in the field energy. In outfetwork, we will try to verify this expectation.
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