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Abstract. To find solutions as close to the Pareto front as possible, and to make
them as diverse as possible in the obtained non-dominated front is a challeng-
ing task for any multiobjective optimization algorithm.ε-dominance is a concept
which can make genetic algorithm obtain a good distribution of Pareto-optimal
solutions and has low computational time complexity,and the orthogonal design
method can generate an initial population of points that are scattered uniformly
over the feasible solution space.In this paper, combiningε-dominance and orthog-
onal design method, we propose a novel Differential Evolution (DE) algorithm
for multiobjective optimization .Experiments on a number of two- and three-
objective test problems of diverse complexities show that our approach is able
to obtain a good distribution with a small computational time in all cases. Com-
pared with several other state-of-the-art evolutionary algorithms, it achieves not
only comparable results in terms of convergence and diversity metrics, but also a
considerable reduction of the computational effort.

1 Introduction

Evolutionary Algorithms (EAs) (including genetic algorithms, evolution strategies, evo-
lutionary programming, and genetic programming) are heuristics that have been suc-
cessfully applied in a wide set of areas. In real-world optimization applications, it is
often hard to formulate the optimization goal as a scalar function. Typically, there are
several criteria or objectives, and not unusually, these objectives stay in conflict with
each other. Simply combining the different associated objective functions in a linear
way is usually unsatisfactory. Instead, one is interested in a so-called Pareto optimal
set of solutions, i.e., any solution that cannot be improved with respect to one objec-
tive without worsening the situation with respect to the other objectives. Consequently,
there are two goals in multiobjective optimization: (i) to find solutions as close to the
Pareto front as possible, and (ii) to find solutions as diverse as possible in the obtained
non-dominated front. Satisfying the two goals is a challenging task for any multiobjec-
tive optimization algorithm. Special strategies are therefore needed to deal with such
multiobjective optimization problems. Since EAs work on populations of candidate so-
lutions, they represent a promising basic framework for multiobjective optimization.



In the last few years, many variants and extensions of classical EAs have been devel-
oped for Multiobjective Optimization Problems (MOPs). Such as Nondominated Sort-
ing GA (NSGA-II) [1], Strength Pareto EA (SPEA2) [2], Vector Evaluated GA (VEGA)
[3], Hajela and Lins GA (HLGA) [4], Pareto-based Ranking Procedure(FFGA) [5],
Niched Pareto GA (NPGA) [6], Pareto Archived Evolution Strategy (PAES) [7], and so
on. Among these, the NSGA-II by Debet al. [1] and SPEA2 by Zitzleret al. [2] are the
most popular approaches.

Differential evolution (DE) [8] is a novel evolutionary algorithm for faster optimiza-
tion, which mutation operator is based on the distribution of solutions in the population.
And DE has won the third place at the first International Contest on Evolutionary Com-
putation on a real-valued function test-suite. Unlike Genetic Algorithm (GA) that uses
binary coding to represent problem parameters, DE is a simple yet powerful population
based, direct search algorithm with the generation-and-test feature for globally optimiz-
ing functions using real valued parameters. Among the DE’s advantages are its simple
structure, ease of use, speed and robustness. Price & Storn [8] gave the working prin-
ciple of DE with single strategy. Later on, they suggested ten different strategies of
DE [9]. It has been successfully used in solving single-objective optimization problems
[10]. Hence, several researchers have tried to extend it to handle MOPs. Such as Pareto
DE (PDE) [11,12], Pareto DE Approach (PDEA) [13], Multiobjective DE (MODE)
[14], and DE for Multiobjective Optimization (DEMO) [15].

Combing orthogonal array (OA) and factor analysis (such as the statistical optimal
method),Orthogonal design method [16] is developed to sample a small and represen-
tative set for all possible combinations to obtain good combinations. Recently, some
researchers applied the orthogonal design method incorporated with EAs to solve op-
timization problems. Leung and Wang [17] incorporated orthogonal design in genetic
algorithm for numerical optimization problems and found such method was more ro-
bust and statistically sound than the classical GAs. OMOEA [18] and OMOEA-II [19]
presented by Sangyou Zenget al. adopted the orthogonal design method to solve the
MOPs. Numerical results demonstrated the efficiency of the two tools.

ε-MOEA [20] is a steady-state Multiobjective EA (MOEA) based on theε-dominance
concept introduced in [21]. Also, it incorporated efficient parent and archive update
strategies to obtain a good distribution of Pareto-optimal solutions within less compu-
tational time. Theε-dominance does not allow two solutions with a differenceεi in the
i-th objective to be nondominated to each other, thereby allowing a good diversity to be
maintained in the population. Besides, the method is quite pragmatic, because it allows
the user to choose a suitableεi depending on the desired resolution in thei-th objective
[20].

Inspired by the ideas from OGA/Q [17] andε-MOEA [20], in this paper, we pro-
pose an extension of DE algorithm based on theε-dominance concept and orthogonal
design method. Our proposed DE algorithm is namedε-ODEMO. Our algorithm has
three novelties. Firstly, the proposed approach adopts orthogonal design method with
quantization technique to generate an initial population of points. And then, it uses the
DE/rand/1/exp strategy to produce new candidate solutions. Thirdly,ε-dominance con-
cept and efficient parent and archive update strategies introduced in [20] are used to up-



date the archive and population. To evaluate the efficiency of the proposedε-ODEMO,
we test it on a number of two- and three-objective problems.

The rest of this paper is organized as follows. In Section 2, we briefly introduce the
background ofε-MOEA. In Section 3, we describe the function optimization problems
in conventional DE. A detailed description of the proposedε-ODEMO algorithm is pro-
vided in Section 4. In Section 5, we test our algorithm through a number of two- and
three-objective problems. This is followed by results and discussions of the optimiza-
tion experiments forε-ODEMO in Section 6. The last section, Section 7, is devoted to
conclusions and future studies.

2 Background ofε-MOEA

ε-MOEA [20] is a new approach for MOPs, which is a steady-state MOEA based on
theε-dominance concept [21]. Inε-MOEA, the search space is divided into a number of
grids (or hyper-boxes) and diversity is maintained by ensuring that a grid or hyper-box
can be occupied by only one solution. There are two co-evolving populations: (i) an EA
populationP (t) and (ii) an archive populationE(t) (wheret is the iteration counter).
The archive population stores the nondominated solutions and is updated iteratively
with the ε-dominance concept. And the EA population is updated iteratively with the
usual domination.ε-MOEA is described as follows:

Algorithm 1 ε-MOEA algorithm
Generate an initial populationP (0) uniform randomly
Create the archiveE(0) with theε-nondominated solutions ofP (0)
while the halting criterion is not satisfieddo

Choose one solution each fromP (t) andE(t) for mating
Use crossover and mutation to produceλ offspring solutions
Compare each of these offspring solutions with the archive and the EA population to update
them respectively

end while

As mentioned above, The archive population is updated by the offspring solutions
iteratively with theε-dominance concept. Inε-MOEA, every solution in the archive is
assigned an identification array (B) which can be calculated by:

Bj(f) =

{⌊
(fj − fmin

j )/εj

⌋
, for minimizingfj⌈

(fj − fmin
j )/εj

⌉
, for maxmizingfj

(1)

wherefmin
j is the minimum possible value of thej-th objective (if the decision-makers

don’t know the minimum possible value exactly, usefmin
j = 0) andεj is the allowable

tolerance in thej-th objective beyond which two values are significant to the user. This
εj value is similar to theε used in theε-dominance definition [21]. The identification
arrays make the whole search space into grids havingεj size in thej-th objective [20].
Theε-domination is used first when the archive is updated with the offspring solutions.
More details about theε-MOEA can be found in [20].



3 Function Optimization by Conventional DE

A general MOP includes a set ofn parameters (decision variables), a set ofk objective
functions, and a set ofm constraints. Objective functions and constraints are functions
of the decision variables. The optimization goal is to

minimize : y = f(x) = (f1(x), f2(x), · · · , fk(x))

subject to : e(x) = (e1(x), e2(x), · · · , em(x)) ≥ 0

where : x = (x1, x2, · · · , xn) ∈ X (2)

y = (y1, y2, · · · , yk) ∈ Y

and x is the decision vector,y is the objective vector,X denotes as the decision
space, andY represents the objective space. Generally, for each variablexi it satisfies
a constrained boundary

li ≤ xi ≤ ui, i = 1, 2, · · · , n (3)

The constraintse(x) ≥ 0 determine the set of feasible solutions.
The algorithm of DE with the DE/rand/1/exp strategy [8] is as follows:

1. Generate the initial population withNP individuals, and set current iterationk = 1.
Each individual is taken as a real valued vectorXi, ∀i ∈ {1, 2, · · · , NP}, where
Xis are objective variables.

2. Evaluate the fitness score for each individualXi, ∀i ∈ {1, 2, · · · , NP}, of the
population based on the objective function,f(Xi).

3. Stop if the halting criterion such ask = MAX GEN is satisfied; otherwise, continue.
4. For each individuali, ∀i ∈ {1, 2, · · · , NP}, selectr1, r2, r3 uniform randomly

from O ∈ {1, 2, · · · , NP} with r1 6= r2 6= r3 6= i.
5. Generate the offspring using DE crossover-mutation operator as following:

Mutation:
X ′

i = Xr1 + F × (Xr2 −Xr3) (4)

whereF > 0 is a scaling factor, andxr1 is known as the base vector. The trial
pointYi is found from its parentsXi andX ′

i using the following crossover rule:
Crossover:

Y j
i =

{
X ′j

i if Rj ≤ CR or j = t

Xj
i if Rj > CR andj 6= t

(5)

wheret is a randomly chosen integer in the setQ ∈ {1, 2, · · · , n}; the superscript
j represents thej-th component of corresponding vectors;Rj ∈ (0, 1), drawn uni-
formly for eachj. And CR > 0 is the user defined probability of the crossover
operator.

6. Select each trial vectorYi for thek+1 iteration using the acceptance criterion:replace
Xi ∈ S with Yi if f(Yi) ≺ f(Xi), otherwise retainXi. Setk = k + 1 and go to
Step 3.

4 Our Approach: ε-ODEMO

Here, we propose an extension DE algorithm calledε-ODEMO for MOPs.



4.1 Orthogonal Initial Population

Before solving an optimization problem, we usually have no information about the
location of the global minimum. It is desirable that an algorithm starts to explore those
points that are scattered evenly in the feasible solution space. In our presented manner,
the algorithm can evenly scan the feasible solution space once to locate good points for
further exploration in subsequent iterations. As the algorithm iterates and improves the
population of points, some points may move closer to the global minimum.We apply
the quantization technique and the orthogonal design to generate this initial population.

4.1.1 Design of the orthogonal arrayAlthough the proposed algorithm may require
different orthogonal arrays (OAs) for different optimization problems. We will only
need a special class of OAs. To design an OA, in this research, we useLR(QC) to
denote the OA with different levelQ, whereQ is odd and useR = QJ to indicate the
number of the rows of OA, whereJ is a positive integer fulfilling

C =
QJ − 1

Q− 1
(6)

C denotes the number of the columns in the above equation. The orthogonal array
needs to find a properJ to satisfy

minimize : R = QJ

subject to : C ≥ n (7)

wheren is the number of the variables. In this study, we adopt the algorithm described
in [17] to construct an orthogonal array. In particular, we useL(R, C) to indicate the
orthogonal array; anda(i, j) to denote the level of thejth factor in theith combination
in L(R, C). If C > n, we delete the lastC − n columns to get an OA withn factors.

4.1.2 Quantization For one decision variable with the boundary[l, u], we quantize the
domain intoQ levelsα1, α2, · · · , αQ, where the design parameterQ is odd andαi is
given by

αi =





l i = 1
l + (i− 1)( u−l

Q−1
) 2 ≤ i ≤ Q− 1

u Q

(8)

In other words, the domain[l, u] is quantizedQ− 1 fractions, and any two successive
levels are same as each other.

4.1.3 Generation of Initial Population After constructing a proper OA and quantizing
the domain of each decision variable, we can generate the initial population which can
scatter uniformly over the feasible solution space. The algorithm for generating the
initial population is omitted here, please refer [17] for details. Regularly, the number of
the rows of the OA is larger than the population sizeNP , so we first create the archive
with ε-nondominated solutions ,And then we generate the initial EA population from
the archive and the orthogonal solutions. Ifar size > NP , we selectNP solutions
from the archive randomly; or all of thear size solutions in the archive are inserted
the EA population, and the remainderNP − ar size solutions are selected from the
orthogonal solutions randomly.



4.2 Producing New Solutions With DE/rand/1/exp Strategy

In this study, we use DE/rand/1/exp strategy described in Section 3 to produce the off-
spring solutions. Firstly, when the size of the archivear size ≥ 5, we select the mating
parents from the archive to generate new solutions, which are used to update the archive
with ε-domination and EA population with usual domination respectively. Secondly, we
get the mating parents from the EA population to generate new solutions and update the
archive and EA population.

4.3 Procedure ofε-ODEMO

The procedure ofε-ODEMO is similar to theε-MOEA with the exception that inε-
ODEMO we generate the initial population with orthogonal design method and use
DE/rand/1/exp to produce new solutions. The algorithm is followed by

Algorithm 2 The procedure of the proposedε-ODEMO
Generate a proper OA and generate the orthogonal solutionsOS
Create the archiveE(0) with theε-nondominated solutions ofOS
Create the orthogonal initial populationP (0) from E(0) andOS
while The maximum number of the fitness function evaluations (NFE) does not reachdo

if ar size ≥ 5 then
for i = 1 to ar size do

Produce the new solution with DE/rand/1/exp with archive members
Update the archive usingε-dominance concept
Update the EA population with usual domination

end for
end if
for i = 1 to NP do

Produce the new solution with DE/rand/1/exp with EA population members
Update the archive usingε-dominance concept
Update the EA population with usual domination

end for
end while

5 Simulation Results

In order to test the performance ofε-ODEMO a number of two- and three-objective
problems were used, where two-objective test problems (ZDT1, ZDT2, ZDT3, ZDT4
and ZDT6) are introduced in [22], and also have been used in [1,13,14,15,18]. And
three-objective test problems (DTLZ1 and DTLZ6) are introduced in [23]. The brief in-
formation of the test problems is described in Table 1, wherek is the number of the ob-
jective functions andn is the dimension of the decision vector. We also test these prob-
lems with three other approaches: (i)ε-DEMO, which is similar toε-ODEMO except
using random initial population, (ii)ε-MOEA proposed in [20], and (iii)ε-OMOEA,



which uses orthogonal initial population mentioned above instead of the random initial
population inε-MOEA.

Table 1.Brief information of the test problems in this study.

Problemk n Property
ZDT1 2 30 high dimensionality, convex Pareto front
ZDT2 2 30 high dimensionality, non-convex Pareto front
ZDT3 2 30 high dimensionality, discontinuous Pareto front
ZDT4 2 10 many (219) local Pareto fronts
ZDT6 2 10 low density of solutions near Pareto front

DTLZ1 3 7 many (115 − 1) local Pareto fronts, linear hyper-plane Pareto front
DTLZ6 3 22 high dimensionality,219 disconnected Pareto-optimal regions

5.1 Performance Measures

There are three metrics used in this study. The smaller the value of these metrics, the
better the performance of the algorithm.

• Convergence metricγ [1]: It measures the distance between the obtained nondom-
inated frontQ and the setP ∗. of Pareto-optimal solutions.

• Diversity metric ∆ [1]: It measures the extent of spread achieved among the non-
dominated solutions.

• Generational distanceGD [15]: It is similar to the convergence metric. It mea-
sures the distance between the obtained nondominated frontQ and the setP ∗. of
Pareto-optimal solutions.

For all the three metrics, we need to know the true Pareto front for a problem. Since we
are dealing with artificial test problems, the true Pareto front is not difficult to be ob-
tained. In our experiments we use uniformly spaced Pareto-optimal solutions as the ap-
proximation of the true Pareto front (For ZDT test problems, they were made available
online at http://www.scis.ecu.edu.au/research/wfg/datafiles.html. And for DTLZ test
problems, they were made available online at http://www.lania.mx/˜ccoello/EMOO/testfuncs/.).

5.2 Experimental Setup

For all experiments, we used the following parameters:

• Population size:NP= 100;
• Number of fitness function evaluations:NFE = 20,000, which is less than the com-

pared approaches (NSGA-II, SPEA, PAES, PDEA, MODE, and DEMO/parent),
where theNFE of them is 25,000;

• Probability of crossover:CR= 0.5;
• Scaling factor:F = 0.5;
• Positive integer in orthogonal design:J = 2;
• Number of the quantization levels: ifn > 29, Q = 29; elseQ = 21;
• Theε values for different problems are described in Table 2 in order to get roughly

100 solutions in the archive after 20,000 fitness function evaluations.



Table 2.Theε values for different test problems.

ZDT1 ZDT2 ZDT3 ZDT4 ZDT6 DTLZ1 DTLZ6
ε [0.0075,0.0075] [0.0075,0.0075] [0.0025,0.0035] [0.0075,0.0075] [0.0075,0.0075] [0.02,0.02,0.05] [0.05,0.05,0.05]

5.3 Experimental Results

The performance of the four methods are compared on all the test problems over ten in-
dependent trials each respectively. The average execution time (in seconds) in each run
using a PC with an Intel Celeron IV 2.53 GHz processor and 512MB memory running
Microsoft Windows XP operating system is shown in the column labeled Time(s).

5.3.1 Two-objective Test ProblemsTables 3 and Table 4 present the mean and vari-
ance of the values of the convergence and diversity metric, averaged on ten runs. Results
of other algorithms are taken from the literature (see [1] for the results and parameter
settings of both versions of NSGA-II, SPEA and PAES, [13] for PDEA, [14] for MODE,
and [15] for DEMO/parent). Although in [15] they proposed three variants of DE algo-
rithm for MOPs, DEMO/parent obtained almost the same performance compared with
the other two variants. So we only select the results of DEMO/parent to compare with
our approaches.

We also present the additional comparison of generational distance results in Tables
5 for PDEA [14] and DEMO/parent [15]. Once more, we present the mean and variance
of the values of generational distance, averaged over 30 runs.

Fig. 1 shows the nondominated fronts obtained by a single run ofε-ODEMO. Table
6 summarizes the values of the convergence and diversity metrics for the nondominated
fronts from Fig. 1.

5.3.2 Three-objective Test ProblemsWith respect to three-objective problems DTLZ1
and DTLZ2, we only make comparisons onε-ODEMO,ε-DEMO,ε-OMOEA,ε-MOEA.
Table 7 shows the convergence metric values of the four approaches, averaged on 10
runs.

Fig. 2 and Fig. 3 shows the nondominated fronts obtained by a single run ofε-
ODEMO andε-OMOEA. Table 8 summarizes the values of the convergence metric for
the nondominated fronts from Fig. 2 and Fig. 3.

6 Results Analysis

6.1 Two-objective Test Problems

For the five two-objective problems, [15] obtained superior results on these problems
and gave a good discussion of the comparison between DEMO with NSGA-II, SPEA,
PAES, PDEA and MODE. Hence, here we only discuss the comparison between our
approaches and DEMO. From Table 3 - 6 and Fig. 1, we can see that
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Fig. 1. Non-dominated solutions of the final archive obtained byε-ODEMO on five ZDT test
problems (see Table 6 for more details on these fronts). Where POF means Pareto-optimal front.
The presented fronts are the outcome of a single run ofε-ODEMO.



Table 3. Statistics of the average results on test problems ZDT1, ZDT2, ZDT3 and ZDT4 over 30 independent runs. The
results obtained by the proposedε-ODEMO are shown inboldface. NA = Not Available.

Algorithm
ZDT1

Convergenceγ Diversity∆ Time (s)
NSGA-II (real-code) [1] 0.033482±0.004750 0.390307±0.001876 NA

NSGA-II (binary-code) [1] 0.000894±0.000000 0.463292±0.041622 NA
SPEA [1] 0.001799±0.000001 0.784525±0.004440 NA
PAES [1] 0.082085±0.008679 1.229794±0.004839 NA

PDEA [13] NA 0.298567±0.000742 NA
MODE [14] 0.005800±0.000000 NA NA

DEMO/parent [15] 0.001083±0.000113 0.325237±0.030249 NA
ε-ODEMO 0.000761±0.000058 0.360154±0.011059 2.553
ε-DEMO 0.040202±0.018254 0.387340±0.040272 0.925

ε-OMOEA 0.000721±0.000023 0.358369±0.012453 6.201
ε-MOEA 0.020125±0.012800 0.364210±0.020230 6.188

Algorithm
ZDT2

Convergenceγ Diversity∆ Time (s)
NSGA-II (real-code) [1] 0.072391±0.031689 0.430776±0.004721 NA

NSGA-II (binary-code) [1] 0.000824±0.000000 0.435112±0.024607 NA
SPEA [1] 0.001339±0.000000 0.755148±0.004521 NA
PAES [1] 0.126276±0.036877 1.165942±0.007682 NA

PDEA [13] NA 0.317958±0.001389 NA
MODE [14] 0.005500±0.000000 NA NA

DEMO/parent [15] 0.000755±0.000045 0.329151±0.032408 NA
ε-ODEMO 0.000764±0.000035 0.276872±0.007013 2.502
ε-DEMO 0.190147±0.081243 0.615820±0.051986 0.621

ε-OMOEA 0.000760±0.000015 0.283013±0.045573 6.567
ε-MOEA 0.034273±0.020354 0.402345±0.077234 6.342

Algorithm
ZDT3

Convergenceγ Diversity∆ Time (s)
NSGA-II (real-code) [1] 0.114500±0.007940 0.738540±0.019706 NA

NSGA-II (binary-code) [1] 0.043411±0.000042 0.575606±0.005078 NA
SPEA [1] 0.047517±0.000047 0.672938±0.003587 NA
PAES [1] 0.023872±0.000010 0.789920±0.001653 NA

PDEA [13] NA 0.623812±0.000225 NA
MODE [14] 0.021560±0.000000 NA NA

DEMO/parent [15] 0.001178±0.000059 0.309436±0.018603 NA
ε-ODEMO 0.000915±0.000050 0.534329±0.018301 2.453
ε-DEMO 0.008754±0.003127 0.632701±0.025327 0.924

ε-OMOEA 0.006453±0.007956 0.687538±0.032879 6.583
ε-MOEA 0.005689±0.003357 0.673541±0.012586 6.037

Algorithm
ZDT4

Convergenceγ Diversity∆ Time (s)
NSGA-II (real-code) [1] 0.513053±0.118460 0.702612±0.064648 NA

NSGA-II (binary-code) [1] 3.227636±7.307630 0.479475±0.009841 NA
SPEA [1] 7.340299±6.572516 0.798463±0.014616 NA
PAES [1] 0.854816±0.527238 0.870458±0.101399 NA

PDEA [13] NA 0.840852±0.035741 NA
MODE [14] 0.638950±0.500200 NA NA

DEMO/parent [15] 0.001037±0.000134 0.359905±0.037672 NA
ε-ODEMO 0.000712±0.000056 0.354847±0.003956 2.325
ε-DEMO 0.856829±0.702439 0.679368±0.120357 0.903

ε-OMOEA 0.010389±0.009354 0.180321±0.531570 6.237
ε-MOEA 8.137894±5.27689 0.927910±0.025221 5.832



Table 4. Statistics of the results on test problem ZDT6 over 30 independent runs. The results obtained by the proposed
ε-ODEMO are shown inboldface. NA = Not Available.

Algorithm
ZDT6

Convergenceγ Diversity∆ Time (s)
NSGA-II (real-code) [1] 0.296564±0.013135 0.668025±0.009923 NA

NSGA-II (binary-code) [1] 7.806798±0.001667 0.644477±0.035042 NA
SPEA [1] 0.221138±0.000449 0.849389±0.002713 NA
PAES [1] 0.085469±0.006664 1.153052±0.003916 NA

PDEA [13] NA 0.473074±0.021721 NA
MODE [14] 0.026230±0.000861 NA NA

DEMO/parent [15] 0.000629±0.000044 0.442308±0.039255 NA
ε-ODEMO 0.000581±0.000030 0.204142±0.005012 1.559
ε-DEMO 0.875253±0.0573254 1.530470±0.046340 0.387

ε-OMOEA 0.000618±0.000102 0.180214±0.000864 6.189
ε-MOEA 0.675321±0.537001 0.795721±0.068538 6.057

Table 5.Generational distance achieved by PDEA, DEMO andε-ODEMO on the test problems ZDT1, ZDT2, ZDT3, ZDT4
and ZDT6. The results obtained by the proposedε-ODEMO are shown inboldface.

Algorithm
Generational distance

ZDT1 ZDT2 ZDT3 ZDT4 ZDT6
PDEA [13] 0.00062±0.00000 0.00065±0.00000 0.00056±0.00000 0.61826±0.82688 0.02389±0.00329

DEMO/parent [15] 0.00023±0.00005 0.00009±0.00001 0.00016±0.00001 0.00020±0.00005 0.00007±0.00001
ε-ODEMO 0.00010±0.00001 0.00009±0.00000 0.00013±0.00001 0.00009±0.00001 0.00007±0.00000

Table 6.Metric values for the nondominated fronts shown in Fig. 1 byε-ODEMO.

Problem Convergenceγ Diversity∆
ZDT1 0.000799 0.372004
ZDT2 0.000753 0.268825
ZDT3 0.000974 0.383188
ZDT4 0.000750 0.353701
ZDT6 0.000613 0.193624

Table 7.Statistics of the results on test problems DTLZ1 and DTLZ6 over 30 independent runs. The results obtained by the
proposedε-ODEMO are shown inboldface.

Algorithm
DTLZ1 DTLZ6

Convergenceγ Time(s) Convergenceγ Time(s)
ε-ODEMO 0.004389±0.000204 1.872 0.020387±0.000789 3.427
ε-DEMO 1.732468±0.182287 17.320 0.039879±0.025680 1.199

ε-OMOEA 0.003790±0.000158 6.251 0.013768±0.002786 7.350
ε-MOEA 7.789134±1.867357 67.035 0.063201±0.031879 6.044

Table 8.Convergence metric values for the nondominated fronts shown in Fig. 2 and Fig. 3.

Algorithm DTLZ1 DTLZ6
ε-ODEMO 0.004370 0.020155
ε-OMOEA 0.003997 0.013433
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Fig. 2. Non-dominated solutions of the final archive obtained byε-ODEMO andε-OMOEA on
DTLZ1 (see Table 8 for more details on these fronts). The presented fronts are the outcome of a
single run.
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Fig. 3. Non-dominated solutions of the final archive obtained byε-ODEMO andε-OMOEA on
DTLZ6 (see Table 8 for more details on these fronts). The presented fronts are the outcome of a
single run.

– ε-ODEMO andε-OMOEA can get very good results on all of the five test prob-
lems in both goals of multiobjective optimization (convergence to the true Pareto
front and uniform spread of solutions along the front). However, the performance
of ε-DEMO andε-MOEA are not good. This indicates that the orthogonal initial
population can evenly scan the feasible solution space once to locate good points
for further exploration in subsequent iterations.

– For ZDT1, ZDT2 and ZDT3, they have high-dimensionality, but many MOEAs
have achieved very good results on these problems in both goals of multiobjective
optimization. The results for ZDT1, ZDT2 and ZDT3 shown in Table 3 demon-
strate thatε-ODEMO andε-OMOEA can obtain better convergence metrics than
DEMO/parent. But the diversity metrics for ZDT1 and ZDT3 are slightly worse
than DEMO due to the absence of extreme solutions in the Pareto-optimal front
(POF). Since theε-dominance concept is used inε-ODEMO andε-OMOEA, the
extreme solutions usually get dominated by solutions withinε and which are better



in other objectives [20].ε-OMOEA outperformsε-ODEMO on ZDT1 and ZDT2.
But ε-ODEMO gets better results on ZDT3.

– ZDT4 has219 local Pareto fronts, which is difficult for many optimizers. Our pro-
posedε-ODEMO can find the true POF in all of the ten runs and get better re-
sults than DEMO/parent. Another three approaches (ε-OMOEA, ε-MOEA andε-
DEMO) are trapped into a local Pareto front sometimes.

– For the results from ZDT6 in Table 4,ε-ODEMO, ε-OMOEA and DEMO/parent
obtain similar results on convergence metric. However,ε-ODEMO andε-OMOEA
get better results of diversity metric than DEMO/parent. Butε-DEMO andε-MOEA
get worse results in both goals of multiobjective optimization.

– With respect to the generational distance metric, Table 5 shows that among PDEA,
DEMO/parent andε-ODEMO,ε-ODEMO can find the best results on all of the test
problems.

– From Fig. 1, we can see that all of the solutions obtained byε-ODEMO are scattered
on the true POF on all of five test problems.

– Regarding computational cost, we don’t run NSGA-II, SPEA, PAES, PDEA, MODE
and DEMO in my PC, but from the analysis in [20], all of them are more time
consuming than the approaches only used theε-dominance concept. Althoughε-
DEMO requires the least computational time on all of five test problems, it obtains
worse results on the convergence and diversity results. However,ε-ODEMO can
get very good results on all of five test problems in both goals of multiobjective
optimization with less time.

6.2 Three-objective Test Problems

With respect to three-objective problems DTLZ1 and DTLZ2, we summarize the results
in Table 7. And the nondominated fronts obtained by a single run ofε-ODEMO andε-
OMOEA are illustrated in Fig. 2 and Fig. 3. The results show that

– ε-OMOEA obtains the best results of convergence metric on two test problems,
followed by ε-ODEMO. ε-DEMO andε-MOEA find worse results, especially for
DLTZ1.

– On DLTZ1,ε-OMOEA can get a better result thanε-ODEMO with more computa-
tional time. They can all find the true POF. Butε-DEMO andε-MOEA find many
local Pareto solutions in the final archive (ar size À 100), hence, they get the
worst results of convergence.

– With respect to DTLZ6, there is an interesting result from Table 8 and Fig. 3 that al-
thoughε-OMOEA finds a better result of convergence thanε-ODEMO,ε-OMOEA
can obtain only one Pareto-optimal region, however,ε-ODEMO can find the true
POF in all disconnected Pareto-optimal front regions. Therefore,ε-ODEMO was
able to get a better distribution of the Pareto solutions thanε-OMOEA.

From the comparison above, we can conclude that our proposed approach,ε-ODEMO,
produced competitive results based on quality with respect to many other techniques
representative of the state-of-the-art in multiobjective optimization.ε-ODEMO can deal
with two- and three-objective problems of diverse complexities; problems with low



(ZDT4, ZDT6 and DTLZ1) and high (ZDT1, ZDT2, ZDT3 and DTLZ6) dimensional-
ity, with different types of Pareto fronts (convex, non-convex, discontinuous, thin den-
sity and non-uniform spread) and with many local Pareto fronts (ZDT4 and DTLZ1).
Furthermore, the approach is very fast in terms of the computational time on each of
the test problems.

7 Conclusion

In this paper, we proposed a novel DE algorithm based onε-dominance concept and
orthogonal design method for MOPs.ε-ODEMO implies the orthogonal design method
with quantization technique to generate the initial population of points that are scattered
uniformly over the feasible solution space, so that the algorithm can evenly scan the
feasible solution space once to locate good points for further exploration in subsequent
iterations. And it uses DE/rand/1/exp strategy to produce offspring solutions. Mean-
while, in order to find good distribution Pareto solutions with less computational time,
ε-dominance concept and efficient parent and archive update strategies are adopted to
update the archive and population. We tested our proposedε-ODEMO on a number of
two and three objective problems. From the analysis of the results we can conclude that
ε-ODEMO can obtain a good distribution Pareto solutions on all of the test problems.
Moreover, it requires small computational time. Althoughε-OMOEA got slightly bet-
ter results on some test problems (ZDT1, ZDT2, ZDT6 and DTLZ1) thanε-ODEMO,
it needed more computational time and it obtained worse results on ZDT3, ZDT4 and
DTLZ6. Hence, we recommend our proposedε-ODEMO be used in future experimenta-
tion. Our future work consists on using the proposedε-ODEMO to solve the constrained
MOPs and dynamic MOPs.
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