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Abstract

Evolutionary multiobjective optimization has become a very popular topic in the last few years. Since the 1980s, various evolutionary approaches

that are capable of searching for multiple solutions simultaneously in a single run have been developed to solve multiobjective optimization

problems (MOPs). However, to find a uniformly distributed, near-complete, and near-optimal Pareto front in a small number of fitness function

evaluations (NFFEs) is a challenging task for any multiobjective optimization evolutionary algorithm (MOEA). In this paper, we present an

improved differential evolution algorithm to MOPs that combines several features of previous evolutionary algorithms in a unique manner.

It is characterized by a) employing the orthogonal design method with quantization technique to generate the initial population, b) adopting

an archive to store the nondominated solutions and employing the new Pareto-adaptive ε-dominance method to update the archive at each

generation, c) storing the extreme points and inserting them into the final archive in order to remedy one of the limitations of ε-dominance:

the loss of the extreme points in the final archive, and d) using a hybrid selection mechanism in which a random selection and an elitist

selection are alternated in order to allow using the archive solution to guide the search towards the Pareto-optimal front. Experiments have

been conducted on a number of unconstrained real-valued artificial functions of two and three objectives. The results prove the efficiency of

our approach with respect to the quality of the approximation of the Pareto-optimal front and the considerable reduction of NFFEs in these

test problems. By examining the selected performance metrics, our approach is found to be statistically competitive with five state-of-the-art

MOEAs in terms of keeping the diversity of the individuals along the tradeoff surface, finding a well-approximated Pareto-optimal front and

reducing the computational effort.
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1. Introduction

In many real-world optimization applications, it is often hard

to formulate the optimization goal as a scalar function. Typi-

cally, there are several criteria or objectives, and not unusually,

these objectives stay in conflict with each other. As an example,
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in the design of an automobile an engineer may wish to max-

imize crash resistance for safety and minimize weight for fuel

economy. Instead of finding a single solution, the multiobjec-

tive optimization methods try to produce a set of good trade-off

solutions called the non-dominated solutions or Pareto-optimal

solutions from which the decision maker may select one.

The Operations Research community has developed ap-

proaches to solve MOPs since the 1950s [1]. Currently, a wide

variety of mathematical programming techniques to solve
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MOPs are available in the specialized literature. However,

mathematical programming techniques have certain limita-

tions when tackling MOPs (e.g., many of them are susceptible

to the shape of the Pareto front and may not work when the

Pareto front is concave or disconnected). Others require dif-

ferentiability of the objective functions and the constraints. In

addition, there are several stochastic search algorithms used

to solve MOPs in literature, such as Simulated Annealing [2],

Tabu Search [3], and so on. However, most of them only gen-

erate a single solution from each run. In contrast, evolutionary

algorithms (EAs) deal simultaneously with a set of possible

solutions (the so-called population) which allows us to find

several members of the Pareto-optimal set in a single run of

the algorithm. Additionally, EAs are less susceptible to the

shape or continuity of the Pareto front. For example, they can

easily deal with discontinuous and concave Pareto fronts.

Since the 1980s, several multiobjective evolutionary algo-

rithms (MOEAs) have been proposed and applied in MOPs [4] -

[15]. These algorithms share the same purpose - searching for a

uniformly distributed, near-complete, and near-optimal Pareto

front in a small NFFEs for a given MOP. However, this ulti-

mate goal is far from being accomplished by existing MOEAs

described in literature. In one respect, most of the MOPs are

very complicated and require the computational resources to be

homogenously distributed in a high-dimensional search space.

On the other hand, those better-fitted individuals generally have

strong tendencies to restrict searching efforts within local areas

because of the “genetic drift” phenomenon, which results in the

loss of diversity due to stochastic sampling. This phenomenon

is a well-known tradeoff decision pertaining to the efficiency

and efficacy dilemma [9].

Differential evolution (DE) [16] algorithm is a novel evolu-

tionary algorithm for faster optimization, which mutation oper-

ator is based on the distribution of solutions in the population.

DE has won the third place at the first International Contest

on Evolutionary Computation on a real-valued function test-

suite [17]. DE is a simple yet powerful population based, direct

search algorithm with the generation-and-test feature for glob-

ally optimizing functions using real valued parameters. Note,

however, that although DE is encoded by binary code to solve

binary problems recently [18], it is mainly used for continu-

ous optimization problems, and that we consider only contin-

uous problems in this work. Among the DE’s advantages are

its simple structure, ease of use, speed and robustness. Price &

Storn [16] gave the working principle of DE with single scheme.

Later on, they suggested ten different schemes of DE [17].

It has been successfully used in solving single-objective op-

timization problems. Hence, several researchers have tried to

extend it to handle MOPs. Such as Pareto DE [19], Pareto DE

Approach [20], Multiobjective DE [21], DE for Multiobjective

Optimization (DEMO) [22], GDE3 [23], ε-MyDE [24], and so

on. A detailed survey of multiobjective DE has been published

recently [24], in which the advantages and disadvantages of the

most known multiobjective DE methods are discussed. How-

ever, all of previous approaches generated the initial population

randomly and most of them were tested in problems with only

two objectives.

In order to further extend DE to MOPs, in this paper, we

extend our previous work [31] and present an improved multi-

objective DE algorithm called paε-ODEMO, which integrates

established techniques in existing EA’s in a single unique al-

gorithm. The new approach uses the orthogonal design method

with quantization technique to generate the initial population.

Moreover, it adopts an archive to store the nondominated

solutions and employs the new Pareto-adaptive ε-dominance

method [32] to update the archive at each generation. Exper-

iments were carried on 10 unconstrained real-valued artificial

problems and compared with five state-of-the-art MOEAs, we

show that paε-ODEMO outperforms other algorithms in find-

ing a uniformly distributed, near-complete, and near-optimal

Pareto front in a small NFFEs when solving these problems.

The simulation results show that paε-ODEMO is competitive

with the selective MOEAs measured by some performance

metrics.

The rest of this paper is organized as follows. In Section 2, we

give the problem formulation of MOPs; we also briefly intro-

duce the ε-dominance used in MOEAs and orthogonal design

method in EAs. In Section 3, we briefly describe five state-of-

the-art MOEAs that are selected to compare with our approach.

The DE algorithm is described in Section 4. Section 5 presents

an improved paε-ODEMO to deal with MOPs and describes

its main components in detail. In Section 6, we test our algo-

rithm through a number of two- and three-objective artificial

test problems. In addition, the experiment results are compared

with those of the seletive MOEAs. The last section, Section 7,

is devoted to conclusions and future work.
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2. Preliminary

2.1. Problem formulation

Without loss of the generality, an MOP includes a set of n

decision variables, a set of k objective functions, and a set of m

constraints. Objective functions and constraints are functions

of the decision variables. The optimization goal is to

minimize : y = f(x) = (f1(x), · · · , fk(x))

subject to : e(x) = (e1(x), · · · , em(x)) ≥ 0

where : x = (x1, x2, · · · , xn) ∈ X (1)

y = (y1, y2, · · · , yk) ∈ Y

where x is the decision vector, y is the objective vector, X

denotes as the decision space, and Y represents the objective

space. Generally, for each variable xi it satisfies a constrained

boundary

li ≤ xi ≤ ui, i = 1, 2, · · · , n (2)

The constraints e(x) ≥ 0 determine the set of feasible solu-

tions.

Definition 1 (Pareto Dominance) A vector x = (x1, · · · , xk)

is said to Pareto dominate another vector y = (y1, · · · , yk),

denoted as x ≺ y, if and only if

∀i ∈ 1, · · · , k, xi ≤ yi and ∃i ∈ 1, · · · , k, xi < yi

Definition 2 (Pareto Optimality) A solution x ∈ X is said

to be Pareto optimal in X if and only if ¬∃y ∈ X, v ≺

u, where u = f(x) = (f1(x), · · · , fk(x)), v = f(y) =

(f1(y), · · · , fk(y)).

Definition 3 (ε-dominance) Let f , g ∈ �k. Then f is said to

ε-dominance g for some ε > 0, denoted as f ≺ε g, if and only

if for all i ∈ {1, · · · , k}, (1 − ε)fi ≤ gi.

Definition 4 (Pareto-optimal set) The Pareto-optimal set POS

is defined as the set of all Pareto-optimal solutions, i.e., POS =

{x ∈ X|¬∃y ∈ X, f(y) ≺ f(x)}.

Definition 5 (Pareto-optimal front) The Pareto-optimal front

POF is defined as the set of all objective functions values cor-

responding to the solutions in POS, i.e., POF = {f(x) =

(f1(x), · · · , fk(x))|x ∈ X}.

2.2. ε-domination based MOEAs

To achieve a better diversity in multiobjective optimization,

one of the relaxed forms of Pareto dominance, ε-dominance in-

troduced in [30], has become popular in the last few years. The

ε-dominance acts as an archiving strategy to ensure both prop-

erties of convergence towards the Pareto-optimal set and prop-

erties of diversity among the solutions found. Deb et al. [28,29]

proposed a steady-state MOEA, ε-MOEA, based on the ε-

dominance concept and efficient parent and archive update

strategies to MOPs. The simulation results indicated that ε-

MOEA is a good compromise in terms of convergence near to

the Pareto-optimal front, diversity of solutions, and computa-

tional time. The authors concluded that the use of ε-dominance

criterion has been found to have two advantages: (i) it helps in

reducing the cardinality of Pareto-optimal region and (ii) it en-

sures that no two obtained solutions are within an εi from each

other in the i-th objective. Later, Santana-Quintero et al. [24]

and Cai et al. [31] incorporated the ε-dominance concept into

DE algorithm to solve MOPs. However, the above-mentioned

ε-domination based MOEAs do not overcome the main lim-

itation of ε-dominance: the loss of several nondominated so-

lutions from the hypergrid adopted in the archive because of

the way in which solutions are selected within each box [32].

In order to remedy the limitation, Hernández-Dı́az et al. [32]

proposed a new Pareto-adaptive ε-dominance method, called

paε-dominance, where different ε-dominance regions depend-

ing on the geometrical characteristics of the Pareto-optimal

front is used. This method remedies some limitations of the

original ε-dominance and can finds a higher number of efficient

points. However, so as to use the paε-dominance method, an

initial Pareto front approximation, denoted by F , must be gen-

erated [32]. The number of efficient points in F can be critical

for the final performance. If F is not generated efficiently, the

final performance may be very poor.

2.3. Orthogonal design method in EAs

In a discrete single objective optimization problem, when

there are N factors (variables) and each factor has Q levels,

the search space consists of QN combinations of levels. When

N and Q are large, it may not be possible to do all QN exper-

iments to obtain optimal solutions. Therefore, it is desirable to

sample a small, but representative set of combinations for ex-

perimentation, and based on the sample, the optimal may be

estimated. The orthogonal design was developed for the pur-

pose [25]. The selected combinations are scattered uniformly

over the space of all possible combinations QN .

Recently, some researchers applied the orthogonal design
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method incorporated with EAs to solve optimization problems.

Leung et al. [26] incorporated orthogonal design in GA for

numerical optimization problems and found such method was

more robust and statistically sound than the classical GAs.

OMOEA [27] presented by Zeng et al. adopted the orthogonal

design method to solve MOPs. In OMOEA, it uses the orthogo-

nal design method to generate a group of sub-niches, every sub-

niche evolves at each generation. Because the orthogonal arrays

(OAs) must be generated at each generation, OMOEA is very

time-consuming. Cai et al. [31] proposed a novel multiobjec-

tive DE, ε-ODEMO, which uses the orthogonal design method

to generate the initial population and adopts ε-dominance to up-

date the archive. Experimental results indicate that ε-ODEMO

is very efficient in terms of convergence near to the Pareto-

optimal front, diversity of solutions, and computational time.

However, there are three limitations of ε-ODEMO, (i) it may

lose some nondominated solutions in the final archive; (ii) the

choice of the ε-vector is difficult of this approach; and (iii) the

extreme points are lost in the final archive.

3. Multiobjective Optimization Evolutionary Algorithms

Generally, the approximation of the Pareto-optimal set in-

volves two conflicting objectives: the distance to the true Pareto-

optimal front is to be minimized, while the diversity of the

generated solutions is to be maximized [7]. To address the first

objective, a Pareto-based fitness assignment method is usu-

ally designed in many existing MOEAs in order to guide the

search toward the true Pareto-optimal front. For the second ob-

jective, some successful MOEAs provide density estimation

methods to preserve the population diversity. Recently, a re-

laxed form of dominance for MOEAs, named ε-dominance, has

been used [28] - [32]. This mechanism acts as an archiving

strategy to ensure both properties of convergence towards the

Pareto-optimal set and properties of diversity among the solu-

tions found. These methods and techniques can be found in five

state-of-the-art MOEAs - NSGA-II, SPEA2, DEMO, ε-MOEA,

and paε-MyDE - which are briefly reviewed in the following.

(i) Nondominated Sorting Genetic Algorithm II (NSGA-

II). NSGA-II [5] was advanced from its origin,

NSGA [6]. In NSGA-II, a nondominated sorting ap-

proach is used for each individual to create Pareto rank,

and a crowding distance assignment method is applied

to implement density estimation. In a fitness assignment

between two individuals, NSGA-II prefers the point

with a lower rank value, or the point located in a region

with fewer number of points if both of the points be-

long to the same front. Therefore, by combining a fast

nondominated sorting approach, an elitist scheme and a

parameterless sharing method with the original NSGA,

NSGA-II claims to produce a better spread of solutions

in some testing problems [5].

(ii) Strength Pareto Evolutionary Algorithm 2 (SPEA2).

SPEA2 [7] has three main differences with respect to its

predecessor, SPEA [4]: (i) it incorporates a fine-grained

fitness assignment strategy which takes into account for

each individual the number of individuals that dominate

it and the number of individuals by which it is domi-

nated; (ii) it uses a nearest neighbor density estimation

technique which guides the search more efficiently; and

(iii) it has an enhanced archive truncation method that

guarantees the preservation of boundary solutions. In the

experimental results, SPEA2 shows better performance

than SPEA over all the test functions considered therein.

(iii) Differential Evolution for Multi-Objective Optimiza-

tion (DEMO). DEMO was proposed in [22]. This al-

gorithm combines the advantages of DE with the mech-

anisms of Pareto-based ranking and crowding distance

sorting. DEMO only maintains one population and it is

extended when newly created candidates take part im-

mediately in the creation of the subsequent candidates.

This enables a fast convergence towards the true Pareto-

optimal front, while the use of nondominated sorting and

crowding distance (derived from the NSGA-II [5]) of

the extended population promotes the uniform spread of

solutions. DEMO is compared in five ZDT problems. It

outperforms in some problems to some MOEAs.

(iv) ε-MOEA. This approach was proposed in [29], it consists

of a steady-state GA which maintains an archive of non-

dominated individuals. Note however, that this algorithm

does not use the Pareto dominance relation when updat-

ing the archive. Instead, it uses the ε-dominance to up-

date the archive at each generation. One parent is selected

from the main population and other from the archive.

Then, an offspring is produced and it is allowed to enter

into the archive if ε-dominates at least one element of the

archive, and if no archive member ε-dominates it. It has

been found to be a very competitive MOEA.
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(v) Pareto-adaptive ε-dominance (paε-MyDE). This algo-

rithm was proposed by Hernández-Dı́az et al. [32], which

is a revised version of ε-MyDE [24]. In ε-MyDE, it con-

sists of an extension of the DE algorithm [16] used to

solve MOPs. The operators typically adopted in DE are

incorporated into this approach, but the algorithm is ex-

tended with an archive (or secondary population) which

is used to retain the nondominated solutions obtained

during the evolutionary process. Also, ε-dominance is in-

corporated in order to get a well-distributed set of solu-

tions along the Pareto front. In paε-MyDE, the Pareto-

adaptive ε-dominance is adopted instead of the original ε-

dominance used in ε-MyDE. This method remedies some

limitations of the original ε-dominance and can finds a

higher number of efficient points. Moreover, the solutions

obtained by paε-MyDE are better uniformly distributed

along the Pareto front than those of ε-MyDE.

4. Differential Evolution Algorithm

DE algorithm [16] is a simple evolutionary algorithm which

creates new candidate solutions by combining the parent indi-

vidual and several other individuals of the same population. A

candidate replaces the parent only if it has better fitness. This

is a rather greedy selection scheme which often outperforms

traditional EAs. DE is a simple yet powerful population based,

direct search algorithm with the generation-and-test feature for

globally optimizing functions using real valued parameters. It

has been successfully used in solving single-objective opti-

mization problems. Among the DE’s advantages are its simple

structure, ease of use, speed and robustness.

The DE algorithm in pseudo-code is shown in Algorithm 1.

Where NP is size of the evolutionary population. n is the num-

ber of the decision variables. CR is the probability of crossover

operator. F is the scaling factor. rndint(1, n) is a randomly cho-

sen index ∈ 1, 2, · · · , n which ensures that U i gets at least one

parameter from the mutant vector. rndj [0, 1) is the j-th evalu-

ation of a uniform random number generator from [0, 1).

Many variants of the classic DE have been proposed, which

use different learning strategies and/or recombination opera-

tions in the reproduction stage [17]. In order to distinguish

among its variants, the notation DE/a/b/c is used, where “a”

specifies the vector to be mutated (which can be random or the

best vector); “b” is the number of difference vectors used; and

Algorithm 1 DE algorithm with DE/rand/1/bin scheme
Generate the initial population of NP individuals P (0)

Evaluate the fitness for each individual in P (0)

while The halting criterion is not satisfied do

for i = 1 to NP do

Select uniform randomly r1 �= r2 �= r3 �= i

jrand = rndint(1, n)

for j = 1 to n do

if rndj [0, 1) < CR or j = jrand then

U i
j = X

r1

j
+ F × (Xr2

j
− X

r3

j
)

else

U i
j

= Xi
j

end if

end for

Evaluate the offspring U i

if U i is better than Xi then

Xi = U i

end if

end for

end while

“c” denotes the crossover scheme, binomial or exponential. The

binomial crossover scheme is represented in Algorithm 1 and

in case of exponential crossover, the crossover probability CR

regulates how many consecutive mutated genes are copied to

the trial individual U i. Using this notation, the DE strategy de-

scribed in Algorithm 1 above can be denoted as DE/rand/1/bin.

Other well-known variants are DE/best/1/bin, DE/rand/2/bin,

and DE/best/2/bin which can be implemented by (3) - (5), re-

spectively. Again, each of the above algorithms can be config-

ured to use the exponential crossover

U i = Xbest + F × (Xj − Xh) (3)

U i = Xj + F × (Xh − X l) + F × (Xs − Xt) (4)

U i = Xbest + F × (Xj − Xh) + F × (X l − Xs) (5)

where Xbest represents the best individual in the current gen-

eration, i, j, h, l, s and t ∈ {1, · · · , n}, and i 	= j 	= h 	= l 	=

s 	= t.

5. An Improved Multiobjective DE Approach:

paε-ODEMO

As stated in the literature review, the main deficiency in the

existing MOEAs lies on designing a suitable fitness assignment

strategy in order to search for a uniformly distributed, near-

complete, and near-optimal approximated Pareto front for the

given optimization problem. Unfortunately, these objectives are

contradictory. Inspired by the ideas from the orthogonal design
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method successfully used in EAs ([26], [27], and [31]) and paε-

dominance proposed in [32], in this work, we extend our pre-

vious work ε-ODEMO [31] and present an improved DE algo-

rithm to solve MOPs, which integrates established techniques

in existing EA’s in a single unique algorithm. Our proposed DE

algorithm is named paε-ODEMO. Compared with ε-ODEMO,

there are three improvements in paε-ODEMO.

• The ε-dominance method used in ε-ODEMO is replaced by

paε-dominance method in paε-ODEMO based on two con-

siderations: (i) paε-dominance can overcome the main limi-

tation of ε-dominance, hence it can obtain a better diversity;

and (ii) paε-dominance is able to avoid tuning the ε vector

required by ε-dominance method.

• In paε-ODEMO, an improved hybrid selection mechanism

is proposed in order to use the archive members to guide

the search. However, in ε-ODEMO, at each generation every

archive member is used to generate its offspring and to update

the archive and evolutionary population, so it may result in

misleading the search and high selection pressure.

• The extreme points are retained in paε-ODEMO, and hence

it can improve the diversity performance.

Our approach is similar to paε-MyDE [32]. However, there

are three main differences compared with paε-MyDE.

• In paε-ODEMO, the orthogonal population initialization is

used in order to generate an initial Pareto front approximation

with the higher number of efficient points as soon as possible,

and hence, to make the paε-dominance more efficient.

• In our approach, an improved hybrid selection mechanism is

proposed. Compared with that of paε-MyDE, the improved

method has lower selection pressure. In addition, the evo-

lutionary population, which contains useful information of

evolution, is still valid in the elitist selection.

• The extreme points are retained in paε-ODEMO, and hence

it can improve the diversity performance.

5.1. Orthogonal Initial Population

As mentioned above, in order to use the paε-dominance

method, an initial Pareto front approximation F must be gen-

erated [32]. The number of efficient points in F can be critical

for the final performance. Obviously, the higher the number of

the efficient points in F the better performance of the grid gen-

erated. However, before solving an optimization problem, we

usually have no information about the location of the global

minimum. It is desirable that an algorithm starts to explore those

points that are scattered evenly in the solution space. In our pre-

sented manner, the algorithm can scan the solution space once

to locate good points for further exploration in subsequent iter-

ations. As the algorithm iterates and improves the population of

points, some points may move closer to the global minimum.

Based on these considerations, in order to obtain an efficient

F to generate the the first grid as soon as possible, we apply

the quantization technique and the orthogonal design method to

generate this initial archive and evolutionary population (EP).

5.1.1. Design of the orthogonal array

To design an orthogonal array (OA), in this research, we use

LR(QC) to denote the OA with different level Q, where Q is

odd and use R = QJ to indicate the number of the rows of

OA, where J is a positive integer fulfilling

C =
QJ − 1

Q − 1
(6)

C denotes the number of the columns of OA in the above

equation. The OA needs to find a proper J and Q to satisfy

minimize : R = QJ

subject to : C =
QJ − 1

Q − 1
≥ n (7)

R ≥ NP

where n is the number of the variables, NP is the size of the

evolutionary population. In this study, we adopt the algorithm

described in [26] to construct an OA. In particular, we use

L(R, C) to indicate the OA; ai,j to denote the level of the

jth factor in the ith combination in L(R, C). If C > n, we

delete the last C −n columns to get an OA with n factors. The

algorithm to generate the OA is described in Algorithm 2.

5.1.2. Quantization

For one decision variable Xj with the boundary [lj , uj], we

quantize the domain into Q levels αj
1, α

j
2, · · · , αj

Q, where the

design parameter Q is odd and αi is given by

αj
k = lj + (k − 1)(

uj − lj
Q − 1

), 1 ≤ k ≤ Q (8)

In other words, the domain [lj , uj ] is quantized Q−1 fractions,

and any two successive levels are same as each other.

5.1.3. Generation of Initial Population

After constructing a proper OA and quantizing the domain of

each decision variable, we can generate the orthogonal popula-
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Algorithm 2 Construction of Orthogonal Array
/* Construct the basic columns */

for k = 1 to J do

j = Qk−1
−1

Q−1
+ 1

for i = 1 to R do

ai,j = � i−1
QJ−k

� mod Q

end for

end for

/* Construct the nonbasic columns */

for k = 2 to J do

j = Qk−1
−1

Q−1
+ 1

for s = 1 to j − 1 do

for t = 1 to Q − 1 do

for i = 1 to R do

ai,(j+(s−1)(Q−1)+t) = (ai,s × t + ai,j) mod Q

end for

end for

end for

end for

Increment ai,j by one for all i ∈ [1, R] and j ∈ [1, C]

tion (OP) which can scatter uniformly over the solution space.

The algorithm for generating the OP is described in Algo-

rithm 3, where OPi,j is the j-th variable of the i-th individual

of OP, R is the number of rows of OA, n is the number of de-

cision variables, and eval is the current NFFEs. Generally, the

number of the rows R of the OA is larger than the population

size NP , so we create the initial archive with the nondomi-

nated solutions from OP first. Then we generate the initial EP

from the initial archive and OP with the following procedure

(more details are described in Algorithm 3). If ar size > NP ,

we select NP solutions from the initial archive randomly; or

all of the ar size solutions in the initial archive are inserted

into EP, and the remainder NP −ar size solutions are selected

from OP randomly. Compared with OGA/Q [26], our approach

and OGA/Q differ in two aspects with respect to the generation

of initial population: (i) our approach integrates the orthogonal

design method within MOEAs, and (ii) in our approach there

are two population, archive and EP, we first generate the ini-

tial archive with the nondominated solutions from OP, and then

the initial EP is generated from the initial archive and OP. It is

worth to point out that for the given Q and J , the OA gener-

ated by Algorithm 2 is fixed, so we can generate the OA of-

fline. Furthermore, for a given MOP, we only need to generate

a minimal OA which satisfies Eqn. (7), so that the parameters

Q and J are very easy to be selected for different problems.

Algorithm 3 Construction of Initial Archive and Evolutionary

Population
/* Construction of orthogonal population (OP) */

eval = 0, ar size = 0

for i = 1 to R do

for j = 1 to n do

k = ai,j

OPi,j = α
j

k

end for

Evaluate OPi and eval++

end for

/* Construction of initial archive (AR) */

Find all of the nondominated solutions of OP

Insert them into the initial archive, now ar size > 0

/* Construction of initial evolutionary population (EP) */

if ar size ≥ NP then

Randomly select NP solutions from AR to generate EP

else

Insert all of the ar size solutions of AR into EP

Select the remainder NP − ar size solutions from EP randomly

Insert them into EP

end if

5.2. Archiving the Candidate Solutions

In the study of Zitzler et al. [33], it was clearly shown that

elitism helps in achieving better convergence in MOEAs. In

paε-ODEMO, the elitist scheme is also adopted through main-

taining an external archive of nondominated solutions found in

evolutionary process. In order to achieve a better diversity, in

this work, the Pareto-adaptive ε-dominance, the so-called paε-

dominance proposed by Hernández-Dı́az et al. [32], is used to

update the archive. At each generation, so as to include a solu-

tion into this archive, it is compared with each member already

contained in the archive using paε-dominance after the grid is

generated. The procedure is described as follows.

Every solution in the archive is assigned an identification

array (B = (B1, B2, · · · , Bk)T , where k is the total number

of objectives) as follows:

Bi(f) =
⌊ log(

εi

1
pvi−(pvi−1)fi

εi

1

)

log( 1
pvi

)
+ 1

⌋
(9)

where, p controls the shape of the curve (or surface), T is the

number of points desired by the decision maker, εi
1 is the size

of the first box for each dimension, and vi controls the speed

of variation. These parameters satisfy the following equations:
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⎧⎪⎪⎨
⎪⎪⎩

εi
1 =

(pvi − 1)p(T−1)vi

pTvi−1

(1 − 21/p)pTvi + 21/ppTvi/2 − 1 = 0

(10)

The identification array divides the whole objective space into

hyper-boxes. With the identification arrays calculated for the

offspring c and each archive member a, the offspring c updates

the archive as Algorithm 4 described, where Ba indicates the

identification array of solution a (more details of this procedure

can be found in [24], [29]).

Algorithm 4 Updating the Archive with paε-dominance
if Bc of the offspring dominates Ba of any archive member a then

Delete all of the dominated archive members

Accept the offspring c

else if Bc is dominated by Ba of any archive member a then

Reject c

else

if c shares the same grid with an archive member a then

if c dominates a or c is closer to the grid than a then

Delete a from the archive and accept c

else

Reject c

end if

else

Insert c into the archive

end if

end if

Using the paε-dominance method, we can maintain the good

properties of the original ε-dominance, such as ensuring both

properties of convergence towards the Pareto-optimal set and

properties of diversity among the solutions found in a small

computation time, while overcoming the main limitation of ε-

dominance: the loss of several nondominated solutions from

the hypergrid adopted in the archive.

5.3. Hybrid Selection Mechanism

In [30], Laumanns et al. concluded that the archived members

are really guaranteed to be the best solutions found. As the

archive is used to maintain the nondominated solutions in paε-

ODEMO, a key issue must be addressed is that how to allow

the archive members to take part in the generating process. In

ε-MOEA [28], [29], Deb et al. randomly picked a solution from

the archive for mating starting from the evolutionary process. In

ε-MyDE [24], Santana-Quintero et al. proposed two selection

mechanisms, where the random selection and an elitist selection

are alternated. At the beginning, all of the parents for mating are

randomly selected from the EP to generate the offspring. When

the current generations is larger than a pre-defined number,

the elitist selection is used and all of the parents are randomly

selected from the archive to generate the offspring. However,

these two techniques have a limitation: the selection pressure is

very high. Especially, in ε-MyDE, the evolutionary population

is not used at all when the elitist selection is adopted.

In our proposed approach, in order to regulate the selection

pressure we propose a hybrid selection mechanism, which is

similar to the method used in ε-MyDE, in which a random

selection and an elitist selection are alternated. The difference

between ε-MyDE and our approach is that in elitist selection

we only randomly choose one solution from the archive as

the base parent, Xr1 , in DE/rand/1/bin scheme described in

Algorithm 1. And the other two parents, Xr2 and Xr3 , are

selected from EP randomly. We use a selection parameter λ ∈

[0.1, 1.0] to regulate the selection pressure.

selection =

⎧⎪⎪⎨
⎪⎪⎩

random selection, eval < (λ × Max eval)

elitist selection, otherwise

(11)

where, eval is the current NFFEs, and Max eval is the max-

imal NFFEs pre-defined by the user. In our proposed hybrid

selection mechanism, one archive solution, which is disturbed

by the two randomly selected solutions from EP, is selected to

take part in the generating process when the elitist selection is

used. In this manner, our approach has three advantages: (i) it

can guarantee to be the best solutions found; (ii) because we

do not use the archive solution to guide the search at the begin-

ning of evolutionary process, it can avoid being misled by the

inefficient archive solutions; and (iii) the solutions in EP can

also guide the search in the elitist scheme.

5.4. Storage of the Extreme Points

Although the paε-dominance can remedy some limitations

of ε-dominance, it may also lose the extreme points for some

MOPs. In paε-ODEMO, we propose a simple strategy to main-

tain the extreme points in the final archive. First, we find all

of the initial extreme points in the initial archive. Second, the

dominated extreme points are updated by the offspring. Finally,

when the maximal NFFEs is arrived, insert the extreme points

into the final archive if they are not in the archive and non-

dominated by any archive member. There are three independent
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procedures described in Algorithm 5, where k is the number of

the objectives, AR indicates the archive, ARi.fj is the value

of the j-th objective of the i-th archive solution, and Ej is the

j-th extreme point in array E.

Algorithm 5 Storage of the Extreme Points
/* find extreme(): find the initial extreme points in the initial archive AR */

for i = 1 to ar size do

for j = 1 to k do

Find the solution A with the minimal value of ARi.fj

Ej = A

end for

end for

/* update extreme(): update the extreme points with the offspring */

for j = 1 to k do

if The offspring c dominates Ej then

Ej = c

end if

end for

/* store extreme(): store the extreme points in the final archive */

for j = 1 to k do

if Ej is not in the final archive then

if Ej is not dominated by any solution in the final archive then

Insert Ej into the final archive

end if

end if

end for

5.5. Handling the Constraint of the Variables

After using the DE/rand/1/bin scheme to generate a new

solution, if one or more of the variables in the new solution are

outside their boundaries, i.e. xi /∈ [li, ui], the following repair

rule is applied:

xi =

⎧⎪⎪⎨
⎪⎪⎩

li + rndi[0, 1] × (ui − li) if xi < li

ui − rndi[0, 1]× (ui − li) if xi > ui

(12)

where rndi[0, 1] is the uniform random variable from [0,1] in

each dimension i.

5.6. Main Procedure of paε-ODEMO

For an MOP, the proposed paε-ODEMO algorithm works as

Algorithm 6. First, the temporary orthogonal population (OP)

is created using Algorithm 3, all of the nondominated solutions

of OP are inserted into the initial archive (AR). Then the initial

Algorithm 6 Main procedure of the proposed paε-ODEMO
Construct a proper OA and generate the orthogonal population OP

Create the initial archive AR1 with the nondominated solutions of OP

Create the initial evolutionary population EP1 from AR1 and OP

Find the extreme points from AR1 // find extreme()

t = 1, flag = 0

while eval < Max eval do

child size = 0

for i = 1 to NP do

if eval < λ × Max eval then

Random selection

Produce the offspring c with DE/rand/1/bin scheme

else

Elitist selection

Produce the offspring c with DE/rand/1/bin scheme

end if

Evaluate the offspring c and eval++

if the offspring c dominates the target parent EP i
t then

EP i
t = c

else if c is nondominated by EP i
t then

Add c to the child population CP

child size++

else

Discard c

end if

if flag == 0 then

Update the archive with the usual dominance

else

Update the archive with paε-dominance

end if

Update the extreme points // update extreme()

end for

if child size �= 0 then

Combine CP and EPt

Prune the mixed population using nondominated ranking method only

Get the next evolutionary population EPt+1

end if

if ar size ≥ N F and flag == 0 then

Generate the paε-dominance grid

flag = 1

end if

t++

end while

Add the extreme points in the final archive // store extreme()

evolutionary population (EP) is created from AR and OP. Also,

the initial extreme points are found from AR. At each genera-

tion, an offspring is generated using DE/rand/1/bin scheme. The

offspring replaces the parent immediately if the parent is domi-

nated by the offspring. If the parent dominates the offspring, the

offspring is discarded. Otherwise (when the offspring and par-
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ent are nondominated with regard to each other), the offspring

is added to a temporary child population (CP). Meanwhile, the

extreme points are updated by the offspring. If the first grid

is not generated, i.e. ar size < N F , update the archive with

usual dominance concept. Otherwise, if the first grid has been

generated, update the archive with paε-dominance concept as

described in Algorithm 4. This step is repeated until NP num-

ber of offspring are created. After that, combine the temporary

child population CP with EP, and we get a population of the

size between NP and 2×NP . If the population has enlarged,

we truncate it to prepare it for the next step of the algorithm.

The truncation sorts the individuals with nondominated sort-

ing and if the individuals belong to the same front we only

select them randomly. This is different from NSGA-II [5] and

DEMO [22] to evaluate the individuals of the same front with

the crowding distance metric. The reason is that in our approach

the diversity is maintained in the archive with paε-dominance.

The truncation procedure keeps in EP only the best NP indi-

viduals (with regard to the nondominated sorting metric).

If the initial Pareto front approximation F is created, i.e.

ar size is larger than N F that is the size of F , and the first

grid is not generated, then we use the paε-dominance concept to

generate the grid (the algorithm is omitted here, interest readers

can refer [32] for more details).

Finally, when the loop is terminated, paε-ODEMO com-

bines the extreme points with the final archive using the routine

store extreme() as described in Algorithm 5.

6. Simulation Results

In this section, we select five bi-objective and five tri-

objective artificial benchmark problems to compare the perfor-

mance of our proposed paε-ODEMO with five state-of-the-art

MOEAs - NSGA-II (only the real code NSGA-II is considered

in this study), ε-MOEA, DEMO, paε-MyDE, and SPEA2.

For NSGA-II, ε-MOEA, DEMO, paε-MyDE, and SPEA2, we

have identical parameter settings as suggested in the original

studies. For paε-ODEMO, we have chosen a reasonable set

of value and have not made any effort in finding the best

parameter setting. We leave this task for a future study.

6.1. Parameter Settings

All approaches are only run for a maximum of 5,000 NFFEs

on all test problems. For different approaches, the parameter

settings are as follows:

– For real code NSGA-II [5] and ε-MOEA [29], the simulated

binary crossover (SBX) and polynomial mutation are used.

The crossover probability of pc = 0.9 and a mutation prob-

ability of pm = 1/n (where n is the number of decision

variables). The distribution indexes for crossover and muta-

tion operators set as ηc = 20 and ηm = 20, respectively. The

population size of NP = 100.

– For DEMO [22], there are three variants proposed in [22]. In

this study, we only select the DEMO/parent for comparison,

because the performance of this variant is not worse than the

other two variants. The crossover probability of pc = 0.3

and the scaling factor of F = 0.5. NP is set to 100.

– For paε-MyDE [32], the crossover probability of pc = 0.95

and the scaling factor of F = 0.5. A mutation probability

of pm = 1/n. NP = 100. The size of initial Pareto front

approximation F is N F = 100.

– For SPEA2 [7], we use a population of size 80 and an ex-

ternal population of size 20 (this 4 : 1 ration is suggested by

the developer of SPEA2 to maintain an adequate selection

pressure for the elite solutions). The SBX and polynomial

mutation operators are used. And the crossover probability

of pc = 0.9 and a mutation probability of pm = 1/n. The

distribution indexes for crossover and mutation operators set

as ηc = 20 and ηm = 20, respectively.

– For paε-ODEMO, the crossover probability of pc = 0.1 and

the scaling factor of F = 0.5. NP = 100, N F = 100. The

number of points desired by the decision maker of T = 100.

The selection parameter of λ = 0.1. To generate a minimal

OA, we use J = 2, and Q = n − 1 (except for ZDT4,

ZDT6 and DTLZ1, we set Q = 11 to satisfy Eqn. (7) above-

mentioned).

6.2. Performance Metrics

Unlike in single-objective optimization, there are two goals

in a multiobjective optimization: (i) convergence to the Pareto-

optimal front, and (ii) maintenance of diversity in solutions of

the Pareto-optimal set. These two tasks cannot be measured ad-

equately with one performance metric. An analysis and review
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of existing performance metrics can be found in [36].

In order to make a fair comparison with other MOEAs, we

first use two unary performance metrics proposed by Deb et

al. [5] to assess the performance. The two metrics are de-

rived from the final generation of 50 independent runs with

different random seeds to benchmark the comparison results

via statistical box plots. For these metrics, we need to know

the true Pareto-optimal front for a problem. Since we are

dealing with artificial test problems, the true Pareto-optimal

front is not difficult to be obtained. In our experiments we

use uniformly spaced Pareto-optimal solutions as the approx-

imation of the true Pareto-optimal front. For all test prob-

lems (described in the following sections) used in this study,

the true Pareto-optimal fronts are made available online at

http://mallba10.lcc.uma.es/wiki/index.php/Problems.

The first metric is the Convergence metric γ. It measures the

distance the obtained nondominated front Q and the set POF

of Pareto-optimal front:

γ =

∑|Q|
i=1 di

|Q|
(13)

where di is the Euclidean distance (in the objective space, here-

inafter) between the solution i ∈ Q and the nearest member

of POF . The lower the γ value, the better the convergence of

solutions. A result of γ = 0 indicates the convergence Q =

POF ; any other value indicates Q deviates from POF .

The second metric is Diversity metric Δ. This metric mea-

sures the extent of spread achieved among the obtained non-

dominated front Q. It is desirable to get a set of solutions that

spans the entire Pareto-optimal region. Δ is defined as follows:

Δ =

∑k
i=1 de

i +
∑|Q|

i=1 |di − d|∑k
i=1 de

i + |Q|d
(14)

where de
i denotes the Euclidean distance between the i-th co-

ordinate for both extreme points in Q and POF , and di mea-

sures the Euclidean distance of each point in Q to its closer

point in Q. The lower the Δ value, the better the distribution

of solutions. A perfect distribution, that is Δ = 0, means that

the extreme points of POF have been found and di is constant

for all i.

Zitzler et al. [36] suggested that the power of unary metrics

was restricted. So, a binary performance metric, the coverage of

two sets (C value) [4], is selected to overcome the limitations

of the unary metrics. This metric is measured to show how the

final population of one algorithm dominates the final population

of another algorithm. The C value can be calculated as follows:

C(X ′, X ′′) =
|a′′ ∈ X ′′; ∃a′ ∈ X ′ : a′ 
 a′′|

|X ′′|
(15)

where X ′, X ′′ ∈ X are two sets of objective vectors, and a′ 


a′′ means that a′ covers a′′ if and only if a′ ≺ a′′ or a′ =

a′′. Function C maps the ordered pair (Xi, Xj) to the interval

[0, 1], where Xi and Xj denote the final populations resulting

from algorithm i and j, respectively. The value C(Xi, Xj) = 1

implies that all points in Xj are dominated by or equal to points

in Xi. The opposite, C(Xi, Xj) = 0, represents the situation

when none of the points in Xj are covered by the set Xi. Note

that both C(Xi, Xj) and C(Xj , Xi) need to be considered

independently since they have the distinct meanings.

Therefore, three metrics represent qualitative measures that

describe the quality of the final result of selected MOEAs -

the average convergence value shows the distance between the

obtained nondominated front Q and POF , the average diver-

sity value measures the extent of spread achieved among the

obtained nondominated front Q, and the C value compares the

domination relationship of a pair of MOEAs. All the values of

three performance metrics generated at the final generation are

illustrated by box plots to derive the statistical comparison re-

sults. In addition, in order to visualize the performance of our

proposed paε-ODEMO, we also present the resulting Pareto

fronts obtained by paε-ODEMO after 5,000 NFFEs on all test

problems in Fig. A.1 and A.2 in Appendix.

6.3. Bi-objective Benchmark Problems

First, we choose five problems out of six benchmark prob-

lems proposed by Zitzler et al. [33] and call them ZDT1, ZDT2,

ZDT3, ZDT4, and ZDT6, which were frequently used as bench-

mark problems in the literature [5], [7], [11], [14], and [22]. All

problems have two objective functions. None of these problems

have any inequality or equality constraints. All objective func-

tions are to be minimized. Since we do not make any changes

to the problems, we only briefly describe them in Table 1. More

details can be found in [33].

The box plots for the average values of the convergence

metric and diversity metric over 50 runs are illustrated in

Figs. 1, 3, 5, 7, and 9 for ZDT1-4 and ZDT6, respectively.

And the performance measures of C(Xi, Xj) for comparison

sets between algorithm i and j are shown in Figs. 2, 4, 6, 8,

and 10 for ZDT1-4 and ZDT6, where algorithms 1-6 represent

NSGA-II, ε-MOEA, DEMO, paε-MyDE, paε-ODEMO, and
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Table 1

Brief information of the test problems in this study.

Problem n k Pareto front

ZDT1 30 2 high dimensionality, convex

ZDT2 30 2 high dimensionality, non-convex

ZDT3 30 2 high dimensionality, convex, disconnected

ZDT4 10 2 99 local Pareto fronts

ZDT6 10 2 non-convex, non-uniformly spaced

DTLZ1 7 3 hyper-plane, 115 − 1 local Pareto fronts

DTLZ3 12 3 310 − 1 local Pareto fronts

DTLZ4 12 3 biased density

DTLZ6 12 3 curve, local Pareto fronts

DTLZ7 22 3 disconnected

SPEA2, respectively.

From Figs. 1 - 10, we can see that

– For all bi-objective benchmark problems, paε-ODEMO pro-

duces the best performance with respect to the average con-

vergence (γ) value and average diversity (Δ) value than the

other five MOEAs, it also provides the highest C(X5, X1−6)

values, which means that the solution set resulted from paε-

ODEMO most likely dominate the rest of the solution sets

resulted from the other selective MOEAs.

– For ZDT1-3, they have high-dimensionality, but many

MOEAs have achieved very good results on this problem in

25,000 NFFEs [22]. However, in this study, all approaches

are only run for a maximum of 5,000 NFFEs. Hence, for

most of MOEAs, they neither converge to the Pareto-optimal

front nor diverse among the solutions obtained. Apparently,

comparing the metric values, we can see that DEMO has the

lowest performance in terms of all the metric values, while

paε-MyDE and paε-ODEMO provide competitive results.

However, for ZDT2, the diversity of paε-MyDE is very bad.

It has the largest variance among all of selected MOEAs.

The reason is that sometimes paε-MyDE can not generate

the initial Pareo front approximation F as soon as possible,

so it can not generate the efficient grid and the performance

is very bad.

– ZDT4 has 99 local Pareto fronts, which is difficult for many

optimizers to find the global Pareto-optimal front. Comparing

the metric values, we can see that DEMO has also the lowest

performance in terms of all the metric values, while paε-

MyDE and paε-ODEMO provide competitive results. And

paε-ODEMO is slightly better than paε-MyDE with respect

to all of the three metrics. Because there are many local

(a) (b)

Fig. 1. Box plots of average γ value (a) and average Δ value (b) on test

problem ZDT1, where algorithms 1-6 represent NSGA-II, ε-MOEA, DEMO,

paε-MyDE, paε-ODEMO, and SPEA2, respectively, hereinafter.

Pareto fronts, when the NFFEs are small, four MOEAs -

NSGA2, ε-MOEA, DEMO, and SPEA2 - can not converge

towards global Pareto-optimal front in all 50 runs. For paε-

MyDE, it also converges to the local Pareto front 26 out of

50 runs. While for our proposed paε-ODEMO, it converges

to the global Pareto-optimal front in all 50 runs.

– For ZDT6, the Pareto-optimal solutions are nonuniformly

distributed along the global Pareto-optimal front and the den-

sity of the solutions is lowest near the Pareto-optimal front

and highest away from the front. From the results in Fig. 9

and Fig. 10, we can see that paε-ODEMO produces the

best performance, followed by paε-MyDE, NSGA2, SPEA2,

DEMO, and ε-MOEA. Except paε-MyDE and paε-ODEMO,

the rest four MOEAs can not converge to the global Pareto-

optimal front at all, the average convergence of γ > 1 for

these MOEAs.

Moreover, in order to give a quantitative comparison with

the results reported in the literature, we select five state-

of-the-art MOEAs - NSGA-II (real code), SPEA2, DEMO

(DEMO/parent), MOEO, and ε-ODEMO - to make indirect

comparisons with paε-ODEMO. The experimental results of

NSGA-II, SPEA2, DEMO, MOEO, and ε-ODEMO shown in

Tables 2 and 3 come from [5], [14], [22], [14], and [31] re-

spectively. It is worth to point out that for NSGA-II, SPEA2,

DEMO, and MOEO, the maximal NFFEs of Max eval =

25, 000. For ε-ODEMO, the maximal NFFEs of Max eval =

20, 000. However, for our approach, paε-ODEMO, the maxi-

mal NFFEs of Max eval = 5, 000, which is considerably less

than the selective MOEAs.

Table 2 shows the mean and variance of the convergence

metric γ obtained using the six MOEAs. It can be observed that

although the NFFEs of paε-ODEMO are very small, it is able

to converge better than any other algorithm on four problems
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Fig. 2. Box plots based on C measure on test problem ZDT1.

(a) (b)

Fig. 3. Box plots of average γ value (a) and average Δ value (b) on test

problem ZDT2.

(ZDT1, ZDT2, ZDT3, and ZDT4). For ZDT6, paε-ODEMO

provides better performance than NSGA-II and SPEA2, but a

little worse than DEMO, MOEO, and ε-ODEMO. In all bi-

objective problems with paε-ODEMO, the variance of the con-

vergence metric over 50 runs is very small, it means that paε-

ODEMO is very robust.

The mean and variance of the diversity metric Δ obtained

by the six MOEAs are shown in Table 3. From Table 3, we can

see that paε-ODEMO is able to find a better spread of solutions

than any other algorithms on all bi-objective problems except

ZDT3. This indicates that our approach has ability to find a

well-distributed set of non-dominated solutions than many other

state-of-the-art MOEAs. In all cases with paε-ODEMO, the

Fig. 4. Box plots based on C measure on test problem ZDT2.

(a) (b)

Fig. 5. Box plots of average γ value (a) and average Δ value (b) on test

problem ZDT3.

variance of the diversity metric over 50 runs is also very small.

For ZDT3, the spread values are the worst among all of the

other four problems. This is due to the discontinuity feature

of the corresponding Pareto front. paε-ODEMO is worse than

DEMO and ε-ODEMO, but better than NSGA-II, SPEA2 and

MOEO in terms of the diversity metric for ZDT3.

Once more, it is important to note that our approach is only

run for a maximum of 5,000 NFFEs which is considerably less

than the selective MOEAs (NSGA-II, SPEA2, DEMO, MOEO,

and ε-ODEMO). paε-ODEMO is capable of escaping from the

local Pareto optimal front (e.g. ZDT4) and is suitable to deal

with those problems with non-uniformly-spaced Pareto front

(e.g. ZDT6). Compared with the five state-of-the-art MOEAs
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Fig. 6. Box plots based on C measure on test problem ZDT3.

(a) (b)

Fig. 7. Box plots of average γ value (a) and average Δ value (b) on test

problem ZDT4.

in terms of the average convergence and diversity metrics in

Table 2 and Table 3, it can be concluded that our approach is

very competitive. Furthermore, it can ensure both properties of

convergence towards the Pareto-optimal set and properties of

diversity among the solutions found in small NFFEs.

6.4. Tri-objective Benchmark Problems

In order to show the efficacy of paε-ODEMO in handling

problems having more than two objectives, in this study, we

choose five problems out of nine benchmark problems proposed

by Deb et al. [34] and call them DTLZ1, DTLZ3, DTLZ4,

DTLZ6, and DTLZ7. All problems have three objective func-

tions. None of these problems have any inequality or equality

Fig. 8. Box plots based on C measure on test problem ZDT4.

(a) (b)

Fig. 9. Box plots of average γ value (a) and average Δ value (b) on test

problem ZDT6.

constraints. All objective functions are to be minimized. Since

we do not make any changes to the problems, we only briefly

describe them in Table 1. More details can be found in [34].

The box plots for the average values of the convergence

metric and diversity metric over 50 runs are illustrated in

Figs. 11, 13, 15, 17, and 19 for DTLZ1, DTLZ3, DTLZ4,

DTLZ6, and DTLZ7, respectively. And the performance mea-

sures of C(Xi, Xj) for comparison sets between algorithm

i and j are shown in Figs. 12, 14, 16, 18, and 20 for these

tri-objective problems, where algorithms 1-6 represent NSGA-

II, ε-MOEA, DEMO, paε-MyDE, paε-ODEMO, and SPEA2,

respectively. Furthermore, for paε-ODEMO, we illustrate the

mean and variance of convergence and diversity metric on the
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Fig. 10. Box plots based on C measure on test problem ZDT6.

Table 2

Mean (first rows) and variance (second rows) of the convergence metric γ

over 50 independent runs. A result with boldface indicates better value found.

Algorithm ZDT1 ZDT2 ZDT3 ZDT4 ZDT6

NSGA-II 0.033482 0.072391 0.114500 0.513053 0.296564

0.004750 0.031689 0.007940 0.118460 0.013135

SPEA2 0.001448 0.000743 0.003716 0.028492 0.011643

0.000317 8.33E-05 0.000586 0.047482 0.002397

DEMO 0.001083 0.000755 0.001178 0.001037 0.000629

0.000113 4.50E-05 5.90E-05 0.000134 4.40E-05

MOEO 0.001277 0.001355 0.004385 0.008145 0.000630

0.000697 0.000897 0.001910 0.004011 3.26E-05

ε-ODEMO 0.000761 0.000764 0.000915 0.000712 0.000581

0.000058 0.000035 0.000050 0.000056 0.000030

paε-ODEMO 0.000207 0.000198 0.000255 0.000198 0.00117

2.93E-05 1.39E-05 0.000155 1.54E-05 0.000124

five DTLZ problems over 50 independent runs in Table 4.

From Figs. 11 - 20 and Table 4, we can see that

– Be similar to the bi-objective problems, for all tri-objective

problems, paε-ODEMO produces the best performance in

terms of the average convergence (γ) value and average di-

versity (Δ) value than the other five MOEAs, and it also

provides the highest C(X5, X1−6) values, which means that

(a) (b)

Fig. 11. Box plots of average γ value (a) and average Δ value (b) on test

problem DTLZ1.

Fig. 12. Box plots based on C measure on test problem DTLZ1.

(a) (b)

Fig. 13. Box plots of average γ value (a) and average Δ value (b) on test

problem DTLZ3.
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Table 3

Mean (first rows) and variance (second rows) of the diversity metric Δ over

50 independent runs. A result with boldface indicates better value found.

Algorithm ZDT1 ZDT2 ZDT3 ZDT4 ZDT6

NSGA-II 0.390307 0.430776 0.738540 0.702612 0.668025

0.001876 0.004721 0.019706 0.064648 0.009923

SPEA2 0.472254 0.473808 0.606826 0.705629 0.670549

0.097072 0.093900 0.191406 0.266162 0.077009

DEMO 0.325237 0.329151 0.309436 0.359905 0.442308

0.030249 0.032408 0.018603 0.037672 0.039255

MOEO 0.327140 0.285062 0.965236 0.275664 0.225468

0.065343 0.056978 0.046958 0.183704 0.033884

ε-ODEMO 0.360154 0.276872 0.534329 0.354847 0.204142

0.011059 0.007013 0.018301 0.003956 0.005012

paε-ODEMO 0.235700 0.248440 0.53250 0.188600 0.199090

0.030520 0.036200 0.060420 0.020480 0.032930

Fig. 14. Box plots based on C measure on test problem DTLZ3.

Table 4

Mean (first rows) and variance (second rows) of the convergence and diversity

metric on five DTLZ problems over 50 independent runs.

Metric DTLZ1 DTLZ3 DTLZ4 DTLZ6 DTLZ7

Convergence 0.00514 0.00931 0.02137 0.00403 0.01434

0.00145 0.00891 0.00233 0.00034 0.00067

Diversity 0.35746 0.46763 0.47791 0.34507 0.43771

0.04559 0.18511 0.05847 0.05588 0.04546

(a) (b)

Fig. 15. Box plots of average γ value (a) and average Δ value (b) on test

problem DTLZ4.

Fig. 16. Box plots based on C measure on test problem DTLZ4.

(a) (b)

Fig. 17. Box plots of average γ value (a) and average Δ value (b) on test

problem DTLZ6.
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Fig. 18. Box plots based on C measure on test problem DTLZ6.

(a) (b)

Fig. 19. Box plots of average γ value (a) and average Δ value (b) on test

problem DTLZ7.

the solution set resulted from paε-ODEMO most likely dom-

inate the rest of the solution sets resulted from the other se-

lective MOEAs. Moreover, paε-ODEMO is able to converge

towards the global Pareto-optimal front and diverse among

the solutions obtained for all tri-objective problems except

DTLZ3.

– For DTLZ1, it has 115 − 1 local Pareto fronts which can at-

tract an MOEA. Its difficulty in this problem is to converge

to its hyper-plane global Pareto-optimal front. It can be ob-

served from Fig. 11 that only paε-ODEMO can converge to

the hyper-plane in all 50 runs. The other five MOEAs fall

into the local Pareto front.

– For DTLZ3, it contains 310 − 1 local Pareto fronts. All local

Fig. 20. Box plots based on C measure on test problem DTLZ7.

Pareto fronts are parallel to the global Pareto-optimal front

and an MOEA can get stuck at any of these local Pareto

fronts, before converging to the global Pareto-optimal front.

In this problem, paε-ODEMO falls into the local Pareto front

in 6 out of 50 runs. The other five MOEAs fall into the local

Pareto front in all 50 runs.

– DTLZ4 has more dense solutions near the f3 - f1 and f2 -

f1 planes, an MOEA may get attracted to these planes. Be-

cause these planes are a part of the global Pareto-optimal

front, many MOEAs can obtain a good convergence perfor-

mance, e.g. NSGA2, ε-MOEA, DEMO, and SPEA2 shown

in Fig. 15 (a). However, they can not diverse among the ob-

tained solution shown in Fig. 15 (b). For paε-ODEMO, it

falls these plane only one time over the 50 independent runs.

– For DTLZ6, its true Pareto-optimal front is a curve. The g

function in the problem makes an MOEA difficult to con-

verge to the true Pareto-optimal front. It is clear from Fig. 17

that the only paε-ODEMO can converge to the true Pareto-

optimal front in all 50 runs. However, paε-MyDE converges

to the true Pareto-optimal front only one run. The other four

MOEAs - NSGA-II, ε-MOEA, DEMO, and SPEA2 - can not

converge to the true Pareto-optimal front at all.

– DTLZ7 has 4 disconnected Pareto-optimal regions in the
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search space. From Fig. 19, the convergence values show that

all MOEAs can converge some of the disconnected Pareto-

optimal regions except DEMO. But only paε-ODEMO can

locate all of the disconnected Pareto-optimal regions in all

50 runs in terms of the diversity values.

6.5. Effect of the Orthogonal Population Initialization

In this section, we perform an additional experiment to show

the effect of the orthogonal population initialization. Four paε-

dominance based MOEAs are selected to test the performance:

(i) our proposed paε-ODEMO, (ii) paε-DEMO, which is similar

to paε-ODEMO except using the random population initializa-

tion, (iii) paε-MyDE proposed in [32], and (iv) paε-OMyDE,

which is similar to paε-MyDE except adopting the orthogonal

population initialization. The parameter settings for the four ap-

proaches are used as described in Section 6.1. All approaches

are only run for a maximum of 5,000 NFFEs on the test prob-

lems. Due to the tight space restrictions however, we only show

the statistic results (mean, variance, and 95% confidence inter-

val) of the five ZDT problems over 50 independent runs. Ta-

ble 5 shows the statistic results of convergence metric obtained

by the four MOEAs. The results of diversity metric are shown

in Table 6.

From Table 5 and 6, it can be seen that 1) paε-ODEMO

can obtain significantly better performance than paε-DEMO in

terms of the convergence and diversity metrics. There is no

overlap of the confidence intervals of both metrics for paε-

ODEMO and paε-DEMO for the five ZDT problems. Espe-

cially, paε-DEMO locates the local Pareto front many times

for ZDT4 and ZDT6. 2) paε-OMyDE gets slightly better per-

formance than paε-MyDE in terms of the convergence and di-

versity metrics for the five ZDT problems. The reason for this

happening is mostly like to the orthogonal population initializa-

tion, which is able to help to improve search space exploitation

and to save a considerable number of solution evaluations for

further investigation at later generations. Furthermore, it can

help to generate the initial Pareto front approximation with the

higher number of efficient points as soon as possible.

It is interesting to note that paε-ODEMO obtains better per-

formance than paε-OMyDE in terms of both convergence and

diversity metrics. There is no overlap of the confidence intervals

of both metrics for the paε-ODEMO and paε-OMyDE for the

four out of five ZDT problems, except for ZDT6. The reason
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Fig. 21. Influence of storage of extreme points on test problem ZDT1.

for this happening is most likely that the hybrid selection mech-

anism used in paε-ODEMO can guide the search efficiently.

Moreover, the extreme points retained in the final archive can

also slightly improve the performance.

6.6. Influence of Storage of Extreme Points

In order to show the influence of storage of extreme points,

in this study, we select ZDT1 as an example. Fig. 21 illus-

trates the results of paε-ODEMO with Fig. 21 (a) and with-

out Fig. 21 (b) storing the extreme points. One of the extreme

points marked by a circle is stored in Fig. 21 (a). The conver-

gence value and diversity value of Fig. 21 (a) are 0.000199 and

0.206285, respectively. For Fig. 21 (b), the convergence value

and diversity value are 0.000202 and 0.214519, respectively.

Apparently, from the qualitative and quantitative comparison

results, we can see that the storage of extreme points is ca-

pable of improving the performance in terms of the obtained

Pareto front, convergence value and diversity value. Moreover,

the obtained Pareto fronts of all test problems shown in Fig. A.1

and A.2 in Appendix show that the extreme points are stored

in the final archive on most of the problems.

6.7. Influence of Selection Parameter λ

In this study, we do not make any serious attempt to find

the best parameter setting for our proposed paε-ODEMO. But

in this section, we perform an additional experiment to show

the effect of different λ settings on the performance of paε-

ODEMO. Due to the tight space restrictions however, we only

select ZDT1 as an example.

We keep all other parameters as before, but using 11 different

λ values, i.e. λ = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0.

Especially, when λ = 0, it means that starting from evolution

one of the archive solutions is selected to generate the offspring.
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Table 5

Mean, variance, and 95% confidence interval of convergence metric on five ZDT problems over 50 independent runs.

Algorithm
ZDT1 ZDT2 ZDT3 ZDT4 ZDT6

mean variance CI 95% mean variance CI 95% mean variance CI 95% mean variance CI 95% mean variance CI 95%

paε-ODEMO 2.1e-4 2.9e-5 [2.0e-4,2.2e-4] 0.0002 1.4e-5 [1.9e-4,2.0e-4] 0.0003 0.0002 [2.0e-4,3.1e-4] 2.0e-4 1.5e-5 [1.9e-4,2.0e-4] 0.0012 0.0001 [0.0011,0.0012]

paε-DEMO 0.0034 0.0030 [2.3e-3,4.5e-3] 0.0544 0.1262 [7.3e-3,1.0e-1] 0.0028 0.0061 [4.8e-4,5.0e-3] 11.892 5.4928 [9.8e+0,1.3e+1] 4.0362 2.2005 [3.2155,4.8569]

paε-OMyDE 3.1e-4 7.0e-5 [2.8e-4,3.4e-4] 0.0121 0.0160 [6.2e-3,1.8e-2] 0.0012 9.2e-4 [8.2e-4,1.5e-3] 0.1001 0.2162 [2.0e-2,1.8e-1] 0.0012 1.1e-4 [0.0011,0.0012]

paε-MyDE 5.2e-4 2.7e-5 [5.1e-4,5.3e-4] 0.0621 0.0616 [3.9e-2,8.5e-2] 0.0027 0.0010 [0.002,0.003] 0.2013 0.3182 [8.3e-2,3.2e-1] 0.0013 1.5e-4 [0.0012,0.0013]

Table 6

Mean, variance, and 95% confidence interval of diversity metric on five ZDT problems over 50 independent runs.

Algorithm
ZDT1 ZDT2 ZDT3 ZDT4 ZDT6

mean variance CI 95% mean variance CI 95% mean variance CI 95% mean variance CI 95% mean variance CI 95%

paε-ODEMO 0.2357 0.0305 [2.2e-1,2.5e-1] 0.2484 0.0362 [2.4e-1,2.6e-1] 0.5362 0.0604 [0.5137,0.5588] 0.1886 0.0205 [1.8e-1,2.0e-1] 0.1991 0.0329 [0.1868,0.2114]

paε-DEMO 0.3796 0.0671 [3.6e-1,4.1e-1] 0.8095 0.0350 [8.0e-1,8.2e-1] 0.6124 0.0629 [0.5890,0.6359] 0.9136 0.0340 [9.0e-1,9.3e-1] 0.9694 0.0289 [0.9586,0.9802]

paε-OMyDE 0.2791 0.0374 [2.7e-1,2.9e-1] 0.6326 0.3069 [5.2e-1,7.5e-1] 0.7418 0.1783 [0.6753,0.8083] 0.5206 0.2720 [4.2e-1,6.2e-1] 0.2011 0.0581 [0.1795,0.2228]

paε-MyDE 0.3920 0.1095 [3.5e-1,4.3e-1] 0.7382 0.2919 [6.3e-1,8.5e-1] 0.7723 0.1956 [0.6993,0.8452] 0.6415 0.2761 [5.4e-1,7.4e-1] 0.2700 0.0414 [0.2545,0.2854]

(a) (b)

Fig. 22. Influence of different selection parameter settings on the performance

of test problem ZDT1.

In this case, the inefficient archive member may mislead the

search. However, λ = 1.0 indicates that any archive solution is

not selected to generate the offspring at all. It can be observed

from Fig. 22 that different λ provides different performance in

terms of convergence metric and diversity metric. The smaller

value of λ can produce better performance on ZDT1. If the

archive solutions do not take part in the generating process

(i.e. λ = 1.0), the performance is very bad with respect to

convergence and diversity of solutions.

It is worth to note that this experiment does not show how

to set the λ value to produce the best performance for different

MOPs. However, we can conclude that properly allowing the

archive solutions to take part in the evolutionary process can

guarantee to be the best performance produced.

6.8. Advanced Features of paε-ODEMO

From the above results, we can conclude that our approach

has the following advanced features:

– It is very efficient in terms of the small NFFEs and values

of three metrics. It can find the uniformly distributed, near-

complete, and near-optimal Pareto fronts. It is a very com-

petitive MOEA compared with five state-of-the-art MOEAs.

– The external archive provides the elitist mechanism for our

approach.

– Our approach produces good performance in terms of the

average convergence, diversity and C metric.

– Our approach is able to handle those problems with many

local Pareot fronts (ZDT4, DTLZ1 and DTLZ3), non-

uniformly-spaced Pareto-optimal front (ZDT6), discon-

nected Pareto-optimal front (ZDT3 and DTLZ7), high-

dimensional decision space (ZDT1-3 and DTLZ7) or high-

dimensional objective space problem (DTLZs).

– Our approach is more robust and efficient than paε-MyDE,

another MOEA using paε-dominance. The reason is that in

our proposed paε-ODEMO it adopts the orthogonal design

method to generate the initial archive and evolutionary pop-

ulation, thus our approach can evenly scan the feasible solu-

tion space once to locate good points for further exploration

in subsequent iterations. Moreover, our approach can gen-

erate the initial Pareto front approximation with the higher

number of efficient points fast.

19



– Incorporated with our proposed hybrid selection mechanism,

our approach can use the archive solutions efficiently and

make the algorithm converge faster.

– With the strategy of storage of extreme points, our approach

can store the extreme points in the final archive.

7. Conclusion

In this paper, an improved multiobjective DE algorithm, paε-

ODEMO, is presented. paε-ODEMO adopts the orthogonal de-

sign method with quantization technique to generate the initial

archive and evolutionary population. In this manner, the ini-

tial population can uniformly scatter over the search space, so

that the algorithm can evenly generate an efficient initial Pareto

front approximation required to generate the first grid in paε-

dominance method. A new relaxed form of Pareto dominance,

paε-dominance, is used to ensure both properties of conver-

gence towards the Pareto-optimal set and properties of diversity

among the solutions found. Moreover, the paε-dominance can

remedy some limitations of the original ε-dominance. In addi-

tion, we propose a new hybrid selection mechanism to allow

the archive solutions to take part in the evolutionary process in

order to guarantee to be the best performance produced. A sim-

ple strategy to store the extreme points is also proposed, which

can store the ε-dominated extreme points in the final archive

and improve the diversity of solutions obtained.

In order to validate the performance of our proposed paε-

ODEMO, we select ten unconstrained real-valued artificial

MOPs (five bi-objective problems and five tri-objective prob-

lems), which have been well designed to exploit various

complications in finding different true Pareto-optimal fronts.

Experimental results show that our approach produces good

performance in terms of the quality of the approximation of the

Pareto-optimal front and the considerable reduction of NFFEs

when solving these problems. Compared with five state-of-

the-art MOEAs - NSGA-II, ε-MOEA, DEMO, paε-MyDE,

and SPEA2 - the results show that paε-ODEMO produces

statistically competitive results in finding a uniformly dis-

tributed, near-complete, and near-optimal Pareto fronts in the

test problems.

Our future work consists on investigating the effect of dif-

ferent parameter settings on the performance of our approach.

In this work, we only considered the unconstrained real-valued

artificial problems (ZDTs and DTLZs), which have some lim-

itations, such as non-deceptive, non-separable, and so on [35],

another future direction is using the proposed paε-ODEMO to

solve more complex MOPs, the constrained MOPs and dynamic

MOPs.

Appendix A. Appendix

In order to visualize the performance of paε-ODEMO, the

nondominated solutions of the final archive obtained by paε-

ODEMO on all test problems are shown in Fig. A.1 and A.2.

The presented fronts are the outcome of a single typical run

after 5,000 NFFEs. From Fig. A.1 and A.2, we can see that

(i) paε-ODEMO is capable of converging towards the true

Pareto-optimal front on all test problems; (ii) it can find a well-

distributed and near-complete set of nondominated solutions on

all test problems except ZDT3; and (iii) the extreme points are

saved in the final archive on most of test problems.
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