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Abstract

Parameter optimization of proton exchange membrane fllg]lREMFC) model has received considerable attention
recently. In order to estimate the unknown parameters of PEkhodel faster and obtain more accurate solutions, in
this paper, an improved multi-strategy adaptive diffei@volution (DE) is presented for the parameter optinarat
problems of PEMFC model. The approach is referred to as MARE, for short. In rank-MADE, the multiple
mutation strategies of DE are adaptively selected to avh@bsing a suitable strategy for a specific problem by
trial-and-error method. Furthermore, the ranking-bassdor selection technique is employed in different mutatio
strategies to accelerate the process of parameter optionizg£ PEMFC model. In order to verify the performance of
rank-MADE, it is applied to estimate the parameters of thibaBa Mark V FC, the SR-12 Modular PEM Generator,
the BCS 500-W stack, the Temasek FC, and the WNS-FC modelditi@n, rank-MADE is compared with other
advanced DE variants and other evolutionary algorithmssjE&xperimental results show that rank-MADE is able
to provide higher quality of solutions, faster convergespeed, and higher success rate compared with other DE
variants. Additionally, the/-1 characteristics obtained by rank-MADE agree well with tkpeximental data in all
cases. Therefore, rank-MADE can be an effective alteraatithe field of other complex parameter optimization
problems of fuel cell models.

Key words: Proton exchange membrane fuel cell (PEMFC), parametemgzttion, differential evolution, strategy
adaptation, ranking-based vector selection.

1. Introduction

Due to the urgent demands of clean energy solutions of ouldwiacently, researchers pay more attention to
develop new technologies in the field of power generatiotesys. As one of the most popular types of new tech-
nologies, fuel cells (FCs) are considered to be a promisamgliclate in the twenty-first century, because of their low
aggression to the environment, low noise, good dynamicoresg and high efficiency. There are several different
kinds of fuel cells based on the nature of used electrohjteHdwever, among various kinds of fuel cells, the proton
exchange membrane fuel cells (PEMFCs) are widely studidgeamising area for different applications [2].

For an efficient design of PEMFC-based systems, the PEMF&Inade required. There have been many studies
on modeling and simulation of the PEMFC [3, 4, 5, 6, 7]. ®al. [8] classified different PEMFC models into two
approaches: i) mechanistic models, which aim at simulahiegheat, mass transfer and electrochemical phenomena
present in fuel cells; and ii) models on empirical or sempé&inal equations, which are applied to predict the effect
of different input parameters on the voltage-curréf J characteristics of the fuel cell, without examining in trep
the physical and electrochemical phenomena involved igegation. In this paper, the model based on the second
approach is used. However, no matter what type of modelantigel parameters need to be optimized in order to
improve the accuracy of the models and make the models itedica actual PEMFC performance better [8].
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In order to improve the design and performance of PEMFC syst@arameter optimization of PEMFC model
has attracted increasing interest in recent years. Howswvee the PEMFC is a complex nonlinear, multi-variable,
and strongly coupled system [9], the optimization of paremrseof PEMFC model is difficult to be handled by the
traditional methods. Recently, the use of heuristic optation techniques for parameter optimization of PEMFC
model has received more attention [10], such as geneticitlges [8], simulated annealing [11], particle swarm op-
timization [12], artificial bee swarm [13], harmony sear&H], seeker optimization algorithm [15], artificial immune
system [16], P systems based optimization algorithm [1if{] imating optimizer [18], and so on. Most recently,
differential evolution is also used to solve the paramepinazation of PEMFC model [19]. However, in order to
efficiently and fast solve the parameter optimization peaid in PEMFC model, it is necessary to investigate more
efficient optimization techniques to reduce the necessamypaitational efforts to achieve an optimal design [20].

Differential evolution (DE) is a simple yet efficient globalimerical optimization algorithm [21, 22]. Owing
to its simple structure, ease of use, speed, and robusihéss be successfully applied in diverse fields, such as
optimization of over-current relays [23], optimal powenil{24], modeling of oxygen mass transfer [25], design of
cascade fuzzy controller [26], motion estimation [27],graeter extraction of solar cell models [28], etc. For more
details, interested readers can refer to two good survep&ah [29] and [30], and the references therein.

Inspired by the various successful applications of DE, ismplaper, the DE algorithm is employed for the parameter
optimization problems of PEMFC model. In order to reducedbmputational efforts and obtain higher quality of
solutions, a ranking-based multi-strategy adaptive Dierred to as rank-MADE, is proposed. More specifically, in
rank-MADE, the multiple mutation strategies of DE are adeghy selected to avoid choosing a suitable strategy for
a specific problem by trial-and-error method. T#rebability Matching technique [31] is used to assign the selection
probabilities of different strategies. In addition, to elerate the process of parameter optimization of PEMFC imode
the ranking-based vector selection technique present§8linis employed in different mutation strategies. The
proposed rank-MADE is used to solve the parameter optimizgiroblems of the Ballard Mark V FC [5], the SR-
12 Modular PEM Generator [5], the BCS 500-W stack [5], the asek FC [33], and the WNS-FC model [34].
The performance of rank-MADE is compared with other higbbympetitive advanced DE varianise(, SaDE [35],
JADE [36], CoDE [37], and DEGL [38]) and other evolutionatgarithms {.e., rcGA [39], FEP [40], ABC [41],
and CLPSO [42]). Experimental results show that rank-MABRble to provide higher quality of solutions, faster
convergence speed, and higher success rate compared hé&h@E variants. Additionally, the good agreement
between the experimental data and the output data of thelmbitdened by rank-MADE can be observed in all cases.

The main contributions of this work are as follows: i) Ingalby the success of the ensemble learning in machine
learning [43], ensemble of different advanced improveme@ifitevolutionary algorithms (EAs) may be also able to
develop more enhanced optimization techniques. Basedismrdisideration and in order to provide an effective
alternative for optimizing the parameters of PEMFC modstdaand more accurately, the rank-MADE method
is proposed, where our previous proposed multi-strate@ptation technique [44] and the ranking-based vector
selection technique [32] are synergized. ii) rank-MADE $ed to solve the parameter identification problems of
different PEMFC models, and its performance is compareti wiher highly-competitive DE variants and other
EAs. iii) To make the comparisons among different algorghstatistically meaningful, the Wilcoxon'’s test and the
Friedman test are employed.

The rest of this paper is organized as follows. Section 2flgriatroduces the mathematical formulation of
PEMFC model used in this work. In addition, the objectivediion to be optimized, the original DE algorithm,
and the parameter optimization of PEMFC model with artifizigelligence (Al) methods are also described in this
section. In Section 3, the proposed rank-MADE method isearesl in detail. The experimental results and analysis
are given in Section 4. Finally, Section 5 draws the conolusif this work.

2. Preliminaries

In this section, the mathematical formulation of PEMFC madsed in this work is firstly introduced, followed
by the description of the objective function. Additionalliye original DE algorithm is also briefly introduced herein



2.1. Mathematical formulation of PEMFC model

In this work, the mathematical model of PEMFC stacks preseimt [5, 45] is adopted. Far cells connected in
series to form a stack, the terminal voltage of the stack earelrulated by [45],

Vs=n-Verc 1)
whereVec is the output voltage of a single cell, which can be formuats [5]

VFC = ENernst_ Vact - Vohm - Vcon (2)
Enemstis the thermodynamic potential defined by [4]

Enernst=1.229— 0.85x 1073 (T — 29815)

3
+4.3085x 10°°- T - In(Py, y/Po,) ®)
whereT is the cell temperature (Kpn, andPo, are the hydrogen and oxygen partial pressures (atm), resggc

According to [4], the activation overpotentM.;, including anode and cathode, can be expressed by the fotjow
formula
Vact == [fl + 52 -T+ 53 -T-In (COz) + 54 -T-In (icell)] (4)

whereéy, &, &3, &4 are the parametric coefficients for each cell moigl,is the cell current (A), an€o, (mol/cnt)
is the concentration of oxygen in the catalytic interfacéhefcathode, given by [5, 8]

Po, (5)

Co: = 508x 107 exp(—498/T)

The ohmic voltage droponm can be determined by the following expression [4]
Vohm = icell - (Rm + Re) (6)

whereRy, is the equivalent membrane resistance to proton condy@iR: is the equivalent contact resistance to
electron conductiortt). Ry is defined by [8]

-
Ru = 24— (7)

1816- [1 +0.03- () + 0.062- (3)’ ('_AH)ZS]

PM = (8)

|1-0634-3- (5| exp|4.18- (%)
whereA is the effective electrode area (§ypy is the membrane specific resistivity for the flow of hydratestpns
(€ -cm), and/ is the thickness of the membrane (cm), which serves as theaige of the cell. The parametetis
an adjustable parameter with a possible range af44p

The concentration overpotentid,, caused by the change in the concentration of the reactatite atirface of
the electrodes as the fuel is calculated by [5]

Vcon=—B-|n(1— J ) ©)

max

whereB (V) is a parametric coefficient, which depends on the cell ésmdperation state.J is the actual current
density of the cell (A/crf) including the fixed current density, [5], and Jmax is the maximum value ad.



2.2. Objective function

In the above model (Equations (1) - (9)), there are 11 unkn@avameters,e., &1, &2, €3, €4, A, Re, B, Jn, Imax €
andA. In this work, the first 10 parameters will be optimized, efthe effective electrode aréas left to be constant
during the optimization process. Thus, there are totallpatameters to be optimized, which can be denoted as a
real-valued vector:

X = {é‘:l’ 62’ 63’ 64’ /L RC’ B5 Jn, Jmax, g}

In order to identify the optimal values of the 10 unknown paeters by the optimization techniques, it needs to
define a objective function to be optimized. In this work, thean square error (MSE) between the output voltage of
theactual PEMFC stack and the model output voltage are used as thetiobjamction [9]:

N
min 10 = " (Vom — Va? (10
k=1

whereVg is the output voltage of the actual PEMFC staekijs the model output voltage, aridlis the number of
the experimental data point.

2.3. Differential evolution

The DE algorithm [21] is a simple evolutionary algorithm fglobal numerical optimization. It creates new
candidate solutions by combining the parent individual aaderal other individuals of the same population. A
candidate replaces the parent only if it has better fitheksevaThe pseudo-code of the original DE algorithm is
shown in Algorithm 1. Wheré® is the number of decision variableg;is the population sizeF is the mutation
scaling factorCr is the crossover rate j is the j-th variable of the solutiow;; u; is the offspring. rndint(1D) is a
uniformly distributed random integer number between 1 Bnandrea|[0, 1) is a uniformly distributed random real
number in [Q1), generated anew for each valuejofn [22], the vectors;, X,,, Vi, andu; are named atarget vector,
base vector, mutant vector, andtrial vector, respectively.

Algorithm 1: The original DE algorithm

Input: Cr, F, andu
Output: The best solutioXpest
Generate the initial population randomly;
Evaluate the fitness for each individual;
Set the generation countes 1;
while not terminated do
fori=1toudo |+ CGenerate offspring */
Select uniform randomly, # rp # r3 # i;
jrana = dint(1, D);
for j=1toD do
if rndrea|[0,1) < Cr or j == jranda then
| Ui =Vij =X j +F - (X = Xgj)i

else
Loui=xj

fori=1toudo /* Survival selection */
Evaluate the offspring;
if uj is better than its parent x; then

i |_ Xi = Uj;

L t=t+1;

2.4. Related work on Al-based PEMFC parameter optimization

In Section 1, some Al-based optimization techniques foapeter optimization of PEMFC model are outlined.
In this section, they will be introduced in brief.

In [8], Mo et al. presented a niche hybrid genetic algorithm (HGA) for par@meptimization of PEMFC model,
where the niche techniques and Nelder-Mead'’s simplex ndettne merged into GA. The results of HGA is only
compared with simple GA (SAG) in [8]. Outeie al. [11, 46] applied the simulated annealing (SA) as optimarati
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technique to extract the parameters of PEMFC model. In [ARSO-based parameter optimization technique of
PEMFC model was presented according to ¥hé characteristics. The results indicated the effectiveing¢$3SO
when identifying the parameters of PEMFC model even in neiséronments [12]. Ohenoja and Leiviska [47]
conducted comprehensively experiments to indicate hoydin@meter range, the validation strategy, and the selected
algorithm influence on the performance of GAs in parameténopation of PEMFC model. According to the results,
the authors claimed that the parameter range needs a cemeitleration before optimization trials [47]. In [48], Li
et al. firstly presented an effective informed adaptive PSO (EBGPto balance the global and local search. Then,
EIA-PSO was employed for the PEMFC model parameter optitiniza Askarzadeh and Rezazadeh [49] proposed
a modified PSO (MPSO) to optimize the parameters of PEMFC medere a modified method is presented for
the PSO’s inertia weight in MPSO. In [13], an artificial beeasm optimization algorithm is proposed for optimizing
the parameters of a steady-state PEMFC stack model suftataéectrical engineering applications. In [14, 50, 9],
the grouping-based global harmony search (HS), tournasedattion based HS, and elite-based global HS were
respectively presented for the PEMFC model parameter g#tion. To optimize the PEMFC model parameters,
Dai et al. [15] proposed a novel seeker optimization algorithm (SQ#)ich is based on the concept of simulating
human searching behaviors. As a promising optimizatiohrtepie, artificial immune system (AIS) has obtained
increasing attention recently. In [16], the AlS-based paeter extraction of PEMFC model was present, and its
results is compared with those of GAs and PSO. Yang and Wafjgpfbposed a novel bio-inspired P systems-based
optimization algorithm (BIPOA) to solve the PEMFC modelg@eter optimization problems. In [19], a DE variant,
i.e., DEGL [38], was employed for the parameter optimizationhea of PEMFC stack. Inspired by the mechanism
of biological RNA, Zhang and Wang [51] presented an ada@idN& GA (ARNA-GA) for estimating the PEMFC
model parameters. The results of ARNA-GA are indirectly paned with SGA, HGA, and RGA [51]. In [18],
Askarzadeh and Rezazadeh proposed a bird mating optinB¥0J, which is inspired by the intelligent behavior of
birds during mating season. BMO is used to optimize the patears of the Ballard Mark V FC.

According to the literature review, it is noted that the u®& for parameter optimization of PEMFC model
is scarce. Because DE has been successfully applied irsdidemains [30], it may also be useful to optimize the
PEMFC model parameters. For this reason, an improved DEntafiank-MADE) will be developed to efficiently
solve the parameter optimization problems of PEMFC mod#iémext section.

3. Our Approach: rank-MADE

In this section, the proposed rank-MADE will be presentedeétail as follows, including the motivations of this
work, the multi-strategy adaptation, and the ranking-tasetor selection.

3.1. Motivations

Inthe DE literature, there are many advanced DE varianth(as SaDE [35], DEGL [38], JADE [36], MADE [44],
CoDE [37], rank-DE [32], etc), where different improvem&ate proposed to improve the performance of the orig-
inal DE algorithm. In machine learning, ensemble learnimgf tises multiple models is very useful to obtain better
predictive performance, such as bagging, boosting, efic [48pired by the success of ensemble learning, ensemble
of different improvements of existing advance DE variantg/rhe useful to further enhance DE performance. In ad-
dition, when solving the parameter optimization problerhBBMFC model, the fuel cell researchers and engineers
require the optimization technique that can fast and pebc@ptimize the parameters. Based on these considerations
the rank-MADE method is developed, which synergized thetirstilategy adaptation and ranking-based vector selec-
tion techniques previously proposed in [44] and [32]. Thdtrstrategy adaptation technique is able to alleviate the
difficulty of the choice of the best DE strategy. Meanwhiles tanking-based vector selection can accelerate the pa-
rameter optimization process of PEMFC model. Most impdlyathe two techniques do not increase the complexity
of the original DE method significantly.

3.2. Multi-strategy adaptation

In the DE algorithm, there are many mutation strategies, [R@Jvever, the choice of the most suitable one for a
specific problem is very difficult [35]. Take this aspect ictinsideration, in this work, the multi-strategy adaptatio
method presented in [44] is employed to avoid choosing thstmaitable strategy by trial-and-error method. This
method is briefly described as follows. More details can khmébin [44].
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Algorithm 2: Ranking-based vector selection for “DE/rand/1”

Input: The target vector indeix
Output: The selected vector indexeg ra, r3
whilerndreal[Q1) > pv, or ry ==ido

| Randomly seleat; € {1, u};

Randomly seleat, € {1, u};

whilerndreal[Q1) > PVr, OF Iz ==T1 01 5 == ido
| Randomly seleat; € {1, u};

Randomly seleat; € {1, u};

whilerz ==ryorrz==ryorrz==ido
| Randomly seleats € {1, u};

3.2.1. Strategy pool
In [44], there are four strategies in the pool. However,déar that the “DE/rand/2/bin” got the worst performance
in the whole run. Therefore, in this work, only three strégsgre selected to form the strategy pool:

e “DE/rand/1/bin":

Vi =X, + F - (X, = Xpy) (11)

¢ “DE/rand-to-best/2/bin":
Vi =Xry + F - (Xpest = Xr1) + F - (Xry = Xey) + F - (Xr, = Xrg) (12)

e “DE/current-to-rand/1":
Vi =X+ F (X = %)+ F - (X, = Xry) (13)

3.2.2. Credit assignment
Denotew,(t) as the reward that a strategyeceives after its application at tinheln order to assign the credit for
each strategy, the averaged normalization award is adopted

wa(t)

Wa(t) = — (14)
a:ml,??),(K Wé(t)
wherew,(t) is calculated as
yiels,
w,(t) = == 15
(0 = =5 (15)
andS, is the set of all relative fitness improvemenbof a strategya(a = 1, -- , K) at generationi. Similar to the
method proposed in [52], for the minimization problepnis calculated by
5
m = - (pfi—cf) (16)

wherei = 1,---, . ¢ is the fithess of the best-so-far solution in the populathandcf; are the fitness of the target
parent and its offspring, respectively. Note that as we icenghe minimization problem in this worlpf; — cf; > 0.

In case no improvement is achieved, a null reward is assigimgfd4], four different credit assignment methods are
presented, and the averaged normalization award is ableotadp highly-competitive results through benchmark
functions. Based on this consideration, it is selectedHerdredit assignment in this work.

3.2.3. Strategy selection

The probability matching (PM) technique [31] is used to gsghe selection probability of each strategy. Sup-
pose we havK > 1 strategiesK = 3 in this work) in the poolA = {a,---,ax} and a probability vector
P(t) = {pa(t), -, px®)} (VI : 0 < pi(t) < 1;ZiK:1 pi(t) = 1). In this work, the PM technique is used to adap-
tively update the probabilityp,(t) of each stratega based on its rewardg(t) is the known quality (or empirical
estimate) of a strategy; that is updated as follows [53]:

Oa(t + 1) = da(t) g a[Wa(t) — da(t)], 7)



wherea € (0, 1] is the adaptation rate. The PM method updates the pratyapi(t) as follows [31, 53]:

Qa(t+1)
Sat+1)

wherepmin € (0, 1) is the minimal probability value of each strategy, usedrsure that no operator gets lost.

Pa(t + 1) = Pmin + (1 — K- Pmin) (18)

3.3. Ranking-based vector selection
In order to reduce the computational efforts and make th@pater optimization process of PEMFC model faster,
in this work, the ranking-based vector selection techn{@2¢is also used in the above-mentioned three strategies.
In the ranking-based vector selection technique, the @tijoul is firstly ranked from the best to the worst. Then,
the rankR; of each vectok; in the sorted population is assigned as

R|=/J—|, i=1927"'9/~t (19)
After that, the selection probability of each vector is cédted as follows:
\ 2
= (%) (20)
u

Finally, the vectors in the mutation strategy are selectsmiaing to their selection probabilities as shown in
Algorithm 2. Note that in Algorithm 2 only the vector selextifor “DE/rand/1” is illustrated, for other mutation
operators the vector selection is similar to Algorithm 2.

Algorithm 3: The pseudo-code of rank-MADE

Input: Cr, F, andu
Output: The best solutioRpest
Generate the initial population randomly;
Evaluate the fitness for each individual;
Set the generation countes 1;
SetK = 3, pmin = 0.05, ande = 0.3;
For each strategg, setga(t) = 0 andpa(t) = 1/K;
while not terminated do
fori=1toudo /* Generate offspring */
Select the strateg$l; based on its selection probability;
Select uniform randomly, # ro # 13 # 14 # Is # i;
jrana = mdint(1, D);
for j=1toDdo
if rndrea[0,1) < Cr or j == jrana then

if Slj == 1then

|_ Ui j is generated by “DE/rand/1” strategy;

elseif Sl; == 2then
|_ Ui j is generated by “DE/rand-to-best/2” strategy;

else
|_ u; j is generated by “DE/current-to-rand/1” strategy,

else
|_ Uij = Xij;

fori=1toudo /* Survival selection */
Evaluate the offspring;;
if u; is better than its parent x; then
Calculatey; using Equation (16);
X = Ui;
else
| Setp =0;

| Ssi < m;

Calculate the rewardi,(t) for each strategy;
Update the quality,(t) for each strategy;
Update the probability,(t) for each strategy;
t=t+1;




Table 1: Main features of related approaches.

Algorithm | Ranking-based mutatior] Multi-strategy adaptation Problems
SaJADE [54] | No Yes, strategy adaptive mechanisin benchmark functions
PM-ASS-DE [44 No Yes, probability matching benchmark functions
rank-DE [32 Yes No benchmark functions
R.-IJADE [28] | Yes No solar cell models
rank-MADE | Yes Yes, probability matching PEMFC models

3.4. Therank-MADE approach

Combining the multi-strategy adaptation method with theknag-based vector selection, in this work, the rank-
MADE method is proposed. The pseudo-code of rank-MADE iscdiesd in Algorithm 3. The proposed rank-
MADE has the two main advantages: i) it releases to seek ths&t muitable strategy for a specific problem; and
ii) it can accelerate the convergence speed, and hencelutes the computational efforts when solving complex
problems. These two advantages can make this approachtéelsuo real-world applications, such as the parameter
optimization problems of fuel cell models. In order to vetifie expectation, in the following section, rank-MADE is
used to solve the parameter optimization problems of PEMBGah

As mentioned above, rank-MADE synergizes different congos of different previous approaches, however, it
is different from our previous work presented in [54, 44, 38]. In order to clearly indicate the differences between
rank-MADE and our previous work, the main features of thgger@aches are tabulated in Table 1. From Table 1, it
can be observed that the differences between rank-MADE tredt approaches are as follows:

e rank-MADE vs SaJADE [54]: In SaJADE [54], the strategy a@ddiph is controlled by a simple strategy adap-
tive mechanism; whereas in rank-MADE the probability matghs used to implement the strategy adaptation.
In addition, the ranking-based mutation is not used in S&JAD

e rank-MADE vs PM-ASS-DE [44]: Both approaches use the thébabdlity matching to assign the selection
probabilities of different strategy. In this view, rank-NDk is an improved version of PM-ASS-DE. However,
in rank-MADE the ranking-based mutation is used to accedalage convergence rate for parameter optimization
of PEMFC models.

e rank-MADE vs rank-DE [32]: Both of them use the ranking-ldhssutation, while in rank-MADE the multi-
strategy adaptation is used to release to seek the modilsisteategy when solving the parameter optimization
problems of PEMFC models.

e rank-MADE vs R-IJADE [28]: There are three main differences between tredpproaches: i) rank-MADE
is a multi-strategy DE variants, whereagRIADE only has one mutation strategy; ii) in,RJADE, the
crossover rate repairing technique is proposed, which isised in rank-MADE; and iii) R-IJADE is used
for parameter extraction of solar cell models, while in thisrk rank-MADE is optimized the parameters of
PEMFC models.

To sum up, although each component of rank-MADE is not newgver, the ensemble of these is a new proposal.
In addition, in the application point of view, the applicatiof rank-MADE for the parameter optimization of PEMFC
model is interesting, which may be provide an efficient alstive for researchers and engineers in the field of fuel
cell.

4. Experimental resultsand analysis

For validation of the proposed rank-MADE, in this work, faases of PEMFC model are chosen from the litera-
ture: i) the Ballard Mark V FC [5], ii) the SR-12 Modular PEM @erator [5], iii) the BCS 500-W stack [5], and iv)
the Temasek FC [33]. The parameter values and operatioritmorsdof PEMFC stack are tabulated in Table 2. In
this work, there are 10 unknown parameters of PEMFC that ttelke optimized. The ranges of these parameters are
shown in Table 3, where the ranges of the first 9 parameteiwigiaeated from [9].
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Table 2: Parameter Values and Operation Conditions of PEBIfack.

n [ T(K [ Acn?) | Py, (atm) [ Po, (atm)
Ballard Mark V FC 1 343 50.6 1 1
SR-12 PEM Generator] 48 323 62.5 1.47628 0.2095
BCS 500-W | 32 333 64 1 0.2095
Temasek FC| 20 323 150 0.5 0.5

Table 3: Ranges of the Unknown Parameters to Be Optimized.

Parameter & & &3 &, 1 R (Q) | B(V) Jn (MAICM?) | Jmax (MAJC?) | € (um)
Lower bound | -1.1997 | 0.001 | -3.60E-05 | -2.60E-04 | 10 | 0.0001 | 0.0136 | 1 500 25
Upper bound | -0.8532 | 0.005 | -9.80E-05 | -9.54E-05| 24 | 0.0008 | 0.5 30 1500 178

Table 4: Parameter settings for all DE variants.

Algorithm | Parameter settings
rank-MADE | ©=50Cr =0.9,F = 0.5, pmin = 0.05,@ = 0.3
SaDE | p=50,LP =50 [35]
JADE | u =100 p=0.05c=0.1[36]
CoDE | u=30[37]
DEGL | u=10xD,Cr =0.9,F =0.8[38]

4.1. Parameter Settingsfor DE Variants

For all experiments, the parameters of all DE variants acsvehin Table 4 unless a change is mentioned. To
make a fair comparison, the parameters of SaDE [35], JADE, {36DE [37], and DEGL [38] are the same as used
in their original corresponding literature. For rank-MAD#e population size is set the same as used in SaDE [35],
since both of them are multi-strategy-based DE variantdpvibr the rest four parameters the same settings presented
in [44] are used. All algorithms are coded in standard C++e ftaximal number of function evaluations (MBY¥FES)
are set to 10000. Since DE is the stochastic algorithm, in order to makectrimparison meaningful, each problemis
optimized over 100 independent runs.

4.2. Performancecriteria

In order to compare the performance of different algorithimshis work, the following performance criteria are
adopted:

e MSE: Itis calculated by Equation (10) to measure the soluticaligguof a method obtained.

e NFEsytr: Lete = f(x) — f(x*) be theerror of a solutionx, wheref (x*) is the target fithess to be reached by a
specific problem. The NFEgsr is used to record the number of function evaluations in eaotfar finding a
solution satisfyings < 1e—5.

e Successrate (Sr): It is equal to the number of success runs over total runsuctess run means that within
Max_NFEs the algorithm finds a solutiornsatisfyinge < 1e - 5.

e Convergencegraphs: The graphs show the mean error performance of the total runs

4.3. Comparison with other DE variants

Since the proposed rank-MADE is an improved DE variant, iheotto indicate the superiority of this approach
against other DE variants, in this section, the above-roeatl DE variants are first evaluated in the four PEMFC
models in terms of different performance criteria.
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Figure 1: Convergence graphs of all algorithms on 1(a) tHeBaMark V FC, 1(b) the SR-12 Modular PEM Generator, 1(® BCS 500-W
stack, and 1(d) the Temasek FC.
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Table 5: Comparison on the Identified Parameters and PeafarenCriteria of Different Algorithms for the Ballard Mark&uel Cell. The Target
Fitnessf (x*) Is 474765534862167 — 05.

SaDE JADE CoDE DEGL rank-MADE
& -1.021249+ 0.0758694 | -1.020216+ 0.0771143 | -1.035307+ 0.0832044 | -1.03601+ 0.0918698 | -1.032845+ 0.1239228
& 0.0034094+ 2.79E-04 0.0034316+ 3.12E-04 0.003447+ 3.16E-04 0.0032844+ 6.12E-04 0.0033514+ 4.44E-04
& 6.80E-05+ 1.44E-05 6.89E-05+ 1.47E-05 6.72E-05+ 1.58E-05 6.62E-05+ 1.67E-05 6.46E-05+ 2.25E-05
&4 -1.37E-04+ 1.72E-05 | 0.1892152+ 1.8936216 | -1.40E-04+ 1.39E-05 -1.46E-04+ 3.95E-05 -1.11E-04+ 1.56E-06
Parameter A 17.815496+ 2.2987532 | 17.619827 3.2692295| 18.288234+ 2.1973919 19.3148+ 2.9747414 | 22.357894+ 1.1541713
Rc 0.0005745¢+ 1.46E-04 | 0.0007202+ 0.0025525 0.000505+ 1.82E-04 0.000605% 2.02E-04 0.0007966t 2.18E-05
B 0.0180224+ 0.0053908 | 0.2119834+ 1.909938 | 0.0189587 0.0044109 | 0.1310208+ 0.1350317 | 0.0165263+ 6.87E-04
Jn 23.665732+ 3.7645158 | 37.419977+ 147.78442 | 23.639985+ 4.4226959 | 22.859263+ 7.4288673 | 29.892491+ 0.4868794
Jmax 1492.4046+ 4.6439227 | 1477.435% 135.36285| 1493.5394+ 4.2682876 1256.94+ 278.80288 1499.9137% 0.4798894
l 120.65452+ 28.459245 | 112.04822+ 29.381111 | 124.62694+ 26.008335 | 132.1613% 41.217744 ] 175.5273%+ 11.130183
MSE 6.39E-05 + 2.85E-05" 1.04E-04+ 9.56E-03 6.50E-05+ 1.66E-05 1.44E-03+ 1.01E-02 4.75E-05 + 3.41E-07
Criterion NFESs/r 8792.31+ 883.01 9520.00+ 554.08 9183.66+ 786.47 4819.61 + 894.21 3412.50 + 1228.36
Sy 0.65 0.05 0.41 0.51 1.00

Hereinafter, 4" indicates that rank-MADE is significant better than its quetitor according to the Wilcoxon signed-rank testat 0.05.

Table 6: Comparison on the Identified Parameters and PesfurenCriteria of Different Algorithms for the SR-12 ModuREM Generator. The
Target Fitnesd (x*) Is 0.156166272722352.

SaDE JADE CoDE DEGL rank-MADE
& -1.02561+ 0.1030541 | -1.034749+ 0.0721448 -1.0229+ 0.0801908 -1.008984+ 0.10693 -0.998792+ 0.1204101
& 0.0032459+ 4.26E-04 0.003293% 2.84E-04 0.0032539 3.27E-04 0.0031744+ 4.57E-04 0.0032155¢ 5.17E-04
&3 6.73E-05+ 1.67E-05 6.83E-05+ 1.17E-05 6.82E-05+ 1.61E-05 6.62E-05+ 1.97E-05 7.09E-05+ 2.06E-05
&4 -9.55E-05+ 1.76E-07 -9.74E-05+ 1.75E-06 -9.64E-05+ 8.39E-07 -9.54E-05+ 1.97E-09 -9.54E-05+ 4.51E-12
Parameter A 19.584996+ 2.9809272 | 18.462946+ 2.550822 | 19.085869+ 2.9271004 | 23.921234+ 0.3353184 | 23.999947 3.30E-04
Rc 0.0001379+ 5.79E-05 0.0003449+ 1.19E-04 0.0002556t 1.22E-04 0.0001002+ 3.21E-07 0.0001+ 6.95E-10
B 0.1791865+ 0.0063177 | 0.1580305+ 0.0152112 | 0.1684005+ 0.0094675| 0.1861327 2.79E-04 0.1861435t+ 7.97E-06
Jn 17.952174+ 8.359753 | 15.803156+ 6.1561746 | 17.404213t 6.5811275] 16.267198t 8.9160532 | 15.339315t 9.9366125
Jmax 710.39021+ 10.001811 | 696.36233+ 17.83463 | 704.28625t 10.025273 | 713.20633+ 8.8591155 | 712.24664+ 9.9388476
3 30.328113+ 10.095862 | 59.35475+ 24.708502 | 44.937445+ 15.285959 | 25.022364+ 0.0309311 | 25.000054+ 3.04E-04
MSE 0.159124+ 2.49E-03 0.1821294+ 1.10E-02 0.1686544+ 5.07E-03 0.1561927 + 6.49E-05 0.1561663 + 1.28E-07
Criterion NFESs/Tr NA + NA NA = NA NA + NA 9384.62 + 455.20 5719.50 + 1127.16
S, 0.00 0.00 0.00 0.52 1.00

4.3.1. Ballard Mark V FC

For the Ballard Mark V FC, the results (mearstandard deviation) of all DE variants are reported in T&blall
results are averaged over 100 runs. The overall best aneétiomd best results among the five DEs are highlighted
in grey boldface andboldface, respectively. In order to statistically compare the digance in terms of the MSE
values between two algorithms, the paired Wilcoxon sigratktest atr = 0.05 is adopted.

According to the results shown in Table 5, itis clear to se tank-MADE obtains the overall best results among
all DE variants.

e With respect to the MSE values, rank-MADE is able to get tlgmi§icant better results compared with other
DE variants based on the Wilcoxon'’s test. In addition, rd®&BE provides the smallest standard deviation of
MSE, which means that this approach is the most robust one@ihe five compared DEs.

e For the NFEgrg, rank-MADE requires the smallest NRgr& values to reacl < 1e — 5. This phenomenon
indicates that rank-MADE can reduce the computationalr&ffim reach the required accuracy compared with
other DEs.

e In terms of the success rate, Table 5 clearly shows that M#RE can successfully solve the parameter
optimization problem of the Ballard Mark V FC in all runs. Hever, for other four DE variants, there are some
runs that failed to reach the required accura®/~«5).

4.3.2. SR-12 modular PEM generator

In this case, the results of all DEs are shown in Table 6. @intd the results shown in the Ballard Mark V FC,
rank-MADE obtains the best results among all DEs. DEGL detssecond best results in terms of all performance
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Table 7: Comparison on the Identified Parameters and PesfzenCriteria of Different Algorithms for the 500-W BCS Sta@ he Target Fitness
f(x*) Is 0.080620362614142.

SaDE JADE CoDE DEGL rank-MADE
& -1.028371+ 0.1047142 | -1.040735+ 0.0738692 | -1.034078+ 0.0895158 | -1.033311+ 0.1113914 | -1.026953+ 0.1380159
& 0.0033601+ 4.35E-04 0.0033744+ 3.15E-04 0.0033413t 3.84E-04 0.003394+ 4.58E-04 0.0032749:+ 4.86E-04
& 6.92E-05+ 1.91E-05 6.78E-05+ 1.35E-05 6.69E-05+ 1.52E-05 7.04E-05+ 1.88E-05 6.40E-05+ 2.06E-05
&4 -2.60E-04+ 6.11E-08 -2.59E-04+ 6.47E-07 -2.60E-04+ 3.89E-07 -2.60E-04+ 7.83E-10 -2.60E-04+ 1.86E-10
Parameter A 21.415265: 1.7089912 | 18.2914074 2.4222491 | 20.404572+ 1.9522797 | 22.042059: 0.3309158 | 22.022697 0.2378777
Rc 0.0007645¢+ 5.26E-05 0.0005368+ 1.46E-04 0.0006849+ 9.29E-05 0.000799% 3.80E-07 0.0008+ 1.02E-07
B 0.023261+ 0.0132924 | 0.0599936+ 0.0281342 | 0.0410432+ 0.0217215| 0.0140747 0.0018136 | 0.0138872+ 0.0017135
Jn 15.632572+ 6.8891146 | 15.250586+ 6.6975231 | 15.107213t 7.1807205 | 11.548915+ 7.8967328 1.1688426+ 0.92269
Jmax 1400.4734+ 74.057285| 1297.6723+ 108.21698 | 1358.8213+ 106.11027 | 1498.1705t 2.6615516 | 1499.857% 0.7903497
l 161.6993%+ 21.961528 | 107.34752+ 33.000504 | 135.58707+ 28.43836 | 177.7167% 1.4661152 | 177.9474+ 0.4192133
MSE 0.0808961+ 2.26E-04 0.0826358+ 6.39E-04 0.0815721+ 3.48E-04 0.0806272 + 1.17E-05" 0.0806217 + 8.05E-06
Criterion NFESs/r NA + NA NA + NA NA + NA 8162.64 + 791.71 5136.73 + 1331.10
Sy 0.00 0.00 0.00 0.91 0.98

Table 8: Comparison on the Identified Parameters and PeafazenCriteria of Different Algorithms for the Tesasek FuellCThe Target Fitness
f(x*) Is 0.005350750634420.

SaDE JADE CoDE DEGL rank-MADE
& -1.031596+ 0.0915411 -1.030217+ 0.08226 -1.036283+ 0.0870782 | -1.031217+0.1111281 | -1.053657+ 0.125614
& 0.0033444+ 3.80E-04 0.0033394+ 3.19E-04 0.003366+ 3.75E-04 0.0033372+ 4.64E-04 0.0034069+ 5.45E-04
&3 6.88E-05+ 1.69E-05 6.71E-05+ 1.40E-05 6.82E-05+ 1.54E-05 6.87E-05+ 1.88E-05 6.87E-05+ 2.30E-05
& -9.59E-05+ 7.21E-07 -9.89E-05+ 3.36E-06 -9.86E-05+ 2.17E-06 -9.54E-05+ 7.27E-10 -9.54E-05+ 9.92E-11
Parameter A 18.124982+ 2.8688591 | 18.166463+ 3.0411002 | 18.72864+ 3.0917908 | 20.030178+ 3.649708 22.05994+ 3.105797
Rc 2.02E-04+ 7.14E-05 2.37E-04+ 8.78E-05 2.61E-04+ 1.05E-04 2.09E-04+ 5.93E-05 2.47E-04+ 5.07E-05
B 0.0337897 0.0127113 | 0.0465626+ 0.0263156 | 0.0305712+ 0.0088909 | 0.0366364+ 0.0023466 | 0.0372538+ 5.09E-04
Jn 16.529477 6.6541628 | 16.090957 6.1018559 | 16.17983%+ 7.5686319 | 15.632442+ 8.401901 | 16.725764+ 11.738041
JImax 623.84636+ 56.936935 | 716.09655+ 177.36801 | 625.04348+ 32.192166 | 620.28937 9.1103672 | 622.01113+ 11.698825
3 49.298956+ 16.672435 | 62.903887 21.277323 | 59.997894 22.309745 | 36.199719+ 14.474108 | 30.255754+ 11.486564
MSE 0.0063898+ 4.16E-03 0.0220811+ 8.90E-03 0.0119779+ 5.58E-03 0.0053793 + 2.38E-047 0.005353 +3.46E-06
Criterion NFESs/Tr NA + NA NA = NA NA + NA 6873.33 + 1237.69 4225.77 +1344.13
Sy 0.00 0.00 0.00 0.90 0.97

criteria. rank-MADE is able to get the highest quality ofig@ins and the smallest NHg® value. In addition, rank-
MADE can also successfully reach the required accuracy lotisas in all runs §; = 1.0). DEGL only provides
S = 0.52. While for other three DE methods (SaDE, JADE, and CoDi€xed is no successful run in all 100 runs.

4.3.3. BCS500-W stack

As the results shown in Table 7, in the case of BCS 500-W sthekproposed rank-MADE gets the best per-
formance in terms of all performance criteria, followed bEGL. In 2 out of 100 runs, rank-MADE fails to reach
€ < le-5, butit gets success in the rest 98 runs. DEGL gets the ssicateswithS, = 0.91. There is no success run
for SaDE, JADE, and CoDE.

4.3.4. Temasek FC

The results are reported in Table 8 in this case. Like theipus\cases, rank-MADE still provides the best results
with respect the quality of solutions, the success rate,thadNFEstr in this case. DEGL gets the second best
results. There is also no success run for SaDE, JADE, and QoiE case of the Temasek FC.

4.3.5. On the convergence speed

In order to compare the convergence speed of all DE varidnr@gonvergence graphs in all above cases are plotted
in Figure 1. As can be seenin Figure 1, itis clear to obseragttte proposed rank-MADE consistently gets the fastest
convergence speed in all cases, followed by DEGL, SaDE, Cab& JADE.

4.4. Satistical comparison among other EAs
In the previous section, rank-MADE is compared with other &@#iants through the experimental data of four
different PEMFC models. To further understand the perforeeaof rank-MADE, in this section, rank-MADE is
compared with other evolutionary algorithms (EAsg, real-coded genetic algorithm (rcGA) [39], fast evoluton
12



Table 9: Comparison on the MSE values among different EAdifterent PEMFC models. All results are averaged over l1d@ependent runs.

Algorithm Ballard Mark V SR-12 BCS 500W Temasek FC WNS-FC (313 K) WNS-FC (333 K) WNS-FC (353 K)
MADE 4.79E-05 + 9.0E-07 0.15633+ 5.0E-04 | 0.08065+ 9.4E-05 | 0.00537 + 1.1E-04 0.01378+ 2.5E-04 | 0.01719+ 1.4E-04 | 0.02135 + 4.2E-05
SaDE 6.39E-05+ 2.8E-05 | 0.15912+ 2.5E-03 | 0.08090+ 2.3E-04 | 0.00639+ 4.2E-03 | 0.01451+ 6.9E-04 | 0.01745+ 1.8E-04 | 0.02164+ 2.1E-04
JADE 1.04E-04+ 9.6E-05 0.18213+ 1.1E-02 | 0.08264+ 6.4E-04 | 0.02208+ 8.9E-03 | 0.02806+ 1.1E-02 | 0.03153+ 1.0E-02 | 0.04490+ 1.4E-02
CoDE 6.50E-05+ 1.7E-05 0.16865+ 5.1E-03 | 0.08157+ 3.5E-04 | 0.01198+ 5.6E-03 | 0.01750+ 1.6E-03 | 0.01932+ 1.1E-03 | 0.02437+ 2.0E-03
DEGL 1.44E-03+ 1.0E-02 | 0.15619 + 6.5E-05 | 0.08063 + 1.2E-05 | 0.00538+ 2.4E-04 | 0.01369 + 1.9E-04 | 0.01713 + 1.3E-04 | 0.02136+ 3.1E-05
rcGA 6.39E+00+ 2.0E+01 | 0.87105+ 2.4E-01 | 0.13500+ 3.3E-02 | 0.21249+ 1.3E-01 | 0.46276+ 1.3E-01 | 0.55347+ 1.5E-01 | 0.67596+ 1.5E-01
FEP 2.08E-04+ 9.5E-05 0.64211+ 1.5E-01 | 0.10391+ 1.2E-02 | 0.07086+ 1.5E-02 | 0.34010+ 5.9E-02 | 0.39310+ 6.7E-02 | 0.51039+ 8.4E-02

ABC 8.77E-05+ 3.8E-05 | 0.27410+ 8.3E-02 | 0.09662+ 1.3E-02 | 0.02724+ 1.3E-02 | 0.10029:+ 5.4E-02 | 0.11328+ 6.7E-02 | 0.14109+ 8.1E-02
CLPSO 2.06E-03+ 1.5E-02 | 0.18341+ 2.8E-02 | 0.08393+ 4.9E-03 | 0.01227+ 9.5E-03 | 0.05582+ 5.5E-02 | 0.07900+ 7.2E-02 | 0.09909+ 9.5E-02
rank-MADE 4.75E-05 + 3.4E-07 0.15617 + 1.3E-07 0.08062 + 8.0E-06 0.00535 + 3.5E-06 0.01355 + 1.5E-04 0.01703 + 7.2E-05 0.02131 + 2.5E-05

Table 10: Statistical results by the Wilcoxon'’s test betwvesnk-MADE with its competitor. “Yes” means that rank-MAD#gnificantly outper-
forms its competitor in terms of the MSE values by the Wilaogdest atw = 0.05.

Algorithm Ballard Mark v SR-12 _ BCS SOOW_ Temasek F(_: WNS-FC (313_K) WNS-FC (333_K) WNS-FC (353_K)
p-value sig. p-value sig. p-value sig. p-value Sig. p-value sig. p-value sig. p-value Sig.

MADE 5.63E-12 | Yes | 0.00E+00 | Yes | 6.66E-16 | Yes | 1.07E-08 | Yes | 8.08E-12 | Yes | 3.38E-14 | Yes | 1.24E-11 | Yes
SaDE 0.00E+00 | Yes | 0.00E+00 | Yes | 0.00E+00 | Yes | 0.00E+00 | Yes | 0.00E+00 | Yes | 0.00E+00 | Yes | 0.00E+00 | Yes
JADE 0.00E+00 | Yes | 0.00E+00 | Yes | 0.00E+00 | Yes | 0.00E+00 | Yes | 0.00E+00 | Yes | 0.00E+00 | Yes | 0.00E+00 | Yes
CoDE 0.00E+00 | Yes | 0.00E+00 | Yes | 0.00E+00 | Yes | 0.00E+00 | Yes | 0.00E+00 | Yes | 0.00E+00 | Yes | 0.00E+00 | Yes
DEGL 4.10E-13 | Yes | 0.00E+00 | Yes | 8.22E-15 | Yes | 1.13E-06 | Yes | 1.30E-09 | Yes | 5.19E-11 | Yes | 2.51E-14 | Yes
rcGA 0.00E+00 | Yes | 0.00E+00 | Yes | 0.00E+00 | Yes | 0.00E+00 | Yes | 0.00E+00 [ Yes | 0.00E+00 | Yes | 0.00E+00 | Yes
FEP 0.00E+00 | Yes | 0.00E+00 | Yes | 0.00E+00 | Yes | 0.00E+00 | Yes | 0.00E+00 | Yes | 0.00E+00 | Yes | 0.00E+00 | Yes
ABC 0.00E+00 | Yes | 0.00E+00 | Yes | 0.00E+00 | Yes | 0.00E+00 | Yes | 0.00E+00| Yes | 0.00E+00 | Yes | 0.00E+00 | Yes
CLPSO 0.00E+00 | Yes | 0.00E+00 | Yes | 0.00E+00 | Yes | 0.00E+00 | Yes | 0.00E+00 | Yes | 0.00E+00 | Yes | 0.00E+00 | Yes

programming (FEP) [40], artificial bee colony (ABC) [41], damomprehensive learning particle swarm optimizer
(CLPSO) [42]. The four algorithms are chosen due to theirdgoerformance obtained in the benchmark problems.
In addition, besides the experimental data of the four PEMedels mentioned above, the PEMFC model (WNS-FC,
for short) proposed in [34] are also used to generat&/thelata at different temperature (313 K, 333 K, and 353 K).
The Matlab/Simulink generator of this model is provided3s]. For the sake of completeness, the above-mentioned
DE variants are also compared in this experiment. In additiee original version of rank-MADH,e., MADE?, is

also selected for comparison. The parameter settings of #le DE variants are shown in Table 4. The parameters
of the four EAs (.e, rcGA, FEP, ABC, and CLPSO) are set the same as used in thegsponding literature. For
each data set of different PEMFC models, the MdxEs= 10, 000 are used. In addition, each algorithm is executed
over 100 independent runs for each data set. For the sakeoé $mitation, only the MSE performance is used in
this section.

The mean and standard deviation values of MSE for all problara reported in Table 9. All results are aver-
aged over 100 runs. The overall best and the second bestsrasubng the ten compared EAs are highlighted in
grey boldface andboldface, respectively. Moreover, in order to make the comparisoanmimgful, the Wilcoxon’s
test is employed to compare the differences between ranlBBEIAnd its competitor. The statistical results by the
Wilcoxon’s test are described in Table 10, wherephelue and the significance are reportedy K 0.05, it indicates
that rank-MADE significantly outperforms its competitorterms of the MSE values. Additionally, according to the
Friedman test, the final rankings of all EAs for all problems given in Table 11. Note that the Friedman test, which
is used to obtain the rankings of different algorithms fépabblems, is calculated by the KEEL software [56].

According to the results shown in Table 9, it is clear thatghgposed rank-MADE consistently obtains the best
mean MSE values in all cases. In addition, in all of the 7 peotd rank-MADE provides the smallest standard
deviation values of MSE, which means that rank-MADE is thestmobust method among the 10 compared EAs. In
4 out of 7 cases, DEGL gets the second best MSE values, wHlleases MADE is the second best one. Compared
the results between MADE and rank-MADE, it can be seen th#t-MADE improves the performance of MADE
consistently in all cases, which verifies the benefit of iraéign of the ranking-based vector selection technique.

Considering the statistical results, Table 10 clearlyéatis that rank-MADE gets significantly better results than
its competitors in all problems by the Wilcoxon’s testoat 0.05. Especially, comparing rank-MADE with SaDE,

1The only difference between rank-MADE and MADE is the ragkirased vector selection proposed in Section 3.3. In MADE& ranking-
based vector selection is not used. MADE have the same ptasgttings as used in rank-MADE.
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Table 11: Average rankings of the algorithms by the Friedsntast in terms of the mean MSE values in all of the PEMFC nmdel

Algorithm Ranking
MADE 25714
SaDE || 3.8571
JADE 6.1429
CoDE 4.8571
DEGL 3.1429
rcGA 10.000
FEP 8.7143
ABC 7.5714
CLPSO || 7.1429
rank-MADE 1.0000

JADE, CoDE, rcGA, ABC, FEP, and CLPSO, tpevalues are @ for all problems, which mean that in all 100 runs
rank-MADE is able to obtain better MSE values than the 7 ma@shdn addition, according to the Friedman test,
from Table 11, it can be observed that rank-MADE gets thedivstall ranking in all problems, followed by MADE,
DEGL, SaDE, CoDE, JADE, CLPSO, ABC, FEP, and rcGA.

In general, according to the results shown in Tables 9, 10,14n it can be concluded that the proposed rank-
MADE is very promising when solving the parameter optimizaproblems of PEMFC models. It is able to consis-
tently provide the best results in all problems comparetl wiher DE variants and other EAs.

4.5. OntheV-| characteristics

In order to further investigate the capability of the expental data and the model output voltage obtained by
rank-MADE, DEGL, and rcGA, their optimal parameter values are fed back to the PEMF@enaatical model to
achieveV-I characteristics. The comparisons between the experiinggiiz and the simulated data are plotted in
Figure 2. As shown in Figure 2, the shapes of the fitted curfeank-MADE and DEGL are very close to each
other, and thé&/-1 characteristics obtained by both of them are highly coiaeiith the experimental data in all four
cases. On the contrary, thel characteristics obtained by rcGA are in bad agreement hitlexperimental data in all
problems due to its poor optimized parameters. It it wortlplkasizing that although the fitted curves of rank-MADE
and DEGL are very close to each other, rank-MADE is able twipgebetter mean and standard deviation values of
MSE than those of DEGL in all problems as reported in Table 9.

4.6. Discussions

With the purpose of optimizing the unknown parameters of FENNhodel faster and more accurate, in this work,
a ranking-based multi-strategy adaptive DE (rank-MADE}hod is presented. Then, this approach is employed for
the parameter optimization problems of the Ballard Mark \, @ SR-12 Modular PEM Generator, the BCS 500-W
stack, the Temasek FC, and WNS-FC at different temperaiitie.performance of the approach is compared with
five highly-competitive DE variants and four state-of-#m-EAs. From the experimental results it can be obtained
that:

e Interms of the solution quality, the convergence speedtlamduccess rate, rank-MADE is the best one among
all compared algorithms. It is capable of providing highaality of solutions, getting higher success rate,
and converging faster in all cases. rank-MADE is also thetmaizist one according to the standard deviation
values of MSE.

e By returning the optimized parameters by rank-MADE to thé//HE mathematical model, thé-l character-
istics obtained by this approach are in very good agreemihtlae experimental data in the four cases. This
means that rank-MADE is effective to solve the parametendpation problems of PEMFC model.

2Note that for the sake of clarity, we only show tifel characteristics of rank-MADE, DEGL, and rcGA in Figure 2. GEis selected due to
its second best results obtained in four cases; while rc@Ghdsen because of its worst performance obtained in allgmrah
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Figure 2: Comparisons between the experimental data anehdldel curve obtained from the identified parameters by MABE, DEGL, and
rcGA on 1(a) the Ballard Mark V FC, 1(b) the SR-12 Modular PEENh@rator, 1(c) the BCS 500-W stack, 1(d) the Temasek FCilZ£a)/NS-FC
at 313 K, 2(f) the WNS-FC at 333 K, and 2(g) the WNS-FC at 353 K.
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e Among the 10 methods, rank-MADE ranks the first, followed b&%DE, DEGL, SaDE, CoDE, JADE, CLPSO,
ABC, FEP, and rcGA. Interestingly, rank-MADE, DEGL, SaDBdaCoDE are all multi-strategy based DE
variants. This might motivate the researchers to study nelti4strategy adaptive DE to solve the complex
real-work application problems.

e By carefully looking at the results shown in Table 9, the mBESE values of rank-MADE, MADE, and DEGL
are very close to each other. However, since\thledata adopted in this work are stemmed from [5, 33] and
generated from the model proposed in [34], no informaticavalable about the accurate values of the param-
eters; therefore, any reduction in the objective functialug is significant because it results in improvementin
the knowledge about the real values of the parameters.

5. Conclusions

In order to obtain higher quality of solutions and reducedbmputational efforts, in this paper, two improve-
ments in the DE literature are synergized and the rankirsgdanulti-strategy adaptive DE method is proposed for
the parameter optimization problems of PEMFC model. In f&I#OE, the multi-strategy adaptive selection is em-
ployed to release the engineer to choose the most suitabtegy for a specific problem at hand. In addition, the
ranking-based vector selection technique is applied th eagation strategy to make the algorithm converge faster.
Experiments on different PEMFC models and comparisons atitler advanced DE variants and other EAs verify
the expectation that this approach obtains more accurhteast and converges faster. In addition, it gets the highe
success rate in all cases of experimental data. Moreowey,-thcharacteristics obtained by rank-MADE are in very
good agreement with the experimental data.

Due to the superior performance obtained by rank-MADE faap®eter optimization of PEMFC model,one pos-
sible future work is the application of GPGPU-aided rank-MA [57] to other complex parameter optimization
problems of fuel cell models, such as the solid oxide fudl [&8]. In addition, since rank-MADE is not a special
technique for fuel cells and it does not increase the conitylex the original DE algorithm, it can also be useful
to other real-world problems like other DEs [30], such asriwdeling of oxygen mass transfer [25], engineering
design [59], and so on. This expectation will be verified ie tiiture work.

The source code of rank-MADE can be obtained from the firdt@uipon request.

Acknowledgments

The authors would like to thank the anonymous reviewers Heirtconstructive suggestions. This work was
partly supported by the National Natural Science FoundaifcChina under Grant No. 61203307 and 61075063, the
Fundamental Research Funds for the Central Universiti€hiaa University of Geosciences (Wuhan) under Grant
No. CUG130413 and CUG090109, and the Research Fund for ttabProgram of Higher Education under Grant
No. 201101451200089.

References

[1] J.Larminie, A. Dicks, Fuel Cell Systems Explained (Setd&dition), Wiley, 2003.

[2] S.Peighambardoust, S. Rowshanzamir, M. Amjadi, Rewittlie proton exchange membranes for fuel cell applicatibrisrnational Journal
of Hydrogen Energy 35 (17) (2010) 9349 — 9384.

[3] J. C. Amphlett, R. M. Baumert, R. F. Mann, B. A. PeppleyRPRoberge, T. J. Harris, Performance modeling of the lwhitaark 1V solid
polymer electrolyte fuel cell, Journal of The ElectrocheahiSociety 142 (1) (1995) 1 — 15.

[4] R. F. Mann, J. C. Amphlett, M. A. Hooper, H. M. Jensen, B.Peppley, P. R. Roberge, Development and application of argésed
steady-state electrochemical model for a PEM fuel cellydalof Power Sources 86 (1 - 2) (2000) 173 — 180.

[5] J. Corréa, F. Farret, L. Canha, M. Simoes, An electrothal-based fuel-cell model suitable for electrical eregiring automation approach,
IEEE Transactions on Industrial Electronics 51 (5) (2004)3— 1112.

[6] A.Biyikoglu, Review of proton exchange membrane fusl models, International Journal of Hydrogen Energy 30 (2005) 1181 — 1212.

[7] D. Paclisan, W. Charon, Real time modelling of the dymammechanical behaviour of PEMFC thanks to neural networksgirieering
Applications of Artificial Intelligence 26 (2) (2013) 706 43.

[8] Z.-J. Mo, X.-J. Zhu, L.-Y. Wei, G.-Y. Cao, Parameter opization for a PEMFC model with a hybrid genetic algorithmternational Journal
of Energy Research 30 (8) (2006) 585-597.

16



El
[20]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
(18]

[19]
[20]

[21]

[22]
[23]

[24]
[25]
[26]
[27]

[28]
[29]

[30]
[31]
[32]
(33]
[34]
[35]
[36]
[37]
(38]
[39]
[40]
[41]
[42]

[43]
[44]

[45]

A. Askarzadeh, A. Rezazadeh, An innovative global hamynsearch algorithm for parameter identification of a PEM &efl model, IEEE
Transactions on Industrial Electronics 59 (9) (2012) 343380.

S. M. C. Ang, E. S. Fraga, N. P. Brandon, N. J. SamsatliJ.Brett, Fuel cell systems optimisation - methods andesires, International
Journal of Hydrogen Energy 36 (22) (2011) 14678 — 14703.

M. Outeiro, R. Chibante, A. Carvalho, A. de Almeida, Arameter optimized model of a proton exchange membrane &lieincluding
temperature effects, Journal of Power Sources 185 (2) JZEB— 960.

M. Ye, X. Wang, Y. Xu, Parameter identification for pratexchange membrane fuel cell model using particle swarimagzttion, Interna-
tional Journal of Hydrogen Energy 34 (2) (2009) 981 — 989.

A. Askarzadeh, A. Rezazadeh, A new artificial bee swaguorihm for optimization of proton exchange membrane ft&l model parame-
ters, Journal of Zhejiang University SCIENCE C 12 (2011)-638.

A. Askarzadeh, A. Rezazadeh, A grouping-based globambny search algorithm for modeling of proton exchange brane fuel cell,
International Journal of Hydrogen Energy 36 (8) (2011) 564053.

C. Dai, W. Chen, Z. Cheng, Q. Li, Z. Jiang, J. Jia, Seelptinuzation algorithm for global optimization: A case syuoh optimal modelling
of proton exchange membrane fuel cell (PEMFC), Internalidournal of Electrical Power & Energy Systems 33 (3) (289 — 376.

A. Askarzadeh, A. Rezazadeh, Artificial immune systeased parameter extraction of proton exchange membraheefljeinternational
Journal of Electrical Power & Energy Systems 33 (4) (20113 9338.

S. Yang, N. Wang, A novel P systems based optimizatigorghm for parameter estimation of proton exchange menefael cell model,
International Journal of Hydrogen Energy 37 (10) (2012)34@®476.

A. Askarzadeh, A. Rezazadeh, A new heuristic optiniraglgorithm for modeling of proton exchange membrane éadit Bird mating
optimizer, International Journal of Energy Research (2012-n/aln press.

U. K. Chakraborty, T. E. Abbott, S. K. Das, PEM fuel celbdeling using differential evolution, Energy 40 (1) (20B8)7 — 399.

M. Secanell, J. Wishart, P. Dobson, Computational gtesind optimization of fuel cells and fuel cell systems: Aieey Journal of Power
Sources 196 (8) (2011) 3690 — 3704.

R. Storn, K. Price, Differential evolution—A simple éefficient heuristic for global optimization over continugospaces, J. of Global Optim.
11 (4) (1997) 341-359.

K. Price, R. Storn, J. Lampinen, Differential EvolutioA Practical Approach to Global Optimization, Springezrlg, Berlin, 2005.

R. Thangaraj, M. Pant, K. Deep, Optimal coordinatioroeér-current relays using modified differential evolutigorithms, Engineering
Applications of Artificial Intelligence 23 (5) (2010) 820 28.

K. Vaisakh, L. Srinivas, Evolving ant direction diffemtial evolution for OPF with non-smooth cost functionsgieering Applications of
Artificial Intelligence 24 (3) (2011) 426 — 436.

E.-N. Dragoi, S. Curteanu, F. Leon, A.-l. Galaction,@ascaval, Modeling of oxygen mass transfer in the presehaeygen-vectors using
neural networks developed by differential evolution aion, Engineering Applications of Artificial Intelligenc# (7) (2011) 1214 — 1226.
S.-K. Oh, W.-D. Kim, W. Pedrycz, Design of optimized cade fuzzy controller based on differential evolution: Siaion studies and
practical insights, Engineering Applications of Artifitlatelligence 25 (3) (2012) 520 — 532.

E. Cuevas, D. Zaldivar, M. Pérez-Cisneros, D. OlBmck-matching algorithm based on differential evolution motion estimation, Engi-
neering Applications of Atrtificial Intelligence 26 (1) (28)1488 — 498.

W. Gong, Z. Cai, Parameter extraction of solar cell nisdising repaired adaptive differential evolution, SolaeEyy 94 (2013) 209 — 220.
F. Neri, V. Tirronen, Recent advances in differentiabletion: A survey and experimental analysis, Atrtificiatdtigence Review 33 (1-2)
(2010) 61 — 106.

S. Das, P. N. Suganthan, Differential evolution: A yof the state-of-the-art, IEEE Trans. on Evol. Comput.1)5§2011) 4-31.

D. E. Goldberg, Probability matching, the magnitudeenforcement, and classifier system bidding, Mach. Leau@) (1990) 407-425.
W. Gong, Z. Cai, Differential evolution with rankingabed mutation operators, IEEE Transactions on Cybern@ids3) 1 — 16In press.

J. Jia, Y. Wang, Q. Li, Y. Cham, M. Han, Modeling and dynearcharacteristic simulation of a proton exchange membfaekcell, IEEE
Transactions on Energy Conversion 24 (1) (2009) 283 — 291.

C. Wang, M. Nehrir, S. Shaw, Dynamic models and modeidasion for PEM fuel cells using electrical circuits, IEEEahsactions on
Energy Conversion 20 (2) (2005) 442 — 451.

A. K. Qin, V. L. Huang, P. N. Suganthan, Differential éwtion algorithm with strategy adaptation for global nuial optimization, IEEE
Trans. on Evol. Comput. 13 (2) (2009) 398-417.

J. Zhang, A. C. Sanderson, JADE: Adaptive differengilution with optional external archive, IEEE Trans. oroE€omput. 13 (5) (2009)
945-958.

Y. Wang, Z. Cai, Q. Zhang, Differential evolution witlomposite trial vector generation strategies and contrarpaters, IEEE Trans. on
Evol. Comput. 15 (1) (2011) 55-66.

S. Das, A. Abraham, U. K. Chakraborty, A. Konar, Diffatel evolution using a neighborhood-based mutation dperé#EEE Trans. on
Evol. Comput. 13 (3) (2009) 526-553.

F. Herrera, M. Lozano, Gradual distributed real-codedetic algorithms, IEEE Trans. on Evol. Comput. 4 (1) (900%-63.

X.Yao, Y. Liu, G. Lin, Evolutionary programming madestar, IEEE Trans. on Evol. Comput. 3 (2) (1999) 82-102.

D. Karaboga, B. Basturk, A powerful and efficient alglom for numerical function optimization: Artificial bee coly (ABC) algorithm, J.
of Global Optimization 39 (3) (2007) 459-471.

J. J. Liang, A. K. Qin, P. N. Suganthan, S. Baskar, Coin@nsive learning particle swarm optimizer for global ojtmtion of multimodal
functions, IEEE Trans. on Evol. Comput. 10 (3) (2006) 285-29

D. Opitz, R. Maclin, Popular ensemble methods: An emairstudy, Journal of Artificial Intelligence Research 1999) 169-198.

W. Gong, A. Fialho, Z. Cai, Adaptive strategy selectiordifferential evolution, in: J. Branke (Ed.), Genetic a@adolutionary Computation
Conference (GECCO 2010), ACM Press, 2010, pp. 409-416.

J. Corréa, F. Farret, V. Popov, M. Simoes, Sensitigitalysis of the modeling parameters used in simulation abprexchange membrane
fuel cells, IEEE Transactions on Energy Conversion 20 (0p§2 211 — 218.

17



[46]
[47]
(48]
[49]
[50]
[51]
[52]
(53]
[54]
[55]
[56]
[57]
(58]

[59]

M. Outeiro, R. Chibante, A. Carvalho, A. de Almeida, Anparameter extraction method for accurate modeling of P&l dells, Interna-
tional Journal of Energy Research 33 (11) (2009) 978-988.

M. Ohenoja, K. Leiviska, Validation of genetic algthnin results in a fuel cell model, International Journal ofdrygen Energy 35 (22)
(2010) 12618 — 12625.

Q. Li, W. Chen, Y. Wang, S. Liu, J. Jia, Parameter idecutiion for PEM fuel-cell mechanism model based on effedtifermed adaptive
particle swarm optimization, IEEE Transactions on Indaekglectronics 58 (6) (2011) 2410 — 2419.

A. Askarzadeh, A. Rezazadeh, Optimization of PEMFC el@érameters with a modified particle swarm optimizationernational Journal
of Energy Research 35 (14) (2011) 1258-1265.

M. Karimi, A. Askarzadeh, A. Rezazadeh, Using tournatelection approach to improve harmony search algorithnrmbdeling of proton
exchange membrane fuel cell, Int. J. Electrochem. Sci. 126426 — 6435.

L. Zhang, N. Wang, An adaptive RNA genetic algorithm foodeling of proton exchange membrane fuel cells, Intesnati Journal of
Hydrogen Energy 38 (1) (2013) 219 — 228.

Y.-S. Ong, A. J. Keane, Meta-Lamarckian learning in neémalgorithms, IEEE Trans. on Evol. Comput. 8 (2) (2004} BR0.

D. Thierens, An adaptive pursuit strategy for alloegtbperator probabilities, in: Proc. Genetic Evol. Comg@gnf., 2005, pp. 1539-1546.
W. Gong, Z. Cai, C. X. Ling, H. Li, Enhanced differenti@olution with adaptive strategies for numerical optintima, IEEE Transactions
on Systems, Man, and Cybernetics: Part B — Cybernetics 42Q2)1) 397-413.

C. Wang, M. H. Nehrir, Dynamic models for PEMFs and tanuOFCs (2013).

URL htt p: // ww. coe. nont ana. edu/ ee/ f uel cel |/

J. Alcala-Fdez, L. Sanchez, S. Garcia, KEEL: A saitatool to assess evolutionary algorithms to data minineglpms (2012).

URL htt p: // ww. keel . es/

D. Chen, D. Li, M. Xiong, H. Bao, X. Li, GPGPU-aided enselmempirical-mode decomposition for EEG analysis duringsthesia, IEEE
Transactions on Information Technology in Biomedicine 84(2010) 1417-1427.

D. Bhattacharyya, R. Rengaswamy, A review of solid exidel cell (SOFC) dynamic models, Industrial & Engineer@igemistry Research
48 (13) (2009) 6068—-6086.

I. Mazhoud, K. Hadj-Hamou, J. Bigeon, P. Joyeux, Phtssvarm optimization for solving engineering problems: éwrconstraint-handling
mechanism, Engineering Applications of Atrtificial Intgiince 26 (4) (2013) 1263 — 1273.

18



