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Abstract

Parameter optimization of proton exchange membrane fuel cell (PEMFC) model has received considerable attention
recently. In order to estimate the unknown parameters of PEMFC model faster and obtain more accurate solutions, in
this paper, an improved multi-strategy adaptive differential evolution (DE) is presented for the parameter optimization
problems of PEMFC model. The approach is referred to as rank-MADE, for short. In rank-MADE, the multiple
mutation strategies of DE are adaptively selected to avoid choosing a suitable strategy for a specific problem by
trial-and-error method. Furthermore, the ranking-based vector selection technique is employed in different mutation
strategies to accelerate the process of parameter optimization of PEMFC model. In order to verify the performance of
rank-MADE, it is applied to estimate the parameters of the Ballard Mark V FC, the SR-12 Modular PEM Generator,
the BCS 500-W stack, the Temasek FC, and the WNS-FC model. In addition, rank-MADE is compared with other
advanced DE variants and other evolutionary algorithms (EAs). Experimental results show that rank-MADE is able
to provide higher quality of solutions, faster convergencespeed, and higher success rate compared with other DE
variants. Additionally, theV-I characteristics obtained by rank-MADE agree well with the experimental data in all
cases. Therefore, rank-MADE can be an effective alternative in the field of other complex parameter optimization
problems of fuel cell models.

Key words: Proton exchange membrane fuel cell (PEMFC), parameter optimization, differential evolution, strategy
adaptation, ranking-based vector selection.

1. Introduction

Due to the urgent demands of clean energy solutions of our world, recently, researchers pay more attention to
develop new technologies in the field of power generation systems. As one of the most popular types of new tech-
nologies, fuel cells (FCs) are considered to be a promising candidate in the twenty-first century, because of their low
aggression to the environment, low noise, good dynamic response, and high efficiency. There are several different
kinds of fuel cells based on the nature of used electrolyte [1]. However, among various kinds of fuel cells, the proton
exchange membrane fuel cells (PEMFCs) are widely studied and promising area for different applications [2].

For an efficient design of PEMFC-based systems, the PEMFC models are required. There have been many studies
on modeling and simulation of the PEMFC [3, 4, 5, 6, 7]. Moet al. [8] classified different PEMFC models into two
approaches: i) mechanistic models, which aim at simulatingthe heat, mass transfer and electrochemical phenomena
present in fuel cells; and ii) models on empirical or semi-empirical equations, which are applied to predict the effect
of different input parameters on the voltage-current (V-I) characteristics of the fuel cell, without examining in depth
the physical and electrochemical phenomena involved in theoperation. In this paper, the model based on the second
approach is used. However, no matter what type of models, themodel parameters need to be optimized in order to
improve the accuracy of the models and make the models indicate the actual PEMFC performance better [8].
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In order to improve the design and performance of PEMFC systems, parameter optimization of PEMFC model
has attracted increasing interest in recent years. However, since the PEMFC is a complex nonlinear, multi-variable,
and strongly coupled system [9], the optimization of parameters of PEMFC model is difficult to be handled by the
traditional methods. Recently, the use of heuristic optimization techniques for parameter optimization of PEMFC
model has received more attention [10], such as genetic algorithms [8], simulated annealing [11], particle swarm op-
timization [12], artificial bee swarm [13], harmony search [14], seeker optimization algorithm [15], artificial immune
system [16], P systems based optimization algorithm [17], bird mating optimizer [18], and so on. Most recently,
differential evolution is also used to solve the parameter optimization of PEMFC model [19]. However, in order to
efficiently and fast solve the parameter optimization problems in PEMFC model, it is necessary to investigate more
efficient optimization techniques to reduce the necessary computational efforts to achieve an optimal design [20].

Differential evolution (DE) is a simple yet efficient globalnumerical optimization algorithm [21, 22]. Owing
to its simple structure, ease of use, speed, and robustness,it has be successfully applied in diverse fields, such as
optimization of over-current relays [23], optimal power flow [24], modeling of oxygen mass transfer [25], design of
cascade fuzzy controller [26], motion estimation [27], parameter extraction of solar cell models [28], etc. For more
details, interested readers can refer to two good surveys ofDE in [29] and [30], and the references therein.

Inspired by the various successful applications of DE, in this paper, the DE algorithm is employed for the parameter
optimization problems of PEMFC model. In order to reduce thecomputational efforts and obtain higher quality of
solutions, a ranking-based multi-strategy adaptive DE, referred to as rank-MADE, is proposed. More specifically, in
rank-MADE, the multiple mutation strategies of DE are adaptively selected to avoid choosing a suitable strategy for
a specific problem by trial-and-error method. TheProbability Matching technique [31] is used to assign the selection
probabilities of different strategies. In addition, to accelerate the process of parameter optimization of PEMFC model
the ranking-based vector selection technique presented in[32] is employed in different mutation strategies. The
proposed rank-MADE is used to solve the parameter optimization problems of the Ballard Mark V FC [5], the SR-
12 Modular PEM Generator [5], the BCS 500-W stack [5], the Temasek FC [33], and the WNS-FC model [34].
The performance of rank-MADE is compared with other highly-competitive advanced DE variants (i.e., SaDE [35],
JADE [36], CoDE [37], and DEGL [38]) and other evolutionary algorithms (i.e., rcGA [39], FEP [40], ABC [41],
and CLPSO [42]). Experimental results show that rank-MADE is able to provide higher quality of solutions, faster
convergence speed, and higher success rate compared with other DE variants. Additionally, the good agreement
between the experimental data and the output data of the model obtained by rank-MADE can be observed in all cases.

The main contributions of this work are as follows: i) Inspired by the success of the ensemble learning in machine
learning [43], ensemble of different advanced improvements of evolutionary algorithms (EAs) may be also able to
develop more enhanced optimization techniques. Based on this consideration and in order to provide an effective
alternative for optimizing the parameters of PEMFC model faster and more accurately, the rank-MADE method
is proposed, where our previous proposed multi-strategy adaptation technique [44] and the ranking-based vector
selection technique [32] are synergized. ii) rank-MADE is used to solve the parameter identification problems of
different PEMFC models, and its performance is compared with other highly-competitive DE variants and other
EAs. iii) To make the comparisons among different algorithms statistically meaningful, the Wilcoxon’s test and the
Friedman test are employed.

The rest of this paper is organized as follows. Section 2 briefly introduces the mathematical formulation of
PEMFC model used in this work. In addition, the objective function to be optimized, the original DE algorithm,
and the parameter optimization of PEMFC model with artificial intelligence (AI) methods are also described in this
section. In Section 3, the proposed rank-MADE method is presented in detail. The experimental results and analysis
are given in Section 4. Finally, Section 5 draws the conclusions of this work.

2. Preliminaries

In this section, the mathematical formulation of PEMFC model used in this work is firstly introduced, followed
by the description of the objective function. Additionally, the original DE algorithm is also briefly introduced herein.
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2.1. Mathematical formulation of PEMFC model

In this work, the mathematical model of PEMFC stacks presented in [5, 45] is adopted. Forn cells connected in
series to form a stack, the terminal voltage of the stack can be calculated by [45],

Vs = n · VFC (1)

whereVFC is the output voltage of a single cell, which can be formulated as [5]

VFC = ENernst− Vact− Vohm− Vcon (2)

ENernst is the thermodynamic potential defined by [4]

ENernst=1.229− 0.85× 10−3 · (T − 298.15)

+ 4.3085× 10−5 · T · ln
(

PH2

√

PO2

) (3)

whereT is the cell temperature (K),PH2 andPO2 are the hydrogen and oxygen partial pressures (atm), respectively.
According to [4], the activation overpotentialVact, including anode and cathode, can be expressed by the following

formula
Vact = −

[

ξ1 + ξ2 · T + ξ3 · T · ln
(

CO2

)

+ ξ4 · T · ln (icell)
]

(4)

whereξ1, ξ2, ξ3, ξ4 are the parametric coefficients for each cell model,icell is the cell current (A), andCO2 (mol/cm3)
is the concentration of oxygen in the catalytic interface ofthe cathode, given by [5, 8]

CO2 =
PO2

5.08× 106 · exp(−498/T )
(5)

The ohmic voltage dropVohm can be determined by the following expression [4]

Vohm = icell · (RM + RC) (6)

whereRM is the equivalent membrane resistance to proton conduction, andRC is the equivalent contact resistance to
electron conduction (Ω). RM is defined by [8]

RM =
ρM · ℓ

A
(7)

ρM =

181.6 ·
[

1+ 0.03 ·
(

icell
A

)

+ 0.062·
(

T
303

)2
·
(

icell
A

)2.5
]

[

λ − 0.634− 3 ·
(

icell
A

)]

· exp
[

4.18 ·
(

T−303
T

)] (8)

whereA is the effective electrode area (cm2), ρM is the membrane specific resistivity for the flow of hydrated protons
(Ω · cm ), andℓ is the thickness of the membrane (cm), which serves as the electrolyte of the cell. The parameterλ is
an adjustable parameter with a possible range of [10, 24].

The concentration overpotentialVcon caused by the change in the concentration of the reactants atthe surface of
the electrodes as the fuel is calculated by [5]

Vcon = −B · ln

(

1−
J

Jmax

)

(9)

whereB (V) is a parametric coefficient, which depends on the cell andits operation state.J is the actual current
density of the cell (A/cm2) including the fixed current densityJn [5], andJmax is the maximum value ofJ.
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2.2. Objective function

In the above model (Equations (1) - (9)), there are 11 unknownparameters,i.e., ξ1, ξ2, ξ3, ξ4, λ, Rc, B, Jn, Jmax, ℓ,
andA. In this work, the first 10 parameters will be optimized, while the effective electrode areaA is left to be constant
during the optimization process. Thus, there are totally 10parameters to be optimized, which can be denoted as a
real-valued vector:

x = {ξ1, ξ2, ξ3, ξ4, λ,RC, B, Jn, Jmax, ℓ}

In order to identify the optimal values of the 10 unknown parameters by the optimization techniques, it needs to
define a objective function to be optimized. In this work, themean square error (MSE) between the output voltage of
theactual PEMFC stack and the model output voltage are used as the objective function [9]:

min f (x) =
1
N
·

N
∑

k=1

(

Vsm,k − Vs,k
)2 (10)

whereVsm is the output voltage of the actual PEMFC stack,Vs is the model output voltage, andN is the number of
the experimental data point.

2.3. Differential evolution

The DE algorithm [21] is a simple evolutionary algorithm forglobal numerical optimization. It creates new
candidate solutions by combining the parent individual andseveral other individuals of the same population. A
candidate replaces the parent only if it has better fitness value. The pseudo-code of the original DE algorithm is
shown in Algorithm 1. WhereD is the number of decision variables;µ is the population size;F is the mutation
scaling factor;Cr is the crossover rate;xi, j is the j-th variable of the solutionxi; ui is the offspring. rndint(1,D) is a
uniformly distributed random integer number between 1 andD. rndrealj[0, 1) is a uniformly distributed random real
number in [0, 1), generated anew for each value ofj. In [22], the vectorsxi, xr1, vi, andui are named astarget vector,
base vector, mutant vector, andtrial vector, respectively.

Algorithm 1: The original DE algorithm
Input: Cr, F, andµ
Output: The best solutionxbest

Generate the initial population randomly;
Evaluate the fitness for each individual;
Set the generation countert = 1;
while not terminated do

for i = 1 to µ do /* Generate offspring */
Select uniform randomlyr1 , r2 , r3 , i;
jrand= rndint(1,D);
for j = 1 to D do

if rndrealj[0, 1) < Cr or j == jrand then
ui, j = vi, j = xr1, j + F ·

(

xr2, j − xr3, j
)

;

else
ui, j = xi, j;

for i = 1 to µ do /* Survival selection */
Evaluate the offspringui;
if ui is better than its parent xi then

xi = ui;

t = t + 1;

2.4. Related work on AI-based PEMFC parameter optimization

In Section 1, some AI-based optimization techniques for parameter optimization of PEMFC model are outlined.
In this section, they will be introduced in brief.

In [8], Mo et al. presented a niche hybrid genetic algorithm (HGA) for parameter optimization of PEMFC model,
where the niche techniques and Nelder-Mead’s simplex method are merged into GA. The results of HGA is only
compared with simple GA (SAG) in [8]. Outeiroet al. [11, 46] applied the simulated annealing (SA) as optimization
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technique to extract the parameters of PEMFC model. In [12],a PSO-based parameter optimization technique of
PEMFC model was presented according to theV-I characteristics. The results indicated the effectivenessof PSO
when identifying the parameters of PEMFC model even in noiseenvironments [12]. Ohenoja and Leiviskä [47]
conducted comprehensively experiments to indicate how theparameter range, the validation strategy, and the selected
algorithm influence on the performance of GAs in parameter optimization of PEMFC model. According to the results,
the authors claimed that the parameter range needs a carefulconsideration before optimization trials [47]. In [48], Li
et al. firstly presented an effective informed adaptive PSO (EIA-PSO) to balance the global and local search. Then,
EIA-PSO was employed for the PEMFC model parameter optimization. Askarzadeh and Rezazadeh [49] proposed
a modified PSO (MPSO) to optimize the parameters of PEMFC model, where a modified method is presented for
the PSO’s inertia weight in MPSO. In [13], an artificial bee swarm optimization algorithm is proposed for optimizing
the parameters of a steady-state PEMFC stack model suitablefor electrical engineering applications. In [14, 50, 9],
the grouping-based global harmony search (HS), tournamentselection based HS, and elite-based global HS were
respectively presented for the PEMFC model parameter optimization. To optimize the PEMFC model parameters,
Dai et al. [15] proposed a novel seeker optimization algorithm (SOA),which is based on the concept of simulating
human searching behaviors. As a promising optimization technique, artificial immune system (AIS) has obtained
increasing attention recently. In [16], the AIS-based parameter extraction of PEMFC model was present, and its
results is compared with those of GAs and PSO. Yang and Wang [17] proposed a novel bio-inspired P systems-based
optimization algorithm (BIPOA) to solve the PEMFC model parameter optimization problems. In [19], a DE variant,
i.e., DEGL [38], was employed for the parameter optimization problem of PEMFC stack. Inspired by the mechanism
of biological RNA, Zhang and Wang [51] presented an adaptiveRNA GA (ARNA-GA) for estimating the PEMFC
model parameters. The results of ARNA-GA are indirectly compared with SGA, HGA, and RGA [51]. In [18],
Askarzadeh and Rezazadeh proposed a bird mating optimizer (BMO), which is inspired by the intelligent behavior of
birds during mating season. BMO is used to optimize the parameters of the Ballard Mark V FC.

According to the literature review, it is noted that the use of DE for parameter optimization of PEMFC model
is scarce. Because DE has been successfully applied in diverse domains [30], it may also be useful to optimize the
PEMFC model parameters. For this reason, an improved DE variant (rank-MADE) will be developed to efficiently
solve the parameter optimization problems of PEMFC model inthe next section.

3. Our Approach: rank-MADE

In this section, the proposed rank-MADE will be presented indetail as follows, including the motivations of this
work, the multi-strategy adaptation, and the ranking-based vector selection.

3.1. Motivations
In the DE literature, there are many advanced DE variants (such as SaDE [35], DEGL [38], JADE [36], MADE [44],

CoDE [37], rank-DE [32], etc), where different improvements are proposed to improve the performance of the orig-
inal DE algorithm. In machine learning, ensemble learning that uses multiple models is very useful to obtain better
predictive performance, such as bagging, boosting, etc [43]. Inspired by the success of ensemble learning, ensemble
of different improvements of existing advance DE variants may be useful to further enhance DE performance. In ad-
dition, when solving the parameter optimization problems of PEMFC model, the fuel cell researchers and engineers
require the optimization technique that can fast and precisely optimize the parameters. Based on these considerations,
the rank-MADE method is developed, which synergized the multi-strategy adaptation and ranking-based vector selec-
tion techniques previously proposed in [44] and [32]. The multi-strategy adaptation technique is able to alleviate the
difficulty of the choice of the best DE strategy. Meanwhile, the ranking-based vector selection can accelerate the pa-
rameter optimization process of PEMFC model. Most importantly, the two techniques do not increase the complexity
of the original DE method significantly.

3.2. Multi-strategy adaptation
In the DE algorithm, there are many mutation strategies [22], however, the choice of the most suitable one for a

specific problem is very difficult [35]. Take this aspect intoconsideration, in this work, the multi-strategy adaptation
method presented in [44] is employed to avoid choosing the most suitable strategy by trial-and-error method. This
method is briefly described as follows. More details can be found in [44].
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Algorithm 2: Ranking-based vector selection for “DE/rand/1”
Input: The target vector indexi
Output: The selected vector indexesr1, r2, r3

while rndreal[0,1) > pvr1 or r1 == i do
Randomly selectr1 ∈ {1, µ};

Randomly selectr2 ∈ {1, µ};
while rndreal[0,1) > pvr2 or r2 == r1 or r2 == i do

Randomly selectr2 ∈ {1, µ};

Randomly selectr3 ∈ {1, µ};
while r3 == r2 or r3 == r1 or r3 == i do

Randomly selectr3 ∈ {1, µ};

3.2.1. Strategy pool
In [44], there are four strategies in the pool. However, it isclear that the “DE/rand/2/bin” got the worst performance

in the whole run. Therefore, in this work, only three strategies are selected to form the strategy pool:

• “DE/rand/1/bin”:
vi = xr1 + F ·

(

xr2 − xr3

)

(11)

• “DE/rand-to-best/2/bin”:

vi = xr1 + F ·
(

xbest − xr1
)

+ F ·
(

xr2 − xr3

)

+ F ·
(

xr4 − xr5

)

(12)

• “DE/current-to-rand/1”:
vi = xi + F ·

(

xr1 − xi
)

+ F ·
(

xr2 − xr3

)

(13)

3.2.2. Credit assignment
Denotewa(t) as the reward that a strategya receives after its application at timet. In order to assign the credit for

each strategy, the averaged normalization award is adopted:

wa(t) =
w′a(t)

max
a=1,··· ,K

w′a(t)
(14)

wherew′a(t) is calculated as

w′a(t) =

∑|S a|

i=1 S a

|S a|
(15)

andS a is the set of all relative fitness improvementηi of a strategya(a = 1, · · · ,K) at generationt. Similar to the
method proposed in [52], for the minimization problem,ηi is calculated by

ηi =
δ

c fi
· (p fi − c fi) (16)

wherei = 1, · · · , µ. δ is the fitness of the best-so-far solution in the population.p fi andc fi are the fitness of the target
parent and its offspring, respectively. Note that as we consider the minimization problem in this work,p fi − c fi ≥ 0.
In case no improvement is achieved, a null reward is assigned. In [44], four different credit assignment methods are
presented, and the averaged normalization award is able to provide highly-competitive results through benchmark
functions. Based on this consideration, it is selected for the credit assignment in this work.

3.2.3. Strategy selection
The probability matching (PM) technique [31] is used to assign the selection probability of each strategy. Sup-

pose we haveK > 1 strategies (K = 3 in this work) in the poolA = {a1, · · · , aK} and a probability vector
P(t) = {p1(t), · · · , pK(t)} (∀t : 0 ≤ pi(t) ≤ 1;

∑K
i=1 pi(t) = 1). In this work, the PM technique is used to adap-

tively update the probabilitypa(t) of each strategya based on its reward.qa(t) is the known quality (or empirical
estimate) of a strategya, that is updated as follows [53]:

qa(t + 1) = qa(t) + α[wa(t) − qa(t)], (17)
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whereα ∈ (0, 1] is the adaptation rate. The PM method updates the probability pa(t) as follows [31, 53]:

pa(t + 1) = pmin + (1− K · pmin)
qa(t + 1)

∑K
i=1 qi(t + 1)

. (18)

wherepmin ∈ (0, 1) is the minimal probability value of each strategy, used toensure that no operator gets lost.

3.3. Ranking-based vector selection

In order to reduce the computational efforts and make the parameter optimization process of PEMFC model faster,
in this work, the ranking-based vector selection technique[32] is also used in the above-mentioned three strategies.

In the ranking-based vector selection technique, the population is firstly ranked from the best to the worst. Then,
the rankRi of each vectorxi in the sorted population is assigned as

Ri = µ − i, i = 1, 2, · · · , µ (19)

After that, the selection probability of each vector is calculated as follows:

pvi =

(

Ri

µ

)2

(20)

Finally, the vectors in the mutation strategy are selected according to their selection probabilities as shown in
Algorithm 2. Note that in Algorithm 2 only the vector selection for “DE/rand/1” is illustrated, for other mutation
operators the vector selection is similar to Algorithm 2.

Algorithm 3: The pseudo-code of rank-MADE
Input: Cr, F, andµ
Output: The best solutionxbest
Generate the initial population randomly;
Evaluate the fitness for each individual;
Set the generation countert = 1;
SetK = 3, pmin = 0.05, andα = 0.3;
For each strategya, setqa(t) = 0 andpa(t) = 1/K;
while not terminated do

for i = 1 to µ do /* Generate offspring */
Select the strategyS Ii based on its selection probability;
Select uniform randomlyr1 , r2 , r3 , r4 , r5 , i;
jrand= rndint(1,D);
for j = 1 to D do

if rndrealj[0, 1) < Cr or j == jrand then
if S Ii == 1 then

ui, j is generated by “DE/rand/1” strategy;

else if S Ii == 2 then
ui, j is generated by “DE/rand-to-best/2” strategy;

else
ui, j is generated by “DE/current-to-rand/1” strategy;

else
ui, j = xi, j;

for i = 1 to µ do /* Survival selection */
Evaluate the offspringui;
if ui is better than its parent xi then

Calculateηi using Equation (16);
xi = ui;

else
Setηi = 0;

S S Ii ← ηi;

Calculate the rewardwa(t) for each strategy;
Update the qualityqa(t) for each strategy;
Update the probabilitypa(t) for each strategy;
t = t + 1;
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Table 1: Main features of related approaches.

Algorithm Ranking-based mutation Multi-strategy adaptation Problems
SaJADE [54] No Yes, strategy adaptive mechanism benchmark functions

PM-ASS-DE [44] No Yes, probability matching benchmark functions
rank-DE [32] Yes No benchmark functions

Rcr-IJADE [28] Yes No solar cell models
rank-MADE Yes Yes, probability matching PEMFC models

3.4. The rank-MADE approach

Combining the multi-strategy adaptation method with the ranking-based vector selection, in this work, the rank-
MADE method is proposed. The pseudo-code of rank-MADE is described in Algorithm 3. The proposed rank-
MADE has the two main advantages: i) it releases to seek the most suitable strategy for a specific problem; and
ii) it can accelerate the convergence speed, and hence, it reduces the computational efforts when solving complex
problems. These two advantages can make this approach be suitable to real-world applications, such as the parameter
optimization problems of fuel cell models. In order to verify the expectation, in the following section, rank-MADE is
used to solve the parameter optimization problems of PEMFC model.

As mentioned above, rank-MADE synergizes different components of different previous approaches, however, it
is different from our previous work presented in [54, 44, 32,28]. In order to clearly indicate the differences between
rank-MADE and our previous work, the main features of these approaches are tabulated in Table 1. From Table 1, it
can be observed that the differences between rank-MADE and other approaches are as follows:

• rank-MADE vs SaJADE [54]: In SaJADE [54], the strategy adaptation is controlled by a simple strategy adap-
tive mechanism; whereas in rank-MADE the probability matching is used to implement the strategy adaptation.
In addition, the ranking-based mutation is not used in SaJADE.

• rank-MADE vs PM-ASS-DE [44]: Both approaches use the the probability matching to assign the selection
probabilities of different strategy. In this view, rank-MADE is an improved version of PM-ASS-DE. However,
in rank-MADE the ranking-based mutation is used to accelerate the convergence rate for parameter optimization
of PEMFC models.

• rank-MADE vs rank-DE [32]: Both of them use the ranking-based mutation, while in rank-MADE the multi-
strategy adaptation is used to release to seek the most suitable strategy when solving the parameter optimization
problems of PEMFC models.

• rank-MADE vs Rcr-IJADE [28]: There are three main differences between the two approaches: i) rank-MADE
is a multi-strategy DE variants, whereas Rcr-IJADE only has one mutation strategy; ii) in Rcr-IJADE, the
crossover rate repairing technique is proposed, which is not used in rank-MADE; and iii) Rcr-IJADE is used
for parameter extraction of solar cell models, while in thiswork rank-MADE is optimized the parameters of
PEMFC models.

To sum up, although each component of rank-MADE is not new, however, the ensemble of these is a new proposal.
In addition, in the application point of view, the application of rank-MADE for the parameter optimization of PEMFC
model is interesting, which may be provide an efficient alternative for researchers and engineers in the field of fuel
cell.

4. Experimental results and analysis

For validation of the proposed rank-MADE, in this work, fourcases of PEMFC model are chosen from the litera-
ture: i) the Ballard Mark V FC [5], ii) the SR-12 Modular PEM Generator [5], iii) the BCS 500-W stack [5], and iv)
the Temasek FC [33]. The parameter values and operation conditions of PEMFC stack are tabulated in Table 2. In
this work, there are 10 unknown parameters of PEMFC that needto be optimized. The ranges of these parameters are
shown in Table 3, where the ranges of the first 9 parameters areoriginated from [9].
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Table 2: Parameter Values and Operation Conditions of PEMFCStack.

n T (K) A (cm2) PH2 (atm) PO2 (atm)
Ballard Mark V FC 1 343 50.6 1 1

SR-12 PEM Generator 48 323 62.5 1.47628 0.2095
BCS 500-W 32 333 64 1 0.2095
Temasek FC 20 323 150 0.5 0.5

Table 3: Ranges of the Unknown Parameters to Be Optimized.

Parameter ξ1 ξ2 ξ3 ξ4 λ Rc (Ω) B (V) Jn (mA/cm2) Jmax (mA/cm2) ℓ (µm)
Lower bound -1.1997 0.001 -3.60E-05 -2.60E-04 10 0.0001 0.0136 1 500 25
Upper bound -0.8532 0.005 -9.80E-05 -9.54E-05 24 0.0008 0.5 30 1500 178

Table 4: Parameter settings for all DE variants.
Algorithm Parameter settings

rank-MADE µ = 50,Cr = 0.9,F = 0.5, pmin = 0.05, α = 0.3
SaDE µ = 50, LP = 50 [35]
JADE µ = 100, p = 0.05, c = 0.1 [36]
CoDE µ = 30 [37]
DEGL µ = 10× D,Cr = 0.9,F = 0.8 [38]

4.1. Parameter Settings for DE Variants

For all experiments, the parameters of all DE variants are shown in Table 4 unless a change is mentioned. To
make a fair comparison, the parameters of SaDE [35], JADE [36], CoDE [37], and DEGL [38] are the same as used
in their original corresponding literature. For rank-MADE, the population size is set the same as used in SaDE [35],
since both of them are multi-strategy-based DE variants; while for the rest four parameters the same settings presented
in [44] are used. All algorithms are coded in standard C++. The maximal number of function evaluations (MaxNFEs)
are set to 10, 000. Since DE is the stochastic algorithm, in order to make the comparison meaningful, each problem is
optimized over 100 independent runs.

4.2. Performance criteria

In order to compare the performance of different algorithms, in this work, the following performance criteria are
adopted:

• MSE: It is calculated by Equation (10) to measure the solution quality of a method obtained.

• NFEsVTR: Let ǫ = f (x) − f (x∗) be theerror of a solutionx, wheref (x∗) is the target fitness to be reached by a
specific problem. The NFEsVTR is used to record the number of function evaluations in each run for finding a
solution satisfyingǫ ≤ 1e − 5.

• Success rate (S r): It is equal to the number of success runs over total runs. A success run means that within
Max NFEs the algorithm finds a solutionx satisfyingǫ ≤ 1e − 5.

• Convergence graphs: The graphs show the mean error performance of the total runs.

4.3. Comparison with other DE variants

Since the proposed rank-MADE is an improved DE variant, in order to indicate the superiority of this approach
against other DE variants, in this section, the above-mentioned DE variants are first evaluated in the four PEMFC
models in terms of different performance criteria.
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Figure 1: Convergence graphs of all algorithms on 1(a) the Ballard Mark V FC, 1(b) the SR-12 Modular PEM Generator, 1(c) the BCS 500-W
stack, and 1(d) the Temasek FC.
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Table 5: Comparison on the Identified Parameters and Performance Criteria of Different Algorithms for the Ballard Mark VFuel Cell. The Target
Fitnessf (x∗) Is 4.74765534862167E − 05.

SaDE JADE CoDE DEGL rank-MADE

Parameter

ξ1 -1.021249± 0.0758694 -1.020216± 0.0771143 -1.035307± 0.0832044 -1.03601± 0.0918698 -1.032845± 0.1239228
ξ2 0.0034094± 2.79E-04 0.0034316± 3.12E-04 0.003447± 3.16E-04 0.0032844± 6.12E-04 0.0033514± 4.44E-04
ξ3 6.80E-05± 1.44E-05 6.89E-05± 1.47E-05 6.72E-05± 1.58E-05 6.62E-05± 1.67E-05 6.46E-05± 2.25E-05
ξ4 -1.37E-04± 1.72E-05 0.1892152± 1.8936216 -1.40E-04± 1.39E-05 -1.46E-04± 3.95E-05 -1.11E-04± 1.56E-06
λ 17.815496± 2.2987532 17.619827± 3.2692295 18.288234± 2.1973919 19.3148± 2.9747414 22.357894± 1.1541713
Rc 0.0005745± 1.46E-04 0.0007202± 0.0025525 0.000505± 1.82E-04 0.0006057± 2.02E-04 0.0007966± 2.18E-05
B 0.0180224± 0.0053908 0.2119834± 1.909938 0.0189587± 0.0044109 0.1310208± 0.1350317 0.0165263± 6.87E-04
Jn 23.665732± 3.7645158 37.419977± 147.78442 23.639985± 4.4226959 22.859263± 7.4288673 29.892491± 0.4868794

Jmax 1492.4046± 4.6439227 1477.4357± 135.36285 1493.5394± 4.2682876 1256.94± 278.80288 1499.9137± 0.4798894
ℓ 120.65452± 28.459245 112.04822± 29.381111 124.62694± 26.008335 132.16139± 41.217744 175.52731± 11.130183

Criterion
MSE 6.39E-05 ± 2.85E-05† 1.04E-04± 9.56E-05† 6.50E-05± 1.66E-05† 1.44E-03± 1.01E-02† 4.75E-05 ± 3.41E-07

NFEsVTR 8792.31± 883.01 9520.00± 554.08 9183.66± 786.47 4819.61 ± 894.21 3412.50 ± 1228.36
S r 0.65 0.05 0.41 0.51 1.00

Hereinafter, “†” indicates that rank-MADE is significant better than its competitor according to the Wilcoxon signed-rank test atα = 0.05.

Table 6: Comparison on the Identified Parameters and Performance Criteria of Different Algorithms for the SR-12 ModularPEM Generator. The
Target Fitnessf (x∗) Is 0.156166272722352.

SaDE JADE CoDE DEGL rank-MADE

Parameter

ξ1 -1.02561± 0.1030541 -1.034749± 0.0721448 -1.0229± 0.0801908 -1.008984± 0.10693 -0.998792± 0.1204101
ξ2 0.0032459± 4.26E-04 0.0032937± 2.84E-04 0.0032539± 3.27E-04 0.0031744± 4.57E-04 0.0032155± 5.17E-04
ξ3 6.73E-05± 1.67E-05 6.83E-05± 1.17E-05 6.82E-05± 1.61E-05 6.62E-05± 1.97E-05 7.09E-05± 2.06E-05
ξ4 -9.55E-05± 1.76E-07 -9.74E-05± 1.75E-06 -9.64E-05± 8.39E-07 -9.54E-05± 1.97E-09 -9.54E-05± 4.51E-12
λ 19.584996± 2.9809272 18.462946± 2.550822 19.085869± 2.9271004 23.921234± 0.3353184 23.999947± 3.30E-04
Rc 0.0001379± 5.79E-05 0.0003449± 1.19E-04 0.0002556± 1.22E-04 0.0001002± 3.21E-07 0.0001± 6.95E-10
B 0.1791865± 0.0063177 0.1580305± 0.0152112 0.1684005± 0.0094675 0.1861327± 2.79E-04 0.1861435± 7.97E-06
Jn 17.952174± 8.359753 15.803156± 6.1561746 17.404213± 6.5811275 16.267198± 8.9160532 15.339315± 9.9366125

Jmax 710.39021± 10.001811 696.36233± 17.83463 704.28625± 10.025273 713.20633± 8.8591155 712.24664± 9.9388476
ℓ 30.328113± 10.095862 59.35475± 24.708502 44.937445± 15.285959 25.022364± 0.0309311 25.000054± 3.04E-04

Criterion
MSE 0.159124± 2.49E-03† 0.1821294± 1.10E-02† 0.1686544± 5.07E-03† 0.1561927 ± 6.49E-05† 0.1561663 ± 1.28E-07

NFEsVTR NA ± NA NA ± NA NA ± NA 9384.62 ± 455.20 5719.50 ± 1127.16
S r 0.00 0.00 0.00 0.52 1.00

4.3.1. Ballard Mark V FC
For the Ballard Mark V FC, the results (mean± standard deviation) of all DE variants are reported in Table5. All

results are averaged over 100 runs. The overall best and the second best results among the five DEs are highlighted
in grey boldface andboldface, respectively. In order to statistically compare the significance in terms of the MSE
values between two algorithms, the paired Wilcoxon signed-rank test atα = 0.05 is adopted.

According to the results shown in Table 5, it is clear to see that rank-MADE obtains the overall best results among
all DE variants.

• With respect to the MSE values, rank-MADE is able to get the significant better results compared with other
DE variants based on the Wilcoxon’s test. In addition, rank-MADE provides the smallest standard deviation of
MSE, which means that this approach is the most robust one among the five compared DEs.

• For the NFEsVTR, rank-MADE requires the smallest NFEsVTR values to reachǫ ≤ 1e − 5. This phenomenon
indicates that rank-MADE can reduce the computational efforts to reach the required accuracy compared with
other DEs.

• In terms of the success rate, Table 5 clearly shows that rank-MADE can successfully solve the parameter
optimization problem of the Ballard Mark V FC in all runs. However, for other four DE variants, there are some
runs that failed to reach the required accuracy (1e − 5).

4.3.2. SR-12 modular PEM generator
In this case, the results of all DEs are shown in Table 6. Similar to the results shown in the Ballard Mark V FC,

rank-MADE obtains the best results among all DEs. DEGL gets the second best results in terms of all performance
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Table 7: Comparison on the Identified Parameters and Performance Criteria of Different Algorithms for the 500-W BCS Stack. The Target Fitness
f (x∗) Is 0.080620362614142.

SaDE JADE CoDE DEGL rank-MADE

Parameter

ξ1 -1.028371± 0.1047142 -1.040735± 0.0738692 -1.034078± 0.0895158 -1.033311± 0.1113914 -1.026953± 0.1380159
ξ2 0.0033601± 4.35E-04 0.0033744± 3.15E-04 0.0033413± 3.84E-04 0.003394± 4.58E-04 0.0032749± 4.86E-04
ξ2 6.92E-05± 1.91E-05 6.78E-05± 1.35E-05 6.69E-05± 1.52E-05 7.04E-05± 1.88E-05 6.40E-05± 2.06E-05
ξ4 -2.60E-04± 6.11E-08 -2.59E-04± 6.47E-07 -2.60E-04± 3.89E-07 -2.60E-04± 7.83E-10 -2.60E-04± 1.86E-10
λ 21.415265± 1.7089912 18.291407± 2.4222491 20.404572± 1.9522797 22.042059± 0.3309158 22.022697± 0.2378777
Rc 0.0007645± 5.26E-05 0.0005368± 1.46E-04 0.0006849± 9.29E-05 0.0007997± 3.80E-07 0.0008± 1.02E-07
B 0.023261± 0.0132924 0.0599936± 0.0281342 0.0410432± 0.0217215 0.0140747± 0.0018136 0.0138872± 0.0017135
Jn 15.632572± 6.8891146 15.250586± 6.6975231 15.107213± 7.1807205 11.548915± 7.8967328 1.1688426± 0.92269

Jmax 1400.4734± 74.057285 1297.6723± 108.21698 1358.8213± 106.11027 1498.1705± 2.6615516 1499.8577± 0.7903497
ℓ 161.69931± 21.961528 107.34752± 33.000504 135.58707± 28.43836 177.71679± 1.4661152 177.9474± 0.4192133

Criterion
MSE 0.0808961± 2.26E-04† 0.0826358± 6.39E-04† 0.0815721± 3.48E-04† 0.0806272 ± 1.17E-05† 0.0806217 ± 8.05E-06

NFEsVTR NA ± NA NA ± NA NA ± NA 8162.64 ± 791.71 5136.73 ± 1331.10
S r 0.00 0.00 0.00 0.91 0.98

Table 8: Comparison on the Identified Parameters and Performance Criteria of Different Algorithms for the Tesasek Fuel Cell. The Target Fitness
f (x∗) Is 0.005350750634420.

SaDE JADE CoDE DEGL rank-MADE

Parameter

ξ1 -1.031596± 0.0915411 -1.030217± 0.08226 -1.036283± 0.0870782 -1.031217± 0.1111281 -1.053657± 0.125614
ξ2 0.0033444± 3.80E-04 0.0033394± 3.19E-04 0.003366± 3.75E-04 0.0033372± 4.64E-04 0.0034069± 5.45E-04
ξ3 6.88E-05± 1.69E-05 6.71E-05± 1.40E-05 6.82E-05± 1.54E-05 6.87E-05± 1.88E-05 6.87E-05± 2.30E-05
ξ4 -9.59E-05± 7.21E-07 -9.89E-05± 3.36E-06 -9.86E-05± 2.17E-06 -9.54E-05± 7.27E-10 -9.54E-05± 9.92E-11
λ 18.124982± 2.8688591 18.166463± 3.0411002 18.72864± 3.0917908 20.030178± 3.649708 22.05994± 3.105797
Rc 2.02E-04± 7.14E-05 2.37E-04± 8.78E-05 2.61E-04± 1.05E-04 2.09E-04± 5.93E-05 2.47E-04± 5.07E-05
B 0.0337897± 0.0127113 0.0465626± 0.0263156 0.0305712± 0.0088909 0.0366364± 0.0023466 0.0372538± 5.09E-04
Jn 16.529477± 6.6541628 16.090957± 6.1018559 16.179831± 7.5686319 15.632442± 8.401901 16.725764± 11.738041

Jmax 623.84636± 56.936935 716.09655± 177.36801 625.04348± 32.192166 620.28937± 9.1103672 622.01113± 11.698825
ℓ 49.298956± 16.672435 62.903887± 21.277323 59.997894± 22.309745 36.199719± 14.474108 30.255754± 11.486564

Criterion
MSE 0.0063898± 4.16E-03† 0.0220811± 8.90E-03† 0.0119779± 5.58E-03† 0.0053793 ± 2.38E-04† 0.005353 ±3.46E-06

NFEsVTR NA ± NA NA ± NA NA ± NA 6873.33 ± 1237.69 4225.77 ±1344.13
S r 0.00 0.00 0.00 0.90 0.97

criteria. rank-MADE is able to get the highest quality of solutions and the smallest NFEsVTR value. In addition, rank-
MADE can also successfully reach the required accuracy of solutions in all runs (S r = 1.0). DEGL only provides
S r = 0.52. While for other three DE methods (SaDE, JADE, and CoDE), there is no successful run in all 100 runs.

4.3.3. BCS 500-W stack
As the results shown in Table 7, in the case of BCS 500-W stack,the proposed rank-MADE gets the best per-

formance in terms of all performance criteria, followed by DEGL. In 2 out of 100 runs, rank-MADE fails to reach
ǫ ≤ 1e − 5, but it gets success in the rest 98 runs. DEGL gets the success rate withS r = 0.91. There is no success run
for SaDE, JADE, and CoDE.

4.3.4. Temasek FC
The results are reported in Table 8 in this case. Like the previous cases, rank-MADE still provides the best results

with respect the quality of solutions, the success rate, andthe NFEsVTR in this case. DEGL gets the second best
results. There is also no success run for SaDE, JADE, and CoDEin the case of the Temasek FC.

4.3.5. On the convergence speed
In order to compare the convergence speed of all DE variants,the convergence graphs in all above cases are plotted

in Figure 1. As can be seen in Figure 1, it is clear to observe that the proposed rank-MADE consistently gets the fastest
convergence speed in all cases, followed by DEGL, SaDE, CoDE, and JADE.

4.4. Statistical comparison among other EAs

In the previous section, rank-MADE is compared with other DEvariants through the experimental data of four
different PEMFC models. To further understand the performance of rank-MADE, in this section, rank-MADE is
compared with other evolutionary algorithms (EAs):i.e., real-coded genetic algorithm (rcGA) [39], fast evolutionary
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Table 9: Comparison on the MSE values among different EAs fordifferent PEMFC models. All results are averaged over 100 independent runs.
Algorithm Ballard Mark V SR-12 BCS 500W Temasek FC WNS-FC (313 K) WNS-FC (333 K) WNS-FC (353 K)

MADE 4.79E-05 ± 9.0E-07 0.15633± 5.0E-04 0.08065± 9.4E-05 0.00537 ± 1.1E-04 0.01378± 2.5E-04 0.01719± 1.4E-04 0.02135 ± 4.2E-05
SaDE 6.39E-05± 2.8E-05 0.15912± 2.5E-03 0.08090± 2.3E-04 0.00639± 4.2E-03 0.01451± 6.9E-04 0.01745± 1.8E-04 0.02164± 2.1E-04
JADE 1.04E-04± 9.6E-05 0.18213± 1.1E-02 0.08264± 6.4E-04 0.02208± 8.9E-03 0.02806± 1.1E-02 0.03153± 1.0E-02 0.04490± 1.4E-02
CoDE 6.50E-05± 1.7E-05 0.16865± 5.1E-03 0.08157± 3.5E-04 0.01198± 5.6E-03 0.01750± 1.6E-03 0.01932± 1.1E-03 0.02437± 2.0E-03
DEGL 1.44E-03± 1.0E-02 0.15619 ± 6.5E-05 0.08063 ± 1.2E-05 0.00538± 2.4E-04 0.01369 ± 1.9E-04 0.01713 ± 1.3E-04 0.02136± 3.1E-05
rcGA 6.39E+00± 2.0E+01 0.87105± 2.4E-01 0.13500± 3.3E-02 0.21249± 1.3E-01 0.46276± 1.3E-01 0.55347± 1.5E-01 0.67596± 1.5E-01
FEP 2.08E-04± 9.5E-05 0.64211± 1.5E-01 0.10391± 1.2E-02 0.07086± 1.5E-02 0.34010± 5.9E-02 0.39310± 6.7E-02 0.51039± 8.4E-02

ABC 8.77E-05± 3.8E-05 0.27410± 8.3E-02 0.09662± 1.3E-02 0.02724± 1.3E-02 0.10029± 5.4E-02 0.11328± 6.7E-02 0.14109± 8.1E-02
CLPSO 2.06E-03± 1.5E-02 0.18341± 2.8E-02 0.08393± 4.9E-03 0.01227± 9.5E-03 0.05582± 5.5E-02 0.07900± 7.2E-02 0.09909± 9.5E-02

rank-MADE 4.75E-05 ± 3.4E-07 0.15617 ± 1.3E-07 0.08062 ± 8.0E-06 0.00535 ± 3.5E-06 0.01355 ± 1.5E-04 0.01703 ± 7.2E-05 0.02131 ± 2.5E-05

Table 10: Statistical results by the Wilcoxon’s test between rank-MADE with its competitor. “Yes” means that rank-MADEsignificantly outper-
forms its competitor in terms of the MSE values by the Wilcoxon’s test atα = 0.05.

Algorithm
Ballard Mark V SR-12 BCS 500W Temasek FC WNS-FC (313 K) WNS-FC (333 K) WNS-FC (353 K)
p-value sig. p-value sig. p-value sig. p-value sig. p-value sig. p-value sig. p-value sig.

MADE 5.63E-12 Yes 0.00E+00 Yes 6.66E-16 Yes 1.07E-08 Yes 8.08E-12 Yes 3.38E-14 Yes 1.24E-11 Yes
SaDE 0.00E+00 Yes 0.00E+00 Yes 0.00E+00 Yes 0.00E+00 Yes 0.00E+00 Yes 0.00E+00 Yes 0.00E+00 Yes
JADE 0.00E+00 Yes 0.00E+00 Yes 0.00E+00 Yes 0.00E+00 Yes 0.00E+00 Yes 0.00E+00 Yes 0.00E+00 Yes
CoDE 0.00E+00 Yes 0.00E+00 Yes 0.00E+00 Yes 0.00E+00 Yes 0.00E+00 Yes 0.00E+00 Yes 0.00E+00 Yes
DEGL 4.10E-13 Yes 0.00E+00 Yes 8.22E-15 Yes 1.13E-06 Yes 1.30E-09 Yes 5.19E-11 Yes 2.51E-14 Yes
rcGA 0.00E+00 Yes 0.00E+00 Yes 0.00E+00 Yes 0.00E+00 Yes 0.00E+00 Yes 0.00E+00 Yes 0.00E+00 Yes
FEP 0.00E+00 Yes 0.00E+00 Yes 0.00E+00 Yes 0.00E+00 Yes 0.00E+00 Yes 0.00E+00 Yes 0.00E+00 Yes

ABC 0.00E+00 Yes 0.00E+00 Yes 0.00E+00 Yes 0.00E+00 Yes 0.00E+00 Yes 0.00E+00 Yes 0.00E+00 Yes
CLPSO 0.00E+00 Yes 0.00E+00 Yes 0.00E+00 Yes 0.00E+00 Yes 0.00E+00 Yes 0.00E+00 Yes 0.00E+00 Yes

programming (FEP) [40], artificial bee colony (ABC) [41], and comprehensive learning particle swarm optimizer
(CLPSO) [42]. The four algorithms are chosen due to their good performance obtained in the benchmark problems.
In addition, besides the experimental data of the four PEMFCmodels mentioned above, the PEMFC model (WNS-FC,
for short) proposed in [34] are also used to generate theV-I data at different temperature (313 K, 333 K, and 353 K).
The Matlab/Simulink generator of this model is provided in [55]. For the sake of completeness, the above-mentioned
DE variants are also compared in this experiment. In addition, the original version of rank-MADE,i.e., MADE1, is
also selected for comparison. The parameter settings of allof the DE variants are shown in Table 4. The parameters
of the four EAs (i.e., rcGA, FEP, ABC, and CLPSO) are set the same as used in their corresponding literature. For
each data set of different PEMFC models, the MaxNFEs= 10, 000 are used. In addition, each algorithm is executed
over 100 independent runs for each data set. For the sake of space limitation, only the MSE performance is used in
this section.

The mean and standard deviation values of MSE for all problems are reported in Table 9. All results are aver-
aged over 100 runs. The overall best and the second best results among the ten compared EAs are highlighted in
grey boldface andboldface, respectively. Moreover, in order to make the comparison meaningful, the Wilcoxon’s

test is employed to compare the differences between rank-MADE and its competitor. The statistical results by the
Wilcoxon’s test are described in Table 10, where thep-value and the significance are reported. Ifp < 0.05, it indicates
that rank-MADE significantly outperforms its competitor interms of the MSE values. Additionally, according to the
Friedman test, the final rankings of all EAs for all problems are given in Table 11. Note that the Friedman test, which
is used to obtain the rankings of different algorithms for all problems, is calculated by the KEEL software [56].

According to the results shown in Table 9, it is clear that theproposed rank-MADE consistently obtains the best
mean MSE values in all cases. In addition, in all of the 7 problems rank-MADE provides the smallest standard
deviation values of MSE, which means that rank-MADE is the most robust method among the 10 compared EAs. In
4 out of 7 cases, DEGL gets the second best MSE values, while in3 cases MADE is the second best one. Compared
the results between MADE and rank-MADE, it can be seen that rank-MADE improves the performance of MADE
consistently in all cases, which verifies the benefit of integration of the ranking-based vector selection technique.

Considering the statistical results, Table 10 clearly indicates that rank-MADE gets significantly better results than
its competitors in all problems by the Wilcoxon’s test atα = 0.05. Especially, comparing rank-MADE with SaDE,

1The only difference between rank-MADE and MADE is the ranking-based vector selection proposed in Section 3.3. In MADE, the ranking-
based vector selection is not used. MADE have the same parameter settings as used in rank-MADE.
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Table 11: Average rankings of the algorithms by the Friedman’s test in terms of the mean MSE values in all of the PEMFC models.

Algorithm Ranking
MADE 2.5714

SaDE 3.8571
JADE 6.1429
CoDE 4.8571
DEGL 3.1429
rcGA 10.000
FEP 8.7143

ABC 7.5714
CLPSO 7.1429

rank-MADE 1.0000

JADE, CoDE, rcGA, ABC, FEP, and CLPSO, thep-values are 0.0 for all problems, which mean that in all 100 runs
rank-MADE is able to obtain better MSE values than the 7 methods. In addition, according to the Friedman test,
from Table 11, it can be observed that rank-MADE gets the firstoverall ranking in all problems, followed by MADE,
DEGL, SaDE, CoDE, JADE, CLPSO, ABC, FEP, and rcGA.

In general, according to the results shown in Tables 9, 10, and 11, it can be concluded that the proposed rank-
MADE is very promising when solving the parameter optimization problems of PEMFC models. It is able to consis-
tently provide the best results in all problems compared with other DE variants and other EAs.

4.5. On the V-I characteristics

In order to further investigate the capability of the experimental data and the model output voltage obtained by
rank-MADE, DEGL, and rcGA2, their optimal parameter values are fed back to the PEMFC mathematical model to
achieveV-I characteristics. The comparisons between the experimental data and the simulated data are plotted in
Figure 2. As shown in Figure 2, the shapes of the fitted curves of rank-MADE and DEGL are very close to each
other, and theV-I characteristics obtained by both of them are highly coincide with the experimental data in all four
cases. On the contrary, theV-I characteristics obtained by rcGA are in bad agreement with the experimental data in all
problems due to its poor optimized parameters. It it worth emphasizing that although the fitted curves of rank-MADE
and DEGL are very close to each other, rank-MADE is able to provide better mean and standard deviation values of
MSE than those of DEGL in all problems as reported in Table 9.

4.6. Discussions

With the purpose of optimizing the unknown parameters of PEMFC model faster and more accurate, in this work,
a ranking-based multi-strategy adaptive DE (rank-MADE) method is presented. Then, this approach is employed for
the parameter optimization problems of the Ballard Mark V FC, the SR-12 Modular PEM Generator, the BCS 500-W
stack, the Temasek FC, and WNS-FC at different temperature.The performance of the approach is compared with
five highly-competitive DE variants and four state-of-the-art EAs. From the experimental results it can be obtained
that:

• In terms of the solution quality, the convergence speed, andthe success rate, rank-MADE is the best one among
all compared algorithms. It is capable of providing higher quality of solutions, getting higher success rate,
and converging faster in all cases. rank-MADE is also the most robust one according to the standard deviation
values of MSE.

• By returning the optimized parameters by rank-MADE to the PEMFC mathematical model, theV-I character-
istics obtained by this approach are in very good agreement with the experimental data in the four cases. This
means that rank-MADE is effective to solve the parameter optimization problems of PEMFC model.

2Note that for the sake of clarity, we only show theV-I characteristics of rank-MADE, DEGL, and rcGA in Figure 2. DEGL is selected due to
its second best results obtained in four cases; while rcGA ischosen because of its worst performance obtained in all problems.
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Figure 2: Comparisons between the experimental data and themodel curve obtained from the identified parameters by rank-MADE, DEGL, and
rcGA on 1(a) the Ballard Mark V FC, 1(b) the SR-12 Modular PEM Generator, 1(c) the BCS 500-W stack, 1(d) the Temasek FC, 2(e)the WNS-FC
at 313 K, 2(f) the WNS-FC at 333 K, and 2(g) the WNS-FC at 353 K.
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• Among the 10 methods, rank-MADE ranks the first, followed by MADE, DEGL, SaDE, CoDE, JADE, CLPSO,
ABC, FEP, and rcGA. Interestingly, rank-MADE, DEGL, SaDE, and CoDE are all multi-strategy based DE
variants. This might motivate the researchers to study new multi-strategy adaptive DE to solve the complex
real-work application problems.

• By carefully looking at the results shown in Table 9, the meanMSE values of rank-MADE, MADE, and DEGL
are very close to each other. However, since theV-I data adopted in this work are stemmed from [5, 33] and
generated from the model proposed in [34], no information isavailable about the accurate values of the param-
eters; therefore, any reduction in the objective function value is significant because it results in improvement in
the knowledge about the real values of the parameters.

5. Conclusions

In order to obtain higher quality of solutions and reduce thecomputational efforts, in this paper, two improve-
ments in the DE literature are synergized and the ranking-based multi-strategy adaptive DE method is proposed for
the parameter optimization problems of PEMFC model. In rank-MADE, the multi-strategy adaptive selection is em-
ployed to release the engineer to choose the most suitable strategy for a specific problem at hand. In addition, the
ranking-based vector selection technique is applied to each mutation strategy to make the algorithm converge faster.
Experiments on different PEMFC models and comparisons withother advanced DE variants and other EAs verify
the expectation that this approach obtains more accurate solutions and converges faster. In addition, it gets the higher
success rate in all cases of experimental data. Moreover, the V-I characteristics obtained by rank-MADE are in very
good agreement with the experimental data.

Due to the superior performance obtained by rank-MADE for parameter optimization of PEMFC model,one pos-
sible future work is the application of GPGPU-aided rank-MADE [57] to other complex parameter optimization
problems of fuel cell models, such as the solid oxide fuel cell [58]. In addition, since rank-MADE is not a special
technique for fuel cells and it does not increase the complexity of the original DE algorithm, it can also be useful
to other real-world problems like other DEs [30], such as themodeling of oxygen mass transfer [25], engineering
design [59], and so on. This expectation will be verified in the future work.

The source code of rank-MADE can be obtained from the first author upon request.
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[6] A. Bıyıkoğlu, Review of proton exchange membrane fuel cell models, International Journal of Hydrogen Energy 30 (11) (2005) 1181 – 1212.
[7] D. Paclisan, W. Charon, Real time modelling of the dynamic mechanical behaviour of PEMFC thanks to neural networks, Engineering

Applications of Artificial Intelligence 26 (2) (2013) 706 – 713.
[8] Z.-J. Mo, X.-J. Zhu, L.-Y. Wei, G.-Y. Cao, Parameter optimization for a PEMFC model with a hybrid genetic algorithm, International Journal

of Energy Research 30 (8) (2006) 585–597.

16



[9] A. Askarzadeh, A. Rezazadeh, An innovative global harmony search algorithm for parameter identification of a PEM fuel cell model, IEEE
Transactions on Industrial Electronics 59 (9) (2012) 3473 –3480.

[10] S. M. C. Ang, E. S. Fraga, N. P. Brandon, N. J. Samsatli, D.J. Brett, Fuel cell systems optimisation - methods and strategies, International
Journal of Hydrogen Energy 36 (22) (2011) 14678 – 14703.

[11] M. Outeiro, R. Chibante, A. Carvalho, A. de Almeida, A parameter optimized model of a proton exchange membrane fuel cell including
temperature effects, Journal of Power Sources 185 (2) (2008) 952 – 960.

[12] M. Ye, X. Wang, Y. Xu, Parameter identification for proton exchange membrane fuel cell model using particle swarm optimization, Interna-
tional Journal of Hydrogen Energy 34 (2) (2009) 981 – 989.

[13] A. Askarzadeh, A. Rezazadeh, A new artificial bee swarm algorithm for optimization of proton exchange membrane fuelcell model parame-
ters, Journal of Zhejiang University SCIENCE C 12 (2011) 638–646.

[14] A. Askarzadeh, A. Rezazadeh, A grouping-based global harmony search algorithm for modeling of proton exchange membrane fuel cell,
International Journal of Hydrogen Energy 36 (8) (2011) 5047– 5053.

[15] C. Dai, W. Chen, Z. Cheng, Q. Li, Z. Jiang, J. Jia, Seeker optimization algorithm for global optimization: A case study on optimal modelling
of proton exchange membrane fuel cell (PEMFC), International Journal of Electrical Power & Energy Systems 33 (3) (2011)369 – 376.

[16] A. Askarzadeh, A. Rezazadeh, Artificial immune system-based parameter extraction of proton exchange membrane fuel cell, International
Journal of Electrical Power & Energy Systems 33 (4) (2011) 933 – 938.

[17] S. Yang, N. Wang, A novel P systems based optimization algorithm for parameter estimation of proton exchange membrane fuel cell model,
International Journal of Hydrogen Energy 37 (10) (2012) 8465 – 8476.

[18] A. Askarzadeh, A. Rezazadeh, A new heuristic optimization algorithm for modeling of proton exchange membrane fuelcell: Bird mating
optimizer, International Journal of Energy Research (2012) n/a–n/aIn press.

[19] U. K. Chakraborty, T. E. Abbott, S. K. Das, PEM fuel cell modeling using differential evolution, Energy 40 (1) (2012)387 – 399.
[20] M. Secanell, J. Wishart, P. Dobson, Computational design and optimization of fuel cells and fuel cell systems: A review, Journal of Power

Sources 196 (8) (2011) 3690 – 3704.
[21] R. Storn, K. Price, Differential evolution–A simple and efficient heuristic for global optimization over continuous spaces, J. of Global Optim.

11 (4) (1997) 341–359.
[22] K. Price, R. Storn, J. Lampinen, Differential Evolution: A Practical Approach to Global Optimization, Springer-Verlag, Berlin, 2005.
[23] R. Thangaraj, M. Pant, K. Deep, Optimal coordination ofover-current relays using modified differential evolutionalgorithms, Engineering

Applications of Artificial Intelligence 23 (5) (2010) 820 – 829.
[24] K. Vaisakh, L. Srinivas, Evolving ant direction differential evolution for OPF with non-smooth cost functions, Engineering Applications of

Artificial Intelligence 24 (3) (2011) 426 – 436.
[25] E.-N. Dragoi, S. Curteanu, F. Leon, A.-I. Galaction, D.Cascaval, Modeling of oxygen mass transfer in the presence of oxygen-vectors using

neural networks developed by differential evolution algorithm, Engineering Applications of Artificial Intelligence24 (7) (2011) 1214 – 1226.
[26] S.-K. Oh, W.-D. Kim, W. Pedrycz, Design of optimized cascade fuzzy controller based on differential evolution: Simulation studies and

practical insights, Engineering Applications of Artificial Intelligence 25 (3) (2012) 520 – 532.
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