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Abstract

To efficiently optimize the constrained engineering praisein this paper, an improved constrained differential evo
lution (DE) method is proposed, where two improvements aesgnted. Firstly, to make the DE algorithm converge
faster, a ranking-based mutation operator that is suitaktiee constrained optimization problems is presented- Sec
ondly, an improved dynamic diversity mechanism is propdeedaintain either infeasible or feasible solutions in the
population. Combining the two improvements with the DE ailtpon, the proposal is referred to as rank-iMDDE, for
short. To evaluate the performance of rank-iMDDE, 24 berafhrfunctions presented in CEC'2006 are selected as
the test suite. Moreover, five widely used constrained esgging benchmark problems and four constrained mechan-
ical design problems from the literature are chosen to lestapability of rank-iIMDDE for the engineering problems.
Experimental results indicate that rank-iIMDDE is able tgiove the performance of DE in terms of the quality of
the final solutions, the convergence rate, and the sucdeatfu Additionally, it can provide fairly-competitivesalts
compared with other state-of-the-art evolutionary aldponis in both benchmark functions and engineering problems.

Key words: Engineering optimization, differential evolution, rangibased mutation, dynamic diversity mechanism,
constrained optimization

1. Introduction

In the real-world, most of engineering design problems lverinequality and/or equality constraints. For exam-
ple, the design of the speed reducer is to minimize its weaigller constraints on bending stress of the gear teeth,
surfaces stress, transverse deflections of the shaftsfrasdes in the shafts [1, 2]. Generally, these problemsean b
treated as the constrained optimization problems (CORg)d last few decades, the use of evolutionary algorithms
(EASs) for the COPs has obtained considerable attention, [3, @, 7].

Among different EAs, differential evolution (DE) is a sinepyet efficient algorithm for the numerical opti-
mization [8]. Recently, coupled with the constraint-hangltechniques, DE has been used to solve the COP-
s [9, 10, 2, 11, 12]. For more details, interested readersregar to two good surveys of DE in [13] and [14],
and the references therein.

Although DE has gotten success in diverse fields, it may saffavly at exploitation of the solutions [15] due to
the randomly selected parents in the mutation operation ekample, in the classical “DE/rand/1” mutation, three
parent vector,, Xr,, andx., are selected randomly from the current population. Thexeslg, r,, andrz satisfy
ri,ra,r3 € {1, Np} andry # ro # r3 # i, whereNp is the population size [8]. In the nature, good species away
contain more useful information, and hence, they are m&edylito be selected to propagate offspring. Inspired by
the phenomenon, in this paper, we proposed an improvedragmei DE variant for the constrained engineering
optimization problems, where a ranking-based mutatiorraipeis presented to accelerate the convergence rate of
DE. In addition, to maintain the diversity of the populatiam improved dynamic diversity mechanism is proposed,

*Corresponding author. Tel: +86-27-67883716.
Email addressesnenyi ngong@ahoo. com wygong@ug. edu. cn (Wenyin Gong)zhcai @ug. edu. cn (Zhihua Cai)

Preprint submitted to Elsevier August 26, 2013



which can maintain either infeasible or feasible solutionthe population. In addition, the multiple trial vectors
generation technique proposed in MDDE [2] is also used. Tiopgsed method can be viewed as an improved
variant of MDDE [2], therefore, it is referred to as rank-iNdE, for short.

To evaluate the performance of rank-iMDDE, 24 benchmarktions presented in CEC'2006 [16] are selected
as the test suite. Additionally, five widely used constrdieagineering benchmark problems and four constrained
mechanical design problems are also chosen from the literéd verify the capability of rank-iIMDDE for the en-
gineering applications. Experimental results indicat tlank-iMDDE is able to accelerate the convergence rate
of MDDE, and it can also provide better results than MDDE wigispect to the solution quality and successful
rate. Moreover, compared with other state-of-the-art EAsk-iIMDDE can obtain highly-competitive results in both
benchmark functions and engineering problems.

The main contributions of this work are two-fold. Firstlyy anproved constrained DE variant (rank-iVIDDE)
is proposed for the COPs. In rank-iMDDE, the adaptive ragtiased mutation operator and improved dynamic
diversity mechanism are proposed. Secondly, the perfacemafrank-iMDDE is comprehensively evaluated through
benchmark functions and engineering problems.

The rest of this paper is organized as follows. In Sectiorhg,formulation of the COPs is briefly described.
Section 3 introduces the DE algorithm and the constrainedsa@rants in brief. In Section 4, the proposed rank-
iIMDDE is presented in detail, followed by the experimentd analysis in Section 5. Finally, in Section 6, the paper
is concluded and some possible future work is pointed out.

2. Problem formulation

Without loss of generality, in this work, we consider the stvained minimization problem, which can be formal-
ized as a pair§, f) , whereS C R" is a bounded set oR" andf : S — R is ann-dimensional real-valued function.
The minimization COP can be formulated as

min f(x), X=[x,--, %] €R" (1)
subject to
(X SO, ':1’...’
ﬁf()_ b= @
](X)_O’ J_q+15“"m

wherex is the vector of solutiony; is thei-th (i € {1,n}) decision variable ok, g is the number of inequality
constraints, andh — g is the number of equality constraints (in both cases, caimt could be linear or nonlinear).
Generally, for each variable it satisfies a constrained boundary

li<x<u,i=1,---,n

The feasible regiosf C S is defined by then inequality and/or equality constraints. Any point ¥ is called
a feasible solution; otherwise, it is an infeasible soluti&or an inequality constraint which satisfiggx) = 0 (j €
{1,---,q}) atany poink € ¥, we will say it isactiveatx. Obviously, all the equality constraints are consideregiyac
at all points in feasible regiof.

In the evolutionary constrained optimization, the eqyadibnstraints are always converted into inequality con-
straints for the COPs as

lhj(x)I-6 <0 ®3)
wherej € {g+ 1,--- ,m} and¢ is a positive tolerance value. The distance of a solutitnom the j-th constraint can
be constructed as
max{0, g;(x)}, 1<j<
G,(x) = 9i(x) I=q @)
max{0, h;(x)|-¢d}, g+1<j<m

Then, the distance of the solutionfrom the boundaries of the feasible set, which also refldwsdiegree of its
constraint violation, can be denoted as

G(X) = > Gj(¥) (5)
j=1

2



3. Differential evolution and constrained DEs

3.1. Differential evolution

The DE algorithm [8] is a simple EA for numerical optimizatidt creates new candidate solutions by combining
the parent individual and several other individuals of taens population. A candidate replaces the parent only
if it has better fitness value. This is a rather greedy selecticheme that often outperforms traditional EAs. The
pseudo-code of the original DE algorithm is shown in Aldamit 1, wheren is the number of decision variables,
F is the mutation scaling facto€r is the probability of crossover operator. rndintglis a uniformly distributed
random integer number between 1 and'ndrea|[0, 1) is a uniformly distributed random real number in 1§, it is
generated anew for each valuejofAs for the terminal conditions, we can either fix the maxinmumber of function
evaluations (NFEsVax NFEsor the precision of a desired solutidTR(value to reach).

Algorithm 1 The DE algorithm with “DE/rand/1/bin”

1: Generate the initial population;
2: Evaluate the fitness for each individual;
3: while the halting criterion is not satisfietb

4 fori=1toNpdo

5 Select uniform randomlyy # rp # r3 # i;
6: jrang = rndint(Z, n);

7 for j=1tondo

8 if rndrea|(0,1) < Cror j == jrana then
9: Uij = Xrpj + F o (Xpj = Xeg j)s

10: else

11: Uij = Xj;

12: end if

13: end for

14: end for

15:  fori=1toNpdo

16: Evaluate the offspring;;

17: if f(u;) is better tharor equal tof (x;) then
18: Replacex; with u;;

19: end if

20: end for

21: end while

3.2. Constrained DE variants

Combining with the constraint-handling techniques, theddorithm has been successfully used for solving the
COPs. In this subsection, we will briefly discuss some represgive constrained DE (CDE) variants.

The first attempt to apply DE for the COPs is the constrainptateon with DE (CADE) proposed by Storn [9].
CADE is a multi-member DE that generates more than oge-(1) offspring for each individual with the DE op-
erators, and then only one of thg + 1 individuals (both then, offspring and target individual) will be selected for
the next generation. Lampinen presented a Pareto domiteseal constraint-handling method to handle nonlinear
constraint functions [17]. Becerra and Coello presentedlm@d DE for the COPs [18], where the cultural algo-
rithm is applied to use different knowledge sources to imfagethe variation operator of DE. Mezura-Mon&sl.
proposed a multi-member diversity-based DE (MDDE) for ti@RS in [19, 2]. Similar to CADE, in MDDE each
target parent is allowed to generate more than one offsptimghe CEC’2006 competition on the constrained real
parameter optimization [16], several CDE variants wer@psed and some of them secured front ranks. For example,
eDE [10], proposed by Takahama and Sakai, ranks the first sndtimpetition. IncDE, thee constrained method
is used to handle the constraints; in addition, a gradiesed mutation is introduced to find feasible point by using
the gradient of constraints at an infeasible point [10].28][ Mezura-Montest al. presented a modified DE (MDE)
for the COPs. In MDE, a modified mutation operator is presentdditionally, a dynamic diversity mechanism
is added into MDE to maintain infeasible solutions locategiomising areas of the search space. In [21], Huang
et al. proposed an extended SaDE method for the COPs. Comparetheithiginal SaDE method [22], the replace-
ment criterion was modified for tackling constraints. Breséal. presented a self-adaptive DE variant to solve the
COPs [23], where three DE mutation operators are used angattaeneters o€r andF are self-adaptively updat-
ed. Huanget al. proposed a co-evolution mechanism based DE for the COPs [[2424], a co-evolution model is
presented and DE is used to perform evolutionary searchaicespof both solutions and penalty factors. Zhanal.
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proposed a dynamic stochastic ranking-based multi-me@DBdDSS-MDE) [25], where the comparison probability
P decreases dynamically following the evolution processaAt Kajee-Bagdadi presented local exploration-based
DE for solving the COPs, where a periodic local exploratezhnique is incorporated into DE [26]. In [27], Mezura-
Montes and Palomeque-Ortiz proposed a modified DE for thesC@Rere the parameters related to DE and the
constraint-handling mechanism are deterministically selftadaptively controlled. With the aim of providing some
insights about the behavior of DE variants for solving theRSOMezura-Montest al. presented an empirical study
on CDE in [28]. Since no single constraint-handling techeigs able to outperform all others on every problem,
Mallipeddi and Suganthan proposed an ensemble of constamuling techniques (ECHT) to solve the COPs [29],
in which each constraint-handling technique has its owpsphlation. Wang and Cai proposedia+(1)-CDE for the
COPs [11]. In t + 2)-CDE, three different DE mutation strategies are used tegae three offspring for each target
parent; additionally, the IATM is proposed to handle coaisits. Recently, Wang and Cai presented the CMODE
method [12], in which DE is combined with multiobjective opization to deal with the COPs. Mohamed and Sabry
proposed a novel constrained optimization based on a mddifiealgorithm (COMDE) [30], where a new directed
mutation strategy is presented. Additionally, a modifiedstmint-handling technique based on the feasibility and
the sum of constraints violations is employed to handle itaimgs. In [31], Elsayeet al. presented an improved DE
algorithm (ISAMODE-CMA) that adopts a mix of different DE itation operators. Moreover, in order to enhance
the local search ability of the algorithm, the CMA-ES [32pisriodically applied. In ISAMODE-CMA, the dynamic
penalty constraint-handling technique is used to tackiestaints of a problem.

4. The proposal: rank-iMDDE

In this section, the proposed rank-iMDDE method is preskimeletail. In rank-iIMDDE, there are two major
improvements. Firstly, a ranking-based mutation operest@resented to accelerate the convergence rate of DE.
Secondly, an improved dynamic diversity mechanism is pseddo maintain the diversity of the population. The
core idea behind rank-iMDDE is elucidated as follows.

4.1. The ranking-based mutation operator

4.1.1. Adaptive ranking technique
In the ranking-based mutation operator, the populatiomsi¢ée be ranked first. Suppose that the population is
sorted from the best to the worst based amiterion, then the ranking of an individua| is assigned as follows:

R =Np-i, i=1---,Np (6)

According to Equation (6), the best individual in the cutrpapulation will obtain the highest ranking.

To make the ranking-based mutation operator in DE be seitablhe COPs, we modify our previous proposed
ranking technique [33], which is only based on the objediivestion value for unconstrained optimization problems.
In this work, when solving the COPs, the population is adaptiranked according to the situation of the current
population as follows:

e Ranking in theinfeasible situation: In the infeasible situation, the population contains anfgasible solu-
tions. The main task of the optimization technique is to fimgl feasible solutions. Therefore, in this situation,
we sort the population according to the constraint viota{@.g, G(x) in Equation (5)) of each individual in
ascending order. The objective function values are notidensd at all.

e Ranking in the semi-feasible situation: As suggested in [11], in the semi-feasible situation, sam@ortant
feasible individuals (those with small objective functieaues) and infeasible individuals (those with small
objective function values and slight constraint violagpshould be obtained more consideration. Therefore,
in order to balance the influence of objective function vadmel constraint violationfitness transformation
techniques could be a good choice. As an illustration, imwark, we adopt the adaptive fitness transformation
(AFT) method proposed in [11] to calculate the final transfed fithness valudina(xi) of each individual.
Afterwards, the population is sorted accordingdfgu(x;) in ascending order. In this way, the individuals that
have lower final transformed fitness values will obtain higla@kings based on Equation (6).
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In the AFT method, the population is divided into the feasigtoup (4) and the infeasible group ¢¥ based
on the feasibility of each solution. Thereafter, the objectunction valuef (x;) of the solutionx; is converted

into
Py = | 1O e a @)
v max{p - f(Xpes) + (1 = ¢) - F(Xwors), F(Xi)}, €22

wheregp is the feasibility ratio of the last population, argks;andxyorst are the best and worst solutions in the
feasible group £ respectively. After obtaining the converted objectivadtion value of each solution, it is
then normalized as )
f(x)— min /(x))
jeZ1UZ,
max f/(xj) — min f’(X;
j€21UZ, (x;) j€21UZ, (x})

fnor(Xi) = (8)

If we use Equation (5) to calculate the constraint violatideach solution, the normalized constraint violation
can be evaluated as

0, i€ Z]_
Guo(i) = § _St-mpotx) (©)
maxGe)-mneey: | € 42
A I J
jeZy 243
Finally, the final fitness function is obtained as follows
fiinal(Xi) = fror(Xi) + Gnor(Xi) (10)

e Rankingin thefeasiblesituation: In this situation, all individuals in the population ar@&ble, and the COPs
can be viewed as unconstrained optimization problems. ,Mae®nly need to rank the population according
to the objective function valu&(x;) of each individual in ascending order.

In summary, in the ranking-based mutation operator theeotinpopulation is adaptively ranked based on the
following three criteria:

1) constraint violations in the infeasible situation,
2) transformed fitness values in the semi-feasible sitnadod
3) objective function values in the feasible situation.

It is worth mentioning that although this work is the modifioa of our previous work in [33], however, there are
significant differences compared with our previous workTlije work in [33] is only for unconstrained problems,
whereas this work is for constrained problems. ii) The ragkiin [33] are only based on the objective function values,
while in this work since the constraints should be considgettee ranking are assigned based on different criteria in
different situations. And iii) the calculation of selegatiprobabilities is also different from [33]. In this work fidirent
methods are used to calculate the selection probabilityfierdnt situations in the following subsection.

4.1.2. Selection probability calculation

After obtaining the ranking of each individual, we then cédte the selection probability; for each individual
x;. Different from the method presented in [33] for unconsteai optimization problems, in this work, the selection
probabilities are calculated according to the situatiothefcurrent population for the COPs. In different situagion
different methods are used to calculate the selection jbilities as follows.

e Probability in the infeasible situation: Since all individuals are infeasible in this situatione timdividuals
with small constraint violations should get more chancestsdiected to steer the population towards feasibility.
Therefore, in this situation, we calculate the selectiabpbility for each individual as follows:

: (11)



Similar to +1)-CDE [11], in the infeasible situation, the fifs{p/3 individuals with lower constraint violations
in the ranked population will always get the selection ptulities with p; = 1.0 (i = 1,--- , Np/3) to promote
feasibility, whereas for the rest- A p/3 individuals their selection probabilities are linearcteased.

e Probability in the semi-feasible situation: In this situation, the selection probabilities are eviddas

ky
pi:(Nip) , i=1---,Np (12)
wherek; is a user-defined coefficient. In the semi-feasible sitmattmme important feasible individuals and
important infeasible individuals are assigned higher iragd, and these individuals contain more useful infor-
mation. The important feasible individuals with small atijee functions are able to guide the algorithm to
find the global optimum. On the other hand, the importantasiiele individuals with slight constraint viola-
tions and small objective function values can promote theréthm to find feasible solutions (especially when
the proportion of the feasible region is very small) or toadbthe optimum when it is located exactly on the
boundaries of the feasible region. Thus, these individstadalld be paid more attention and be more dominant
than the worst individuals. Based on these consideratiwasecommend; is greater than.D. The reason is
thatk; > 1.0 can assign greater selection pressure for individuals m@her rankings thak; < 1.0 [34]. In

this work,k; = 2.0 is set to be a default value, and its influence will be dised$s Section 5.8.

e Probability in the feasible situation: The selection probabilities in this situation are caltedsas follows

R\
=l—] , i=1,---,N 13
= 1os) p (19
wherek; is also a user-defined coefficient. As mentioned-above,enfeasible situation, the COPs can be
treated as unconstrained optimization problems. In oawerdintain the diversity of the population and avoid
trapping into the local optima, we suggest tolgek 1.0. In this manner, better individuals will less dominate
the worse ones. In this work, = 0.5 is set to be a default value, and its influence will also beudised in
Section 5.8.

4.1.3. Vector Selection

As presented in [33], after calculating the selection pbilitg of each individual in the above subsection, the
other issue is that in the mutation operator which vectoosishbe selected according to the selection probabilities.
The vector selection used in this work is the same as the mgttaposed in [33]i.e., only the base vector and the
terminal vector are selected based on their selection pifities. More details can be found in [33].

4.2. The proposed rank-iMDDE method

In the previous subsection, the ranking-based mutatioradmeis proposed to enhance the exploitation ability of
DE when solving the COPs. In this subsection, it is integtatéo a CDE variant (iMDDE), which is an improved
version of MDDE [19, 2]. Combining the ranking-based muatwith iMDDE, the rank-iMDDE is presented in
details as follows.

4.2.1. Improved dynamic diversity mechanism

In order to maintain either infeasible or feasible indivatkiin the population, Mezura-Montesal.[19, 2] pro-
posed the static diversity mechanism, where a static $ate@tio (S; = 0.45) is used to control the selection process
as follows:

e If rndreal(Q1) < S;, the selection is performed based only on the objectivetiono/alues, regardless of
feasibility;

e otherwise, Deb’s feasibility rules [35] are used to comgiifferent individuals.



Algorithm 2 The rank-iMDDE algorithm for the COPs

1: Generate and evaluate the initial population;
2: Sett=1,Cr =09, Sig = 0.7,n0 = 5, k1 = 2.0, andk; = 0.5;
3: while the halting criterion is not satisfietb

4 Calculate feasibility ratio of the current population; =
5: According to the current situation, sort the populationdabsn different criteria; =
6: Calculate the selection probability for each individuabésrementioned; =
7. UpdateS; as shown in Equation (14); =
8 for i = 1toNpdo

9: F = rndreal(03,0.9);

10: for k=1ton, do

11: Selectry, r, r3 based on the selection probabilities; =
12: if rndreal(Q1) < 1.0/n, then

13: Generate the offspringwith “DE/rand/1/exp”; =
14: else

15: Generate the offspringwith “DE/rand/1/bin”;

16: end if

17: Deal with the violated variables inbased on the boundary-handling technique as shown in BquELs).

18: Evaluate the offspring;

19: if k> 1then

20: if cis better thani; based on Deb’s feasibility ruléien

21: Ui < C;

22: end if

23: else

24 Uj < C;

25: end if

26: end for

27:  end for

28: fori=1toNpdo

29: if rndreal(01) < S; then

30: if f(u) < f(x;) then

31: Xi — Uj;

32: end if

33: else

34: if u; is better than; based on Deb’s feasibility ruleben

35: X < Uj;

36: end if

37: end if

38:  endfor

39)  tet+1;

40: end while

Recent studies indicate that the dynamic contr@,af able to balance the search between feasible and infeasibl
regions, and hence, it can improve the performance of staesity mechanism [20, 25, 27] for the COPs. Therefore,
inspired by the methods proposed in [20] and [25] we presedghamic control method fd8, as

Sro, t= 1
S =4S (1-5tr), 2<t< g (14)
0.025 Ama < f < ta

wheret is the current generation numb&;, = 0.70 is the initial value of the selection ratf, andtmax is the
maximal generation number. In this way, wheq 2‘% the individuals with small fitness objective values wiltain
more chance to be selected into the next population due thigerS, value. While in the last third part of the
processS; is set to be M25, which means that the feasibility of individuals will imore dominant during this period.

4.2.2. Boundary-handling method

After using the DE mutation operator to generate the mutaotorv;, some components; (i = 1,--- ,Npand
i =1,---,n) may violate the boundary constraing. v ; ¢ [l;, u;]. In this situation, we should make these compo-
nents be within their corresponding boundary. As mentidnd@6], the boundary-handling method has significant
influence to the performance of DE. In this work, for the iMDDtethod we use thesinitialization method (see E-
quation (15))j.e., when one of the decision variable violates its boundargtaint, it is generated with the uniform
distribution within the boundary [36] as follows:

vij = rndreal(j, u;), if vij ¢ [l}, uj] (15)
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4.3. Framework of rank-iMDDE

By integrating the ranking-based mutation into iIMDDE, raMDDE for the COPs is presented. The pseudo-code
of rank-iMDDE is described in Algorithm 2, wherg > 1 is number of offspring generated by each target individual
The major differences between MDDE [19, 2] and rank-iMDDE highlighted in =" in Algorithm 2. Specifically,
there are three major differences between rank-iMDDE and®D

e Lines 4,5, 6,and 11 are responsible for choosing,, r; based on the ranking-based mutation operator.
e Inline 7, the dynamic update & is performed at each generation.

e Inlines 12 to 16, both “DE/rand/1/exp” and “DE/rand/1/bere used to generate thgoffspring. The reason
is that the combination of “DE/rand/1/exp” and “DE/randhity’ for generating the offspring is able to enhance
the performance of DE for the COPs [37]. In addition, the piulity to use “DE/rand/1/exp” is.D/n,. This
means that in expectation there is only one outyafffspring that is generated by “DE/rand/1/exp”, while athe
ng — 1 offspring are generated by “DE/rand/1/bin”.

Note that the last two aspects are the differences betweBb#vland MDDE.

The total complexity of MDDE i€ (tmax N p-No-N), wheretnax is the maximal generation number. Simgex N p,
the total complexity of MDDE i©(tmax- N p-n). Compared with MDDE, rank-iMDDE does not significantly irase
the overall complexity. The additional complexity of th@posed rank-iIMDDE is population sorting and probability
calculation, as shown in Algorithm 2. The complexity of ptgiion sorting iSO(N p-log (N p)), and the complexity of
probability calculation i©O(N p). Thus, rank-iIMDDE has the total complexity O{tmax- Np- (no - n+log (Np) + 1)).

In general, the population sidép is set to be proportional to the problem dimensioim the DE literature [38].
Therefore, the total complexity of both MDDE and rank-iMDBED(tmax - N%), which is the same as the original DE
algorithm and many other DE variants.

5. Experimental resultsand analysis

In this section, comprehensive experiments are perfortexlgh both benchmark functions and engineering
problems to evaluate the performance of rank-iMDDE.

5.1. Benchmark functions

In this work, the benchmark functions presented in CEC’2[i for the competition on constrained single
objective optimization are selected as the test suite. fElsissuite contains 24 COPs, which are described in Table 1,
wheren is the number of decision variablgs,= |¥1/|S| is the estimated ratio between the feasible region and the
search space, LI is the number of linear inequality constsaN| the number of nonlinear inequality constraints, LE
is the number of linear equality constraints, and NE is thalmer of nonlinear equality constrainisis the number
of active constraints at. More details for these functions can be found in [16].

5.2. Parameter settings

For rank-iIMDDE (also including other iMDDE variants whichl\be discussed in Sections 5.6 and 5.7), in all
experiments, we use the following parameters unless a ehamgentioned.

e population sizeNp=90[19, 2];

crossover rateCr = 0.90 [19, 2, 25];
e scaling factorF = rndreal(030,0.90) [19, 2, 25];

number of offspring generate by each target individugk= 5 [19, 2, 25];

tolerance of equalitys = 1e—4[16, 19, 2, 25];

e initial value of the selection ratidS;, = 0.70;



Table 1: Details of 24 benchmark test functions.

Prob n Type of function o LI NI LE | NE a f(x*)

gol | 13 quadratic 0.01% 9 0 0 0 6 -15.0000000000
g02 | 20 nonlinear 100.00% | O 2 0 0 1 -0.8036191042
go3 | 10 polynomial 0.00% 0 0 0 1 1 -1.0005001000
go4 5 quadratic 52.12% 0 6 0 0 2 -30665.5386717834
g05 4 cubic 0.00% 2 0 0 3 3 5126.4967140071]
g06 2 cubic 0.01% 0 2 0 0 2 -6961.8138755802
go7 | 10 quadratic 0.00% 3 5 0 0 6 24.3062090681
go8 2 nonlinear 0.86% 0 2 0 0 0 -0.0958250415
g09 7 polynomial 0.51% 0 4 0 0 2 680.6300573745
g10 8 linear 0.00% 3 3 0 0 6 7049.2480205286
g1l 2 quadratic 0.00% 0 0 0 1 1 0.7499000000
gl2 3 quadratic 4.77% 0 1 0 0 0 -1.0000000000
g13 5 nonlinear 0.00% 0 0 0 3 3 0.0539415140
gld | 10 nonlinear 0.00% 0 0 3 0 3 -47.7648884595
g15 3 quadratic 0.00% 0 0 1 1 2 961.7150222899
g16 5 nonlinear 0.02% 4 34 0 0 4 -1.9051552586
g17 6 nonlinear 0.00% 0 0 0 4 4 8853.5396748064]
g18 9 quadratic 0.00% 0 13 0 0 6 -0.8660254038
gl9 | 15 nonlinear 33.48% 0 5 0 0 0 32.6555929502
g20 | 24 linear 0.00% 0 6 2 12 | 16 0.2049794002
g21 7 linear 0.00% 0 1 0 5 6 193.7245100700
g22 | 22 linear 0.00% 0 1 8 11 | 19 236.4309755040
g23 9 linear 0.00% 0 2 3 1 6 -400.0551000000
g24 2 linear 79.66% 0 2 0 0 2 -5.5080132716

e two coefficients in the ranking-based mutatida: = 2.0 andk, = 0.50 (their influence will be discussed in
Section 5.8).

The maximal number of function evaluations (MB¥ES) for all benchmark problems are set to be, 200 [31].
To compare the results of different algorithms, each fumcts optimized over 100 independent runs. We use the
same set of initial random populations to evaluate diffeedgorithms in a similar way done in [15]e., all of the
compared algorithms are started from the same initial gadjoul in each out of 100 runs.

5.3. Performance criteria

To compare the results among different algorithms, in thiskwthe following performance criteria are used,
which have been presented in other literature.

e NFEs[16]: Itis used to record the number of function evaluationeach run for finding a solution satisfying
f(x) — f(x*) < 1le— 4 andx is feasible, where* is the known-optimal solution of a specific problem.

e Success rate (SR [16]: It is equal to the number of success runs over totasrul success run means that
within Max_NFEs the algorithm finds a feasible solutisatisfyingf(x) — f(x*) < 1le—4.

e Convergencegraphs[16]: The graphs show the median error performarf¢e)(— f(x*)) of the total runs.

e Acceleration rate (AR): Similar to the acceleration rate presented in [39], thigdon is used to compare the
convergence speed between two algorithms. It is definedlag/f

_ ANFE\/SR,

AR= ———R/° R
ANFEs;/SRs

(16)
where ANFEg andS R, are respectively the average NFEs &@values of algorithm A AR > 1 indicates
algorithm B converges faster than algorithm A.

In addition, the objective function valuigx) of the final solution in each run is saved, and its best, nmedvarst,
mean, and standard deviation values are also recorded.

lindeed, ANFEg&/S R, is the successful performancg B) of algorithm A as presented in [28]. It can be used to meatheespeed and
reliability of an algorithm.
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Figure 1: Convergence graphs of rank-iIMDDE and MDDE for telested functions. (a) g01; (b) g02; (c) - (e): g04 - g06; @8g(g) g10; (h):
915; (i): 916; (j) 918; (k) g19; (1) g24.
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Table 2: Statistical results obtained by rank-iMDDE and MDfor all benchmark function, where “NF” means no feasibleison is found.

Prob rank-iIMDDE MDDE

Best Median Worst Mean Std SR Best Median Worst Mean Std SR
g0l -15 -15 -15 -15 0.00E+0 | 1.00 -14.99999999 | -14.99999997 | -14.9999999 | -14.99999997| 1.02E-8 1.00
g02 -0.80361905 -0.80361882 -0.771749392( -0.802021189| 4.57E-3 | 0.86 -0.803618401| -0.803614222| -0.7926051 -0.8025171 3.31E-3 | 0.90
g03 -1.0005001 -1.0005001 -1.0005001 -1.0005001 0.00E+0 | 1.00 1.0005001 1.0005001 1.0005001 1.0005001 9.66E-14 | 1.00

g04 -30665.5387 -30665.5387 -30665.5387 -30665.53867 [ 0.00E+0 | 1.00 -30665.5387 -30665.539 -30665.539 -30665.539 0.00E+0 | 1.00
g05 | 5126.496714 5126.496714 5126.496714 5126.496714 0.00E+0 [ 1.00 5126.496714 5126.49671 5126.49671 5126.49671 0.00E+0 [ 1.00
g06 -6961.81388 -6961.81388 -6961.81388 -6961.813876 [ 0.00E+0 | 1.00 -6961.81388 -6961.8139 -6961.8139 -6961.8139 0.00E+0 [ 1.00
go7 24.3062091 24.3062091 24.3062091 24.3062091 0.00E+0 | 1.00 24.3062091 24.3062092 24.3062100 24.3062092 1.34E-7 1.00
go8 -0.09582504 -0.09582504 -0.09582504 -0.095825041 | 0.00E+0 | 1.00 -0.09582504 -0.095825 -0.095825 -0.095825 0.00E+0 | 1.00
g09 | 680.6300574 680.6300574 680.6300574 680.6300574 [ 0.00E+0 | 1.00 680.6300574 680.630057 680.630057 680.630057 0.00E+0 [ 1.00
g10 | 7049.248021 7049.248021 7049.248021 7049.248021 0.00E+0 | 1.00 7049.248107 | 7049.259608 | 7049.719147| 7049.280508 | 5.99E-2 0.01

gll 0.7499 0.7499 0.7499 0.7499 0.00E+0 | 1.00 0.7499 0.7499 0.7499 0.7499 0.00E+0 | 1.00
gl2 -1 -1 -1 -1 0.00E+0 | 1.00 -1 -1 -1 -1 0.00E+0 | 1.00
gl3 0.053941514 0.053941514 0.053941514 0.053941514 0.00E+0 | 1.00 0.053941514 0.05394151 0.438802615| 0.065487347 | 6.60E-2 0.97
gld -47.7648885 -47.7648885 -47.7648885 -47.76488846 | 0.00E+0 [ 1.00 NF NF NF NF NF 0.00
gl5 961.7150223 961.7150223 961.7150223 961.7150223 0.00E+0 | 1.00 961.7150223 961.715022 961.715022 961.715022 0.00E+0 | 1.00
gl6 -1.90515526 -1.90515526 -1.90515526 -1.905155259 | 0.00E+0 | 1.00 -1.90515526 -1.9051553 -1.9051553 -1.9051553 0.00E+0 | 1.00
gl7 8853.539675 8853.539675 8853.539675 8853.539675 0.00E+0 | 1.00 8853.539675 8853.53967 8854.175004 | 8853.550185 | 7.56E-2 0.98
gl8 -0.8660254 -0.8660254 -0.8660254 -0.866025404 | 0.00E+0 | 1.00 -0.8660254 -0.8660251 -0.8660210 -0.8660249 6.69E-7 1.00
gl9 32.65559313 32.6555955! 32.65640159 32.65561099 8.30E-5 [ 0.97 32.66122743 | 32.67016614 | 32.68969114| 32.67088106 | 5.70E-3 0.00
g20 NF NF NF NF NF 0.00 NF NF NF NF NF 0.00
g21 193.7245101 193.7245101 193.7245101 193.7245101 0.00E+0 | 1.00 193.7245101 193.7245102 | 193.7245205| 193.7245106 | 1.53E-6 1.00
g22 NF NF NF NF NF 0.00 NF NF NF NF NF 0.00
g23 -400.0551 -400.0549541 | -378.0715141 -398.1808652 | 4.51E+0 | 0.48 NF NF NF NF NF 0.00
g24 -5.50801327 -5.50801327 -5.50801327 -5.508013272 | 0.00E+0 [ 1.00 -5.50801327 -5.5080133 -5.5080133 -5.5080133 0.00E+0 | 1.00
avg - 0.89 - 0.74

5.4. General Performance of rank-iMDDE

Because rank-iMDDE is an improved variant of MDDE [2], inglgection, the general performance of rank-
iMDDE and MDDE is compared through the benchmark functioesented in CEC’2006 [16]. For the two methods,
the parameters used are described in Section 5.2. The twoagtes are performed over 100 independent runs for
each benchmark function with the MadEs=240000. The results of the final solutions are shown in Table Zrerh
the boldface means that the algorithm obtains the best known solutioretiebresult in the specific function. In
addition, several representative convergence grapheaelected functions are given in Fig. 1.

From the results shown in Table 2 and Fig. 1, it can be seen that

e In 19 out of 24 functions, rank-iIMDDE consistently obtaihg toptimal solutions over all 100 runs, whereas
MDDE only gets the optimal solutions over all runs in 11 fuoos.

e Considering the mean values, rank-iMDDE is able to proviegedn results than MDDE in 10 functions. In
11 functions, both rank-iIMDDE and MDDE get the same meanea&l®nly in function g02, MDDE obtains
better mean values than rank-iMDDE.

e With respect to the successful rate, rank-iMDDE gets highRRvalues than MDDE in 6 functions. Especially,
in 4 functions (g10, g14, g19, and g23), rank-iIMDDE extreyrieiproves the successful rate of MDDE. The
overallS Rvalue of rank-IMDDE is 89, which is higher than that of MDDE (14).

e For the convergence rate, Fig. 1 clearly indicates that-iRfiXDE converges faster than MDDE.

e In two functions (g20 and g22), both rank-iIMDDE and MDDE cant abtain a feasible solution over all 100
runs. Therefore, in the following experiments, the resoithese two functions are not reported.

To summarize, the results confirm our expectation that topgsed rank-iMDDE improves the performance of
MDDE in terms of the quality of the final functions, the cornyence rate, and the successful rate in the majority of
benchmark functions.

5.5. Compared with other state-of-the-art EAs

In the previous subsection, the efficacy of rank-iMDDE isified through the benchmark functions. In this
section, rank-IMDDE is compared with other state-of-theEAs for the COPs. These algorithms are ISAMODE-
CMA [31], SAMODE [40], ECHT-EP2 [29], ATMES [41], and SMES 24 SAMODE [40] is a multiple search
operators based DE, where different operators are seladegatively. ISAMODE-CMA [31] is an improved version
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Table 3: Compared the quality of final solutions of our apphowith other state-of-the-art EAs for all benchmark fuowti

Prob | Criteria | rank-MDDE | ISAMODE-CMA [31] | SAMODE [40] | ECHT-EP2[29] | ATMES [41] | SMES [42]
Best 15 15 15 15 15 15
g0l [ Mean -15 -15 -15 -15 -15 -15
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 T60E-14 | 0.00E+00
Best | -0.80361905 -0.8036191 -0.803619 -0.803619 -0.803339 | -0.803601
g02 [ Mean | -0.80202119 -0.79244 -0.7987352 -0.799822 0.790148 | -0.785238
Std 457E-03 2.80E-02 8.80E-03 T.26E-02 T.30E-02 1.67E-02
Best | -1.0005001 -1.0005 -1.0005 -1.0005 =il =i
g03 [ Mean | -1.0005001 -1.0005 -1.0005 -1.0005 1 1
Sid 0.00E+00 0.00E+00 0.00E+00 0.00E+00 5.90E-05 2.09E-05
Best | -30665.539 -30665.539 -30665.54 -30665.54 3066554 | -30665.539
g04 [ Mean | -30665.539 -30665.539 -30665.54 -30665.54 -30665.54 | -30665.539
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 740E-12 | 0.00E+00
Best | 5126496714 5126.497 5126.497 5126.497 5126498 5126.599
g05 [ Mean | 5126496714 5126.497 5126.497 5126.497 5127.648 5174.492
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 TB80E+00 | 5.01E+01
Best | -6961.61388 ~6961.813875 ~6961.814 -6961.814 6961814 | -6961.814
g06 [ Mean | -6961.81388 -6961.813875 -6961.814 -6961.814 -6961.814 | -6961.284
Sid 0.00E+00 0.00E+00 0.00E+00 0.00E+00 460E-12 | 1.85E+00
Best | 24.30620907 243062 24,3062 24,3062 24.306 24.327
g07 [ Mean | 24.30620907 24,3062 24.3096 24.3063 24316 24475
Sid 0.00E+00 0.00E+00 T.59E-03 3.19E-05 1.10E-02 1.32E-01
Best | -0.00582504 -0.095825 -0.095825 -0.095825 0095625 | -0.095825
g08 [ Mean | -0.09582504 -0.095825 -0.095825 -0.095825 -0.095825 | -0.095825
Std 0.00E+00 0.00E+00 0.00E+00 2.61E-08 2.80E-17 | 0.00E+00
Best | 660.6300574 680.63 680.63 680.63 680.63 660.632
g09 [ Mean | 680.6300574 680.63 680.63 680.63 680.639 680.643
Sid 0.00E+00 0.00E+00 T.16E-05 0.00E+00 17.00E-02 1.55E-02
Best | 7049.248021 7049.24802 7049.248 7049.2483 7052.253 | 7051.903
910 [ Mean | 7049.248021 7049.24802 7059.81345 7049.249 7250437 | 7253.047
Sid 0.00E+00 5.42E-06 7.86E+00 6.60E-04 T.20E+02 | 1.36E+02
Best 0.7499 0.7499 0.7499 0.7499 0.75 0.75
g1l [ Mean 0.7499 0.7499 0.7499 0.7499 0.75 0.75
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.40E-04 T.52E-04
Best =i =i 1 1 =i 1
g12 [ Mean il il -1 -1 il -1
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 T.00E-03 | 0.00E+00
Best | 0.053941514 0.053942 0.053942 0.053942 0.05395 0.053986
g13 [ Mean | 0.053941514 0.053942 0.053942 0.053942 0.053959 0.166385
Sid 0.00E+00 0.00E+00 1.75E-08 T.00E-12 1.30E-05 1.77E-01
Best | -47.7648885 -47.764888 -47.76489 -47.7649 NA NA
gl4 [ Mean | -47.7648885 -47.764888 -47.68115 -47.7648 NA NA
Sid 0.00E+00 0.00E+00 4.04E-02 2.72E-05 NA NA
Best | 961.7150223 961.71502 961.71502 96171502 NA NA
g15 [ Mean | 961.7150223 961.71502 961.71502 961.71502 NA NA
Std 0.00E+00 0.00E+00 0.00E+00 2.01E-13 NA NA
Best | -1.90515526 -1.905155 -1.905155 -1.905155 NA NA
916 [ Mean | -1.90515526 -1.905155 -1.905155 -1.905155 NA NA
Sid 0.00E+00 0.00E+00 0.00E+00 T.12E-10 NA NA
Best | 8853539675 8653.5397 88535397 88535397 NA NA
gl7 [ Mean | 8853539675 8853.5397 8853.5397 8853.5397 NA NA
Sid 0.00E+00 0.00E+00 1.15E-05 2.13E-08 NA NA
Best | -0.8660254 -0.866025 -0.866025 -0.866025 NA NA
gl8 [ Mean | -0.8660254 -0.866025 -0.866024 -0.866025 NA NA
Std 0.00E+00 0.00E+00 7.04E-07 T.00E-09 NA NA
Best | 3265559313 32.655593 32.655503 32,6591 NA NA
919 [ Mean | 32.65561099 32.655593 32.75734 32.6623 NA NA
Std 8.30E-05 6.46E-07 6.15E-02 3.40E-03 NA NA
Best | 193.7245101 193.72451 193.72451 193.7246 NA NA
g21 [ Mean | 193.7245101 193.72451 193.771375 193.7438 NA NA
Sid 0.00E+00 0.00E+00 T.96E-02 1.65E-02 NA NA
Best ~400.0551 -400.0551 396.16573 -398.9731 NA NA
923 [ Mean | -398.180865 -395.62403 -360.81766 373.2178 NA NA
Sid 451E+00 7.79E+00 T.96E+01 3.37E+01 NA NA
Best | -550801327 5508013 5508013 -5.508013 NA NA
g24 [ Mean | -5.50801327 -5.508013 -5.508013 -5.508013 NA NA
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 NA NA
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Table 4: Average rankings of rank-iMDDE, ISAMODE-CMA, SAMIE, and ECHT-EP2 by the Friedman test for the 22 functionerims of the
mean values.

Algorithm Ranking
rank-IMDDE | 1.7500
ISAMODE-CMA | 2.4091
SAMODE | 3.1818
ECHT-EP2 | 2.6591

Table 5: Influence of ranking-based mutation and dynamierdity mechanism to the performance of our approach. ThesN&E andARresults

are reported herein. All results are averaged over 100 ew#gmnt runs.

Prob MDDE-b/e (1) iIMDDE (2) rank-MDDE-b/e (3) rank-iIMDDE (4) AR
Mean Std SR Mean Std SR Mean Std SR Mean Std SR 4vsl [ 4vs2 | 4vs3

901 || 142,897.5| 3,426.1| 1.00 | 153,931.5| 3,356.3 | 1.00 | 76,0725 | 23038 | 1.00 | 80,4825 | 24717 | 1.00 178 | 191 | 095

902 || 178,325.0 | 15,140.2 | 0.90 | 181,472.8| 16,819.4 | 0.96 | 114,1650 | 13,167.3 | 0.86 | 118,733.0 | 15049.9 | 0.86 144 | 137 | 0.96

903 || 106,3935| 7,233.4| 1.00 | 92,664.0| 6,681.6 | 1.00 | 630450 | 51018 | 1.00 | 49,5720 | 3,9484 | 1.00 215 | 187 | 127

g04 60,507.0 2,014.1 | 1.00 61,060.5 2,105.3 | 1.00 30,4155 9133 | 1.00 31,648.5 7719 | 1.00 1.91 1.93 0.96
g05 40,279.5 1,570.2 | 1.00 55,570.5 1,561.9 | 1.00 26,986.5 1,102.0 | 1.00 33,615.0 9433 | 1.00 1.20 1.65 0.80
906 21,348.0 953.2 | 1.00 21,658.5 872.9 | 1.00 12,5415 620.3 | 1.00 12,942.0 475.7 | 1.00 1.65 1.67 0.97
g07 137,128.5[ 5,907.7 | 1.00 | 1386,926.0 | 5,501.6 | 1.00 60,979.5 2,679.2 | 1.00 62,275.5 26182 | 1.00 2.20 2.20 0.98
g08 3,906.0 521.5 | 1.00 4,630.5 700.9 | 1.00 2,740.5 3832 [ 1.00 2,961.0 3772 | 1.00 1.32 1.56 0.93

g09 46,332.0 1,856.1 | 1.00 46,638.0 1,636.1 | 1.00 25,3125 1,162.6 | 1.00 24,849.0 1,039.2 | 1.00 1.86 1.88 1.02
g10 230,040.0 — | 0.01 | 224,0125| 11,6855 0.71 89,172.0 35674 | 1.00 92,718.0 31573 | 1.00 248.11 | 3.40 0.96
g1l 8,779.5 1,714.7 | 1.00 12,915.0 3,746.7 | 1.00 6,822.0 26332 | 1.00 7,339.5 1,304.4 | 1.00 1.20 1.76 0.93
g12 4,149.0 1,216.9 | 1.00 3,631.5 890.1 | 1.00 35775 799.8 | 1.00 3,100.5 6158 | 1.00 1.34 117 1.15
g13 62,598.2 | 13,1745 0.97 58,702.5 9,0786 | 1.00 95,962.9 | 61,334.1| 0.59 38,988.0 54288 | 1.00 1.66 1.51 4.17

gl4 — — | 0.00 | 206,514.0| 7,190.1 | 1.00 | 120,5145 | 125614 | 1.00 | 127,5525 4,964.0 | 1.00 — 1.62 0.94
g15 20,061.0 1,261.1 | 1.00 30,505.5 1,543.1] 1.00 15,043.5 1,271.0 | 1.00 19,066.5 9552 | 1.00 1.05 1.60 0.79
916 32,004.0 1,581.9 | 1.00 33,961.5 1,411.3 ] 1.00 16,843.5 857.8 | 1.00 18,526.5 882.7 | 1.00 1.73 1.83 0.91

gl7 98,107.3 | 28,906.9 | 0.98 85,684.5 41654 | 1.00 | 150,500.9 | 50,916.9 | 0.69 64,539.0 [ 19,8548 | 1.00 1.55 1.33 3.38
g18 133,056.0 | 12,509.5| 1.00 | 137,621.8| 7,078.9 [ 0.99 51,299.1 3,610.3 | 0.99 60,084.0 39515 | 1.00 2.21 2.31 0.86

g19 - - | 0.00 - — | 0.00 | 180,7484 | 21,4193 | 095 | 181,296.2 | 21,601.8 | 0.97 - - 1.02
921 160,146.0 | 10,142.3 | 1.00 | 186,080.9 | 11,043.8 | 0.99 85,0065 | 23407.0 | 0.97 89,617.5 9,787.2 | 1.00 1.79 2.10 0.98
923 - - | 0.00 - — | 0.00 | 203,0195 | 22,4992 | 0.88 | 205336.9 | 23,1855 | 0.48 - - 0.54
g24 8,946.0 714.8 | 1.00 9,009.0 693.0 | 1.00 5,436.0 479.8 | 1.00 5,490.0 344.4 | 1.00 1.63 1.64 0.99
avg - - | 0.81 - - | 0.89 - - | 0.95 - - | 097 1.65 1.82 1.20

of SAMODE. In ISAMODE-CMA, both mixed mutation operatorshf@MA-ES based local search are implemented.
ECHT-EP2 [29] is evolutionary programming based on ensermabtonstraint-handling techniques. ATMES [41] is
an adaptive trade-off model based evolution strategy fei@®Ps. SMES [42] is a simple multi-member evolution
strategy to solve the COPs, where a simple diversity meshabased on allowing infeasible solutions to remain in
the population is presented to handle the constraints. Wesehthese five EAs for comparisons due to their good
performance obtained and the same MNIXES (240000) used. In Table 3, the best, mean, and standard devition
the objective function values of the final solutions for ealdorithms are shown. The overall best and the second best
results among the six EAs are highlightec grey boldface andboldface, respectively. “NA” means not available.
Note that the results of ISAMODE-CMA, SAMODE, ECHT-EP2, AB8, and SMES are directly obtained from
their corresponding literature. In addition, for rank-idB, ISAMODE-CMA, SAMODE, and ECHT-EP2, based on
the mean values in Table 3, the final rankings obtained by tieelfaan testare shown in Table 4.

According to the results shown in Table 3, it can be cleargnsthat rank-iIMDDE consistently obtains highly-
competitive results in all functions compared with otheefivAs. In terms of the best results, rank-iMDDE gets the
best or similar values among the six EAs in all 22 functionsthwiespect to the mean results, only in one function
g19, rank-iMDDE is slightly worse than ISAMODE-CMA. In thest 21 functions, rank-iMDDE is able to obtain
better or similar results compared with other five EAs.

Furthermore, according to the mean values of rank-iMDDBNI®DE-CMA, SAMODE, and ECHT-EP2 shown
in Table 3, thep-value computed by the Iman-Daveport test i§7DE — 03, which means that the differences are
significant between the compared algorithms in all functiatw = 0.05. With respect to the average rankings of
all algorithms by the Friedman test, Table 4 shows that oop@sed rank-iMDDE gets the first ranking among four
algorithms, followed by ISAMODE-CMA, ECHT-EP2, and SAMODE

2The statistic results of the Friedman test and the Iman-paéest are calculated by the KEEL software tool [43].
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5.6. Influence of ranking-based mutation operator

In the above experiments, we have verified that rank-iIMDDé&ffigient and highly-competitive. In this section,
the influence of the ranking-based mutation operator on #réopnance of rank-iMDDE is evaluated. For this
purpose, rank-iMDDE is compared with iIMDDE. The only ondaiénce between rank-iMDDE and iMDDE is that
in IMDDE three vector indices,, ry, rz in the mutation are only randomly selected as presenteckimiiginal DE
algorithm. In addition, we remove the dynamic diversity imagism as presented in Section 4.2 by using the static
diversity mechanismi,e,, S; is set to be @45 during the whole evolution process. The two algorithnesraeferred to
as rank-MDDE-b/e and MDDE-befor short. The parameters are set to be the same as preseection 5.2 for
the four methods. The NFES,R andARvalues are compared as shown in Table 5. All results are gedraver 100
runs. The overall best and the second best results are digédi in grey boldface andboldface, respectively.

When comparing the performance between rank-iMDDE and iMDDis clear that rank-iIMDDE requires less
mean NFEs than iIMDDE in all cases. The aver#@gevalue is 182, which means that rank-iMDDE performs
82% faster than iIMDDE in overall. Moreover, rank-iMDDE olnis higher averag& Rvalue than that of IMDDE
(0.97 > 0.89). Especially, in functions g19 and g23, there are no sscnens for IMDDE, while rank-iMDDE gets
S Rwith 0.97 and 048, respectively, in the two functions.

Comparison between rank-MDDE-b/e and MDDE-b/e, similautes can be observed in Table 5. rank-MDDE-b/e
converges faster in 20 out of 22 cases; only in two functidi&and g17, MDDE-b/e is better than rank-MDDE-b/e.
In addition, rank-MDDE-b/e is able to obtain the higher ageS Rvalue than MDDE-b/e (@5 > 0.81).

However, by carefully looking the results, we can see thgdiarank-iMDDE and rank-MDDE-b/e provide lower
S Rvalues than their corresponding iMDDE and MDDE-b/e. Thesosamight be that the ranking-based mutation
operator enhances the exploitation ability of the alganmitiiet slightly decreases its exploration ability. While §02
it has large feasible space £ 100% see in Table 1), the ranking-based mutation operatptead the algorithm not
to explore the large feasible space sufficiently.

In general, from the results and analysis we can concluddtieaanking-based mutation operator is of benefit
to the performance enhancement of IMDDE and MDDE-b/e foiGéPs. It not only accelerates the algorithms, but
also makes them more efficient (with respect to the succéss ra

5.7. Effect of dynamic diversity mechanism

In IMDDE as presented in Section 4.2, the improved dynamierdity mechanism is proposed to dynamically
control the selection rati®,. In this section, its influence on the performance of ranldDE is studied. Also,
the four algorithms mentioned in Section 5.6 are compared rank-iMDDE vs rank-MDDE-b/e, and iMDDE vs
MDDE-b/e. The results are tabulated in Table 5. From thelt®sue can observe that

e The dynamic diversity mechanism is able to make the algorijet higher success rate than the static one, for
example S Rof iIMDDE is 0.89, which is greater than that of MDDE-b/e&Q). Also, rank-iMDDE gets higher
S Rvalue than rank-MDDE-b/e (87 > 0.95).

e However, the dynamic diversity mechanism leads to greak&td\values in most of cases. For example, in 17
out of 22 functions rank-MDDE-b/e needs less NFEs values thak-iMDDE.

e Compared thé\Rvalue between rank-iMDDE and rank-MDDE-b/e, the averaBeaalue is 120, which indi-
cates that rank-iMDDE gets 20% faster than rank-MDDE-b/avierall.

In general, the dynamic diversity mechanism is able to gewigher success rate and make the algorithm more
robust than the static one, although it requires greaterdBEeachf (x) — f(x*) < le— 4.

SMDDE-b/e means that the combination of “DE/rand/1/bin” &BE/rand/1/exp” is used. It is used to differ from the origirMDDE as
proposed in [19, 2]. It is worth pointing out that we compatieel performance of MDDE-b/e with that of MDDE through beneiknfunctions,
and in most of the test cases, MDDE-b/e provides betterteethdin MDDE. However, for the sake of brevity, we did not meftbese results.
Interested readers can contact the first author for morésieta
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Table 6: Parameter study &p andk; of the ranking-based mutation operator on the performahcan&-iMDDE in all benchmark functions. The
mean NFEs, an8 Rresults are reported herein. All results are averaged d@@irfdependent runs.

Prob iMDDE ki = 0.5k, = 2.0 ki =k, =05 ki =k, =10 ki =5.0,k, =0.2 ki =k, =20 ki =20k, =05

Mean SR Mean SR Mean SR Mean SR Mean SR Mean SR Mean SR
go1 142,897.5 1.00 112,711.5] 1.00 | 114,853.5] 1.00 98,163.0 [ 1.00 61,9290 | 1.00 80,365.5 1.00 80,482.5| 1.00
g02 178, 325. 0 0.90 87,907.2 | 0.67 | 128,007.9] 0.84 | 101,660.6 | 0.80 | 131,737.8| 0.89 77,7114 | 0.63 | 118,733.0] 0.86
g03 106, 393. 5 1.00 67,531.5 | 1.00 67,536.0 [ 1.00 57,690.0 [ 1.00 41,3955 [ 1.00 49,572.0 1.00 49,572.0 | 1.00
g04 60, 507. 0 1.00 44,973.0 [ 1.00 44,959.5 [ 1.00 38,106.0 [ 1.00 24,2460 | 1.00 31,6485 1.00 31,6485 | 1.00
g05 40, 279.5 1.00 35,563.5| 1.00 35,563.5| 1.00 34,708.5 | 1.00 32,5215 | 1.00 33,615.0 1.00 33,6150 | 1.00
g06 21,348.0 1.00 16,173.0 | 1.00 16,587.0 [ 1.00 14,607.0 | 1.00 10,966.5 | 1.00 12,9465 1.00 12,942.0 | 1.00
g07 137,128.5 1.00 96,129.0 | 1.00 96,232.5| 1.00 79,542.0 [ 1.00 45,954.0 [ 1.00 62,275.5 1.00 62,2755 | 1.00
g08 3,906.0 1.00 3,721.5| 1.00 3,721.5| 1.00 3,321.0 | 1.00 24885 | 1.00 2,961.0 1.00 2,961.0 | 1.00
g09 46,332.0 1.00 33,309.0 | 1.00 35,203.5| 1.00 29,920.5 [ 1.00 18,693.0 | 1.00 24,561.0 1.00 24,849.0 | 1.00
g10 230,040.0 | 0.01 147,987.0] 1.00 | 149,256.0[ 1.00 | 121,486.5| 1.00 67,7212 | 0.96 92,718.0 1.00 92,7180 | 1.00
g1l 8,779.5 1.00 8,217.0 | 1.00 8,217.0 | 1.00 7,834.5 | 1.00 6,705.0 | 1.00 7,339.5 1.00 7,3395 | 1.00
g12 4,149.0 1.00 3,645.0 | 1.00 3,645.0 [ 1.00 3,105.0 | 1.00 2,990.0 | 1.00 3,100.5 1.00 3,100.5 | 1.00
g13 62,598. 2 0.97 38,988.0 [ 1.00 38,9880 | 1.00 39,037.5 | 1.00 38,997.0 | 1.00 38,988.0 1.00 38,9880 | 1.00
gl4 — | 0.00 143,428.5| 1.00 | 145,746.0| 1.00 | 136,300.5| 1.00 | 1195920 | 1.00 | 127,237.5 1.00 | 127,552.5| 1.00
g15 20,061.0 1.00 19,719.0 | 1.00 19,719.0 [ 1.00 19,2735 1.00 18,7650 | 1.00 19,066.5 1.00 19,0665 | 1.00
g16 32,004.0 1.00 25,3485 1.00 25,308.0 | 1.00 21,7845 | 1.00 14,4810 | 1.00 18,526.5 1.00 185265 | 1.00
gl7 98, 107. 3 0.98 70,182.0 [ 1.00 70,128.0 | 1.00 66,172.5 [ 1.00 69,048.0 [ 1.00 63,652.5 1.00 64,539.0 | 1.00
g18 133, 056. 0 1.00 92,992.5| 1.00 92,9745 1.00 76,135.5 [ 1.00 44,3306 | 0.96 60,084.0 1.00 60,0840 | 1.00
g19 — ] 0.00 215,980.1| 0.86 | 233,370.0| 0.30 | 204,662.7| 0.99 | 193,030.0| 0.45 | 175,266.0 1.00 181,296.2 | 0.97
g21 160, 146. 0 1.00 109,350.0 [ 1.00 | 109,642.5] 1.00 99,225.0 [ 1.00 80,280.0 | 1.00 89,622.0 [ 1.00 89,617.5 | 1.00
g23 — [ 0.00 222,896.3| 0.24 | 225,294.5| 0.11 | 217,002.5| 0.36 | 1934775 | 052 | 202,763.1 0.52 205,336.9] 0.48
g24 8, 946.0 1.00 6,745.5 | 1.00 6,993.0 | 1.00 6,223.5 | 1.00 45630 | 1.00 5,463.0 1.00 5,490.0 | 1.00
avg -] 0.81 — | 0.94 -] 092 — | 096 — | 0.94 — 0.96 - | 097

5.8. Parameter study

In the proposed ranking-based mutation operator, therenareiser-defined coefficient&;(andk,) in the prob-
ability calculation models. In Section 4.1, we suggestexd ki is set to be greater than(Ql while k; is less than
or equal to 10. In this section, the influence &f andk;, on the performance of rank-iMDDE is evaluated. We set
differentk; andk; values as: (ak; = 0.5,ky = 2.0, (b)ky = ko = 0.5, (c)kis = ko = 1.0, (d)k; = 5.0,k, = 0.2,
and (e)k; = ko = 2.0. All other parameters for rank-iMDDE are kept unchangedescribed in Section 5.2. Each
algorithm is performed over 100 independent runs for eanhtfon. The results of mean NFEs afdRare given in
Table 6, in which the results of iIMDDE and rank-iMDDE with deft parameter setting&€.,, k; = 2.0,k, = 0.5)
are also reported. The overall best, second best, and vesugts are highlighted i grey boldface , boldface, and
t el et ype, respectively.

According to the results reported in Table 6, it can be oletthat

e Generally, the six rank-iIMDDE variants with differdgtandk; settings are able to converge faster than iMDDE.
Additionally, they are also capable of providing higherrageS Rvalues than that of IMDDE. It means that the
enhanced performance by the ranking-based mutation @pésatot influenced by differer andk; settings.

o With respect to the NFEs values, we can observe that rankEil 2ariants with the samg value and different
ko values é.9, k; = 0.5k, = 20 vsk; = k; = 0.5 andk; = 2.0,k, = 0.5 vsk; = ky = 2.0) provide similar
NFEs in most of test cases. The reason is that the populatimaiinly in the semi-feasible situation during the
whole evolution process.

e rank-iIMDDE withk; = 5.0, k, = 0.2 requires the smallest NFEs in the majority of the functjtrezause of the
higher selection pressure on the better solutions in thé-feamsible situation. However, it leads to premature
convergence in some complexity functions, such as g10 a8d g1

e If ky is less than D, for examplek; = 0.5, rank-iIMDDE converges slower thda > 1.0, due to the lower
selection pressure on the better solutions.

In summary, the ranking-based mutation operator is ablaharce the performance of IMDDE in terms of both
convergence rate and success rate regardless of difleremdk, settings. Since the population is mainly in the
semi-feasible situation, the ranking in this situationygléghe leading role. Thugk; has more important influence
on the performance thag. According to the results, we suggest thate [2.0,5.0] andk, € [0.5,1.0+) are good
choices. The default setting with = 2.0 andk, = 0.5 is a reasonable, but not optimal, setting in the rankingeta
mutation operator.
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Table 7: Comparison on the best results between rank-iMDRXEBAANCA on the non-convex test cases.

casel case 2 case 3
BIANCA[44] | rankiMDDE | BIANCA[44] | rank-MDDE | BIANCA [44] | rank-IMDDE
X1 10.71119 10.71252 11.27620 11.29429 10.45320 10.47395
X2 2.96646 2.96338 2.46284 2.47128 2.71465 2.73013

01 -4.43000E-03| -1.12850E-11 — — -3.86538E-03 | -4.38089E-12
— — -1.09853E-04 | -1.76889E-12 -3.30729E-03 | -1.16759E-12
f -8.09933 -8.11646 -9.49783 -9.50127 -7.37696 -7.48573

—case 1
= = case 2
= = =case 3

objective functi

Figure 2: Convergence graphs of rank-iMDDE for the non-eartest cases.

5.9. rank-iMDDE for non-convex COPs

In this section, the effectiveness of rank-iIMDDE is furtlealuated on the non-convex COPs. With this pur-
pose, three test problems presented in [44] are selectaabeTgroblems have the same highly non-convex objective
function:

f(X, %) = — exp(kaw/xi + xg) sin (axy) cos (Dbxp) (17)
whereas they have different constraints as follows:
e Case 1:
91(x1. x2) = exp(ex) =1~ <0 (18)
e Case 2:
B e (T
02(X1, X2) = [(—xl + y) sm(—xl) sm(—xz) - 6] <0 (29)
Ar 2 2
e Case 3:

01(X1, X2) = eXp(CXf) -1-x<0

O2(X1, %) = a[(%xl +7)sin(5x) sin(3xz) - 5] <0

(20)
wherex; € [0,4n], x; € [0,27], a = 1,b = 0.6,k = 0.2,c = 0.012«¢ = 0.1,8 = 04,y = 0.8, ands = 0.7.
As described in [44], the constraigi(xi, X2) is active. The constraird,(x;, o) shown in Equation (19) is highly
non-convex, which leads the COPs to be defined over a disjefmitch space characterized by “barely” infeasible
regions [44].

To make a fair comparison with the results reported in [443,MaxNFEs are set to be 2000 for rank-iIMDDE
as used in [44]. All other parameters are kept unchanged sxided in Section 5.2. For each test case, rank-
iIMDDE is performed over 100 independent runs. The resuéigasen in Table 7, where the better objective function
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Table 8: Comparison on the results of welded beam desige (Gas

Algorithm Best Worst Mean Std Max_NFEs
SCM [1] 2.3854347 | 6.3996785 | 3.0025883 | 9.60E-01 33,095
DSS-MDE [25] | 2.38095658 | 2.38095658 | 2.38095658 | 3.19E-10 24,000
AATM [45] 2.3823262 | 2.3915924 | 2.3869762 | 2.2E-03 30,000
DELC [46] 2.38095658 | 2.38095658 | 2.38095658 | 2.60E-12 20,000
rank-iMDDE 2.38095658 | 2.38095658 | 2.38095658 | 7.18E-14 19,830

and constraint function values are highlightedoidface. In addition, the convergence graphs of rank-iMDDE are
plotted in Fig. 2.

From Table 7, it is clear that rank-iIMDDE consistently géis better results compared with BIANCA in all cases.
The constraint function values are very close to zero inliheet cases for the best solutions obtained by rank-iMDDE.
In addition, according to the convergence curves showngnZiwe see that rank-iMDDE is able to obtain the nearly
optimal solutions very quickly: In cases 1 and 2, it requaesind 2500 NFEs; in case 3, it needs aboud@0 NFEs.

From the above analysis, we can see that rank-iIMDDE is afectafe for the non-convex COPs, in which the
objective function is highly non-convex and the constsare active and/or non-convex as presented in the above test
cases.

5.10. rank-iIMDDE for constrained engineering benchmaripems

Experimental results on benchmark functions verified thakfiMDDE is very efficient and it provides highly-
competitive results compared with other state-of-thee&s when solving the COPs. In this section, the potential of
rank-iIMDDE is also tested through 5 widely used constraimegineering benchmark problems. The five problems
are: i) welded beam design (case 1 [1] and case 2 [24]), ifitercompression spring design [1], iii) speed reducer
design [1], iv) three-bar truss design [1], and v) pressw@®sel design [24]. For the sake of space limitation, the
formulations of these problems are omitted here. Intedetaders can find them in their corresponding literature.
Due to different features of different problems, rank-iMBRdopts different population size and MB)¥ES, while
other parameters are kept the same as shown in Section 2 opulation size and MaXFEs of rank-iIMDDE for
different problems are

e For welded beam design (case 1 and2¥: 30 and MaxNFEs = 19830;

e For spring designu = 65 and MaxNFEs = 19565;

e For reducer design and three-bar truss desiga:20 and MaxNFEs = 19920;
e For pressure vessel design= 65 and MaxNFEs = 23465.

For each problem, rank-iIMDDE is performed over 100 indegenduns. The best result obtained by rank-iMDDE in
each problem is shown in Table 14.

5.10.1. Welded Beam Design (Case 1)

rank-iIMDDE is compared with four EAs in this problem. The f@&As are: 1) society and civilization algorithm
(SCM) [1], 2) dynamic stochastic ranking based DE (DSS-MP5), 3) accelerated adaptive trade-off model based
EA (AATM) [45], and 4) DE with level comparison (DELC) [46]. e results of these algorithms are shown in
Table 8. A result irboldface means a better (or best) solution obtained. From the rasuliable 8, we can observe
that rank-iIMDDE obtains the optimal solution in this prailéen all 100 runs. Moreover, with the smallest MBY¥Es,
rank-iMDDE is able to provide the smallest standard dewiatialue compared with other EAs.

5.10.2. Welded Beam Design (Case 2)

This problem is another version of welded beam design (cada this problem, rank-iMDDE is compared with:
1) co-evolutionary DE (Co-DE) [24], 2) multiple trial vectbased DE (MDDE) [2], 3) DELC [46], 4) COMDE [30],
5) CVI-PSO [47], 6) BIANCA [44], and 7) MVDE [48]. The resultse tabulated in Table 9. Similar to welded beam
design (case 1), rank-iIMDDE successfully solve this prabie all runs, and it gets the smallest standard deviation
value with MaxNFEs=19, 830 among all compared EAs. Even with MdxEs=15, 000, rank-IMDDE also gets
highly-competitive results compared with other EAs.
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Table 9: Comparison on the results of welded beam desige @as

Algorithm Best Worst Mean Std Max_NFEs
Co-DE [24] 1.733461 1.824105 1.768158 2.22E-02 204,800
MDDE [2] 1.725 1.725 1.725 1.00E-15 24,000
DELC [46] 1.724852 1.724852 1.724852 4.10E-13 20,000
COMDE [30] | 1.724852309 | 1.724852309 | 1.724852309 | 1.60E-12 20,000
CVI-PSO [47] 1.724852 1.727665 1.725124 6.12E-04 25,000
BIANCA [44] 1.724852 1.793233 1.752201 2.30E-02 80,000
MVDE [48] 1.7248527 1.7249215 1.7248621 | 7.88E-06 15,000
rank-IMDDE 1.724852309 | 1.724852309 | 1.724852309 | 9.06E-16 19,830
1.724852309 | 1.724852309 | 1.724852309 | 7.71E-11 15,000

Table 10: Comparison on the results of tension/compresgiang design.

Algorithm Best Worst Mean Std Max_NFEs
SCM [1] 0.012669249| 0.016717272| 0.012922669| 5.90E-04 25,167
Co-DE [24] 0.0126702 0.01279 0.012703 2.70E-05 204,800
MDDE [2] 0.012665 0.012674 0.012666 2.00E-06 24,000
DSS-MDE [25] | 0.012665233 0.012738262| 0.012669366| 1.25E-05 24,000
AATM [45] 0.012668262| 0.012861375| 0.012708075| 4.50E-05 25,000
DELC [46] 0.012665233 0.012665575 0.012665267| 1.30E-07 20,000
COMDE [30] 0.012665232 0.012676809| 0.012667168| 3.09E-06 24,000
CVI-PSO [47] 0.0126655 0.0128426 0.012731 5.58E-05 25,000
BIANCA [44] 0.012671 0.012913 0.012681 5.12E-05 80,000
MVDE [48] 0.012665272| 0.012719055| 0.012667324| 2.45E-06 10,000
rank-IMDDE 0.012665233 0.01266765 | 0.012665264 | 2.45E-07 19,565
0.012665233 0.01266743 | 0.012665297| 8.48E-07 10,000

5.10.3. Tension/Compression Spring Design

This problem is to minimize the weight under four constraimank-iMDDE is compared with ten different EAs
in this problem. These methods are SCM [1], Co-DE [24], MDR2E DSS-MDE [25], AATM [45], DELC [46],
COMDE [30], CVI-PSO [47], BIANCA [44], and MVDE [48]. Accoridg to the results given in Table 10, we can
see that there are five algorithms( MDDE, DSS-MDE, DELC, COMDE, and rank-iMDDE) that can olstdhe
optimal solution in this problem. Our proposed rank-iMDD&gthe best mean value in all algorithms. While DELC
provides the best results with respect to the worst and atdrateviation values; rank-iMDDE is slightly worse than
DELC in these two metrics.

5.10.4. Speed Reducer Design

The weight is minimized in the speed reducer design. In thablem, rank-iMDDE is compared with SCM [1],
MDDE [2], DSS-MDE [25], AATM [45], DELC [46], COMDE [30], andMIVDE [48], and the results are shown in
Table 11. It is clear that rank-iIMDDE is capable of getting tiptimal solution in all runs. In addition, it can obtain
the smallest standard deviation value yet with the smalllest NFEs among all compared algorithms.

5.10.5. Three-Bar Truss Design

The three-bar truss design is to minimize the volume sulifestress constraints. In Table 12, the results of
rank-iMDDE are compared with those of SCM [1], DSS-MDE [2BIATM [45], DELC [46], COMDE [30], and
MVDE [48]. Clearly, rank-IMDDE obtains the global optimablstion in all runs with the smallest MaXFEs. It
also provides the smallest standard deviation value cosdpaith other EAs.

5.10.6. Pressure Vessel Design

The results of Co-DE [24], MDDE [2], DELC [46], COMDE [30], QWPSO [47], BIANCA [44], MVDE [48],
and rank-iMDDE are given in Table 13. From the results, wesmmthat there are four algorithms (MDDE, DELC,
COMDE, and rank-iMDDE) that are able to solve this probleraliruns. In terms of the standard deviation, MDDE
is the best one, followed by rank-iMDDE, DELC, COMDE, and D&-

To sum up, within the above-mentioned engineering benckiprablems, rank-iIMDDE is able to successfully
solve welded beam (case 1 and 2), speed reducer, threaibsr&nd pressure vessel over all 100 independent runs
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Table 11: Comparison on the results of speed reducer design.

Algorithm Best Worst Mean Std Max_NFEs
SCM [1] 2994.744241| 3009.964736| 3001.758264| 4.00E+00 54,456
MDDE [2] 2996.357 2996.39 2996.367 8.20E-03 24,000
DSS-MDE [25] | 2994.471066 | 2994.471066 | 2994.471066 | 3.58E-12 30,000
AATM [45] 2994.516778| 2994.659797| 2994.585417| 3.30E-02 40,000
DELC [46] 2994.471066 | 2994.471066 | 2994.471066 | 1.90E-12 30,000
COMDE [30] 2994.471066 | 2994.471066 | 2994.471066 | 1.54E-12 21,000
MVDE [48] 2994.471066 | 2994.471069| 2994.471066 | 2.82E-07 30,000
rank-iMDDE 2994.471066 | 2994.471066 | 2994.471066 | 7.93E-13 19,920

Table 12: Comparison on the results of three-bar truss desig

Algorithm Best Worst Mean Std Max_NFEs
SCM [1] 263.8958466| 263.96975 263.9033 1.30E-02 17,610
DSS-MDE [25] | 263.8958434 | 263.8958498| 263.8958436| 9.72E-07 15,000
AATM [45] 263.8958435| 263.90041 263.8966 1.10E-03 17,000
DELC [46] 263.8958434 | 263.8958434 | 263.8958434 | 4.30E-14 10,000
COMDE [30] 263.8958433 | 263.8958433 | 263.8958433 | 5.34E-13 7,000
MVDE [48] 263.8958434 | 263.8958548| 263.8958434 | 2.58E-07 7,000
rank-iMDDE 263.8958434 | 263.8958434 | 263.8958434 | 0.00E+00 4,920

Table 13: Comparison on the results of pressure vesselrdesig

Algorithm Best Worst Mean Std Max_NFEs
Co-DE [24] 6059.734 6371.0455 6085.2303 | 4.30E+01 204,800
MDDE [2] 6059.702 6059.702 6059.702 1.00E-12 24,000
DELC [46] 6059.7143 6059.7143 6059.7143 2.10E-11 30,000
COMDE [30] | 6059.714335 | 6059.714335 | 6059.714335 | 3.62E-10 30,000
CVI-PSO [47] 6059.7143 6820.4101 6292.1231 | 2.88E+02 25,000
BIANCA [44] 6059.9384 6447.3251 6182.0022 | 1.22E+02 80,000
MVDE [48] 6059.714387| 6090.533528] 6059.997236] 2.91E+00 15,000
rank-IMDDE 6059.714335 | 6059.714335 | 6059.714335 | 1.95E-12 23,465
6059.714335 | 6059.714335 | 6059.714335 | 7.57E-07 15,000

Table 14: The best results obtained by rank-iMDDE for eacfstrained engineering design problem used in this work.

Prob Best solutiorx Best resultf (x)
Welded beam design (case 1) 0.244368986.217519728.291471390.24436898 2.38095658
Welded beam design (case 2) 0.205729643.470488679.036623910.20572964 1.724852309
Tension/compression spring design 0.356717180.0516890411.28899860 0.012665233
Speed reducer design 3.5,0.7,17,7.3,7.715319913.350214675.28665446 | 2994471066
Three-bar truss design 0.788675130.40824829 2638958434
Pressure vessel design 13,7,42.0984456017663659584 6059714335

yet with the smallest MaNFEs compared with other EAs. For the spring design, ranR{IiM also obtains the near-
optimal solution €(x) — f(x*) < 1le—8)in 95 out of 100 runs. Thus, we can conclude that our prapcaek-iMDDE
is also able to deal with constrained engineering benchpratidems.

5.11. rank-iIMDDE for constrained mechanical design praohésfrom literature

According to the results on the constrained engineeringli@ark problems shown in Section 5.10, it can be
observed that rank-iMDDE provides very promising resultseew comparing with other state-of-the-art EAs. In
this section, four further constrained mechanical desigiblems are considered, including the step-cone pulley,
hydrodynamic thrust bearing, rolling element bearing, Betleville spring. These problems are selected from [49],
which have different natures of design variables, objecfiinctions, and constraints. The objective functions bf al
problems are minimized herein. For their detailed desiongt interested readers can refer to the literature in. [49]
The results of rank-iIMDDE is compared with those of MDDE, T@Band ABC. The results of TLBO and ABC are
obtained from [49]. For rank-iIMDDE and MDDE, the populatisime and MaxNFEs of rank-iMDDE for different
problems are

e For the step-cone pulley problema:= 30 and MaxNFEs = 15000;
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Table 15:

Comparison on the results of different algoritlimshe constrained mechanical design problems from thratitee.

Prob Criterion ABC [49] TLBO [49] MDDE rank-iMDDE
Best 16.634655 16.634510 14.488038 14.487968
Step-cone pulley Mean 36.099500 24.011358 16.725652 15.472300
Worst 145.470500 74.022951 18.169821 17.833931
Best 1625.442760 1625.443000 1638.403234 1625.460142
Hydrostatic thrust bearingl Mean 1861.554000 1797.707980 1759.103885 1724.727935
Worst 2144.836000 2096.801270 2553.358476 1894.734127
Best -81859.741600 -81859.740000| -81858.836832| -81859.732421
Rolling element bearing [ Mean -81496.000000| -81438.987000| -81848.703534| -81859.010377
Worst -78897.810000| -80807.855100| -81701.180671| -81838.757577
Best 1.979675 1.979675 1.979675 1.979675
Belleville spring Mean 1.995475 1.979688 1.982256 1.979675
Worst 2.104297 1.979757 2.104326 1.979683

Table 16: The best results obtained by rank-iIMDDE for thest@ined mechanical design problems.

Prob Best solutiorx Best resultf (x)

Step-cone pulley 99.99999834.58157747.5816316343772676.067314 14.487968
Hydrostatic thrust bearing 5.9558175.3890515.3587112.269693 1625460142
Rolling element bearing 1257190532142559011.3759400.5150000.5150000.4344450.6360300.3000000.0791930.674157 | —-81859732421
Belleville spring 12.01000010.0304730.2041430.200000 1979675

e For the hydrostatic thrust bearing problem= 80 and MaxNFEs = 25000;
e For the rolling element bearing problem= 25 and MaxNFEs = 10000;
e For the Belleville spring problenu = 25 and MaxNFEs = 15000.

Other parameters are kept unchanged as shown in SectiolNbi2.that the MaXNFEs are set the same as used
in [49]. For each problem, rank-iMDDE and MDDE are perfornoeeér 100 independent runs.

The results are reported in Table 15, where the best ovesallts are highlighted iholdface. The best solution
of each mechanical problem obtained by rank-iMDDE is tatealan Table 16. From Table 15, it can be seen that

e For the step-cone pulley problem, rank-iIMDDE consistentitains the best results compared with other three
algorithms in terms of the best, mean, and worst solutions.

e For the hydrostatic thrust bearing problem, ABC can get #nt besult in terms of the best solution, followed
by TLBO, rank-iMDDE, and MDDE. The best solution of rank-iNIE is very close to that of ABC. With
respect to the mean and worst solutions, rank-iMDDE stilkeathe first among the four compared algorithms.

e Similar to the results shown in the hydrostatic thrust beagroblem, for the rolling element bearing problem,
rank-iMDDE gets the best results with respect to the meanvardt solutions. For the best solution, rank-
iIMDDE obtains slightly worse result when comparing withttbBABC and TLBO.

e For the Belleville spring problem, all of the four algoriteroan obtain the same best solution. However, in
terms of the mean and worst solutions, rank-iMDDE gets tlst f@sults.

To sum up, the proposed rank-iIMDDE is still capable of providhe overall best and most robust results for the
constrained mechanical problems compared with other gilgegithms.

5.12. Discussions

Combining with the constraint-handling techniques, thedliforithm has been used for the COPs recently. In this
work, the ranking-based mutation operator and an improyadiaic diversity mechanism are proposed to enhance the
performance of DE when solving the COPs. From the compréreeesperiments through both benchmark functions
and engineering problems, we can conclude that

e The proposed ranking-based mutation operator is efficieabhance the performance of CDEs in terms of the
convergence speed and the success rate.
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¢ Inthe ranking-based mutation operator, there are two oiefitisk; andk; introduced to calculate the selection
probabilities of the solutions. Regardless of differemapaeter settings df; andk,, rank-iMDDE is capable
of improving the performance of iIMDDE consistently. The aldf setting withk; = 2.0 andk, = 05 is a
reasonable choice, but may be not optimal. In our future ywekwill try to study the adaptive setting &f
andk; in the ranking-based mutation operator.

e When comparing with other state-of-the-art EAs for the CO&sk-iIMDDE is highly-competitive in terms of
the final solutions, convergence speed, and success rate.

6. Conclusionsand futurework

To accelerate the convergence rate and maintain the paputiversity of the DE algorithm when solving the
COPs, in the paper, an improved constrained DE (rank-iMDIBE)roposed, where the ranking-based mutation
and improved dynamic diversity mechanism are presentec pEnformance of rank-iMDDE is evaluated by 24
benchmark functions presented in CEC’2006 and five wideBdusngineering benchmarks and four constrained
mechanical design problems. Experimental results vengysuperiority of rank-iMDDE when comparing with other
EAs.

In rank-IMDDE, the combination of “DE/rand/1/bin” and “Di&hd/1/exp” is adopted. Recent studies indicate
that the adaptive ensemble of different mutation strateigiable to enhance the performance of DE [22, 50, 51, 31].
Therefore, one possible future work is to combine rank-é&3BEs with strategy adaptation techniques to further
improve the performance of CDEs. In addition, the rankiagddl mutation operators may also be useful to the
multiobjective optimization. For example, the non-don@thsorting method [52] can be possibly used to rank
solutions in the multiobjective optimization. In our fugyrwe will try to verify this expectation. In this work,
the selected engineering design problems are not compuiédii expensive, whereas in the real world there exist
many complex engineering problems that are computatipeajbensive, such as the discovery of low-energy pure
water isomers [53], potential energy minimization [7],.e@ombining rank-iMDDE with local search methods and
surrogate models like [54, 55], another future directiodéseloping the memetic rank-iMDDE algorithm for the
complex computationally expensive problems.

The source code of the proposed rank-iMDDE can be obtaimed fine first author upon request.
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