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Abstract

To efficiently optimize the constrained engineering problems, in this paper, an improved constrained differential evo-
lution (DE) method is proposed, where two improvements are presented. Firstly, to make the DE algorithm converge
faster, a ranking-based mutation operator that is suitableto the constrained optimization problems is presented. Sec-
ondly, an improved dynamic diversity mechanism is proposedto maintain either infeasible or feasible solutions in the
population. Combining the two improvements with the DE algorithm, the proposal is referred to as rank-iMDDE, for
short. To evaluate the performance of rank-iMDDE, 24 benchmark functions presented in CEC’2006 are selected as
the test suite. Moreover, five widely used constrained engineering benchmark problems and four constrained mechan-
ical design problems from the literature are chosen to test the capability of rank-iMDDE for the engineering problems.
Experimental results indicate that rank-iMDDE is able to improve the performance of DE in terms of the quality of
the final solutions, the convergence rate, and the successful rate. Additionally, it can provide fairly-competitive results
compared with other state-of-the-art evolutionary algorithms in both benchmark functions and engineering problems.

Key words: Engineering optimization, differential evolution, ranking-based mutation, dynamic diversity mechanism,
constrained optimization

1. Introduction

In the real-world, most of engineering design problems involve inequality and/or equality constraints. For exam-
ple, the design of the speed reducer is to minimize its weightunder constraints on bending stress of the gear teeth,
surfaces stress, transverse deflections of the shafts, and stresses in the shafts [1, 2]. Generally, these problems can be
treated as the constrained optimization problems (COPs). In the last few decades, the use of evolutionary algorithms
(EAs) for the COPs has obtained considerable attention [3, 4, 5, 6, 7].

Among different EAs, differential evolution (DE) is a simple yet efficient algorithm for the numerical opti-
mization [8]. Recently, coupled with the constraint-handling techniques, DE has been used to solve the COP-
s [9, 10, 2, 11, 12]. For more details, interested readers canrefer to two good surveys of DE in [13] and [14],
and the references therein.

Although DE has gotten success in diverse fields, it may suffer slowly at exploitation of the solutions [15] due to
the randomly selected parents in the mutation operation. For example, in the classical “DE/rand/1” mutation, three
parent vectorsxr1, xr2, andxr3 are selected randomly from the current population. The indexesr1, r2, andr3 satisfy
r1, r2, r3 ∈ {1,Np} andr1 , r2 , r3 , i, whereNp is the population size [8]. In the nature, good species always
contain more useful information, and hence, they are more likely to be selected to propagate offspring. Inspired by
the phenomenon, in this paper, we proposed an improved constrained DE variant for the constrained engineering
optimization problems, where a ranking-based mutation operator is presented to accelerate the convergence rate of
DE. In addition, to maintain the diversity of the population, an improved dynamic diversity mechanism is proposed,
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which can maintain either infeasible or feasible solutionsin the population. In addition, the multiple trial vectors
generation technique proposed in MDDE [2] is also used. The proposed method can be viewed as an improved
variant of MDDE [2], therefore, it is referred to as rank-iMDDE, for short.

To evaluate the performance of rank-iMDDE, 24 benchmark functions presented in CEC’2006 [16] are selected
as the test suite. Additionally, five widely used constrained engineering benchmark problems and four constrained
mechanical design problems are also chosen from the literature to verify the capability of rank-iMDDE for the en-
gineering applications. Experimental results indicate that rank-iMDDE is able to accelerate the convergence rate
of MDDE, and it can also provide better results than MDDE withrespect to the solution quality and successful
rate. Moreover, compared with other state-of-the-art EAs,rank-iMDDE can obtain highly-competitive results in both
benchmark functions and engineering problems.

The main contributions of this work are two-fold. Firstly, an improved constrained DE variant (rank-iMDDE)
is proposed for the COPs. In rank-iMDDE, the adaptive ranking-based mutation operator and improved dynamic
diversity mechanism are proposed. Secondly, the performance of rank-iMDDE is comprehensively evaluated through
benchmark functions and engineering problems.

The rest of this paper is organized as follows. In Section 2, the formulation of the COPs is briefly described.
Section 3 introduces the DE algorithm and the constrained DEvariants in brief. In Section 4, the proposed rank-
iMDDE is presented in detail, followed by the experiments and analysis in Section 5. Finally, in Section 6, the paper
is concluded and some possible future work is pointed out.

2. Problem formulation

Without loss of generality, in this work, we consider the constrained minimization problem, which can be formal-
ized as a pair (S, f ) , whereS ⊆ R

n is a bounded set onRn and f : S → R is ann-dimensional real-valued function.
The minimization COP can be formulated as

min f (x), x = [x1, · · · , xn]T ∈ Rn (1)

subject to














g j(x) ≤ 0, j = 1, · · · , q

h j(x) = 0, j = q+ 1, · · · ,m
(2)

wherex is the vector of solution,xi is the i-th (i ∈ {1, n}) decision variable ofx, q is the number of inequality
constraints, andm− q is the number of equality constraints (in both cases, constraints could be linear or nonlinear).
Generally, for each variablexi it satisfies a constrained boundary

l i ≤ xi ≤ ui , i = 1, · · · , n

The feasible regionF ⊆ S is defined by them inequality and/or equality constraints. Any pointx ∈ F is called
a feasible solution; otherwise, it is an infeasible solution. For an inequality constraint which satisfiesg j(x) = 0 ( j ∈
{1, · · · , q}) at any pointx ∈ F , we will say it isactiveatx. Obviously, all the equality constraints are considered active
at all points in feasible regionF .

In the evolutionary constrained optimization, the equality constraints are always converted into inequality con-
straints for the COPs as

|h j(x)| − δ ≤ 0 (3)

where j ∈ {q+ 1, · · · ,m} andδ is a positive tolerance value. The distance of a solutionx from the j-th constraint can
be constructed as

G j(x) =















max{0, g j(x)}, 1 ≤ j ≤ q

max{0, |h j(x)| − δ}, q+ 1 ≤ j ≤ m
(4)

Then, the distance of the solutionx from the boundaries of the feasible set, which also reflects the degree of its
constraint violation, can be denoted as

G(x) =
m

∑

j=1

G j(x) (5)
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3. Differential evolution and constrained DEs

3.1. Differential evolution

The DE algorithm [8] is a simple EA for numerical optimization. It creates new candidate solutions by combining
the parent individual and several other individuals of the same population. A candidate replaces the parent only
if it has better fitness value. This is a rather greedy selection scheme that often outperforms traditional EAs. The
pseudo-code of the original DE algorithm is shown in Algorithm 1, wheren is the number of decision variables,
F is the mutation scaling factor,Cr is the probability of crossover operator. rndint(1, n) is a uniformly distributed
random integer number between 1 andn. rndrealj [0, 1) is a uniformly distributed random real number in [0, 1); it is
generated anew for each value ofj. As for the terminal conditions, we can either fix the maximumnumber of function
evaluations (NFEs)Max NFEsor the precision of a desired solutionVTR(value to reach).

Algorithm 1 The DE algorithm with “DE/rand/1/bin”
1: Generate the initial population;
2: Evaluate the fitness for each individual;
3: while the halting criterion is not satisfieddo
4: for i = 1 to Np do
5: Select uniform randomlyr1 , r2 , r3 , i;
6: jrand = rndint(1, n);
7: for j = 1 to n do
8: if rndrealj (0, 1) < Cr or j == jrand then
9: ui, j = xr1, j + F ·

(

xr2, j − xr3, j
)

;
10: else
11: ui, j = xi, j ;
12: end if
13: end for
14: end for
15: for i = 1 to Np do
16: Evaluate the offspringui ;
17: if f (ui ) is better thanor equal tof (xi ) then
18: Replacexi with ui ;
19: end if
20: end for
21: end while

3.2. Constrained DE variants

Combining with the constraint-handling techniques, the DEalgorithm has been successfully used for solving the
COPs. In this subsection, we will briefly discuss some representative constrained DE (CDE) variants.

The first attempt to apply DE for the COPs is the constraint adaptation with DE (CADE) proposed by Storn [9].
CADE is a multi-member DE that generates more than one (no > 1) offspring for each individual with the DE op-
erators, and then only one of theno + 1 individuals (both theno offspring and target individual) will be selected for
the next generation. Lampinen presented a Pareto dominance-based constraint-handling method to handle nonlinear
constraint functions [17]. Becerra and Coello presented a cultured DE for the COPs [18], where the cultural algo-
rithm is applied to use different knowledge sources to influence the variation operator of DE. Mezura-Monteset al.
proposed a multi-member diversity-based DE (MDDE) for the COPs in [19, 2]. Similar to CADE, in MDDE each
target parent is allowed to generate more than one offspring. In the CEC’2006 competition on the constrained real
parameter optimization [16], several CDE variants were proposed and some of them secured front ranks. For example,
εDE [10], proposed by Takahama and Sakai, ranks the first in this competition. InεDE, theε constrained method
is used to handle the constraints; in addition, a gradient-based mutation is introduced to find feasible point by using
the gradient of constraints at an infeasible point [10]. In [20], Mezura-Monteset al.presented a modified DE (MDE)
for the COPs. In MDE, a modified mutation operator is presented. Additionally, a dynamic diversity mechanism
is added into MDE to maintain infeasible solutions located in promising areas of the search space. In [21], Huang
et al.proposed an extended SaDE method for the COPs. Compared withthe original SaDE method [22], the replace-
ment criterion was modified for tackling constraints. Brestet al. presented a self-adaptive DE variant to solve the
COPs [23], where three DE mutation operators are used and theparameters ofCr andF are self-adaptively updat-
ed. Huanget al. proposed a co-evolution mechanism based DE for the COPs [24]. In [24], a co-evolution model is
presented and DE is used to perform evolutionary search in spaces of both solutions and penalty factors. Zhanget al.
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proposed a dynamic stochastic ranking-based multi-memberDE (DSS-MDE) [25], where the comparison probability
Pf decreases dynamically following the evolution process. Ali and Kajee-Bagdadi presented local exploration-based
DE for solving the COPs, where a periodic local exploration technique is incorporated into DE [26]. In [27], Mezura-
Montes and Palomeque-Ortiz proposed a modified DE for the COPs, where the parameters related to DE and the
constraint-handling mechanism are deterministically andself-adaptively controlled. With the aim of providing some
insights about the behavior of DE variants for solving the COPs, Mezura-Monteset al.presented an empirical study
on CDE in [28]. Since no single constraint-handling technique is able to outperform all others on every problem,
Mallipeddi and Suganthan proposed an ensemble of constraint handling techniques (ECHT) to solve the COPs [29],
in which each constraint-handling technique has its own subpopulation. Wang and Cai proposed a (µ+λ)-CDE for the
COPs [11]. In (µ + λ)-CDE, three different DE mutation strategies are used to generate three offspring for each target
parent; additionally, the IATM is proposed to handle constraints. Recently, Wang and Cai presented the CMODE
method [12], in which DE is combined with multiobjective optimization to deal with the COPs. Mohamed and Sabry
proposed a novel constrained optimization based on a modified DE algorithm (COMDE) [30], where a new directed
mutation strategy is presented. Additionally, a modified constraint-handling technique based on the feasibility and
the sum of constraints violations is employed to handle constraints. In [31], Elsayedet al.presented an improved DE
algorithm (ISAMODE-CMA) that adopts a mix of different DE mutation operators. Moreover, in order to enhance
the local search ability of the algorithm, the CMA-ES [32] isperiodically applied. In ISAMODE-CMA, the dynamic
penalty constraint-handling technique is used to tackle constraints of a problem.

4. The proposal: rank-iMDDE

In this section, the proposed rank-iMDDE method is presented in detail. In rank-iMDDE, there are two major
improvements. Firstly, a ranking-based mutation operatoris presented to accelerate the convergence rate of DE.
Secondly, an improved dynamic diversity mechanism is proposed to maintain the diversity of the population. The
core idea behind rank-iMDDE is elucidated as follows.

4.1. The ranking-based mutation operator

4.1.1. Adaptive ranking technique
In the ranking-based mutation operator, the population needs to be ranked first. Suppose that the population is

sorted from the best to the worst based on acriterion, then the ranking of an individualxi is assigned as follows:

Ri = Np− i, i = 1, · · · ,Np (6)

According to Equation (6), the best individual in the current population will obtain the highest ranking.
To make the ranking-based mutation operator in DE be suitable to the COPs, we modify our previous proposed

ranking technique [33], which is only based on the objectivefunction value for unconstrained optimization problems.
In this work, when solving the COPs, the population is adaptively ranked according to the situation of the current
population as follows:

• Ranking in the infeasible situation: In the infeasible situation, the population contains onlyinfeasible solu-
tions. The main task of the optimization technique is to find the feasible solutions. Therefore, in this situation,
we sort the population according to the constraint violation (e.g., G(x) in Equation (5)) of each individual in
ascending order. The objective function values are not considered at all.

• Ranking in the semi-feasible situation: As suggested in [11], in the semi-feasible situation, someimportant
feasible individuals (those with small objective functionvalues) and infeasible individuals (those with small
objective function values and slight constraint violations) should be obtained more consideration. Therefore,
in order to balance the influence of objective function valueand constraint violation,fitness transformation
techniques could be a good choice. As an illustration, in this work, we adopt the adaptive fitness transformation
(AFT) method proposed in [11] to calculate the final transformed fitness valueffinal(xi) of each individual.
Afterwards, the population is sorted according toffinal(xi) in ascending order. In this way, the individuals that
have lower final transformed fitness values will obtain higher rankings based on Equation (6).
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In the AFT method, the population is divided into the feasible group (Z1) and the infeasible group (Z2) based
on the feasibility of each solution. Thereafter, the objective function valuef (xi) of the solutionxi is converted
into

f ′(xi) =















f (xi), i ∈ Z1

max{ϕ · f (xbest) + (1− ϕ) · f (xworst), f (xi)}, i ∈ Z2
(7)

whereϕ is the feasibility ratio of the last population, andxbestandxworst are the best and worst solutions in the
feasible group Z1, respectively. After obtaining the converted objective function value of each solution, it is
then normalized as

fnor(xi) =
f ′(xi) − min

j∈Z1∪Z2

f ′(x j)

max
j∈Z1∪Z2

f ′(x j) − min
j∈Z1∪Z2

f ′(x j)
(8)

If we use Equation (5) to calculate the constraint violationof each solution, the normalized constraint violation
can be evaluated as

Gnor(xi) =























0, i ∈ Z1
G(xi )−min

j∈Z2
G(x j )

max
j∈Z2

G(x j )−min
j∈Z2

G(x j )
, i ∈ Z2

(9)

Finally, the final fitness function is obtained as follows

ffinal(xi) = fnor(xi) +Gnor(xi) (10)

• Ranking in the feasible situation: In this situation, all individuals in the population are feasible, and the COPs
can be viewed as unconstrained optimization problems. Thus, we only need to rank the population according
to the objective function valuef (xi) of each individual in ascending order.

In summary, in the ranking-based mutation operator the current population is adaptively ranked based on the
following three criteria:

1) constraint violations in the infeasible situation,

2) transformed fitness values in the semi-feasible situation, and

3) objective function values in the feasible situation.

It is worth mentioning that although this work is the modification of our previous work in [33], however, there are
significant differences compared with our previous work: i)The work in [33] is only for unconstrained problems,
whereas this work is for constrained problems. ii) The rankings in [33] are only based on the objective function values,
while in this work since the constraints should be considered, the ranking are assigned based on different criteria in
different situations. And iii) the calculation of selection probabilities is also different from [33]. In this work, different
methods are used to calculate the selection probability in different situations in the following subsection.

4.1.2. Selection probability calculation
After obtaining the ranking of each individual, we then calculate the selection probabilitypi for each individual

xi. Different from the method presented in [33] for unconstrained optimization problems, in this work, the selection
probabilities are calculated according to the situation ofthe current population for the COPs. In different situations,
different methods are used to calculate the selection probabilities as follows.

• Probability in the infeasible situation: Since all individuals are infeasible in this situation, the individuals
with small constraint violations should get more chance to be selected to steer the population towards feasibility.
Therefore, in this situation, we calculate the selection probability for each individual as follows:

pi =















1.0, 1 ≤ i < Np
3

Ri
2·Np

3

,
Np
3 ≤ i ≤ Np

(11)

5



Similar to (µ+λ)-CDE [11], in the infeasible situation, the firstNp/3 individuals with lower constraint violations
in the ranked population will always get the selection probabilities with pi = 1.0 (i = 1, · · · ,Np/3) to promote
feasibility, whereas for the rest 2· Np/3 individuals their selection probabilities are linearly decreased.

• Probability in the semi-feasible situation: In this situation, the selection probabilities are evaluated as

pi =

(

Ri

Np

)k1

, i = 1, · · · ,Np (12)

wherek1 is a user-defined coefficient. In the semi-feasible situation, some important feasible individuals and
important infeasible individuals are assigned higher rankings, and these individuals contain more useful infor-
mation. The important feasible individuals with small objective functions are able to guide the algorithm to
find the global optimum. On the other hand, the important infeasible individuals with slight constraint viola-
tions and small objective function values can promote the algorithm to find feasible solutions (especially when
the proportion of the feasible region is very small) or to obtain the optimum when it is located exactly on the
boundaries of the feasible region. Thus, these individualsshould be paid more attention and be more dominant
than the worst individuals. Based on these considerations,we recommendk1 is greater than 1.0. The reason is
thatk1 > 1.0 can assign greater selection pressure for individuals with higher rankings thank1 ≤ 1.0 [34]. In
this work,k1 = 2.0 is set to be a default value, and its influence will be discussed in Section 5.8.

• Probability in the feasible situation: The selection probabilities in this situation are calculated as follows

pi =

(

Ri

Np

)k2

, i = 1, · · · ,Np (13)

wherek2 is also a user-defined coefficient. As mentioned-above, in the feasible situation, the COPs can be
treated as unconstrained optimization problems. In order to maintain the diversity of the population and avoid
trapping into the local optima, we suggest to setk2 ≤ 1.0. In this manner, better individuals will less dominate
the worse ones. In this work,k2 = 0.5 is set to be a default value, and its influence will also be discussed in
Section 5.8.

4.1.3. Vector Selection
As presented in [33], after calculating the selection probability of each individual in the above subsection, the

other issue is that in the mutation operator which vectors should be selected according to the selection probabilities.
The vector selection used in this work is the same as the method proposed in [33],i.e., only the base vector and the
terminal vector are selected based on their selection probabilities. More details can be found in [33].

4.2. The proposed rank-iMDDE method

In the previous subsection, the ranking-based mutation operator is proposed to enhance the exploitation ability of
DE when solving the COPs. In this subsection, it is integrated into a CDE variant (iMDDE), which is an improved
version of MDDE [19, 2]. Combining the ranking-based mutation with iMDDE, the rank-iMDDE is presented in
details as follows.

4.2.1. Improved dynamic diversity mechanism
In order to maintain either infeasible or feasible individuals in the population, Mezura-Monteset al. [19, 2] pro-

posed the static diversity mechanism, where a static selection ratio (Sr = 0.45) is used to control the selection process
as follows:

• If rndreal(0, 1) < Sr , the selection is performed based only on the objective function values, regardless of
feasibility;

• otherwise, Deb’s feasibility rules [35] are used to comparedifferent individuals.
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Algorithm 2 The rank-iMDDE algorithm for the COPs
1: Generate and evaluate the initial population;
2: Sett = 1,Cr = 0.9,Sr0 = 0.7,no = 5, k1 = 2.0, andk2 = 0.5;
3: while the halting criterion is not satisfieddo
4: Calculate feasibility ratio of the current population; ⇐

5: According to the current situation, sort the population based on different criteria; ⇐

6: Calculate the selection probability for each individual asaforementioned; ⇐

7: UpdateSr as shown in Equation (14); ⇐

8: for i = 1 to Np do
9: F = rndreal(0.3,0.9);
10: for k = 1 to no do
11: Selectr1, r2, r3 based on the selection probabilities; ⇐

12: if rndreal(0, 1) < 1.0/no then
13: Generate the offspringc with “DE/rand/1/exp”; ⇐

14: else
15: Generate the offspringc with “DE/rand/1/bin”;
16: end if
17: Deal with the violated variables inc based on the boundary-handling technique as shown in Equation (15).
18: Evaluate the offspringc;
19: if k > 1 then
20: if c is better thanui based on Deb’s feasibility rulesthen
21: ui ← c;
22: end if
23: else
24: ui ← c;
25: end if
26: end for
27: end for
28: for i = 1 to Np do
29: if rndreal(0, 1) < Sr then
30: if f (ui ) ≤ f (xi ) then
31: xi ← ui ;
32: end if
33: else
34: if ui is better thanxi based on Deb’s feasibility rulesthen
35: xi ← ui ;
36: end if
37: end if
38: end for
39: t ← t + 1;
40: end while

Recent studies indicate that the dynamic control ofSr is able to balance the search between feasible and infeasible
regions, and hence, it can improve the performance of staticdiversity mechanism [20, 25, 27] for the COPs. Therefore,
inspired by the methods proposed in [20] and [25] we present adynamic control method forSr as

Sr =



























Sr0, t = 1

Sr0

(

1− t
2tmax/3

)

, 2 ≤ t ≤ 2tmax
3

0.025, 2tmax

3 < t ≤ tmax

(14)

wheret is the current generation number,Sr0 = 0.70 is the initial value of the selection ratioSr , and tmax is the
maximal generation number. In this way, whent ≤ 2tmax

3 , the individuals with small fitness objective values will obtain
more chance to be selected into the next population due to thehigherSr value. While in the last third part of the
processSr is set to be 0.025, which means that the feasibility of individuals will bemore dominant during this period.

4.2.2. Boundary-handling method
After using the DE mutation operator to generate the mutant vectorvi , some componentsvi, j (i = 1, · · · ,Np and

j = 1, · · · , n) may violate the boundary constraint,i.e. vi, j < [l j , u j]. In this situation, we should make these compo-
nents be within their corresponding boundary. As mentionedin [36], the boundary-handling method has significant
influence to the performance of DE. In this work, for the iMDDEmethod we use thereinitialization method (see E-
quation (15)),i.e., when one of the decision variable violates its boundary constraint, it is generated with the uniform
distribution within the boundary [36] as follows:

vi, j = rndreal(l j , u j), if vi, j < [l j , u j] (15)
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4.3. Framework of rank-iMDDE

By integrating the ranking-based mutation into iMDDE, rank-iMDDE for the COPs is presented. The pseudo-code
of rank-iMDDE is described in Algorithm 2, whereno > 1 is number of offspring generated by each target individual.
The major differences between MDDE [19, 2] and rank-iMDDE are highlighted in “⇐” in Algorithm 2. Specifically,
there are three major differences between rank-iMDDE and MDDE.

• Lines 4, 5, 6, and 11 are responsible for choosingr1, r2, r3 based on the ranking-based mutation operator.

• In line 7, the dynamic update ofSr is performed at each generation.

• In lines 12 to 16, both “DE/rand/1/exp” and “DE/rand/1/bin”are used to generate theno offspring. The reason
is that the combination of “DE/rand/1/exp” and “DE/rand/1/bin” for generating the offspring is able to enhance
the performance of DE for the COPs [37]. In addition, the probability to use “DE/rand/1/exp” is 1.0/no. This
means that in expectation there is only one out ofno offspring that is generated by “DE/rand/1/exp”, while other
n0 − 1 offspring are generated by “DE/rand/1/bin”.

Note that the last two aspects are the differences between iMDDE and MDDE.
The total complexity of MDDE isO(tmax·Np·no·n), wheretmax is the maximal generation number. Sinceno ≪ Np,

the total complexity of MDDE isO(tmax·Np·n). Compared with MDDE, rank-iMDDE does not significantly increase
the overall complexity. The additional complexity of the proposed rank-iMDDE is population sorting and probability
calculation, as shown in Algorithm 2. The complexity of population sorting isO(Np· log (Np)), and the complexity of
probability calculation isO(Np). Thus, rank-iMDDE has the total complexity ofO(tmax ·Np · (no · n+ log (Np) + 1)).
In general, the population sizeNp is set to be proportional to the problem dimensionn in the DE literature [38].
Therefore, the total complexity of both MDDE and rank-iMDDEis O(tmax · n2), which is the same as the original DE
algorithm and many other DE variants.

5. Experimental results and analysis

In this section, comprehensive experiments are performed through both benchmark functions and engineering
problems to evaluate the performance of rank-iMDDE.

5.1. Benchmark functions

In this work, the benchmark functions presented in CEC’2006[16] for the competition on constrained single
objective optimization are selected as the test suite. Thistest suite contains 24 COPs, which are described in Table 1,
wheren is the number of decision variables,ρ = |F |/|S| is the estimated ratio between the feasible region and the
search space, LI is the number of linear inequality constraints, NI the number of nonlinear inequality constraints, LE
is the number of linear equality constraints, and NE is the number of nonlinear equality constraints.a is the number
of active constraints atx. More details for these functions can be found in [16].

5.2. Parameter settings

For rank-iMDDE (also including other iMDDE variants which will be discussed in Sections 5.6 and 5.7), in all
experiments, we use the following parameters unless a change is mentioned.

• population size:Np= 90 [19, 2];

• crossover rate:Cr = 0.90 [19, 2, 25];

• scaling factor:F = rndreal(0.30, 0.90) [19, 2, 25];

• number of offspring generate by each target individual:no = 5 [19, 2, 25];

• tolerance of equality:δ = 1e− 4 [16, 19, 2, 25];

• initial value of the selection ratio:Sr0 = 0.70;
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Table 1: Details of 24 benchmark test functions.
Prob n Type of function ρ LI NI LE NE a f (x∗)
g01 13 quadratic 0.01% 9 0 0 0 6 -15.0000000000
g02 20 nonlinear 100.00% 0 2 0 0 1 -0.8036191042
g03 10 polynomial 0.00% 0 0 0 1 1 -1.0005001000
g04 5 quadratic 52.12% 0 6 0 0 2 -30665.5386717834
g05 4 cubic 0.00% 2 0 0 3 3 5126.4967140071
g06 2 cubic 0.01% 0 2 0 0 2 -6961.8138755802
g07 10 quadratic 0.00% 3 5 0 0 6 24.3062090681
g08 2 nonlinear 0.86% 0 2 0 0 0 -0.0958250415
g09 7 polynomial 0.51% 0 4 0 0 2 680.6300573745
g10 8 linear 0.00% 3 3 0 0 6 7049.2480205286
g11 2 quadratic 0.00% 0 0 0 1 1 0.7499000000
g12 3 quadratic 4.77% 0 1 0 0 0 -1.0000000000
g13 5 nonlinear 0.00% 0 0 0 3 3 0.0539415140
g14 10 nonlinear 0.00% 0 0 3 0 3 -47.7648884595
g15 3 quadratic 0.00% 0 0 1 1 2 961.7150222899
g16 5 nonlinear 0.02% 4 34 0 0 4 -1.9051552586
g17 6 nonlinear 0.00% 0 0 0 4 4 8853.5396748064
g18 9 quadratic 0.00% 0 13 0 0 6 -0.8660254038
g19 15 nonlinear 33.48% 0 5 0 0 0 32.6555929502
g20 24 linear 0.00% 0 6 2 12 16 0.2049794002
g21 7 linear 0.00% 0 1 0 5 6 193.7245100700
g22 22 linear 0.00% 0 1 8 11 19 236.4309755040
g23 9 linear 0.00% 0 2 3 1 6 -400.0551000000
g24 2 linear 79.66% 0 2 0 0 2 -5.5080132716

• two coefficients in the ranking-based mutation:k1 = 2.0 andk2 = 0.50 (their influence will be discussed in
Section 5.8).

The maximal number of function evaluations (MaxNFEs) for all benchmark problems are set to be 240, 000 [31].
To compare the results of different algorithms, each function is optimized over 100 independent runs. We use the
same set of initial random populations to evaluate different algorithms in a similar way done in [15],i.e., all of the
compared algorithms are started from the same initial population in each out of 100 runs.

5.3. Performance criteria

To compare the results among different algorithms, in this work, the following performance criteria are used,
which have been presented in other literature.

• NFEs [16]: It is used to record the number of function evaluationsin each run for finding a solution satisfying
f (x) − f (x∗) ≤ 1e− 4 andx is feasible, wherex∗ is the known-optimal solution of a specific problem.

• Success rate (S R) [16]: It is equal to the number of success runs over total runs. A success run means that
within Max NFEs the algorithm finds a feasible solutionx satisfying f (x) − f (x∗) ≤ 1e− 4.

• Convergence graphs [16]: The graphs show the median error performance (f (x) − f (x∗)) of the total runs.

• Acceleration rate (AR): Similar to the acceleration rate presented in [39], this criterion is used to compare the
convergence speed between two algorithms. It is defined as follows:

AR=
ANFEsA/S RA

ANFEsB/S RB
(16)

where ANFEsA andS RA are respectively the average NFEs andS Rvalues of algorithm A1. AR> 1 indicates
algorithm B converges faster than algorithm A.

In addition, the objective function valuef (x) of the final solution in each run is saved, and its best, median, worst,
mean, and standard deviation values are also recorded.

1Indeed, ANFEsA/S RA is the successful performance (S P) of algorithm A as presented in [28]. It can be used to measurethe speed and
reliability of an algorithm.
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Figure 1: Convergence graphs of rank-iMDDE and MDDE for the selected functions. (a) g01; (b) g02; (c) - (e): g04 - g06; (f) g08; (g) g10; (h):
g15; (i): g16; (j) g18; (k) g19; (l) g24.
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Table 2: Statistical results obtained by rank-iMDDE and MDDE for all benchmark function, where “NF” means no feasible solution is found.

Prob
rank-iMDDE MDDE

Best Median Worst Mean Std S R Best Median Worst Mean Std S R
g01 -15 -15 -15 -15 0.00E+0 1.00 -14.99999999 -14.99999997 -14.9999999 -14.99999997 1.02E-8 1.00
g02 -0.80361905 -0.80361882 -0.771749392 -0.802021189 4.57E-3 0.86 -0.803618401 -0.803614222 -0.7926051 -0.8025171 3.31E-3 0.90
g03 -1.0005001 -1.0005001 -1.0005001 -1.0005001 0.00E+0 1.00 1.0005001 1.0005001 1.0005001 1.0005001 9.66E-14 1.00
g04 -30665.5387 -30665.5387 -30665.5387 -30665.53867 0.00E+0 1.00 -30665.5387 -30665.539 -30665.539 -30665.539 0.00E+0 1.00
g05 5126.496714 5126.496714 5126.496714 5126.496714 0.00E+0 1.00 5126.496714 5126.49671 5126.49671 5126.49671 0.00E+0 1.00
g06 -6961.81388 -6961.81388 -6961.81388 -6961.813876 0.00E+0 1.00 -6961.81388 -6961.8139 -6961.8139 -6961.8139 0.00E+0 1.00
g07 24.3062091 24.3062091 24.3062091 24.3062091 0.00E+0 1.00 24.3062091 24.3062092 24.3062100 24.3062092 1.34E-7 1.00
g08 -0.09582504 -0.09582504 -0.09582504 -0.095825041 0.00E+0 1.00 -0.09582504 -0.095825 -0.095825 -0.095825 0.00E+0 1.00
g09 680.6300574 680.6300574 680.6300574 680.6300574 0.00E+0 1.00 680.6300574 680.630057 680.630057 680.630057 0.00E+0 1.00
g10 7049.248021 7049.248021 7049.248021 7049.248021 0.00E+0 1.00 7049.248107 7049.259608 7049.719147 7049.280508 5.99E-2 0.01
g11 0.7499 0.7499 0.7499 0.7499 0.00E+0 1.00 0.7499 0.7499 0.7499 0.7499 0.00E+0 1.00
g12 -1 -1 -1 -1 0.00E+0 1.00 -1 -1 -1 -1 0.00E+0 1.00
g13 0.053941514 0.053941514 0.053941514 0.053941514 0.00E+0 1.00 0.053941514 0.05394151 0.438802615 0.065487347 6.60E-2 0.97
g14 -47.7648885 -47.7648885 -47.7648885 -47.76488846 0.00E+0 1.00 NF NF NF NF NF 0.00
g15 961.7150223 961.7150223 961.7150223 961.7150223 0.00E+0 1.00 961.7150223 961.715022 961.715022 961.715022 0.00E+0 1.00
g16 -1.90515526 -1.90515526 -1.90515526 -1.905155259 0.00E+0 1.00 -1.90515526 -1.9051553 -1.9051553 -1.9051553 0.00E+0 1.00
g17 8853.539675 8853.539675 8853.539675 8853.539675 0.00E+0 1.00 8853.539675 8853.53967 8854.175004 8853.550185 7.56E-2 0.98
g18 -0.8660254 -0.8660254 -0.8660254 -0.866025404 0.00E+0 1.00 -0.8660254 -0.8660251 -0.8660210 -0.8660249 6.69E-7 1.00
g19 32.65559313 32.65559552 32.65640159 32.65561099 8.30E-5 0.97 32.66122743 32.67016614 32.68969114 32.67088106 5.70E-3 0.00
g20 NF NF NF NF NF 0.00 NF NF NF NF NF 0.00
g21 193.7245101 193.7245101 193.7245101 193.7245101 0.00E+0 1.00 193.7245101 193.7245102 193.7245205 193.7245106 1.53E-6 1.00
g22 NF NF NF NF NF 0.00 NF NF NF NF NF 0.00
g23 -400.0551 -400.0549541 -378.0715141 -398.1808652 4.51E+0 0.48 NF NF NF NF NF 0.00
g24 -5.50801327 -5.50801327 -5.50801327 -5.508013272 0.00E+0 1.00 -5.50801327 -5.5080133 -5.5080133 -5.5080133 0.00E+0 1.00
avg – 0.89 – 0.74

5.4. General Performance of rank-iMDDE

Because rank-iMDDE is an improved variant of MDDE [2], in this section, the general performance of rank-
iMDDE and MDDE is compared through the benchmark functions presented in CEC’2006 [16]. For the two methods,
the parameters used are described in Section 5.2. The two approaches are performed over 100 independent runs for
each benchmark function with the MaxNFEs=240, 000. The results of the final solutions are shown in Table 2, where
the boldface means that the algorithm obtains the best known solution or better result in the specific function. In
addition, several representative convergence graphs of the selected functions are given in Fig. 1.

From the results shown in Table 2 and Fig. 1, it can be seen that:

• In 19 out of 24 functions, rank-iMDDE consistently obtains the optimal solutions over all 100 runs, whereas
MDDE only gets the optimal solutions over all runs in 11 functions.

• Considering the mean values, rank-iMDDE is able to provide better results than MDDE in 10 functions. In
11 functions, both rank-iMDDE and MDDE get the same mean values. Only in function g02, MDDE obtains
better mean values than rank-iMDDE.

• With respect to the successful rate, rank-iMDDE gets higherS Rvalues than MDDE in 6 functions. Especially,
in 4 functions (g10, g14, g19, and g23), rank-iMDDE extremely improves the successful rate of MDDE. The
overallS Rvalue of rank-iMDDE is 0.89, which is higher than that of MDDE (0.74).

• For the convergence rate, Fig. 1 clearly indicates that rank-iMDDE converges faster than MDDE.

• In two functions (g20 and g22), both rank-iMDDE and MDDE can not obtain a feasible solution over all 100
runs. Therefore, in the following experiments, the resultsof these two functions are not reported.

To summarize, the results confirm our expectation that the proposed rank-iMDDE improves the performance of
MDDE in terms of the quality of the final functions, the convergence rate, and the successful rate in the majority of
benchmark functions.

5.5. Compared with other state-of-the-art EAs

In the previous subsection, the efficacy of rank-iMDDE is verified through the benchmark functions. In this
section, rank-iMDDE is compared with other state-of-the-art EAs for the COPs. These algorithms are ISAMODE-
CMA [31], SAMODE [40], ECHT-EP2 [29], ATMES [41], and SMES [42]. SAMODE [40] is a multiple search
operators based DE, where different operators are selectedadaptively. ISAMODE-CMA [31] is an improved version
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Table 3: Compared the quality of final solutions of our approach with other state-of-the-art EAs for all benchmark function.
Prob Criteria rank-iMDDE ISAMODE-CMA [31] SAMODE [40] ECHT-EP2 [29] ATMES [41] SMES [42]

g01
Best -15 -15 -15 -15 -15 -15
Mean -15 -15 -15 -15 -15 -15
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.60E-14 0.00E+00

g02
Best -0.80361905 -0.8036191 -0.803619 -0.803619 -0.803339 -0.803601
Mean -0.80202119 -0.79244 -0.7987352 -0.799822 -0.790148 -0.785238
Std 4.57E-03 2.80E-02 8.80E-03 1.26E-02 1.30E-02 1.67E-02

g03
Best -1.0005001 -1.0005 -1.0005 -1.0005 -1 -1
Mean -1.0005001 -1.0005 -1.0005 -1.0005 -1 -1
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 5.90E-05 2.09E-05

g04
Best -30665.539 -30665.539 -30665.54 -30665.54 -30665.54 -30665.539
Mean -30665.539 -30665.539 -30665.54 -30665.54 -30665.54 -30665.539
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 7.40E-12 0.00E+00

g05
Best 5126.496714 5126.497 5126.497 5126.497 5126.498 5126.599
Mean 5126.496714 5126.497 5126.497 5126.497 5127.648 5174.492
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.80E+00 5.01E+01

g06
Best -6961.81388 -6961.813875 -6961.814 -6961.814 -6961.814 -6961.814
Mean -6961.81388 -6961.813875 -6961.814 -6961.814 -6961.814 -6961.284
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 4.60E-12 1.85E+00

g07
Best 24.30620907 24.3062 24.3062 24.3062 24.306 24.327
Mean 24.30620907 24.3062 24.3096 24.3063 24.316 24.475
Std 0.00E+00 0.00E+00 1.59E-03 3.19E-05 1.10E-02 1.32E-01

g08
Best -0.09582504 -0.095825 -0.095825 -0.095825 -0.095825 -0.095825
Mean -0.09582504 -0.095825 -0.095825 -0.095825 -0.095825 -0.095825
Std 0.00E+00 0.00E+00 0.00E+00 2.61E-08 2.80E-17 0.00E+00

g09
Best 680.6300574 680.63 680.63 680.63 680.63 680.632
Mean 680.6300574 680.63 680.63 680.63 680.639 680.643
Std 0.00E+00 0.00E+00 1.16E-05 0.00E+00 1.00E-02 1.55E-02

g10
Best 7049.248021 7049.24802 7049.248 7049.2483 7052.253 7051.903
Mean 7049.248021 7049.24802 7059.81345 7049.249 7250.437 7253.047
Std 0.00E+00 5.42E-06 7.86E+00 6.60E-04 1.20E+02 1.36E+02

g11
Best 0.7499 0.7499 0.7499 0.7499 0.75 0.75
Mean 0.7499 0.7499 0.7499 0.7499 0.75 0.75
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.40E-04 1.52E-04

g12
Best -1 -1 -1 -1 -1 -1
Mean -1 -1 -1 -1 -1 -1
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.00E-03 0.00E+00

g13
Best 0.053941514 0.053942 0.053942 0.053942 0.05395 0.053986
Mean 0.053941514 0.053942 0.053942 0.053942 0.053959 0.166385
Std 0.00E+00 0.00E+00 1.75E-08 1.00E-12 1.30E-05 1.77E-01

g14
Best -47.7648885 -47.764888 -47.76489 -47.7649 NA NA
Mean -47.7648885 -47.764888 -47.68115 -47.7648 NA NA
Std 0.00E+00 0.00E+00 4.04E-02 2.72E-05 NA NA

g15
Best 961.7150223 961.71502 961.71502 961.71502 NA NA
Mean 961.7150223 961.71502 961.71502 961.71502 NA NA
Std 0.00E+00 0.00E+00 0.00E+00 2.01E-13 NA NA

g16
Best -1.90515526 -1.905155 -1.905155 -1.905155 NA NA
Mean -1.90515526 -1.905155 -1.905155 -1.905155 NA NA
Std 0.00E+00 0.00E+00 0.00E+00 1.12E-10 NA NA

g17
Best 8853.539675 8853.5397 8853.5397 8853.5397 NA NA
Mean 8853.539675 8853.5397 8853.5397 8853.5397 NA NA
Std 0.00E+00 0.00E+00 1.15E-05 2.13E-08 NA NA

g18
Best -0.8660254 -0.866025 -0.866025 -0.866025 NA NA
Mean -0.8660254 -0.866025 -0.866024 -0.866025 NA NA
Std 0.00E+00 0.00E+00 7.04E-07 1.00E-09 NA NA

g19
Best 32.65559313 32.655593 32.655593 32.6591 NA NA
Mean 32.65561099 32.655593 32.75734 32.6623 NA NA
Std 8.30E-05 6.46E-07 6.15E-02 3.40E-03 NA NA

g21
Best 193.7245101 193.72451 193.72451 193.7246 NA NA
Mean 193.7245101 193.72451 193.771375 193.7438 NA NA
Std 0.00E+00 0.00E+00 1.96E-02 1.65E-02 NA NA

g23
Best -400.0551 -400.0551 -396.16573 -398.9731 NA NA
Mean -398.180865 -395.62403 -360.81766 -373.2178 NA NA
Std 4.51E+00 7.79E+00 1.96E+01 3.37E+01 NA NA

g24
Best -5.50801327 -5.508013 -5.508013 -5.508013 NA NA
Mean -5.50801327 -5.508013 -5.508013 -5.508013 NA NA
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 NA NA
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Table 4: Average rankings of rank-iMDDE, ISAMODE-CMA, SAMODE, and ECHT-EP2 by the Friedman test for the 22 functions in terms of the
mean values.

Algorithm Ranking
rank-iMDDE 1.7500

ISAMODE-CMA 2.4091
SAMODE 3.1818

ECHT-EP2 2.6591

Table 5: Influence of ranking-based mutation and dynamic diversity mechanism to the performance of our approach. The NFEs,S R, andARresults
are reported herein. All results are averaged over 100 independent runs.

Prob
MDDE-b/e (1) iMDDE (2) rank-MDDE-b/e (3) rank-iMDDE (4) AR

Mean Std S R Mean Std S R Mean Std S R Mean Std S R 4 vs 1 4 vs 2 4 vs 3
g01 142,897.5 3,426.1 1.00 153,931.5 3,356.3 1.00 76,072.5 2,303.8 1.00 80,482.5 2,471.7 1.00 1.78 1.91 0.95
g02 178,325.0 15,140.2 0.90 181,472.8 16,819.4 0.96 114,165.0 13,167.3 0.86 118,733.0 15,049.9 0.86 1.44 1.37 0.96
g03 106,393.5 7,233.4 1.00 92,664.0 6,681.6 1.00 63,045.0 5,101.8 1.00 49,572.0 3,948.4 1.00 2.15 1.87 1.27
g04 60,507.0 2,014.1 1.00 61,060.5 2,105.3 1.00 30,415.5 913.3 1.00 31,648.5 771.9 1.00 1.91 1.93 0.96
g05 40,279.5 1,570.2 1.00 55,570.5 1,561.9 1.00 26,986.5 1,102.0 1.00 33,615.0 943.3 1.00 1.20 1.65 0.80
g06 21,348.0 953.2 1.00 21,658.5 872.9 1.00 12,541.5 620.3 1.00 12,942.0 475.7 1.00 1.65 1.67 0.97
g07 137,128.5 5,907.7 1.00 136,926.0 5,501.6 1.00 60,979.5 2,679.2 1.00 62,275.5 2,618.2 1.00 2.20 2.20 0.98
g08 3,906.0 521.5 1.00 4,630.5 700.9 1.00 2,740.5 383.2 1.00 2,961.0 377.2 1.00 1.32 1.56 0.93
g09 46,332.0 1,856.1 1.00 46,638.0 1,636.1 1.00 25,312.5 1,162.6 1.00 24,849.0 1,039.2 1.00 1.86 1.88 1.02
g10 230,040.0 – 0.01 224,012.5 11,685.5 0.71 89,172.0 3,567.4 1.00 92,718.0 3,157.3 1.00 248.11 3.40 0.96
g11 8,779.5 1,714.7 1.00 12,915.0 3,746.7 1.00 6,822.0 2,633.2 1.00 7,339.5 1,304.4 1.00 1.20 1.76 0.93
g12 4,149.0 1,216.9 1.00 3,631.5 890.1 1.00 3,577.5 799.8 1.00 3,100.5 615.8 1.00 1.34 1.17 1.15
g13 62,598.2 13,174.5 0.97 58,702.5 9,078.6 1.00 95,962.9 61,334.1 0.59 38,988.0 5,428.8 1.00 1.66 1.51 4.17
g14 – – 0.00 206,514.0 7,190.1 1.00 120,514.5 12,561.4 1.00 127,552.5 4,964.0 1.00 – 1.62 0.94
g15 20,061.0 1,261.1 1.00 30,505.5 1,543.1 1.00 15,043.5 1,271.0 1.00 19,066.5 955.2 1.00 1.05 1.60 0.79
g16 32,004.0 1,581.9 1.00 33,961.5 1,411.3 1.00 16,843.5 857.8 1.00 18,526.5 882.7 1.00 1.73 1.83 0.91
g17 98,107.3 28,906.9 0.98 85,684.5 4,165.4 1.00 150,500.9 50,916.9 0.69 64,539.0 19,854.8 1.00 1.55 1.33 3.38
g18 133,056.0 12,509.5 1.00 137,621.8 7,078.9 0.99 51,299.1 3,610.3 0.99 60,084.0 3,951.5 1.00 2.21 2.31 0.86
g19 – – 0.00 – – 0.00 180,748.4 21,419.3 0.95 181,296.2 21,601.8 0.97 – – 1.02
g21 160,146.0 10,142.3 1.00 186,080.9 11,043.8 0.99 85,005.5 23,407.0 0.97 89,617.5 9,787.2 1.00 1.79 2.10 0.98
g23 – – 0.00 – – 0.00 203,019.5 22,499.2 0.88 205,336.9 23,185.5 0.48 – – 0.54
g24 8,946.0 714.8 1.00 9,009.0 693.0 1.00 5,436.0 479.8 1.00 5,490.0 344.4 1.00 1.63 1.64 0.99
avg – – 0.81 – – 0.89 – – 0.95 – – 0.97 1.65 1.82 1.20

of SAMODE. In ISAMODE-CMA, both mixed mutation operators and CMA-ES based local search are implemented.
ECHT-EP2 [29] is evolutionary programming based on ensemble of constraint-handling techniques. ATMES [41] is
an adaptive trade-off model based evolution strategy for the COPs. SMES [42] is a simple multi-member evolution
strategy to solve the COPs, where a simple diversity mechanism based on allowing infeasible solutions to remain in
the population is presented to handle the constraints. We choose these five EAs for comparisons due to their good
performance obtained and the same MaxNFEs (240, 000) used. In Table 3, the best, mean, and standard deviationof
the objective function values of the final solutions for eachalgorithms are shown. The overall best and the second best
results among the six EAs are highlighted ingrey boldface andboldface, respectively. “NA” means not available.
Note that the results of ISAMODE-CMA, SAMODE, ECHT-EP2, ATMES, and SMES are directly obtained from
their corresponding literature. In addition, for rank-iMDDE, ISAMODE-CMA, SAMODE, and ECHT-EP2, based on
the mean values in Table 3, the final rankings obtained by the Friedman test2 are shown in Table 4.

According to the results shown in Table 3, it can be clearly seen that rank-iMDDE consistently obtains highly-
competitive results in all functions compared with other five EAs. In terms of the best results, rank-iMDDE gets the
best or similar values among the six EAs in all 22 functions. With respect to the mean results, only in one function
g19, rank-iMDDE is slightly worse than ISAMODE-CMA. In the rest 21 functions, rank-iMDDE is able to obtain
better or similar results compared with other five EAs.

Furthermore, according to the mean values of rank-iMDDE, ISAMODE-CMA, SAMODE, and ECHT-EP2 shown
in Table 3, thep-value computed by the Iman-Daveport test is 1.670E − 03, which means that the differences are
significant between the compared algorithms in all functions atα = 0.05. With respect to the average rankings of
all algorithms by the Friedman test, Table 4 shows that our proposed rank-iMDDE gets the first ranking among four
algorithms, followed by ISAMODE-CMA, ECHT-EP2, and SAMODE.

2The statistic results of the Friedman test and the Iman-Daveport test are calculated by the KEEL software tool [43].
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5.6. Influence of ranking-based mutation operator

In the above experiments, we have verified that rank-iMDDE isefficient and highly-competitive. In this section,
the influence of the ranking-based mutation operator on the performance of rank-iMDDE is evaluated. For this
purpose, rank-iMDDE is compared with iMDDE. The only one difference between rank-iMDDE and iMDDE is that
in iMDDE three vector indicesr1, r2, r3 in the mutation are only randomly selected as presented in the original DE
algorithm. In addition, we remove the dynamic diversity mechanism as presented in Section 4.2 by using the static
diversity mechanism,i.e., Sr is set to be 0.45 during the whole evolution process. The two algorithms are referred to
as rank-MDDE-b/e and MDDE-b/e3, for short. The parameters are set to be the same as presentedin Section 5.2 for
the four methods. The NFEs,S R, andARvalues are compared as shown in Table 5. All results are averaged over 100
runs. The overall best and the second best results are highlighted in grey boldface andboldface, respectively.

When comparing the performance between rank-iMDDE and iMDDE, it is clear that rank-iMDDE requires less
mean NFEs than iMDDE in all cases. The averageAR value is 1.82, which means that rank-iMDDE performs
82% faster than iMDDE in overall. Moreover, rank-iMDDE obtains higher averageS Rvalue than that of iMDDE
(0.97 > 0.89). Especially, in functions g19 and g23, there are no success runs for iMDDE, while rank-iMDDE gets
S Rwith 0.97 and 0.48, respectively, in the two functions.

Comparison between rank-MDDE-b/e and MDDE-b/e, similar results can be observed in Table 5. rank-MDDE-b/e
converges faster in 20 out of 22 cases; only in two functions g13 and g17, MDDE-b/e is better than rank-MDDE-b/e.
In addition, rank-MDDE-b/e is able to obtain the higher averageS Rvalue than MDDE-b/e (0.95> 0.81).

However, by carefully looking the results, we can see that ing02 rank-iMDDE and rank-MDDE-b/e provide lower
S Rvalues than their corresponding iMDDE and MDDE-b/e. The reason might be that the ranking-based mutation
operator enhances the exploitation ability of the algorithm, yet slightly decreases its exploration ability. While for g02
it has large feasible space (ρ = 100% see in Table 1), the ranking-based mutation operator may lead the algorithm not
to explore the large feasible space sufficiently.

In general, from the results and analysis we can conclude that the ranking-based mutation operator is of benefit
to the performance enhancement of iMDDE and MDDE-b/e for theCOPs. It not only accelerates the algorithms, but
also makes them more efficient (with respect to the success rate).

5.7. Effect of dynamic diversity mechanism

In iMDDE as presented in Section 4.2, the improved dynamic diversity mechanism is proposed to dynamically
control the selection ratioSr . In this section, its influence on the performance of rank-iMDDE is studied. Also,
the four algorithms mentioned in Section 5.6 are compared,i.e., rank-iMDDE vs rank-MDDE-b/e, and iMDDE vs
MDDE-b/e. The results are tabulated in Table 5. From the results, we can observe that

• The dynamic diversity mechanism is able to make the algorithm get higher success rate than the static one, for
example,S Rof iMDDE is 0.89, which is greater than that of MDDE-b/e (0.81). Also, rank-iMDDE gets higher
S Rvalue than rank-MDDE-b/e (0.97> 0.95).

• However, the dynamic diversity mechanism leads to greater NFEs values in most of cases. For example, in 17
out of 22 functions rank-MDDE-b/e needs less NFEs values than rank-iMDDE.

• Compared theARvalue between rank-iMDDE and rank-MDDE-b/e, the averageARvalue is 1.20, which indi-
cates that rank-iMDDE gets 20% faster than rank-MDDE-b/e inoverall.

In general, the dynamic diversity mechanism is able to provide higher success rate and make the algorithm more
robust than the static one, although it requires greater NFEs to reachf (x) − f (x∗) < 1e− 4.

3MDDE-b/e means that the combination of “DE/rand/1/bin” and“DE/rand/1/exp” is used. It is used to differ from the original MDDE as
proposed in [19, 2]. It is worth pointing out that we comparedthe performance of MDDE-b/e with that of MDDE through benchmark functions,
and in most of the test cases, MDDE-b/e provides better results than MDDE. However, for the sake of brevity, we did not report these results.
Interested readers can contact the first author for more details.
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Table 6: Parameter study onk1 andk2 of the ranking-based mutation operator on the performance of rank-iMDDE in all benchmark functions. The
mean NFEs, andS Rresults are reported herein. All results are averaged over 100 independent runs.

Prob
iMDDE k1 = 0.5, k2 = 2.0 k1 = k2 = 0.5 k1 = k2 = 1.0 k1 = 5.0, k2 = 0.2 k1 = k2 = 2.0 k1 = 2.0, k2 = 0.5
Mean S R Mean S R Mean S R Mean S R Mean S R Mean S R Mean S R

g01 142,897.5 1.00 112,711.5 1.00 114,853.5 1.00 98,163.0 1.00 61,929.0 1.00 80,365.5 1.00 80,482.5 1.00
g02 178,325.0 0.90 87,907.2 0.67 128,007.9 0.84 101,660.6 0.80 131,737.8 0.89 77,711.4 0.63 118,733.0 0.86
g03 106,393.5 1.00 67,531.5 1.00 67,536.0 1.00 57,690.0 1.00 41,395.5 1.00 49,572.0 1.00 49,572.0 1.00
g04 60,507.0 1.00 44,973.0 1.00 44,959.5 1.00 38,106.0 1.00 24,246.0 1.00 31,648.5 1.00 31,648.5 1.00
g05 40,279.5 1.00 35,563.5 1.00 35,563.5 1.00 34,708.5 1.00 32,521.5 1.00 33,615.0 1.00 33,615.0 1.00
g06 21,348.0 1.00 16,173.0 1.00 16,587.0 1.00 14,607.0 1.00 10,966.5 1.00 12,946.5 1.00 12,942.0 1.00
g07 137,128.5 1.00 96,129.0 1.00 96,232.5 1.00 79,542.0 1.00 45,954.0 1.00 62,275.5 1.00 62,275.5 1.00
g08 3,906.0 1.00 3,721.5 1.00 3,721.5 1.00 3,321.0 1.00 2,488.5 1.00 2,961.0 1.00 2,961.0 1.00
g09 46,332.0 1.00 33,309.0 1.00 35,203.5 1.00 29,920.5 1.00 18,693.0 1.00 24,561.0 1.00 24,849.0 1.00
g10 230,040.0 0.01 147,987.0 1.00 149,256.0 1.00 121,486.5 1.00 67,721.2 0.96 92,718.0 1.00 92,718.0 1.00
g11 8,779.5 1.00 8,217.0 1.00 8,217.0 1.00 7,834.5 1.00 6,705.0 1.00 7,339.5 1.00 7,339.5 1.00
g12 4,149.0 1.00 3,645.0 1.00 3,645.0 1.00 3,105.0 1.00 2,990.0 1.00 3,100.5 1.00 3,100.5 1.00
g13 62,598.2 0.97 38,988.0 1.00 38,988.0 1.00 39,037.5 1.00 38,997.0 1.00 38,988.0 1.00 38,988.0 1.00
g14 – 0.00 143,428.5 1.00 145,746.0 1.00 136,300.5 1.00 119,592.0 1.00 127,237.5 1.00 127,552.5 1.00
g15 20,061.0 1.00 19,719.0 1.00 19,719.0 1.00 19,273.5 1.00 18,765.0 1.00 19,066.5 1.00 19,066.5 1.00
g16 32,004.0 1.00 25,348.5 1.00 25,308.0 1.00 21,784.5 1.00 14,481.0 1.00 18,526.5 1.00 18,526.5 1.00
g17 98,107.3 0.98 70,182.0 1.00 70,128.0 1.00 66,172.5 1.00 69,048.0 1.00 63,652.5 1.00 64,539.0 1.00
g18 133,056.0 1.00 92,992.5 1.00 92,974.5 1.00 76,135.5 1.00 44,330.6 0.96 60,084.0 1.00 60,084.0 1.00
g19 – 0.00 215,980.1 0.86 233,370.0 0.30 204,662.7 0.99 193,030.0 0.45 175,266.0 1.00 181,296.2 0.97
g21 160,146.0 1.00 109,350.0 1.00 109,642.5 1.00 99,225.0 1.00 80,280.0 1.00 89,622.0 1.00 89,617.5 1.00
g23 – 0.00 222,896.3 0.24 225,294.5 0.11 217,002.5 0.36 193,477.5 0.52 202,763.1 0.52 205,336.9 0.48
g24 8,946.0 1.00 6,745.5 1.00 6,993.0 1.00 6,223.5 1.00 4,563.0 1.00 5,463.0 1.00 5,490.0 1.00
avg – 0.81 – 0.94 – 0.92 – 0.96 – 0.94 – 0.96 – 0.97

5.8. Parameter study
In the proposed ranking-based mutation operator, there aretwo user-defined coefficients (k1 andk2) in the prob-

ability calculation models. In Section 4.1, we suggested that k1 is set to be greater than 1.0, while k2 is less than
or equal to 1.0. In this section, the influence ofk1 andk2 on the performance of rank-iMDDE is evaluated. We set
differentk1 andk2 values as: (a)k1 = 0.5, k2 = 2.0, (b) k1 = k2 = 0.5, (c) k1 = k2 = 1.0, (d) k1 = 5.0, k2 = 0.2,
and (e)k1 = k2 = 2.0. All other parameters for rank-iMDDE are kept unchanged asdescribed in Section 5.2. Each
algorithm is performed over 100 independent runs for each function. The results of mean NFEs andS Rare given in
Table 6, in which the results of iMDDE and rank-iMDDE with default parameter settings (i.e., k1 = 2.0, k2 = 0.5)
are also reported. The overall best, second best, and worst results are highlighted ingrey boldface , boldface, and
teletype, respectively.

According to the results reported in Table 6, it can be observed that

• Generally, the six rank-iMDDE variants with differentk1 andk2 settings are able to converge faster than iMDDE.
Additionally, they are also capable of providing higher averageS Rvalues than that of iMDDE. It means that the
enhanced performance by the ranking-based mutation operator is not influenced by differentk1 andk2 settings.

• With respect to the NFEs values, we can observe that rank-iMDDE variants with the samek1 value and different
k2 values (e.g., k1 = 0.5, k2 = 2.0 vsk1 = k2 = 0.5 andk1 = 2.0, k2 = 0.5 vsk1 = k2 = 2.0) provide similar
NFEs in most of test cases. The reason is that the population is mainly in the semi-feasible situation during the
whole evolution process.

• rank-iMDDE withk1 = 5.0, k2 = 0.2 requires the smallest NFEs in the majority of the functions, because of the
higher selection pressure on the better solutions in the semi-feasible situation. However, it leads to premature
convergence in some complexity functions, such as g10 and g19.

• If k1 is less than 1.0, for examplek1 = 0.5, rank-iMDDE converges slower thank1 > 1.0, due to the lower
selection pressure on the better solutions.

In summary, the ranking-based mutation operator is able to enhance the performance of iMDDE in terms of both
convergence rate and success rate regardless of differentk1 andk2 settings. Since the population is mainly in the
semi-feasible situation, the ranking in this situation plays the leading role. Thus,k1 has more important influence
on the performance thank2. According to the results, we suggest thatk1 ∈ [2.0, 5.0] andk2 ∈ [0.5, 1.0+) are good
choices. The default setting withk1 = 2.0 andk2 = 0.5 is a reasonable, but not optimal, setting in the ranking-based
mutation operator.
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Table 7: Comparison on the best results between rank-iMDDE and BIANCA on the non-convex test cases.

case 1 case 2 case 3
BIANCA [44] rank-iMDDE BIANCA [44] rank-iMDDE BIANCA [44] rank-iMDDE

x1 10.71119 10.71252 11.27620 11.29429 10.45320 10.47395
x2 2.96646 2.96338 2.46284 2.47128 2.71465 2.73013
g1 -4.43000E-03 -1.12850E-11 – – -3.86538E-03 -4.38089E-12
g2 – – -1.09853E-04 -1.76889E-12 -3.30729E-03 -1.16759E-12
f -8.09933 -8.11646 -9.49783 -9.50127 -7.37696 -7.48573
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Figure 2: Convergence graphs of rank-iMDDE for the non-convex test cases.

5.9. rank-iMDDE for non-convex COPs

In this section, the effectiveness of rank-iMDDE is furtherevaluated on the non-convex COPs. With this pur-
pose, three test problems presented in [44] are selected. These problems have the same highly non-convex objective
function:

f (x1, x2) = − exp
(

ka
√

x2
1 + x2

2

)

sin (ax1) cos (2bx2) (17)

whereas they have different constraints as follows:

• Case 1:
g1(x1, x2) = exp

(

cx2
1

)

− 1− x2 ≤ 0 (18)

• Case 2:

g2(x1, x2) = α
[(

β

4π
x1 + γ

)

sin
(

π

2
x1

)

sin
(

π

2
x2

)

− δ

]

≤ 0 (19)

• Case 3:
g1(x1, x2) = exp

(

cx2
1

)

− 1− x2 ≤ 0

g2(x1, x2) = α
[(

β

4π x1 + γ
)

sin
(

π
2 x1

)

sin
(

π
2 x2

)

− δ
]

≤ 0
(20)

wherex1 ∈ [0, 4π], x2 ∈ [0, 2π], a = 1, b = 0.6, k = 0.2, c = 0.012, α = 0.1, β = 0.4, γ = 0.8, andδ = 0.7.
As described in [44], the constraintg1(x1, x2) is active. The constraintg2(x1, x2) shown in Equation (19) is highly
non-convex, which leads the COPs to be defined over a disjointsearch space characterized by “barely” infeasible
regions [44].

To make a fair comparison with the results reported in [44], the MaxNFEs are set to be 20, 000 for rank-iMDDE
as used in [44]. All other parameters are kept unchanged as described in Section 5.2. For each test case, rank-
iMDDE is performed over 100 independent runs. The results are given in Table 7, where the better objective function
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Table 8: Comparison on the results of welded beam design (case 1).

Algorithm Best Worst Mean Std Max NFEs
SCM [1] 2.3854347 6.3996785 3.0025883 9.60E-01 33,095

DSS-MDE [25] 2.38095658 2.38095658 2.38095658 3.19E-10 24,000
AATM [45] 2.3823262 2.3915924 2.3869762 2.2E-03 30,000
DELC [46] 2.38095658 2.38095658 2.38095658 2.60E-12 20,000

rank-iMDDE 2.38095658 2.38095658 2.38095658 7.18E-14 19,830

and constraint function values are highlighted inboldface. In addition, the convergence graphs of rank-iMDDE are
plotted in Fig. 2.

From Table 7, it is clear that rank-iMDDE consistently gets the better results compared with BIANCA in all cases.
The constraint function values are very close to zero in the three cases for the best solutions obtained by rank-iMDDE.
In addition, according to the convergence curves shown in Fig. 2, we see that rank-iMDDE is able to obtain the nearly
optimal solutions very quickly: In cases 1 and 2, it requiresaround 2, 500 NFEs; in case 3, it needs about 4, 000 NFEs.

From the above analysis, we can see that rank-iMDDE is also effective for the non-convex COPs, in which the
objective function is highly non-convex and the constraints are active and/or non-convex as presented in the above test
cases.

5.10. rank-iMDDE for constrained engineering benchmark problems
Experimental results on benchmark functions verified that rank-iMDDE is very efficient and it provides highly-

competitive results compared with other state-of-the-artEAs when solving the COPs. In this section, the potential of
rank-iMDDE is also tested through 5 widely used constrainedengineering benchmark problems. The five problems
are: i) welded beam design (case 1 [1] and case 2 [24]), ii) tension/compression spring design [1], iii) speed reducer
design [1], iv) three-bar truss design [1], and v) pressure vessel design [24]. For the sake of space limitation, the
formulations of these problems are omitted here. Interested readers can find them in their corresponding literature.
Due to different features of different problems, rank-iMDDE adopts different population size and MaxNFEs, while
other parameters are kept the same as shown in Section 5.2. The population size and MaxNFEs of rank-iMDDE for
different problems are

• For welded beam design (case 1 and 2):µ = 30 and MaxNFEs = 19, 830;

• For spring design:µ = 65 and MaxNFEs = 19, 565;

• For reducer design and three-bar truss design:µ = 20 and MaxNFEs = 19, 920;

• For pressure vessel design:µ = 65 and MaxNFEs = 23, 465.

For each problem, rank-iMDDE is performed over 100 independent runs. The best result obtained by rank-iMDDE in
each problem is shown in Table 14.

5.10.1. Welded Beam Design (Case 1)
rank-iMDDE is compared with four EAs in this problem. The four EAs are: 1) society and civilization algorithm

(SCM) [1], 2) dynamic stochastic ranking based DE (DSS-MDE)[25], 3) accelerated adaptive trade-off model based
EA (AATM) [45], and 4) DE with level comparison (DELC) [46]. The results of these algorithms are shown in
Table 8. A result inboldface means a better (or best) solution obtained. From the resultsin Table 8, we can observe
that rank-iMDDE obtains the optimal solution in this problem in all 100 runs. Moreover, with the smallest MaxNFEs,
rank-iMDDE is able to provide the smallest standard deviation value compared with other EAs.

5.10.2. Welded Beam Design (Case 2)
This problem is another version of welded beam design (case 1). In this problem, rank-iMDDE is compared with:

1) co-evolutionary DE (Co-DE) [24], 2) multiple trial vector based DE (MDDE) [2], 3) DELC [46], 4) COMDE [30],
5) CVI-PSO [47], 6) BIANCA [44], and 7) MVDE [48]. The resultsare tabulated in Table 9. Similar to welded beam
design (case 1), rank-iMDDE successfully solve this problem in all runs, and it gets the smallest standard deviation
value with MaxNFEs=19, 830 among all compared EAs. Even with MaxNFEs=15, 000, rank-iMDDE also gets
highly-competitive results compared with other EAs.
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Table 9: Comparison on the results of welded beam design (case 2).

Algorithm Best Worst Mean Std Max NFEs
Co-DE [24] 1.733461 1.824105 1.768158 2.22E-02 204,800
MDDE [2] 1.725 1.725 1.725 1.00E-15 24,000
DELC [46] 1.724852 1.724852 1.724852 4.10E-13 20,000

COMDE [30] 1.724852309 1.724852309 1.724852309 1.60E-12 20,000
CVI-PSO [47] 1.724852 1.727665 1.725124 6.12E-04 25,000
BIANCA [44] 1.724852 1.793233 1.752201 2.30E-02 80,000
MVDE [48] 1.7248527 1.7249215 1.7248621 7.88E-06 15,000

rank-iMDDE
1.724852309 1.724852309 1.724852309 9.06E-16 19,830
1.724852309 1.724852309 1.724852309 7.71E-11 15,000

Table 10: Comparison on the results of tension/compressionspring design.
Algorithm Best Worst Mean Std Max NFEs
SCM [1] 0.012669249 0.016717272 0.012922669 5.90E-04 25,167

Co-DE [24] 0.0126702 0.01279 0.012703 2.70E-05 204,800
MDDE [2] 0.012665 0.012674 0.012666 2.00E-06 24,000

DSS-MDE [25] 0.012665233 0.012738262 0.012669366 1.25E-05 24,000
AATM [45] 0.012668262 0.012861375 0.012708075 4.50E-05 25,000
DELC [46] 0.012665233 0.012665575 0.012665267 1.30E-07 20,000

COMDE [30] 0.012665232 0.012676809 0.012667168 3.09E-06 24,000
CVI-PSO [47] 0.0126655 0.0128426 0.012731 5.58E-05 25,000
BIANCA [44] 0.012671 0.012913 0.012681 5.12E-05 80,000
MVDE [48] 0.012665272 0.012719055 0.012667324 2.45E-06 10,000

rank-iMDDE
0.012665233 0.01266765 0.012665264 2.45E-07 19,565
0.012665233 0.01266743 0.012665297 8.48E-07 10,000

5.10.3. Tension/Compression Spring Design
This problem is to minimize the weight under four constraints. rank-iMDDE is compared with ten different EAs

in this problem. These methods are SCM [1], Co-DE [24], MDDE [2], DSS-MDE [25], AATM [45], DELC [46],
COMDE [30], CVI-PSO [47], BIANCA [44], and MVDE [48]. According to the results given in Table 10, we can
see that there are five algorithms (i.e., MDDE, DSS-MDE, DELC, COMDE, and rank-iMDDE) that can obtain the
optimal solution in this problem. Our proposed rank-iMDDE gets the best mean value in all algorithms. While DELC
provides the best results with respect to the worst and standard deviation values; rank-iMDDE is slightly worse than
DELC in these two metrics.

5.10.4. Speed Reducer Design
The weight is minimized in the speed reducer design. In this problem, rank-iMDDE is compared with SCM [1],

MDDE [2], DSS-MDE [25], AATM [45], DELC [46], COMDE [30], andMVDE [48], and the results are shown in
Table 11. It is clear that rank-iMDDE is capable of getting the optimal solution in all runs. In addition, it can obtain
the smallest standard deviation value yet with the smallestMax NFEs among all compared algorithms.

5.10.5. Three-Bar Truss Design
The three-bar truss design is to minimize the volume subjectto stress constraints. In Table 12, the results of

rank-iMDDE are compared with those of SCM [1], DSS-MDE [25],AATM [45], DELC [46], COMDE [30], and
MVDE [48]. Clearly, rank-iMDDE obtains the global optimal solution in all runs with the smallest MaxNFEs. It
also provides the smallest standard deviation value compared with other EAs.

5.10.6. Pressure Vessel Design
The results of Co-DE [24], MDDE [2], DELC [46], COMDE [30], CVI-PSO [47], BIANCA [44], MVDE [48],

and rank-iMDDE are given in Table 13. From the results, we cansee that there are four algorithms (MDDE, DELC,
COMDE, and rank-iMDDE) that are able to solve this problem inall runs. In terms of the standard deviation, MDDE
is the best one, followed by rank-iMDDE, DELC, COMDE, and Co-DE.

To sum up, within the above-mentioned engineering benchmark problems, rank-iMDDE is able to successfully
solve welded beam (case 1 and 2), speed reducer, three-bar truss, and pressure vessel over all 100 independent runs
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Table 11: Comparison on the results of speed reducer design.

Algorithm Best Worst Mean Std Max NFEs
SCM [1] 2994.744241 3009.964736 3001.758264 4.00E+00 54,456

MDDE [2] 2996.357 2996.39 2996.367 8.20E-03 24,000
DSS-MDE [25] 2994.471066 2994.471066 2994.471066 3.58E-12 30,000

AATM [45] 2994.516778 2994.659797 2994.585417 3.30E-02 40,000
DELC [46] 2994.471066 2994.471066 2994.471066 1.90E-12 30,000

COMDE [30] 2994.471066 2994.471066 2994.471066 1.54E-12 21,000
MVDE [48] 2994.471066 2994.471069 2994.471066 2.82E-07 30,000
rank-iMDDE 2994.471066 2994.471066 2994.471066 7.93E-13 19,920

Table 12: Comparison on the results of three-bar truss design.

Algorithm Best Worst Mean Std Max NFEs
SCM [1] 263.8958466 263.96975 263.9033 1.30E-02 17,610

DSS-MDE [25] 263.8958434 263.8958498 263.8958436 9.72E-07 15,000
AATM [45] 263.8958435 263.90041 263.8966 1.10E-03 17,000
DELC [46] 263.8958434 263.8958434 263.8958434 4.30E-14 10,000

COMDE [30] 263.8958433 263.8958433 263.8958433 5.34E-13 7,000
MVDE [48] 263.8958434 263.8958548 263.8958434 2.58E-07 7,000
rank-iMDDE 263.8958434 263.8958434 263.8958434 0.00E+00 4,920

Table 13: Comparison on the results of pressure vessel design.

Algorithm Best Worst Mean Std Max NFEs
Co-DE [24] 6059.734 6371.0455 6085.2303 4.30E+01 204,800
MDDE [2] 6059.702 6059.702 6059.702 1.00E-12 24,000
DELC [46] 6059.7143 6059.7143 6059.7143 2.10E-11 30,000

COMDE [30] 6059.714335 6059.714335 6059.714335 3.62E-10 30,000
CVI-PSO [47] 6059.7143 6820.4101 6292.1231 2.88E+02 25,000
BIANCA [44] 6059.9384 6447.3251 6182.0022 1.22E+02 80,000
MVDE [48] 6059.714387 6090.533528 6059.997236 2.91E+00 15,000

rank-iMDDE
6059.714335 6059.714335 6059.714335 1.95E-12 23,465
6059.714335 6059.714335 6059.714335 7.57E-07 15,000

Table 14: The best results obtained by rank-iMDDE for each constrained engineering design problem used in this work.
Prob Best solutionx Best resultf (x)
Welded beam design (case 1) 0.24436898,6.21751972, 8.29147139,0.24436898 2.38095658
Welded beam design (case 2) 0.20572964,3.47048867, 9.03662391,0.20572964 1.724852309
Tension/compression spring design 0.35671718,0.05168904,11.28899860 0.012665233
Speed reducer design 3.5,0.7,17,7.3,7.71531991,3.35021467,5.28665446 2994.471066
Three-bar truss design 0.78867513, 0.40824829 263.8958434
Pressure vessel design 13,7, 42.09844560,176.63659584 6059.714335

yet with the smallest MaxNFEs compared with other EAs. For the spring design, rank-iMDDE also obtains the near-
optimal solution (f (x)− f (x∗) ≤ 1e− 8) in 95 out of 100 runs. Thus, we can conclude that our proposed rank-iMDDE
is also able to deal with constrained engineering benchmarkproblems.

5.11. rank-iMDDE for constrained mechanical design problems from literature

According to the results on the constrained engineering benchmark problems shown in Section 5.10, it can be
observed that rank-iMDDE provides very promising results when comparing with other state-of-the-art EAs. In
this section, four further constrained mechanical design problems are considered, including the step-cone pulley,
hydrodynamic thrust bearing, rolling element bearing, andBelleville spring. These problems are selected from [49],
which have different natures of design variables, objective functions, and constraints. The objective functions of all
problems are minimized herein. For their detailed descriptions, interested readers can refer to the literature in [49].
The results of rank-iMDDE is compared with those of MDDE, TLBO, and ABC. The results of TLBO and ABC are
obtained from [49]. For rank-iMDDE and MDDE, the populationsize and MaxNFEs of rank-iMDDE for different
problems are

• For the step-cone pulley problem:µ = 30 and MaxNFEs = 15, 000;
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Table 15: Comparison on the results of different algorithmson the constrained mechanical design problems from the literature.

Prob Criterion ABC [49] TLBO [49] MDDE rank-iMDDE

Step-cone pulley
Best 16.634655 16.634510 14.488038 14.487968
Mean 36.099500 24.011358 16.725652 15.472300
Worst 145.470500 74.022951 18.169821 17.833931

Hydrostatic thrust bearing
Best 1625.442760 1625.443000 1638.403234 1625.460142
Mean 1861.554000 1797.707980 1759.103885 1724.727935
Worst 2144.836000 2096.801270 2553.358476 1894.734127

Rolling element bearing
Best -81859.741600 -81859.740000 -81858.836832 -81859.732421
Mean -81496.000000 -81438.987000 -81848.703534 -81859.010377
Worst -78897.810000 -80807.855100 -81701.180671 -81838.757577

Belleville spring
Best 1.979675 1.979675 1.979675 1.979675
Mean 1.995475 1.979688 1.982256 1.979675
Worst 2.104297 1.979757 2.104326 1.979683

Table 16: The best results obtained by rank-iMDDE for the constrained mechanical design problems.

Prob Best solutionx Best resultf (x)
Step-cone pulley 99.999998,34.581577, 47.581631,63.437726,76.067314 14.487968
Hydrostatic thrust bearing 5.955817,5.389051,5.358711,2.269693 1625.460142
Rolling element bearing 125.719053, 21.425590,11.375940,0.515000,0.515000,0.434445, 0.636030,0.300000,0.079193,0.674157 −81859.732421
Belleville spring 12.010000,10.030473,0.204143, 0.200000 1.979675

• For the hydrostatic thrust bearing problem:µ = 80 and MaxNFEs = 25, 000;

• For the rolling element bearing problem:µ = 25 and MaxNFEs = 10, 000;

• For the Belleville spring problem:µ = 25 and MaxNFEs = 15, 000.

Other parameters are kept unchanged as shown in Section 5.2.Note that the MaxNFEs are set the same as used
in [49]. For each problem, rank-iMDDE and MDDE are performedover 100 independent runs.

The results are reported in Table 15, where the best overall results are highlighted inboldface. The best solution
of each mechanical problem obtained by rank-iMDDE is tabulated in Table 16. From Table 15, it can be seen that

• For the step-cone pulley problem, rank-iMDDE consistentlyobtains the best results compared with other three
algorithms in terms of the best, mean, and worst solutions.

• For the hydrostatic thrust bearing problem, ABC can get the best result in terms of the best solution, followed
by TLBO, rank-iMDDE, and MDDE. The best solution of rank-iMDDE is very close to that of ABC. With
respect to the mean and worst solutions, rank-iMDDE still ranks the first among the four compared algorithms.

• Similar to the results shown in the hydrostatic thrust bearing problem, for the rolling element bearing problem,
rank-iMDDE gets the best results with respect to the mean andworst solutions. For the best solution, rank-
iMDDE obtains slightly worse result when comparing with that of ABC and TLBO.

• For the Belleville spring problem, all of the four algorithms can obtain the same best solution. However, in
terms of the mean and worst solutions, rank-iMDDE gets the best results.

To sum up, the proposed rank-iMDDE is still capable of providing the overall best and most robust results for the
constrained mechanical problems compared with other threealgorithms.

5.12. Discussions

Combining with the constraint-handling techniques, the DEalgorithm has been used for the COPs recently. In this
work, the ranking-based mutation operator and an improved dynamic diversity mechanism are proposed to enhance the
performance of DE when solving the COPs. From the comprehensive experiments through both benchmark functions
and engineering problems, we can conclude that

• The proposed ranking-based mutation operator is efficient to enhance the performance of CDEs in terms of the
convergence speed and the success rate.
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• In the ranking-based mutation operator, there are two coefficientsk1 andk2 introduced to calculate the selection
probabilities of the solutions. Regardless of different parameter settings ofk1 andk2, rank-iMDDE is capable
of improving the performance of iMDDE consistently. The default setting withk1 = 2.0 andk2 = 0.5 is a
reasonable choice, but may be not optimal. In our future work, we will try to study the adaptive setting ofk1

andk2 in the ranking-based mutation operator.

• When comparing with other state-of-the-art EAs for the COPs, rank-iMDDE is highly-competitive in terms of
the final solutions, convergence speed, and success rate.

6. Conclusions and future work

To accelerate the convergence rate and maintain the population diversity of the DE algorithm when solving the
COPs, in the paper, an improved constrained DE (rank-iMDDE)is proposed, where the ranking-based mutation
and improved dynamic diversity mechanism are presented. The performance of rank-iMDDE is evaluated by 24
benchmark functions presented in CEC’2006 and five widely used engineering benchmarks and four constrained
mechanical design problems. Experimental results verify the superiority of rank-iMDDE when comparing with other
EAs.

In rank-iMDDE, the combination of “DE/rand/1/bin” and “DE/rand/1/exp” is adopted. Recent studies indicate
that the adaptive ensemble of different mutation strategies is able to enhance the performance of DE [22, 50, 51, 31].
Therefore, one possible future work is to combine rank-based CDEs with strategy adaptation techniques to further
improve the performance of CDEs. In addition, the ranking-based mutation operators may also be useful to the
multiobjective optimization. For example, the non-dominated sorting method [52] can be possibly used to rank
solutions in the multiobjective optimization. In our future, we will try to verify this expectation. In this work,
the selected engineering design problems are not computationally expensive, whereas in the real world there exist
many complex engineering problems that are computationally expensive, such as the discovery of low-energy pure
water isomers [53], potential energy minimization [7], etc. Combining rank-iMDDE with local search methods and
surrogate models like [54, 55], another future direction isdeveloping the memetic rank-iMDDE algorithm for the
complex computationally expensive problems.

The source code of the proposed rank-iMDDE can be obtained from the first author upon request.
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