
A Multiobjective Differential Evolution Algorithm for Constrained
Optimization

Wenyin Gong, and Zhihua Cai

Abstract— Recently, using multiobjective optimization con-
cepts to solve the constrained optimization problems (COPs)
has attracted much attention. In this paper, a novel multiob-
jective differential evolution algorithm, which combines several
features of previous evolutionary algorithms (EAs) in a unique
manner, is proposed to COPs. Our approach uses the orthogonal
design method to generate the initial population; also the
crossover operator based on the orthogonal design method is
employed to enhance the local search ability. In order to handle
the constraints, a novel constraint-handling method based on
Pareto dominance concept is proposed. An archive is adopted to
store the nondominated solutions and a relaxed form of Pareto
dominance, called ε-dominance, is used to update the archive.
Moreover, to utilize the archive solution to guide the search,
a hybrid selection mechanism is proposed. Experiments have
been conducted on 13 benchmark COPs. And the results prove
the efficiency of our approach. Compared with five state-of-
the-art EAs, our approach provides very good results, which
are highly competitive with those generated by the compared
EAs in constrained evolutionary optimization. Furthermore, the
computational cost of our approach is relatively low.

I. INTRODUCTION

Evolutionary Algorithms (EAs) are heuristics that have
been successfully applied in a wide set of areas [1]. However,
many of them are unconstrained search techniques and lack
an explicit mechanism to bias the search in constrained
search spaces. This has motivated the development of a
considerable number of approaches to incorporate constraints
into the fitness function of an EA [2] - [5].

Differential evolution (DE) [6] algorithm is a novel EA
for faster optimization. Unlike Genetic Algorithm (GA) that
uses binary coding to represent problem parameters, DE is a
simple yet powerful population based, direct search algorithm
using real valued parameters. Among the DE’s advantages
are its simple structure, ease of use, speed and robustness.
Price & Storn [6] gave the working principle of DE with
single scheme. Later on, they suggested ten different schemes
of DE [7]. It has been successfully used in solving single-
objective optimization problems. Hence, several researchers
have tried to extend it to handle COPs [8] - [11]. Although
many methods have been proposed to handle constraints by
DEs, experimental results actually reveal that most of them
do not have general capability in handling various COPs.

In this paper, we extend our previous work [12] and
propose a novel multiobjective DE algorithm, called DE-
MOC, to COPs. The differences between DE-MOC and ε-
ODEMO [12] are: i) DE-MOC is used to solve COPs, hence
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the constraint-handling method based on Pareto dominance
concept is proposed in DE-MOC; ii) the orthogonal design
method is employed to design the crossover operator to
enhance the local search ability; and iii) in DE-MOC, the
ε-dominance method used to update the archive is different
from that of ε-ODEMO. Our new approach is characterized
by a) It uses the orthogonal design method with quantiza-
tion technique to generate the initial population; also the
crossover operator based on the orthogonal design method
is employed. b) A novel constraint-handling method based
on Pareto dominance concept is proposed to handle the
constraints. c) An archive is adopted to store the nondomi-
nated solutions and an ε-dominance method proposed in [13]
is used to update the archive. And d) a hybrid selection
mechanism is proposed to use the archive solution to guide
the search. With these combined elements, we show that our
proposed approach is efficient. And the results of DE-MOC
are highly competitive with those generated with an approach
that represents the state-of-the-art in constrained evolutionary
optimization.

The rest of this paper is organized as follows. Section II
reviews the related work of handling COPs via EAs. A
detailed description of our proposed DE-MOC is provided
in Section III. In Section IV, we test our algorithm through
13 benchmark COPs. In addition, the experiment results are
compared with those of some state-of-the-art EAs. Finally,
Section V is devoted to conclusions.

II. RELATED WORK

A global constrained minimization problem can be formal-
ized as a pair (S, f) , where S ⊆ Rn is a bounded set on
Rn and f : S → R is an n-dimensional real-valued function.
The problem is to find a point xmin ∈ S such that f(xmin)
is a global minimum on S. More specifically, it is required
to find an xmin ∈ S such that

∀x ∈ S : f(xmin) ≤ f(x) (1)

subject to
gi(x) ≤ 0, i = 1, 2, · · · , q (2)

hj(x) = 0, j = q + 1, · · · , m (3)

where x is the vector of solutions x = [x1, x2, · · · , xn]T , q is
the number of inequality constraints, and m−q is the number
of equality constraints (in both cases, constraints could be
linear or nonlinear). Generally, for each variable xi it satisfies
a constrained boundary

li ≤ xi ≤ ui, i = 1, 2, · · · , n (4)

181

978-1-4244-1823-7/08/$25.00 c©2008 IEEE



The distance of an individual x from the jth constraint can
be constructed as

Gj(x) =

{
max{0, gj(x)}, 1 ≤ j ≤ q
|hj(x)|, q + 1 ≤ j ≤ m

(5)

Let G(x) =
∑m

j=1 Gj(x) denote the distance of the indi-
vidual X from the boundaries of the feasible set, which also
reflects the degree of its constraint violation.

Coello [2] provided a comprehensive survey of the most
popular constraint-handling techniques currently used with
EAs and grouped them into five categories. As stated in [2],
the constraint-handling techniques can be divided into: 1)
penalty functions; 2) special representations and operators;
3) repair algorithms; 4) separate objective and constraints;
and 5) hybrid methods.

Since our approach belongs to the group of techniques
in which multiobjective optimization concepts are adopted
to handle constraints, we will briefly discuss some of the
most relevant work done in this area. In [14], Cai and Wang
classified the methods based on multiobjective concepts into
two categories: 1) methods based on biasing feasible over
infeasible solutions; and 2) methods based on multiobjective
optimization techniques.

The first category usually redefines a single objective
optimization problem in such a manner that two objectives
are considered: the first is to optimize the original objective
function f(x), and the second is to minimize the degree of
constraint violation G(x). Examples of this type of approach
are given in [14] and [18].

And the second category of the multiobjective concepts
based methods, i.e., the methods based on multiobjective
optimization techniques, the main idea is to convert COPs
into multiobjective optimization problems (MOPs) that have
m + 1 objectives, where m is the number of constraints.
Example of this type of approach is given in [15].

In a technical report [16], four of the existing techniques
based on multiobjective optimization concepts have been
compared. The experimental results indicate that the selec-
tion criterion of Pareto dominance gives better results than
both Pareto ranking and population-based approach. On the
other hand, an important conclusion in [16] is that additional
mechanisms have to be used to improve the effectiveness of
these approaches.

III. PROPOSED APPROACH

Inspired by the ideas from the orthogonal design method
successfully used in EAs ([17], [12], and [18]) and ε-
dominance proposed in [13], in this work, we extend our
previous work [12] to COPs. Our proposed DE algorithm
is named DE-MOC. In DE-MOC, it recasts COPs as bi-
objective optimization problems to minimize the original
objective function f(x) and the degree of constraint violation
G(x) simultaneously. For the sake of clarity, let F (x) =
(f(x), G(x)). Without loss of generality, minimization prob-
lems are assumed in this paper. Six crucial procedures of
DE-MOC will be discussed as follows.

A. Constraint-handling Method

Since we will be using some multiobjective optimization
concepts, it is appropriate to introduce two essential defini-
tions in the context of our approach.

Definition 1 (Pareto Dominance): A solution space vector
x = (x1, · · · , xk) is said to Pareto dominate another solution
vector y = (y1, · · · , yk), denoted as x ≺ y, if and only if

∀i ∈ 1, · · · , k, xi ≤ yi and ∃i ∈ 1, · · · , k, xi < yi

Definition 2 (ε-dominance): Let f , g ∈ 
k. Then f is
said to ε-dominance g for some ε > 0, denoted as f ≺ε g,
if and only if for all i ∈ {1, · · · , k}, fi − ε ≤ gi.

In this work, we propose a new constraint-handling
method, which does not need any parameters to be tuned for
constraint handling. This method is based on the “Constraint-
First-Objective-Next” model [19], where the constraints pre-
cede the objectives because the feasibility of x is more
important than minimization of f(x). The method to check
the constrained dominance between solution xi and xj is
described in Algorithm 1. And to check the constrained ε-
dominance between xi and xj is described in Algorithm 2.
The dominance in constraint space (≺c) is defined as [20]:

Definition 3 (Constraint space dominance): A solution
xi is said to dominate a solution xj in constraint space,
denoted as xi ≺c xj , if both conditions are true:

1. Solutions xi is no worse than solution xj in all con-
straints, i.e.,

∀Gk(xi) ≤ Gk(xj) (6)

2. Solution xi is strictly better than solution xj in at least
one constraint, i.e.,

∃Gk(xi) < Gk(xj) (7)

where Gk(x) = max(0, gk(x)), k = 1, · · · , q and
Gk(x) = |hk(x)|, k = q + 1, · · · ,m.

Algorithm 1 Constrained dominance, dominance(xi, xj)
1: if xi ≺c xj then
2: return 1
3: else if xj ≺c xi then
4: return −1
5: else
6: if xi ≺ xj then
7: return 1
8: else if xj ≺ xi then
9: return −1

10: else
11: return 0
12: end if
13: end if

B. Orthogonal Initial Population

Before solving an optimization problem, we usually have
no information about the location of the global minimum. It
is desirable that an algorithm starts to explore those points
that are scattered evenly in the feasible solution space. In
our presented manner, the algorithm can evenly scan the
feasible solution space once to locate good points for further
exploration in subsequent iterations. In this work, we use the
orthogonal design method to generate the initial archive and
initial evolutionary population (EP). Due to the tight space
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Algorithm 2 Constrained ε-dominance, ε-dominance(xi, xj)
1: if xi ≺c xj then
2: return 1
3: else if xj ≺c xi then
4: return −1
5: else
6: if xi ≺ε xj then
7: return 1
8: else if xj ≺ε xi then
9: return −1

10: else
11: return 0
12: end if
13: end if

restrictions however, we omit the detailed method to generate
the orthogonal initial population. More details can be found
in [17].

C. Orthogonal Crossover Operator

In order to enhance the local search ability and accelerate
the convergence speed of our approach, we employ the
orthogonal design method with quantization to design the
crossover operator called orthogonal crossover. It acts on
two parents. It quantizes the solution space defined by these
parents into a finite number of points, and then applies
orthogonal design to select a small, but representative sample
of points as the potential offspring. The algorithm of the
orthogonal crossover can be found in [17] and [18].

The main difference between our approach and [18] when
using the orthogonal crossover is that in DE-MOC only
the best individual is selected to replace one individual
randomly chosen from the EP. However, in [18], the or-
thogonal crossover is the main genetic operator; and all of
the nondominanted individuals generated by the orthogonal
crossover are selected to generate the next population.

D. Archiving the Candidate Solutions

In the study of Zitzler et al. [21], it was clearly shown that
elitism helps in achieving better convergence in MOEAs.
In DE-MOC, the elitism scheme is also adopted through
maintaining an external archive of nondominated solutions
found in evolutionary process. In order to update the archive,
an ε-dominance method proposed in [13], is adopted. The
algorithm is described in Algorithm 3.

Algorithm 3 update function for ε-approximate Pareto Set
1: Input: A, f
2: if ∃f ′ ∈ A such that ε-dominance(f ′, f )=1 then
3: A′ := A
4: else
5: D := {f ′ ∈ A|ε-dominance(f ′, f) = −1}
6: A′ := A ∪ {f}\D
7: end if
8: Output: A′

E. Hybrid Selection Mechanism

In our proposed approach, in order to use the archive
solution to guide the search we propose a hybrid selection
mechanism, in which a random selection and an elitist
selection are interleaved. In elitist selection of DE-MOC, we

only randomly choose one solution from the archive as the
base parent in DE/rand/1/bin. And the other two parents are
selected from EP randomly. We use a selection parameter
λ ∈ [0.1, 1.0] to regulate the selection pressure.

selection =

{
random selection, eval < (λ × Max eval)
elitist selection, otherwise

(8)

where, eval is the current number of fitness function evalu-
ations (NFFEs), and Max eval is the maximal NFFEs pre-
defined by the user.

F. Handling the Constraint of the Variables

After using the DE/rand/1/bin scheme to generate a new
solution, if one or more of the variables in the new solution
are outside their boundaries, i.e. xi /∈ [li, ui], the following
repair rule is applied:

xi =

{
li + rndi[0, 1] × (ui − li) if xi < li
ui − rndi[0, 1] × (ui − li) if xi > ui

(9)

where rndi[0, 1] is the uniform random variable from [0,1]
in each dimension i.

G. Main Procedure of DE-MOC

For a COP, the proposed DE-MOC works as Algorithm 4.
First, we use the orthogonal design method to generate the or-
thogonal initial population. At each generation, an offspring
is generated using DE/rand/1/bin scheme. The offspring
replaces the parent immediately if the parent is dominated
by the offspring. If the parent dominates the offspring,
the offspring is discarded. Otherwise (when the offspring
and parent are nondominated), the offspring is added to a
temporary child population (CP). Insert the offspring into
the archive with constrained ε-dominance concept described
in Algorithm 3. This step is repeated until NP number of
offspring are created. After that, combine the temporary child
population CP with EP, and we get a population size between
NP and 2×NP . If the population has enlarged, we have to
truncate it to prepare it for the next step of the algorithm.

In contrast to MOEAs, since nondominated individuals
represent the most important feature of the population they
belong to, our concern in this work is only the nondominated
individuals. The truncation only selects the nondominated
individuals from the mixed population. After the truncation,
we employ the orthogonal crossover to generate a good
individual; and it is used to replace a randomly selected
individual from the EP.

Finally, when some halting criterion are reached, the loop
is terminated.

IV. EXPERIMENTAL STUDY

In order to test the performance of our approach thirteen
benchmark functions were used. All test functions are taken
from [5]. Here we do not give the expressions to them. Their
detail expressions are provided in the reference [5]. Functions
g02, g03, g08, and g12 are maximization problems, and the
remaining nine functions (g01, g04, g05, g06, g07, g09, g10,
g11 and g13) are minimization problems.
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Algorithm 4 Main procedure of the proposed DE-MOC
1: Generate the orthogonal initial population
2: t := 1
3: while eval < Max eval do
4: child size := 0
5: for i := 1 to NP do
6: Hybrid selection
7: Produce the offspring c with DE/rand/1/bin scheme
8: Evaluate the offspring c and eval++
9: if dominance(c, EP i

t )=1 then
10: EP i

t := c

11: else if dominance(c, EP i
t )=0 then

12: Add c to the child population CP
13: child size++
14: else
15: Discard c
16: end if
17: Update the archive with constrained ε-dominance concept
18: end for
19: if child size �= 0 then
20: Combine CP and EPt

21: Find the nondominated individuals in the mixed population
22: Get the next evolutionary population EPt+1

23: end if
24: Use the orthogonal crossover to generate a good individual best indv
25: Replace a randomly selected individual from EP with best indv
26: t++
27: end while

A. Experimental Setup

For all experiments, we used the following parameters:
• Population size: NP = 100;
• Maximal NFFEs: Max eval = 100,000;
• Degree of violation1: δ = 0.0001;
• Probability of crossover: CR = 0.99;
• Scaling factor of DE: F = rnd(0.00001, 0.99999);
• Selection parameter: λ = 0.9;
• Parameters of orthogonal initial population: the same

as [12];
• Parameters of orthogonal crossover: the same as [18];
• ε vector: εT = [0.0, 1e − 10].

B. General Performance of the Proposed Approach

We perform 50 independent runs for each test function in
standard C++. The results obtained with the DE-MOC are
presented in Table I. This table shows the known “optimal”
solutions for each function, and records the best, mean,
and worst of the objective function values, and the standard
deviations (“Std. Dev”), found over 50 runs. Where “anffe”
denotes the average number of fitness function evaluations,
and “ps” is the percentage of successful run when the final
result equals to the optimum in 50 runs.

From Table I we can see that, for each test function, the
best solution is almost equivalent to the optimal solution. For
functions g01, g02, g04, g06, g07, g08, g09, g10, g12, and
g13, the global optimal solutions are consistently found for
all 50 runs. For functions g03, g05, and g11, the best results
are even better than the optimal solutions of these functions.
This is the consequence of using inequalities to approximate
each equality, although we use a very small δ.

Furthermore, it is apparent that the standard deviations
over 50 runs for all the functions except for g13 are very

1In this work, all equality constraints have been converted into inequality
constraints, |h(x)| − δ ≤ 0

small. These results confirm that our approach has a sub-
stantial capability of handling various COPs and its solution
quality is quite robust and stable.

C. Comparison with State-of-the-art EAs

DEMO is compared with five state-of-the-art approaches:
Stochastic Ranking (SR) [5], Improved SR (ISR) [3], Simple
Multimembered Evolution Strategy (SMES) [4], Inverted-
Shrinkable PAES (IS-PAES) [15], and Orthogonal Design
based Constrained Optimization Evolutionary Algorithm
(ODCOEA) [18]. The best results obtained by each approach
are shown in Table II. The mean values provided are com-
pared in Table III and the worst results are presented in
Table IV. The results provided by these approaches were
taken from the original references for each method.

As shown in Table II – IV, we can conclude that:

• With respect to SR, one of the most competitive
constraint-handling approaches used with EAs, DE-
MOC was able to obtain better “best” solutions in seven
functions (g02, g03, g05, g07, g10, g11 and g13) and
similar “best” solutions in the remaining six functions
(g01, g04, g06, g08, g09 and g12). Additionally, DE-
MOC got better “mean” and “worst” solutions in eight
functions (g02, g03, g05, g06, g07, g09, g10 and
g11) and similar “mean” and “worst” solutions in four
functions (g01, g04, g08 and g12). However, DE-MOC
found worse “mean” and “worst” solutions in function
g13.

• With respect to ISR, an improved version of SR, DE-
MOC found better “best” solutions for functions g05,
and g11 and similar “best” solutions in the nine func-
tions (g01, g02, g04, g06, g07, g08, g09, g10 and
g12). ISR provided a better “best” solution for functions
g03 and g13. DE-MOC got better “mean” and “worst”
solutions in five functions (g02, g05, g07, g10 and
g11) and similar “mean” and “worst” solutions in six
functions (g01, g04, g06, g08, g09 and g12). ISR found
better “mean” solutions for functions g03 and g13.

• With respect to SMES, DE-MOC obtained better “best”
results in eight functions (g02, g03, g05, g07, g09,
g10, g11 and g13) and similar “best” solutions in five
functions (g01, g04, g06, g08 and g12). In addition,
our approach got better “mean” and “worst” solutions
in eight functions (g02, g03, g05, g06, g07, g09, g10,
and g11) and similar “mean” and “worst” solutions in
the remaining four functions (g01, g04, g08 and g12).
However, SMES was able to provide a better “mean”
result for function g13.

• With respect to IS-PAES, which uses the multiobjective
optimization concept to handle the constraints, DE-
MOC provided better “best” solutions in six functions
(g02, g03, g07, g10, g11, and g13) and similar “best”
results in five functions (g01, g04, g06, g08, and g09).
The proposed method found better “mean” results in
nine functions (g01, g02, g03, g06, g07, g09, g10,
g11, and g13) and similar “mean” results in two (g04,

184 2008 IEEE Congress on Evolutionary Computation (CEC 2008)



Fig. 1. Convergence results for test problems g01 - g08
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TABLE I

STATISTICAL RESULTS OBTAINED BY DE-MOC FOR THE 13 TEST FUNCTIONS OVER 50 INDEPENDENT RUNS. A RESULT IN BOLDFACE INDICATES

THAT THE GLOBAL OPTIMUM (OR BEST KNOWN SOLUTION) WAS REACHED. WHERE “OPTIMAL” IN COLUMN 2 INDICATES THE GLOBAL OPTIMUM

(OR BEST KNOWN SOLUTION), SIMILARLY HEREINAFTER.

F Optimal Best Mean Worst Std. Dev anffe ps

Min g01 -15 -15 -15 -15 1.977E-15 45,161 100%
Max g02 0.803619 0.803619 0.79703 0.76493 0.00803 100,000 68.0%
Max g03 1 1.0005 1.0005 1.0005 2.325E-10 91,245 100%
Min g04 -30665.539 -30665.539 -30665.539 -30665.539 0 48,299 100%
Min g05 5126.498 5126.49671 5126.49671 5126.49671 0 34,674 100%
Min g06 -6961.814 -6961.814 -6961.814 -6961.814 5.820E-12 14,618 100%
Min g07 24.30621 24.30621 24.30621 24.30621 2.160E-6 68,355 100%
Max g08 0.095825 0.095825 0.095825 0.095825 0 2,955 100%
Min g09 680.63 680.63 680.63 680.63 0 18,760 100%
Min g10 7049.248 7049.248 7049.248 7049.248 1.849E-5 90,989 100%
Min g11 0.75 0.7499 0.7499 0.7499 0 15,542 100%
Max g12 1 1 1 1 0 1,974 100%
Min g13 0.05395 0.05395 0.19755 0.438494 0.08637 86,176 54.0%

TABLE II

COMPARISON OF THE BEST SOLUTIONS OBTAINED BY OUR DE-MOC AGAINST THE SR, ISR, SMES, IS-PAES AND ODCOEA. A RESULT IN

BOLDFACE INDICATES A BETTER RESULT WAS FOUND. NA = NOT AVAILABLE, SIMILARLY HEREINAFTER.

F Optimal SR [5] ISR [3] SMES [4] IS-PAES [15] ODCOEA [18] DE-MOC
Min g01 -15 -15 -15 -15 -15 -15 -15
Max g02 0.803619 0.803515 0.803619 0.803601 0.803376 0.0802996 0.803619
Max g03 1 1 1.001 1 1 1 1.0005
Min g04 -30665.539 -30665.539 -30665.539 -30665.539 -30665.539 -30665.536 -30665.539
Min g05 5126.498 5126.497 5126.4981 5126.599 NA 5126.498 5126.49671
Min g06 -6961.814 -6961.814 -6961.814 -6961.814 -6961.814 -6961.699 -6961.814
Min g07 24.30621 24.307 24.30621 24.327 24.311 24.585 24.30621
Max g08 0.095825 0.095825 0.095825 0.095825 0.095825 0.095825 0.095825
Min g09 680.63 680.63 680.63 680.632 680.63 680.636 680.63
Min g10 7049.248 7054.316 7049.248 7051.903 7062.019 7054.547 7049.248
Min g11 0.75 0.75 0.75 0.75 0.75 0.75 0.7499
Max g12 1 1 1 1 NA 1 1
Min g13 0.05395 0.053957 0.053942 0.053986 0.05517 NA 0.05395

TABLE III

COMPARISON OF THE MEAN SOLUTIONS OBTAINED BY OUR DE-MOC AGAINST THE SR, ISR, SMES, IS-PAES AND ODCOEA.

F Optimal SR [5] ISR [3] SMES [4] IS-PAES [15] ODCOEA [18] DE-MOC
Min g01 -15 -15 -15 -15 -14.494 -14.999 -15
Max g02 0.803619 0.781975 0.772078 0.785238 0.793281 0.792587 0.79703
Max g03 1 1 1.001 1 1 1 1.0005
Min g04 -30665.539 -30665.539 -30665.539 -30665.539 -30665.539 -30665.428 -30665.539
Min g05 5126.498 5128.881 5126.4981 5174.492 NA 5158.922 5126.49671
Min g06 -6961.814 -6875.940 -6961.814 -6961.284 6961.813 -6960.669 -6961.814
Min g07 24.30621 24.374 24.30621 24.475 24.338 25.886 24.30621
Max g08 0.095825 0.095825 0.095825 0.095825 0.095825 0.095825 0.095825
Min g09 680.63 680.656 680.63 680.643 680.631 680.774 680.63
Min g10 7049.248 7559.192 7049.249 7253.047 7342.944 7552.225 7049.248
Min g11 0.75 0.75 0.75 0.75 0.75 0.75 0.7499
Max g12 1 1 1 1 NA 1 1
Min g13 0.05395 0.067543 0.096276 0.166385 0.28184 NA 0.19755

and g08). It also found better “worst” results in eight
functions, except for functions g04 and g08 in which
the “worst” results were similar to that obtained with
IS-PAES. A better “worst” result was obtained by IS-
PAES in g02. However, the analysis was incomplete
because IS-PAES did not test in functions g05 and g12.

• Compared with ODCOEA, which also adopts multiob-
jective optimization concept to handle the constraints
and employs orthogonal crossover to generate the off-
spring, our approach got better “best” results in nine
functions (g02, g03, g04, g05, g06, g07, g09, g10, and

g11) and a similar “best” solution in three functions
(g01, g08, g09, and g12). DE-MOC found better “mean”
and “worst” solutions in ten functions (g01, g02, g03,
g04, g05, g06, g07, g09, g10, and g11) and similar better
“mean” and “worst” solutions in the remaining two (g08
and g12). Function g13 was not tested by ODCOEA.
It is worth to point out that in ODCOEA the tolerance
degree of δ = 0.001. However, in DE-MOC δ = 0.0001,
which makes the functions more difficult to solve.

Regarding computational cost, we can say that the NFFEs
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Fig. 2. Convergence results for test problems g09 - g13

TABLE IV

COMPARISON OF THE WORST SOLUTIONS OBTAINED BY OUR DE-MOC AGAINST THE SR, ISR, SMES, IS-PAES AND ODCOEA.

F Optimal SR [5] ISR [3] SMES [4] IS-PAES [15] ODCOEA [18] DE-MOC
Min g01 -15 -15 -15 -15 -12.446 -14.999 -15
Max g02 0.803619 0.726288 0.683055 0.751322 0.768291 0.762508 0.76493
Max g03 1 1 1.001 1 1 1 1.0005
Min g04 -30665.539 -30665.539 -30665.539 -30665.539 -30665.539 -30664.909 -30665.539
Min g05 5126.498 5142.472 5126.4981 5304.167 NA 5249.496 5126.49671
Min g06 -6961.814 6350.262 -6961.814 -6952.482 6961.810 -6959.281 -6961.814
Min g07 24.30621 24.642 24.308 24.843 24.995 27.262 24.30621
Max g08 0.095825 0.095825 0.095825 0.095825 0.095825 0.095825 0.095825
Min g09 680.63 680.763 680.63 680.719 680.634 680.998 680.63
Min g10 7049.248 8835.655 7049.296 7638.366 7588.054 8482.351 7049.248
Min g11 0.75 0.75 0.75 0.75 0.751 0.75 0.7499
Max g12 1 1 1 1 NA 1 1
Min g13 0.05395 0.216915 0.438803 0.468294 0.5471 NA 0.438494
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performed by our approach is lower than the five techniques
compared. Our approach performed only 100,000 NFFEs.
SR, ISR, and IS-PAES performed 350,000 NFFEs, SMES
performed 240,000 NFFEs, and ODCOEA required 150,000
NFFEs. Furthermore, as described in Table I, we can see that
the average NFFEs were very small in eight functions (g01,
g04, g05, g06, g08, g09, g11, and g12).

D. Convergence of DE-MOC

In order to discuss the quality and robustness of the
proposed approach, it is necessary to verify the rate at which
the algorithm is able to achieve optimal or near-optimal
solutions, i.e. the convergence dynamics of the approach. The
convergence result for each problem is shown in figures 1
and 2 so that the efficiency of DE-MOC can be demonstrated
more explicitly.

From Fig 1 and Fig 2, it can be seen that DE-MOC con-
verges very fast.For ten out of thirteen problems it converges
to a stable value after about 20,000 NFFEs except for g02,
g03, and g11.

In summary, we can conclude that DE-MOC is slightly
superior to SR, SMES, and IS-PAES. And it is substantially
superior to ODCOEA in terms of the quality of the resulting
solutions. Both DE-MOC and ISR are the competitive ap-
proaches for COPs. In general, DE-MOC can be considered
as a good trade-off between efficiency and effectiveness for
constrained evolutionary optimization.

V. CONCLUSIONS

This paper presents an efficient multiobjective DE algo-
rithm to COPs. Our approach integrates established tech-
niques in existing EA’s in a single unique algorithm. It is
characterized by a) it uses the orthogonal design method
with quantization technique to generate the initial population;
also the crossover operator based on the orthogonal design
method is employed; b) a novel constraint-handling method
based on Pareto dominance concept is proposed to handle the
constraints; c) an archive is adopted to store the nondomi-
nated solutions and the ε-dominance is used to update the
archive; and d) the hybrid selection mechanism is proposed
to use the archive solution to guide the search.

Our approach is tested on 13 benchmark functions and
the results indicate that this approach can be used to solve a
range of COPs with linear/nonlinear equality/inequality con-
straints, as well as continuous/discontinuous search spaces.
Compared with five state-of-the-art EAs, our approach pro-
vide a highly competitive performance. Moreover, this ap-
proach is easy to implement and its computational cost is
relatively low.
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