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Abstract

Differential evolution (DE) is a simple yet powerful evolutionary algorithm (EA) for global numerical optimization. However,
its performance is significantly influenced by its parameters. Parameter adaptation has been proven to be an efficient wayfor the
enhancement of the performance of the DE algorithm. Based onthe analysis of the behavior of the crossover in DE, we find that
the trial vector is directly related to its binary string, but not directly related to the crossover rate. Based on this inspiration, in this
paper, we propose a crossover rate repair technique for the adaptive DE algorithms that are based on successful parameters. The
crossover rate in DE is repaired by its corresponding binarystring, i.e. by using the average number of components taken from
the mutant. The average value of the binary string is used to replace the original crossover rate. To verify the effectiveness of the
proposed technique, it is combined with an adaptive DE variant, JADE, which is a highly competitive DE variant. Experiments
have been conducted on 25 functions presented in CEC-2005 competition. The results indicate that our proposed crossover rate
technique is able to enhance the performance of JADE. In addition, compared with other DE variants and state-of-the-artEAs, the
improved JADE method obtains better, or at least comparable, results in terms of the quality of final solutions and the convergence
rate.
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1. Introduction

Differential evolution (DE), proposed by Storn and Price in
1995 [1, 2], is a simple, efficient, and versatile population-based
evolutionary algorithm (EA) for the global numerical optimiza-
tion. The advantages are its simple structure, ease of use, speed,
and robustness. Due to these advantages, DE has been suc-
cessfully applied in diverse fields, such as data mining, pattern
recognition, digital filter design, etc. [3, 4]. In addition, re-
cent studies demonstrate the highly competitive performance
provided by DE in constrained optimization problems, multi-
objective optimization problems, and other complex problems.
More details on the state-of-the-art research within DE canbe
found in two surveys [5] and [6] and the references therein.

There are three algorithmic parameters in the original DE al-
gorithm, which are i) the population sizeNP; ii) the crossover
rateCR; and iii) the scaling factorF. Originally, these param-
eters are user-specified and kept fixed during the run. Howev-
er, recent studies indicate that the performance of DE is very
sensitive to the parameter setting and the choice of the bestpa-
rameters is always problem-dependent [7, 8, 9]. In order to
obtain acceptable results, we need different parameter settings
for different problems at hand. Even for the same problem, d-
ifferent parameters are required at different stages of evolution.
Thus, some researchers investigated the parameter adaptation
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techniques to adaptively choose the parameters for the DE al-
gorithm, such as jDE [9], SaDE [10], JADE [11], and so on.
These adaptive DE variants obtained very promising resultsin
the DE literature.

In this paper, we first analyze the behavior of the crossover
operator. Then, we propose a crossover rate repair technique
for the adaptive DE algorithm. The crossover rate in DE is
repaired by its corresponding binary string,i.e. by using the
average number of components taken from the mutant. As it
will be explained in the following sections, we can see that the
crossover rate repair technique is very simple. In order to e-
valuate the efficiency of our proposed technique, it is combined
with an adaptive DE variant, JADE [11], which is a highly com-
petitive DE variant. Experiments have been conducted on 25
benchmark functions presented in CEC-2005 competition [12]
on real-parameter numerical optimization. In addition, the pro-
posed crossover rate repair technique is also incorporatedin-
to SaDE [10] and EPSDE [13]. Experimental results indicate
that this technique is able to enhance the performance of JADE,
SaDE, and EPSDE in the test functions atD = 30 andD = 50.
Moreover, compared with other DE variants and state-of-the-
art EAs, the improved JADE method obtains better, or at least
comparable, results in terms of the quality of final solutions and
the convergence rate.

The rest of this paper is organized as follows. Section 2
briefly introduces the original DE algorithm and the related
work. In Section 3 we present our proposed crossover rate
repair technique in detail. In Section 4, we comprehensively
evaluate the performance of our approach through differentex-
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periments. In this last section, Section 5, we conclude the work
of this paper.

2. Related Work

In this section, we first briefly introduce the original DE al-
gorithm. Then, the studies on the influence of crossover in DE
are briefly introduced. Finally, the recently proposed adaptive
DE variants in the literature are surveyed.

2.1. Differential Evolution

DE algorithm is initially proposed to solve numerical opti-
mization problems. Without loss of generality, in this work, we
consider the following numerical optimization problem:

Minimize f (x), x ∈ RD, (1)

wherex = [x1, x2, · · · , xD]T , andD is the dimension,i.e., the
number of decision variables. Generally, for each variablex j , it
satisfies a boundary constraint, such that:

L j ≤ x j ≤ U j , j = 1, 2, · · · ,D. (2)

whereL j andU j are respectively the lower bound and upper
bound ofx j .

2.1.1. Initialization
The DE population consists ofNPvectors. Initially, the pop-

ulation is generated at random. For example, for thei-th vector
xi it is initialized as follows:

xi, j = L j + rndreal(0, 1) ·
(

U j − L j

)

(3)

wherei = 1, · · · ,NP, j = 1, · · · ,D, and rndreal(0, 1) is a uni-
formly distributed random real number in (0, 1).

2.1.2. Mutation
After initialization, the mutation operation is applied togen-

erate the mutant vectorvi for each target vectorxi in the current
population. There are many mutation strategies available in the
literature [3, 14, 11], the classical one is “DE/rand/1”:

vi = xr1 + F ·
(

xr2 − xr3

)

(4)

whereF is the mutation scaling factor,r1, r2, r3 ∈ {1, · · · ,NP}
are mutually different integers randomly generated, andr1 ,

r2 , r3 , i.

2.1.3. Crossover
In order to diversify the current population, following mu-

tation, DE employs the crossover operator to produce the trial
vectorui betweenxi andvi. The most commonly used operator
is thebinomialor uniformcrossover performed on each com-
ponent as follows:

ui, j =















vi, j, if (rndreal(0, 1) < CRor j = jrand)

xi, j, otherwise
(5)

whereCR is the crossover rate andjrand is a randomly gen-
erated integer within [1,D]. It is worth noting that there
are other crossover operators in DE, such as theexponential
crossover [3]. However, in this paper, we only focus on the
binomial crossover mentioned above due to its promising per-
formance obtained.

2.1.4. Selection
Finally, to keep the population size constant in the following

generations, the selection operation is employed to determine
whether the trial or the target vector survives to the next gen-
eration. In DE, theone-to-one tournament selectionis used as
follows:

xi =















ui , if f (ui) ≤ f (xi)

xi , otherwise
(6)

where f (x) is the objective function to be optimized. For the
sake of clarity, the pseudo-code of DE with “DE/rand/1/bin”is
given in Algorithm 1, where rndint(1,D) returns a uniformly
distributed random integer number between 1 andD.

Algorithm 1 The DE algorithm with “DE/rand/1/bin”
1: Generate the initial population
2: Evaluate the fitness for each individual
3: while the halting criterion is not satisfieddo
4: for i = 1 to NPdo
5: Select uniform randomlyr1 , r2 , r3 , i
6: jrand = rndint(1,D)
7: for j = 1 to D do
8: if rndrealj(0, 1) < CRor j is equal tojrand then
9: ui, j = xr1, j + F ·

(

xr2, j − xr3, j
)

10: else
11: ui, j = xi, j

12: end if
13: end for
14: end for
15: for i = 1 to NPdo
16: Evaluate the offspringui

17: if f (ui) is better thanor equal tof (xi) then
18: Replacexi with ui

19: end if
20: end for
21: end while

2.2. Influence of Crossover in DE

The crossover operator, which is designated to enhance the
potential diversity of the population, plays an important role in
DE. In the DE family of algorithms there are mainly two kinds
of crossover methods:binomialandexponential[3]. Between
the two crossover methods, there are two essential differences:
i) the probability distribution of crossover length; and ii) the in-
heritance continuity [15]. In the binomial crossover, the relation
between the probability distribution and its crossover rateCRis
linear; while in the exponential crossover the relation is nonlin-
ear [16, 17]. Through exponential crossover the trial vector gets
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a fraction of the mutant consecutively (in cyclic sense) while the
inheritance by binomial crossover is non-consecutive [15].

In the DE literature, there are some studies that have ex-
amined the influence of crossover. In [16, 17], Zaharie ana-
lyzed the influence of the crossover operator and the crossover
rateCRon the behavior of DE. The relation between mutation
probability pm and crossover rateCR is also theoretically an-
alyzed for several variants of crossover in [16, 17]. Linet al.
presented theoretical analysis and comparative study of differ-
ent crossover methods in DE to better understand the role of
crossover [15]. They also designed two new crossover method-
s, namely consecutive binomial crossover and non-consecutive
exponential crossover. In [15], the authors concluded thatthe
choice of the proper crossover method and its associated pa-
rameters is dependent on the features of the problems.

The crossover rateCRis used to control which and how many
components to be mutated in each element of the current pop-
ulation [17]. Low values ofCR result in a small number of pa-
rameters to be changed in each generation, and hence, to make
moves to be orthogonal to the current axes. On the other hand,
high values ofCR(near 1) cause moves at angles to the search s-
pace’s axes [6, 18]. Rönkkönenet al.suggest that for separable
problemsCR ≤ 0.2 was appropriate, while for non-separable
problemsCR > 0.9 was best [19]. In [20], the properties of
the moves with different values ofCRand their effects on DE’s
search behavior was studied. Montgomery and Chen analyzed
the operation of DE at low and high crossover rates in [18].
DE with low values ofCR ≤ 0.1 is able to maintain a highly
diverse population throughout its course, especially in complex
landscapes. On the other hand, DE with high values ofCRcaus-
es rapid convergence but loses the diversity so early [18]. The
authors suggest that both low and high values ofCRare able to
produce effective moves: low values can conduct gradual and
frequently successful exploration; while high values are capa-
ble of producing rapid improvements in solution quality and
contraction of the search space [20, 18].

2.3. Parameter Adaptation in DE
As above-mentioned, there are three parameters (NP,CR,

and F) in DE. The performance of DE is significantly influ-
enced by the parameter settings, and the choice of the best pa-
rameters is difficult and problem-dependent [7, 8]. There are
some empirical guidance for the parameter setting in the DE
literature [2, 7, 3]. However, most of the claims are mutual-
ly countered and lack sufficient experimental justifications [6].
Therefore, in order to improve the performance of DE and make
it use more easily, DE researchers investigate the parameter
adaptation techniques to adaptively control the parameters of
DE during the run.

In [21], the scaling factorF is controlled by a fitness-based
adaptation, while the crossover rateCR is fixed to 0.5. Li-
u and Lampinen [8] proposed a Fuzzy Adaptive DE (FADE),
which employs fuzzy logic controllers to adapt the mutation
and crossover control parameters. Brestet al. [9] proposed self-
adapting control parameter settings. Their proposed approach
encodes theF andCRparameters into the chromosome and us-
es a self-adaptive control mechanism to change them. Salman

et al. [22] proposed a self-adaptive DE (SDE) algorithm that e-
liminates the need for manual tuning of control parameters.In
SDE, the mutation weighting factorF is self-adapted by a muta-
tion strategy similar to the mutation operator of DE. Nobakhti
and Wang [23] proposed a Randomized Adaptive Differential
Evolution (RADE) method, where a simple randomized self-
adaptive scheme was proposed for the mutation weighting fac-
tor F. Daset al. [24] proposed two variants of DE, DERSF and
DETVSF, that use varying scale factors. They concluded that
those variants outperform the original DE. Teo [25] presented
a dynamic self-adaptive populations DE, where the population
size is self-adapting. Through five De Jong’s test functions,
they showed that DE with self-adaptive populations produced
highly competitive results. Brest and Maučec [26] proposed an
improved DE method, where the population size is gradually
reduced. Qinet al. [10] presented the SaDE algorithm, where
both the mutation strategies and their associated crossover CR
is adaptively controlled according to their previous successful
experience; the scaling factorF is generated for each target vec-
tor asFi = N(0.5, 0.3), whereN(0.5, 0.3) is a normal distribu-
tion with mean value 0.5 and standard deviation 0.3. Zhang and
Sanderson [11, 27] proposed an adaptive DE variant, namely
JADE. In JADE, the parameters (CR andF) of DE are updat-
ed iteratively according to their previous successful experience.
Recently, Ghoshet al. [28] proposed the FiADE algorithm, in
which bothCR andF are adapted based on the objective val-
ue of individuals in the DE population. As analyzed in [18]
large values ofCR are able to accelerate the convergence, Li
et al.presented an improved JADE variant [29], where the pow-
er mean is employed to calculate the mean value to replace the
arithmetic mean used in JADE [11]. In [30, 13], the authors
presented an adaptive DE variant with ensemble of parameter-
s and mutation strategies. The parameters are initially chosen
from fixed pools. During the evolution process, if the trial vec-
tor is worse than its target vector, then they are updated ran-
domly with new parameter values from the respective pools or
from the successful combinations stored in the previous gen-
erations. Islamet al. [31] proposed an adaptive DE algorith-
m (called MDE pBX). In MDE pBX, the authors presented a
novel mutation strategy (“DE/current-to-grbest/1”) and a new
crossover strategy (namely “pBX” crossover). In addition, sim-
ilar to the parameter adaptation used in [11],CRandF are up-
dated iteratively according to their previous successful experi-
ence in MDEpBX.

3. Crossover Rate Repair in Adaptive DE

As the above literature survey to the adaptive DE variants, we
notice that there are some algorithms that update the parameters
based on their previous successful experience in the last gener-
ations, such as SaDE [10], JADE [11], MDEpBX [31]. The
rationale of these parameter adaptation techniques is that“Bet-
ter control parameter values tend to generate individuals that
are more likely to survive and thus these values should be prop-
agated” [11]. In this work, we mainly focus on the adaptive DE
algorithm, and try to enhance its performance based on our pro-
posed crossover rate repair technique, which will be presented
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in Section 3.2. In addition, combined the crossover rate repair
method with JADE, the improved JADE variant, Rcr-JADE, is
proposed in Section 3.3.

3.1. Motivations

3.1.1. Behavior of Binomial Crossover in DE
The most commonly used crossover operator is thebinomial

or uniformcrossover (see (5)) in the DE algorithm. In order to
analyze the behavior of the binomial crossover, we letbi be a
binary string generated for each target vectorxi as follows:

bi, j =















1, if (rndreal(0, 1) < CRor j = jrand)

0, otherwise
(7)

Therefore, the binomial crossover of DE in (5) can be reformu-
lated as

ui, j = bi, j · vi, j + (1− bi, j) · xi, j (8)

where i = 1, · · · ,NP and j = 1, · · · ,D. According to (7)
and (8), we can see that the binary stringbi is stochastically
related toCR; however, the trial vectorui is directly related to
its binary stringbi , but not directly related to its crossover rate
CR.

3.1.2. Adaptive DE Variants based on Successful Parameters
In the adaptive DE variants, letCRi andFi be the associated

parameters of the target vectorxi , in this context, we give two
definitions:

Definition 1 (Successful trial vector). In DE, if the trial vector
ui produced by its target vectorxi survives to the next genera-
tion according to(6), we sayui is a successful trial vector.

Definition 2 (Successful parameters). The parameters CRi
and Fi for generating the successful trial vectorui are called
successful parameters.

Algorithm 2 Adaptive DEs based on successful parameters
1: Generate the initial populationP(0) at random;
2: Set the generation countert← 1;
3: while The halting criteria are not satisfieddo
4: CalculateCRi and Fi for each target vector with some

distributions (such asGaussian, Cauchy);
5: Generate trial vector from the parents usingmutationand

crossover;
6: Get the next populationP(t + 1) by the DEselectionop-

eration;
7: Save the successfulCRi andFi in SCR andSF , respec-

tively;
8: Update the distribution parameters withSCR andSF ;
9: t← t + 1

10: end while

Based on the above definitions, the pseudo-code of the adap-
tive DE variants based on successful parameters can be de-
scribed in Algorithm 2. Note that in Algorithm 2 (also in Algo-
rithm 3),SCR is used to store the successfulCRvalues, however,

in different adaptive DE variants it may be applied in different
manners. For example, in SaDE [10]SCR saves the success-
ful CRvalues in the previous few generations (learning period).
While in JADE [11],SCR saves the successfulCRvalues only
in the last generation. As mention above, in the adaptive DE
algorithms, SaDE [10], JADE [11], and MDEpBX [31] are
the representative variants based on successful parameters in
the previous generations. These three algorithms have obtained
very promising results [10, 11, 31]. However, their performance
might be influenced by the initial distribution parameters (e.g.,
the initial mean valueµCR and location factorµF in JADE).

For example, for JADE we set the initialµCR ∈ [0.1, 1.0] with
step size by 0.1, and keep the initialµF = 0.51. JADE is used
to minimize the sphere function (f01 in [32]) at D = 30 over 50
independent runs. The convergence curves and evolution trend
of µCR of JADE are shown in Fig. 1(a) and 1(b), respectively.
From Fig. 1(a), it can be seen that JADE with the initialµCR =

0.8, 0.9, 1.0 values obtain similar results. For other initialµCR

values, the results are significantly different. In addition, from
Fig. 1(b), we see that the optimalµCR value is around 0.8 for the
sphere function. However, if the initialµCR value in JADE is far
away from 0.8 (e.g., µCR = 0.3), JADE is difficult to converge
to the optimalµCR value, and hence, its performance is poor.

Algorithm 3 Procedure of crossover rate repair
1: GenerateCRi andFi for each target vectorxi ;
2: Generate the mutant vectorvi by a specific DE mutation

strategy;
3: Get the binary stringbi :

bi, j =















1, if (rndreal(0, 1) < CRi or j = jrand)

0, otherwise

4: Calculate the repaired crossover rateCR′i using (9);
5: Obtain the trial vectorui by (8);
6: Save the successfulCR′i andFi in SCR andSF , respectively;
7: Update the distribution parameters withSCR andSF ;

3.2. Crossover Rate Repair Technique
From (7), we know that the successful trial vectorui is di-

rectly related to its binary stringbi , but not directly related to
its original crossover rateCRi . In addition, in the adaptive DE
variants based on successful parameters, the performance might
be significantly influenced by the initial distribution parame-
ters. Based on these considerations, in this work, we propose
a crossover rate repair technique to enhance the adaptive DE
methods that updateCRandF based on successful parameter-
s. The crossover rate is repaired by its corresponding binary
string, i.e. by using the average number of components taken
from the mutant. Suppose thatCR′i is the repaired crossover
rate, it is calculated as

CR′i =

∑D
j=1 bi, j

D
(9)

1Since we only focus on repairing the crossover rate in this work, the initial
µF = 0.5 is adopted for all experiments.
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wherebi is the binary string calculated in (7),i = 1, · · · ,NP,
and j = 1, · · · ,D. The crossover rate is repaired after its binary
string is generated in (7) based onCRi . If the trial vectorui

is a successful vector,CR′i will be stored inSCR, instead of
storingCRi . The procedure of crossover rate repair technique
in adaptive DE is shown in Algorithm 3. From Algorithm 3 we
can see that this technique is very simple without adding any
additional parameter.

Algorithm 4 Rcr-JADE: Crossover rate repaired JADE
1: Initialize the populationP(0) at random;
2: SetµCR = 0.5, µF = 0.5,A = φ, c = 0.1, p = 0.05, t = 1;
3: while The halting criterion is not satisfieddo
4: SCR = φ,SF = φ;
5: for i = 1 to NP do
6: GenerateCRi andFi with (14) and (16), respectively;
7: Produce the mutant vectorvi with one of JADE mutation

strategy as described in Appendix A.1;
8: Get the binary stringbi as stated in Algorithm 3; ⇐

9: Calculate the repaired crossover rateCR′i with (9); ⇐

10: for j = 1 to D do
11: ui, j = bi, j · vi, j + (1− bi, j ) · xi, j ; ⇐

12: end for
13: end for
14: for i = 1 to NP do
15: Evaluate the offspringui ;
16: if f (ui) is better thanor equal tof (xi) then
17: Update the archiveA with the inferior solutionxi ;
18: CR′i → SCR;
19: Fi → SF ;
20: Replacexi with ui ;
21: end if
22: end for
23: Update theµCR andµF with (15) and (17), respectively;
24: t = t + 1;
25: end while

After the crossover rate is repaired, we now use the repaired
JADE to minimize the sphere function atD = 30. We also set
the initial µCR ∈ [0.1, 1.0] with step size by 0.1, and keep the
initial µF = 0.5. The convergence curves and evolution trend
of µCR of the repaired JADE are respectively shown in Fig. 1(d)
and 1(e). From Fig. 1(e), it is clear that for all initial values the
µCR can finally converges to the optimal value around 0.85 in
the sphere function. Compared the convergence rate between
JADE and the repaired JADE, Fig. 1(a) and 1(d) indicate that
the repaired JADE converges faster than JADE, especially when
the initialµCR is far away from the optimal value. The reason is
that saving the repairedCR′i is more reasonable than savingCRi ,
since the trial vector isdirectly related to its binary string. In
order to further explain it, we select a multimodal function, the
Ackley function (f10 in [32]) at D = 30, to perform the same
experiments with different initialµCR values. The results are
plotted in Fig. 2. From Fig. 2 we can also observe the similar
phenomenon like Fig. 1. The crossover rate repair techniqueis
also able to improve the performance of JADE with different
initial µCR vlaues for the Ackley function. Additionally, the
enhanced performance of the repaired JADE algorithm will also
be observed in Section 4.

3.3. Rcr-JADE: Crossover Rate Repaired JADE
By combining our proposed crossover rate repair technique

with JADE2, the repaired JADE algorithm is proposed, referred
to as Rcr-JADE. The only difference between JADE and Rcr-
JADE is that in Rcr-JADE the repaired crossover rateCR′i is
stored intoSCR if it can produce a successful trial vector; while
in JADE the originalCRi is saved intoSCR. The pseudo-code
of Rcr-JADE is illustrated in Algorithm 4. Modified steps with
respect to JADE are marked with a left arrow “⇐”. As an-
alyzed in [27, pp. 52], in general, the overall complexity of
JADE is O(G · NP · D), whereG is the maximal generations.
Since our proposed Rcr-JADE does not increase the complex-
ity of JADE at all, the overall complexity of Rcr-JADE is al-
so O(G · NP · D). Note that Rcr-JADE is only an illustration
of combing the crossover rate repair technique with JADE, our
proposed technique is also able to integrate into other adaptive
DE variants based on successful parameters, such as SaDE [10]
and EPSDE [13].

4. Experimental Results and Analysis

In order to verify the performance of our approach, we
choose 25 benchmark functions presented in CEC-2005 com-
petition [12] on real-parameter optimization as the test suite.
The detailed description of these functions can be found in [12].
Briefly, they can be categorized into four groups:

• Unimodal functions: F01 - F05;

• Basic multimodal functions: F06 - F12;

• Expanded multimodal functions: F13 - F14;

• Hybrid composition functions: F15 - F25.

To compare the results of different algorithms, each function
is optimized over 50 independent runs. We use the same set of
initial random populations to evaluate different algorithms in a
similar way done in [33],i.e., all of the compared algorithms
are started from the same initial population in each out of 50
runs. The error valuef (x) − f (x∗) is recorded for the solution
x, wherex∗ is the global minimum of the function. The average
and standard deviation of the error values over all independent
runs are calculated. The results are compared using three non-
parametric statistical hypothesis tests: i) the Friedman test (to
obtain the final rankings of different algorithms for all function-
s); ii) Iman-Davenport test (to check the differences between
all algorithms for all functions); and iii) the paired Wilcoxon
signed-rank test atα = 0.05 (to compare the significance be-
tween two algorithms in multi-problem and single-problem).
The first two statistical tests and the multi-problem analysis by
the Wilcoxon signed-rank test are calculated by the KEEL soft-
ware tool [34]. When the Wilcoxon signed-rank test is applied
to a single problem in all runs, the results are obtained by the
OriginPro software, since in the KEEL software the values less
than 5.0E − 11 have been approximated to 0.

2The original JADE algorithm is briefly described in AppendixA. More
details can be found in [11, 27].
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Figure 1: Convergence curves (1(a),1(d)), evolution trendof µCR (1(b),1(e)) and evolution trend ofµF (1(c),1(f)) of JADE and Rcr-JADE in sphere function at
D = 30 with different initialµCR values. (1(a),1(b),1(c)) for JADE; (1(d),1(e),1(f)) for Rcr-JADE.
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Figure 2: Convergence curves (2(a),2(d)), evolution trendof µCR (2(b),2(e)) and evolution trend ofµF (2(c),2(f)) of JADE and Rcr-JADE in Ackley’s function at
D = 30 with different initialµCR values. (2(a),2(b),2(c)) for JADE; (2(d),2(e),2(f)) for Rcr-JADE.
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Figure 3: Average Rankings of JADE and Rcr-JADE variants (Friedman) for all
functions atD = 30.

4.1. Parameter Setting

In all experiments, we use the following parameters for JADE
and Rcr-JADE unless a change is mentioned.

• Dimension of each function:D = 30 andD = 50;

• Population size:NP= 100 [11, 27];

• Initial distribution parameters:µCR = 0.5 and µF =

0.5 [11, 27];

• c = 0.1 andp = 0.05 [11, 27];

• Maximal number of fitness function evaluations
(Max NFFEs): MaxNFFEs =D × 10, 000 [12].

4.2. Comparison Among Different JADE Variants

At first, we need to evaluate the effectiveness of our proposed
crossover rate repair technique for enhancing the originalJADE
algorithm. To address this issue, we compare JADE with Rcr-
JADE for all test instances atD = 30 andD = 50. Since
there are four mutation strategies in JADE [11, 27] (see Ap-
pendix A.1), there are four JADE and four Rcr-JADE variants
based on each of the four mutation strategies. They are:

• JADE-s1 and Rcr-JADE-s1: based on “DE/current-to-
pbest/1 (without archive)”;

• JADE-s2 and Rcr-JADE-s2: based on “DE/rand-to-pbest/1
(without archive)”;

• JADE-s3 and Rcr-JADE-s3: based on “DE/current-to-
pbest/1 (with archive)”;

• JADE-s4 and Rcr-JADE-s4: based on “DE/rand-to-pbest/1
(with archive)”.
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Figure 4: Average rankings of JADE and Rcr-JADE variants (Friedman) for all
functions atD = 50.

The error values of all JADE and Rcr-JADE algorithms are
shown in Tables 1 and 2 for all functions atD = 30 andD = 50,
respectively3. All results are averaged over 50 independent run-
s. The overall best and the second best results among the eight
JADE variants are highlighted ingray boldface andboldface,
respectively. In addition, according to the Wilcoxon’s test, the
results are summarized as “w/t/l”, which means that Rcr-JADE
wins in w functions, ties int functions, and loses inl function-
s, compared with its corresponding JADE. Moreover, the final
rankings of all JADE variants for all functions atD = 30 and
D = 50 are plotted in Figures 3 and 4, respectively.

According to the error values in Tables 1 and 2, thep-values
computed by Iman-Daveport test are 1.09E−01 and 1.10E−03
for all functions atD = 30 andD = 50, respectively. The re-
sults indicate that there are no significant differences between
the compared algorithms for all functions atD = 30. However,
when the dimension is scaled up to 50, the differences are sig-
nificant between the compared algorithms for all functions at
α = 0.05. In addition, based on the Wilcoxon’s test we can see
that in the majority of the test functions Rcr-JADE performs sig-
nificantly better than its corresponding JADE. For example,at
D = 30 Rcr-JADE-s3 wins in 10 cases, ties in 14 cases, and on-
ly loses in 1 case, compared with JADE-s3. The only exception
is for Rcr-JADE-s1 and JADE-s1 atD = 50, both algorithm-
s obtain similar results in the most of functions (18 out of 25).
Rcr-JADE-s1 only wins in 5 cases, but loses in 2 cases. The rea-
son is that for the higher dimensional problems, “DE/current-
to-pbest/1” strategy used in the two algorithms does not provide
sufficient diversity, and hence, the performance of both of them
are poor (see the rankings in Figure 4). The insufficient diversi-
ty causes that Rcr-JADE-s1 only slightly improves JADE-s1 for
higher dimensional problems.

3Note that we also test all JADE and Rcr-JADE variants for all functions at
D = 10. Like D = 30 andD = 50, similar results can be observed, thus, we
omit to present the results atD = 10 to save the space.

8



jDE SaDE EPSDE−c CoDE Rcr−JADE−s4
0

0.5

1

1.5

2

2.5

3

3.5

4

Algorithm

R
an

ki
ng

Average ranking of DE variants based on direct comparison

 

 

Figure 5: Average rankings of the state-of-the-art DE variants (Friedman) for
all functions atD = 30, where the direct comparison is performed.

With respect to the average rankings of all algorithms accord-
ing to the Friedman test, the results are respectively shownin
Figures 3 and 4 for all functions atD = 30 andD = 50. The
lower the bar, the better ranking the algorithm obtains. It is clear
that Rcr-JADE consistently ranks better than its corresponding
JADE regardless of the dimensions of the test functions.

In general, from the above analysis of the results shown in
Tables 1 - 2 and Figures 3 - 4, we can conclude that our pro-
posed crossover rate repair technique is effective and it can en-
hance the performance of JADE. By carefully looking at the
results presented in Figures 3 and 4, we see that Rcr-JADE-s4
obtains the overall best rankings. Therefore, in the following
experiments, we only compare Rcr-JADE-s4 with other algo-
rithms.

Table 4: Ranks Computed by the Wilcoxon Test for State-of-the-Art DE Vari-
ants on CEC-2005 Benchmark Functions atD = 30. • = the Method in the Row
Improves the Method of the Column.◦ = the Method in the Column Improves
the Method of the Row. Upper Diagonal of Level Significanceα = 0.1, Lower
Diagonal Level of Significanceα = 0.05.

(1) (2) (3) (4) (5)

jDE (1) – 56.0 27.0◦ 30.0◦ 30.0◦

SaDE (2) 115.0 – 23.0◦ 84.0 42.5◦

EPSDE-c (3) 163.0• 167.0• – 117.0 58.0

CoDE (4) 141.0• 69.0 73.0 – 64.0

Rcr-JADE-s4 (5) 180.0• 167.5• 132.0 146.0 –

4.3. Comparison With Other DE Variants
In this section, Rcr-JADE-s4 is compared with other state-

of-the-art DE variants. Both the direct comparison and indirect
comparison are presented to evaluate the performance of Rcr-
JADE-s4.

4.3.1. Direct Comparison
First, Rcr-JADE-s4 is directly compared with four DE vari-

ants, which have obtained competitive results in the literature.

jDE SaDE JADE EPSDE−c CoDE Rcr−JADE−s4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
Average rankings of DE variants based on indirect comparison

Algorithm

R
an

ki
ng

Figure 6: Average rankings of the state-of-the-art DE variants (Friedman) for
all functions atD = 30, where the indirect comparison is performed.

Table 6: Ranks Computed by the Wilcoxon Test for State-of-the-Art DE Vari-
ants on CEC-2005 Benchmark Functions atD = 30, Where the Indirect Com-
parison is Performed.• = the Method in the Row Improves the Method of the
Column. ◦ = the Method in the Column Improves the Method of the Row.
Upper Diagonal of Level Significanceα = 0.1, Lower Diagonal Level of Sig-
nificanceα = 0.05.

(1) (2) (3) (4) (5) (6)

jDE (1) – 129.0 29.0◦ 69.0◦ 8.0◦ 30.0◦

SaDE (2) 102.0 – 100.0 65.0◦ 69.5◦ 51.0◦

JADE (3) 107.0• 153.0 – 122.0 60.0 79.0

EPSDE-c (4) 184.0• 235.0• 131.0 – 142.0 96.0

CoDE (5) 128.0• 183.5 76.0 111.0 – 68.0

Rcr-JADE-s4 (6) 180.0• 202.0• 152.0 157.0 122.0 –

The four DE variants are jDE [9], SaDE [10], EPSDE-c [30]4,
and CoDE [35]. Since Rcr-JADE-s4 has been compared with
JADE in the previous section, we do not compare them again.
jDE is a self-adaptive DE algorithm, where the parametersCR
andF are self-adaptively controlled during the evolution. In the
other three DE algorithms, the ensemble of different mutation
strategies is implemented. In addition, in SaDE and EPSDE-c
the parameters are also adaptively updated. While in CoDE the
parameters are randomly selected for each strategy in a specif-
ic pool. In order to make a fair comparison, for jDE, SaDE,
EPSDE-c, and CoDE, all the parameters are set as the same
used in their original literature. All algorithms are evaluated
for all the functions atD = 30. The error values are shown
in Table 3. Figure 5 shows the average rankings of the consid-
ered DE algorithms based on the Friedman test. In addition,
due to the importance of the multiple-problem statistical analy-
sis [36], we present the results of the multiple-problem Wilcox-
on signed-rank test in Table 4, where “•” means that the method
in the row improves the method of the column, and “◦” mean-
s that the method in the column improves the method of the

4There are two versions of EPSDE in [30] and [13]. We refer to EPSDE-c
and EPSDE-j for the conference and journal version, respectively.
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Figure 7: Convergence curves of different DE variants for the selected functions. (a) - (i): F01 - F09.
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Figure 8: Convergence curves of different DE variants for the selected functions. (a) - (e): F10 - F14; (f) - (h): F16 - F18;(i): F22.
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row. Upper diagonal of level significanceα = 0.1, and lower
diagonal level of significanceα = 0.05. Furthermore, in order
to compare the convergence rate among different algorithms,
some representative convergence graphs of the DE algorithms
are shown in Fig. 7 and 8. Note that the convergence graph-
s show themedianerror performance of the best solution over
the total runs [12].

The p-value computed by Iman-Davenport test on the aver-
age error values shown in Table 3 is 2.37E − 03, which states
that there are significant differences on the behavior of thecom-
pared DE algorithms for all the functions atα = 0.05. From
Table 3, we can observe that the proposed Rcr-JADE-s4 consis-
tently provides the best error values in the majority of all test
cases. Rcr-JADE-s4 significantly outperforms in 15, 17, 16, and
15 functions compared with jDE, SaDE, EPSDE-c, and CoDE,
respectively. Additionally, in 14 out of 25 functions, Rcr-JADE-
s4 obtains the best final results compared with other four DE
algorithms.

According to the average rankings of all considered DE
algorithms based on the Friedman test, Figure 5 shows that
Rcr-JADE-s4 obtains the first ranking, followed by EPSDE-c,
CoDE, SaDE, and jDE.

In Table 4, the multiple-problem Wilcoxon signed-rank test
is applied based on the average error values shown in Table 3.
The results in Table 4 are the positive ranksR+ computed by
the Wilcoxon signed-rank test when the algorithm in the row is
compare with one in the column. Rcr-JADE-s4 obtains higher
R+ values thanR− in all cases, which means that Rcr-JADE-s4
is better than other compared DE variants for all functions.

With respect to the convergence rate, Fig. 7 and 8 show that
Rcr-JADE-s4 converges fastest in most of the functions com-
pared with other four DE algorithms.

4.3.2. Indirect Comparison

Since there are other DE variants that have conducted exper-
iments on the CEC-2005 benchmark functions, in this section,
we compare the results of Rcr-JADE-s4 with the reported results
of other DE variants on the CEC-2005 benchmark functions at
D = 30. Rcr-JADE-s4 is indirectly compared with jDE, SaDE,
JADE, ESPDE-c, and CoDE. The results of jDE, SaDE, JADE,
and CoDE are all obtained from Table I in [35]. The results of
EPSDE-c are gotten from Table 2 in [30]. The error values are
reported in Table 5. In the six DE variants, the best and the sec-
ond best results are respectively highlighted ingray boldface
andboldface. Averaged rankings obtained by each method in
the Friedman test are shown in Figure 6. Also, the results of
the multiple-problem Wilcoxon signed-rank test are tabulated
in Table 6.

Table 5 shows that in 10 out of 25 cases Rcr-JADE-s4 pro-
vides the 1st best error values, and in 9 functions it obtains the
2nd best error values. According to Figure 6, we can see that
Rcr-JADE-s4 gets the first ranking, followed by CoDE, EPSDE-
c, JADE, jDE, and SaDE. In addition, Table 6 indicates that
Rcr-JADE-s4 obtains higherR+ values thanR− compared with
other five DE variants, which means that Rcr-JADE-s4 is able
to provide overall better results than other five compared DE
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Figure 9: Average rankings of the state-of-the-art EAs (Friedman) for all func-
tions atD = 30.

variants for all functions. In general, based on the indirect com-
parison with other state-of-the-art DE variants, we can seethat
Rcr-JADE-s4 is still highly competitive.

4.4. Comparison With State-of-the-Art EAs

In the previous experiments, Rcr-JADE-s4 is compared with
other state-of-the-art DE variants in the literature. In this sec-
tion, it is also compared with other state-of-the-art non-DE
EAs: GL-25 [37], LEP [38], CMA-ES [39], CLPSO [40],
and OLPSO-L [41]. GL-25, proposed by Garcı́a-Martı́nez
et al. [37], is a hybrid real-coded genetic algorithm based on
parent-centric crossover operators. In [38], Lee and Yao pro-
posed the LEP algorithm, which is an improved evolution-
ary programming based on the Lévy probability distribution.
Hansenet al. [39] proposed CMA-ES, which is a very efficient
evolution strategy for global numerical optimization. Actually,
there are several variants of CMA-ES, such as restart CMA-ES
proposed in [42]. In this work, we only use its basic version
for comparison. CLPSO and OLPSO-L are two particle swarm
optimization (PSO) algorithms, which obtain promising results
in the PSO literature. CLPSO, proposed by Lianget al. [40],
updates a particle’s velocity using all other particles’ historical
best information. In OLPSO-L [41], Zhanet al.proposed an or-
thogonal learning strategy to discover more useful information
between its historical best experience and its neighborhood’s
best experience. In [41], the authors presented two versions of
OLPSO,i.e. OLPSO-G (based on global best experience) and
OLPSO-L (based on local best experience). Since OLPSO-L
obtains better results than OLPSO-G, it is selected for compar-
ison.

In order to make a fair comparison, for GL-25, LEP, CMA-
ES, CLPSO, and OLPSO-L, all the parameters are set as the
same used in their original literature. All algorithms are evalu-
ated for all the functions atD = 30 over 50 independent runs.
Table 7 describes the error values of all compared algorithms.
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Table 8: Ranks Computed by the Wilcoxon Test for State-of-the-Art EAs on
CEC-2005 Benchmark Functions atD = 30. • = the Method in the Row Im-
proves the Method of the Column.◦ = the Method in the Column Improves
the Method of the Row. Upper Diagonal of Level Significanceα = 0.1, Lower
Diagonal Level of Significanceα = 0.05.

(1) (2) (3) (4) (5) (6)

GL-25 (1) – 195.0• 137.5 144.0 156.0 35.0◦

LEP (2) 81.0◦ – 143.0 134.5 107.0 7.0◦

CMA-ES (3) 138.5 157.0 – 161.0 196.0 93.0

CLPSO (4) 109.0 190.5 139.0 – 121.5 34.0◦

OLPSO-L (5) 120.0 193.0 129.0 154.5 – 33.0◦

Rcr-JADE-s4 (6) 218.0• 293.0• 207.0 197.0• 220.0• –

The average rankings of the considered EAs based on the Fried-
man test are shown in Figure 9. In addition, we also present the
results of the multiple-problem Wilcoxon signed-rank testin
Table 8.

According to Ivan-Davenport test, there are significant differ-
ences among the compared algorithms (thep-value obtained is
2.67E−04). Compared with GL-25, LEP, CLPSO, and OLPSO-
L, Table 7 shows that Rcr-JADE-s4 performs significantly better
in 18, 24, 17, and 17 functions. Based on the multiple-problem
Wilcoxon test shown in Table 8, the results also confirm that
Rcr-JADE-s4 is significantly better than GL-25, LEP, CLPSO,
and OLPSO-L with 95% confidence. Compared with CMA-ES,
Rcr-JADE-s4 wins in 13 cases, ties in 3 cases, but loses in 9 cas-
es. And the multiple-problem Wilcoxon test indicates that both
of the two algorithm have no significant differences atα = 0.05
andα = 0.1. In Table 7, it also shows that Rcr-JADE-s4 ob-
tains the best results in 12 out of 25 cases, and CMA-ES gets
the best results in 9 out of 25 cases. However, Rcr-JADE-s4 ob-
tains higher positive ranks (R+ = 207.0) than that of CMA-ES
(R+ = 93.0). In addition, from Table 8, we can see that only
Rcr-JADE-s4 is able to significantly outperform GL-25, LEP,
CLPSO, and OLPSO-L; while there are no significant differ-
ences among CMA-EA, GL-25, LEP, CLPSO, and OLPSO-L
for all test problems atD = 30. Moreover, from Figure 9, it is
clear that Rcr-JADE-s4 ranks the first, followed by CMA-ES,
GL-25, CLPSO, OLPSO-L, and LEP.

In summary, according to the results shown in Tables 7 - 8,
we can conclude that our proposed Rcr-JADE-s4 is highly com-
petitive to the above-mentioned state-of-the-art EAs. There-
sults of Rcr-JADE-s4 are better than, or at least comparable to,
those of the state-of-the-art EAs in terms of the quality of the
final solutions.

4.5. Study on the Influence to Other Adaptive DE Variants

In the above sections, our proposed crossover rate repair
technique is integrated into JADE, and the proposed Rcr-JADE
is compared with other state-of-the-art DE and non-DE algo-
rithms. The results demonstrate the superiority of our approach.
Thus, we will be asked: “Can the proposed crossover rate re-
pair technique be used to enhance other adaptive DE algorithm-
s based on successful parameters?” To address this question,
in this section, we integrate this technique into SaDE [10] and

EPSDE-j [13]5, and the modified SaDE and EPSDE-j is respec-
tively referred to as Rcr-SaDE and Rcr-EPSDE-j. It is worth
noting that the crossover rate repair technique can also be com-
bined with MDE pBX [31]. However, since MDEpBX em-
ployed the similar parameter adaptation method to JADE, we
do not verify it again in this work.

4.5.1. Influence to SaDE
All the parameters are set as used in [10] for both SaDE and

Rcr-SaDE. The error values of SaDE and Rcr-SaDE are given in
Table 9 for all functions atD = 30 andD = 50. All results are
averaged over 50 independent runs. The better results are high-
lighted inboldfacecompared between SaDE and Rcr-SaDE for
D = 30 andD = 50, respectively.

With respect toD = 30, thep-value of the multi-problem
analysis between SaDE and Rcr-SaDE by the Wilcoxon signed-
rank test is 1.24E − 03, which leads to rejection of H0 at
α = 0.05. It indicates that there are significant differences be-
tween the two algorithms for all functions. From Table 9, we
see that Rcr-SaDE is significantly better than SaDE in 10 out of
25 functions. In the rest 15 functions there are no significant
differences between SaDE and Rcr-SaDE. Additionally, in 15
out of 25 functions, Rcr-SaDE obtains better error values than
SaDE.

For all functions atD = 50, there are no significant differ-
ences between SaDE and Rcr-SaDE atα = 0.05 (thep-value
of the multi-problem analysis by the Wilcoxon signed-rank test
is 5.51E − 02). However, according to Table 9, it can be seen
that Rcr-SaDE significantly outperforms SaDE in 9 out of 25
functions. While there are no functions that SaDE obtains sig-
nificantly better results compared with Rcr-SaDE. Table 9 also
shows that in 13 cases Rcr-SaDE is better than SaDE; but only
in 4 functions (F03, F07, F15, and F18) Rcr-SaDE is worse than
SaDE.

It is worth pointing out that Rcr-SaDE improves SaDE sig-
nificantly for all functions atD = 30; while the improvement of
Rcr-SaDE is not significant atD = 50, according to the multi-
problem analysis by the Wilcoxon signed-rank test atα = 0.05.
The reason might be that in Rcr-SaDE the mutation strategy
“DE/current-to-rand/1” is selected in the strategy pool. This s-
trategy, which is not controlled by the crossover operator,is a
rotation-invariant strategy [14]. As stated in [3, pp. 101], rota-
tional invarianceis very important to obtain good performance
for parameter-dependent problems. In the benchmark function-
s presented in CEC-2005 [12], most of them are rotated and
parameter-dependent. Thus, for the rotated problems atD = 50,
“DE/current-to-rand/1” maybe dominate other three strategies
that are controlled by crossover operator during the evolution.
As a result, the improvement of Rcr-SaDE is decreased for the
problems atD = 50.

4.5.2. Influence to EPSDE-j
In EPSDE-j [13], if trial vector is better than its target vector,

5We do not integrate the crossover rate repair technique intoEPSDE-c [30],
since in the original implementation of EPSDE-c the successful parameters
were not used.
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the crossover rate associated with mutation strategy and scal-
ing factor is retained with trial vector which becomes the target
vector in the next generation. The successful parameter values
and strategy are also saved in the archive. Otherwise, if trial
vector is worse than its target vector, then the strategy andpa-
rameter values of the target vector will be reinitialized orcho-
sen from the archive randomly. In this section, our proposed
crossover rate repair technique is also used in EPSDE-j, andthe
repaired EPSDE-j (Rcr-EPSDE-j) is compared with EPSDE-j
for all functions atD = 30 andD = 50. All parameters are kept
the same as the original literature in [13]. The results, which
are averaged over 50 independent runs, are shown in Table 10.

For the functions atD = 30, Table 10 describes that in 13 out
of 25 functions Rcr-EPSDE-j obtains better error values com-
pared with those of EPSDE-j. In 12 functions, Rcr-EPSDE-j is
significantly better than EPSDE-j. Rcr-EPSDE-j loses in 7 func-
tions. In the remaining 6 functions, the differences between the
two algorithms are not significant. Thep-value of the multi-
problem analysis between EPSDE-j and Rcr-EPSDE-j by the
Wilcoxon signed-rank test is 4.30E − 02. Thus, there are sig-
nificant differences atα = 0.05 between the two algorithms in
all functions atD = 30.

When the dimensions are scaled toD = 50, the differences
between EPSDE-j and Rcr-EPSDE-j are also significant in all
functions, since thep-value is 2.54E − 02 based on the multi-
problem analysis between the two algorithms by the Wilcoxon
signed-rank test atα = 0.05. From Table 10 it can be seen that
in 14 out of 25 functions Rcr-EPSDE-j provides significantly
better results. In addition, in the majority of the functions (18
out of 25), Rcr-EPSDE-j obtain better error values than those of
EPSDE-j. Only in 5 functions (F04, F17, F19, F20, and F25),
EPSDE-j is significantly better than Rcr-EPSDE-j.

In general, from the results shown in Tables 9 and 10 and
the above analysis, it confirms that our proposed crossover
rate repair technique is also able to enhance both of the per-
formance of SaDE and EPSDE-j. Hence, we can except that
this crossover rate repair technique can be similarly useful to
the performance enhancement of other adaptive DE approach-
es, which update the crossover rateCRbased on its successful
experience.

4.6. Performance on Moderate-dimensional Problems

In order to better understand the performance of our ap-
proach, in this section, Rcr-JADE-s4 is compared with JADE-s4
on the moderate-dimensional problems atD = 100. Because
functions F15 - F25 are too time-consuming, we only selec-
t functions F01 - F14 for comparison6. In [11], the population
sizeNP= 400 is used for problems atD = 100. Therefore, we
also setNP= 400 for both JADE-s4 and Rcr-JADE-s4. All oth-
er parameters are kept unchanged as mentioned in Section 4.1.
The results are described in Table 11. Table 11 shows that in
6 out of 14 functions Rcr-JADE-s4 significantly outperforms
JADE-s4 in terms of the error values. Only in function F13,

6Although all functions are originally defined up toD = 50 in CEC-2005, it
is easy to make some changes to scale them toD = 100.

Table 11: Comparison on the Error Values Between JADE-s4 andRcr-JADE-s4
for Functions F01 - F14 atD = 100.

Prob JADE-s4 Rcr-JADE-s4

F01 0.00E+00± 0.00E+00 = 0.00E+00± 0.00E+00

F02 1.33E+05± 5.08E+04 + 3.09E+04± 6.25E+04

F03 2.20E-06± 2.21E-06 = 2.87E-06± 5.90E-06

F04 1.82E+05± 8.14E+04 + 5.73E+04± 9.50E+04

F05 2.27E+03± 4.36E+02 = 2.13E+03± 4.13E+02

F06 2.13E+01± 5.40E+00 = 1.91E+01± 6.82E+00

F07 3.45E+00± 6.95E-01 + 1.61E+00± 1.71E-01

F08 2.13E+01± 5.38E-02 = 2.13E+01± 3.74E-02

F09 5.27E-02± 1.19E-02 + 4.55E-02± 2.84E-02

F10 8.56E+01± 3.83E+01 = 8.34E+01± 1.32E+01

F11 1.21E+02± 1.70E+01 + 7.65E+01± 2.47E+01

F12 1.72E+05± 2.60E+05 + 1.83E+04± 6.76E+04

F13 1.28E+01± 5.91E-01 – 1.32E+01± 5.03E-01

F14 4.62E+01± 4.42E-01 = 4.63E+01± 6.73E-01

w/t/l 6/7/1 –

“+”, “–”, and “=” indicate our approach is respectively better than,

worse than, or similar to its competitor according to the Wilcoxon

signed-rank test atα = 0.05.

JADE-s4 is significantly better than Rcr-JADE-s4. There are
no significant differences between Rcr-JADE-s4 and JADE-s4
in the rest 7 functions. In addition, thep-value of the multi-
problem analysis between JADE-s4 and Rcr-JADE-s4 by the
Wilcoxon signed-rank test is 1.22E−02, which means that there
are significant differences atα = 0.05 between the two algo-
rithms for functions F01 - F14 atD = 100. Thus, according to
the results in Table 11, we can conclude that the crossover rate
repair technique is also capable of enhancing the performance
of JADE on the moderate-dimensional problems.

However, it is worth pointing out that the potential advan-
tage of the crossover rate repair technique might be decrease
when the problem size is large, especially for the large-scale
problems, because the sample mean becomes closer to the real
mean when the sample size increases. In our future work, we
will evaluate the proposed crossover rate repair techniquein the
large-scale problems [43].

4.7. Parameter Study

In the previous experiments, we set the default parameter set-
tings originally used in JADE [11, 27]. In [11], parameter study
on c and p was conducted, and the recommended values are
1/c ∈ [5, 20] and p ∈ [5%, 20%]. In addition, the study on
the effect of the initialµCR andµF values indicate that an initial
setting ofµCR = µF = 0.5 works well for a wide range of test
functions [11]. In this section, we perform the parameter study
on the population sizeNPand the initialµF value to investigate
the enhanced performance of Rcr-JADE. Note that in this study
we do not try to find the optimal values forNP andµF , but to
verify the improved performance obtained after integrating the
crossover rate repairing technique into JADE.

4.7.1. Influence of Population Size
To study the influence of the population size to the perfor-

mance of Rcr-JADE and JADE, in this section, Rcr-JADE-s4
is compared with JADE-s4 for all functions atD = 30. The
population sizeNP = 50 andNP = 200 are used. All other
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parameters are kept the same as mentioned in Section 4.1. The
results are tabulated in Table 12. All results are averaged over
50 independent runs.

When NP = 50, the results in Table 12 shows that in 9
out of 25 functions Rcr-JADE-s4 improves JADE-s4 signifi-
cantly in terms of the error values. However, in 6 functions
(F10, F13, F16, F18, F19 and F20), Rcr-JADE-s4 is statistical-
ly worse than JADE-s4. In 10 functions, both of them obtains
similar results. Rcr-JADE-s4 is able to obtain higherR+ value
(157.0 > 53.0). According to the multi-problem analysis be-
tween the two algorithms by the Wilcoxon signed-rank test, the
p-value is 5.20E−2, which means that the differences between
Rcr-JADE-s4 and JADE-s4 are not significant atα = 0.05 in all
functions. The reason might be that the small population size is
not sufficient to Rcr-JADE-s4 and JADE-s4 in the majority of
the test functions atD = 30.

WhenNP = 200, thep-value of the multi-problem analysis
between the two algorithms by the Wilcoxon signed-rank testis
3.05E − 4, which leads to rejection of H0 atα = 0.05. It indi-
cates that there are significant differences between Rcr-JADE-
s4 and JADE-s4 in all functions. In 13 functions, Rcr-JADE-s4
is significantly better than JADE-s4. Rcr-JADE-s4 only loses in
function F13. In the rest 11 functions, there are not significant
differences between the two algorithms.

Although there are no significant differences between Rcr-
JADE-s4 and JADE-s4 withNP= 50 in all functions, however,
in general, the population size does not influence the enhanced
performance compared between Rcr-JADE-s4 and JADE-s4.
With different population size (NP = 50, 100, and 200), Rcr-
JADE-s4 consistently obtains better results in the majority of
test functions.

Table 14: Statistical Results Between Rcr-JADE-s4 and JADE-s4 (Rcr-JADE-s4
vs JADE-s4) by the Wilcoxon Signed-rank Test for All Functions with Differ-
ent Initial µF Values. TheBoldface andItalic of the p-value Indicate that the
Differences Are Significant atα = 0.05 andα = 0.1, Respectively.

µF R+ R− p-value w/t/l

0.1 173.0 37.0 9.13E-03 6/18/1

0.2 146.0 25.0 6.58E-03 9/14/2

0.3 129.5 41.5 5.50E-02 8/15/2

0.4 167.0 23.0 2.31E-03 11/13/1

0.5 113.0 77.0 ≥ 0.2 8/17/0

0.6 138.0 15.0 2.09E-03 12/12/1

0.7 151.0 39.0 2.23E-02 12/12/1

0.8 160.0 30.0 7.11E-03 16/8/1

0.9 161.0 29.0 5.99E-03 15/7/3

4.7.2. Influence of InitialµF Value
In the previous experiments the recommended initialµF =

0.5 value is used. In order to test the influence of differen-
t initial µF values to the enhanced performance of Rcr-JADE,
in this section, Rcr-JADE-s4 is compared with JADE-s4 with
different initial µF values. The initialµF value is set toµF =

{0.1, 0.2, 0.3, 0.4, 0.6, 0.7, 0.8,0.9}. All other parameters do not
changed as described in Section 4.1. Due to the space limi-
tation, we only give the results of Rcr-JADE-s4 and JADE-s4
with initial µF = 0.1, 0.6, 0.9 in Table 13. In addition, the s-

tatistical results between the two algorithms by the Wilcoxon
signed-rank test with all initialµF values are shown in Table 14.

From Table 13, we can see that Rcr-JADE-s4 consistently
provides the better error values than those of JADE with dif-
ferent initial µF values in the majority of test functions. Rcr-
JADE-s4 obtains better error values in 14, 14, and 16 out of
25 functions with the initialµF = 0.1, 0.6, and 0.9, respective-
ly. When the initialµF = 0.1, in 6 functions Rcr-JADE-s4 is
significantly better than JADE-s4. Rcr-JADE-s4 only loses in
function F13. For the initialµF = 0.6, Rcr-JADE-s4 provides
significantly better results than JADE-s4 in 12 functions, but
only loses in 1 function. With respect to the initialµF = 0.9, in
15 out of 25 functions Rcr-JADE-s4 significantly improves the
error values compared with JADE-s4. In three functions (F12,
F13, and F15), JADE-s4 obtains statistically better results than
Rcr-JADE-s4.

In addition, Table 14 shows that in all cases Rcr-JADE-s4 ob-
tains higherR+ values, which means that Rcr-JADE-s4 is over-
all better than JADE-s4 in terms of the error values in all func-
tions based on the multi-problem analysis. Moreover, in the
cases of the initialµF = 0.1, 0.2, 0.4, 0.6,0.7, 0.8,and 0.9, the d-
ifferences are significant in all functions according to themulti-
problem analysis between the two algorithms by the Wilcoxon
signed-rank test atα = 0.05. For the initialµF = 0.3, there are
significant differences between Rcr-JADE-s4 and JADE-s4 by
the Wilcoxon signed-rank test atα = 0.1.

In general, from the results in Tables 13 and 14 and the above
analysis, we can conclude that the proposed crossover rate re-
pair technique is consistently capable of improving the perfor-
mance of the original JADE algorithm with different initialµF

values.

4.8. Real-World Applications
According to benchmark functions we see that Rcr-JADE ob-

tains highly competitive results with other DE and non-DE al-
gorithms. In this section, Rcr-JADE-s4 is also evaluated in 5
real-world problems to test its capability of solving real-world
problems. Rcr-JADE-s4 is compared with jDE, SaDE, CoDE,
and JADE-s4. The five real-world problems are: P1) Cheby-
chev polynomial fitting problem (D = 9) [3]; P2) frequen-
cy modulation sound parameter identification (D = 6) [37];
P3) spread spectrum radar poly-phase code design problem
(D = 20) [44]; P4) systems of linear equations problem
(D = 10) [37]; and P5) circular antenna array design problem
(D = 12) [45]. In the five problems, P2, P3, and P5 are al-
so appeared in CEC-2011 competition on real-world numerical
optimization problems [46].

For all algorithms we use the same parameter settings as in
Section 4.3. The MaxNEEFs are 150, 000 for all problems.
All results are averaged over 50 runs. The results are described
in Table 15. Theintermediateresults are also reported for the
functions where several algorithms can obtain the global opti-
mum of these problems. According to the results in Table 15,
we see that Rcr-JADE-s4 still provides highly competitive re-
sults compared with other DE variants. It obtains the best re-
sults in 4 (P1 - P4) out of 5 problems. In these four problems,
Rcr-JADE-s4 is significantly better than jDE, SaDE, CoDE, and
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JADE-s4. In P5, Rcr-JADE-s4 is worse than SaDE and jDE, but
better than CoDE and JADE-s4.

5. Conclusions and Future Work

With the aim of enhancing the performance of adaptive DE
algorithms based on successful parameters, in this paper, we
propose a very simple technique for repairing the crossoverrate
according to its corresponding binary string,i.e. by using the
average number of components taken from the mutant. Fur-
thermore, this crossover rate repair technique does not addany
additional parameter when integrating into adaptive DE algo-
rithms. In order to evaluate the effectiveness of our proposed
technique, it is integrated into two representative adaptive DE
variants,i.e. JADE, SaDE, and EPSDE. Experimental results
demonstrate that the proposed crossover rate repair technique
is capable of enhancing the performance of JADE and SaDE.
Moreover, compared with other state-of-the-art DE and non-DE
approaches, one of the improved JADE (Rcr-JADE-s4) obtain-
s better, or at least comparable, results in terms of the quality
of final solutions and the convergence speed. In addition, ex-
tensive experiments on the influence of moderate-dimensional
problems, different population size, and different initial µF val-
ues indicate that crossover rate repair technique consistently en-
hances the performance of the original JADE algorithm.

Ensemble of multiple strategies is able to to improve the per-
formance of DE [10, 13, 35, 47], we will try to incorporate the
repaired JADE into multiple-strategy DE variants in our future
work.

Large-scale optimization has been one of the most interest-
ing trends in recent years [43], some DE variants have obtained
promising results (see [48, 49, 50]). Thus, another future di-
rection is that the repaired JADE algorithm will be combined
with cooperative coevolution [51, 52] or other local searchtech-
niques for the large-scale continuous optimization problems.
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A. The JADE Algorithm

Since this work is mainly based on the JADE algorithm [11,
27], for the sake of completeness, the original JADE algorithm
is briefly described herein. There are three main contributions
in JADE: i) the modified mutation strategies based on thepbest
vector; ii) adaptation of the crossover rate; and iii) adaptation
of the scaling factor.

A.1. Modified Mutation Strategies

In [11] and [27], the authors presented four modified
“DE/current-to-best/1” and “DE/rand-to-best/1” strategies as
follows:

1) “DE/current-to-pbest/1 (without archive)”:

vi = xi + Fi ·
(

xp
best− xi

)

+ Fi ·
(

xr2 − xr3

)

(10)

2) “DE/rand-to-pbest/1 (without archive)”:

vi = xr1 + Fi ·
(

xp
best− xr1

)

+ Fi ·
(

xr2 − xr3

)

(11)

3) “DE/current-to-pbest/1 (with archive)”:

vi = xi + Fi ·
(

xp
best− xi

)

+ Fi ·
(

xr2 − x̃r3

)

(12)

4) “DE/rand-to-pbest/1 (with archive)”:

vi = xr1 + Fi ·
(

xp
best− xr1

)

+ Fi ·
(

xr2 − x̃r3

)

(13)

In the latter two strategies in (12) and (13), an archiveA is used
to store the inferior solutions recently explored in the evolution-
ary search.xp

bestrefers to thepbest solution, which is randomly
selected from the top 100p% solutions, withp ∈ (0, 1]. xi , xr2,
andxp

best are chosen from the current populationP; x̃r3 is ran-
domly chosen from the union between the archive and current
populations (P∪ A).

A.2. Adaptation of the Crossover Rate

In JADE, for each target vectorxi , the crossover rateCRi is
independently generated at each generation:

CRi = rndni(µCR, 0.1) (14)

and truncated to the interval [0, 1]. In (14), rndni(µCR, 0.1) is a
normal distribution with mean valueµCR and standard deviation
0.1. TheµCR is initially set to 0.5 and updated as

µCR = (1− c) · µCR+ c ·meanA(SCR) (15)

wherec is a constant in [0, 1]; meanA(·) is the usual arithmetic
mean operation; andSCR is the set of all successful crossover
ratesCRi in the current generation.
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A.3. Adaptation of the Scaling Factor

Similar to the adaptation of the crossover rate, at each gener-
ation, the scaling factorFi is independently calculated for each
target vectorxi as follows:

Fi = rndci(µF , 0.1) (16)

and then truncated to be 1.0 if Fi > 1.0 or regenerated ifFi ≤ 0.
rndci(µF , 0.1) is a random number generated according to the
Cauchy distribution with location parameterµF and scale pa-
rameter 0.1. The location parameterµF is updated in the fol-
lowing manner:

µF = (1− c) · µF + c ·meanL(SF) (17)

whereSF is the set of all successful mutation factorsFi in the
current generation; and meanL(·) is the Lehmer mean:

meanL(SF) =

∑|SF |

i=1 F2
i

∑|SF |

i=1 Fi

(18)
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Table 1: Comparison on the Error Values Between JADE and Its Corresponding Rcr-JADE for All Functions atD = 30.

Prob JADE-s1 Rcr-JADE-s1 JADE-s2 Rcr-JADE-s2

F01 0.00E+00± 0.00E+00 = 0.00E+00± 0.00E+00 0.00E+00± 0.00E+00 = 0.00E+00± 0.00E+00

F02 1.22E-27± 1.20E-27 + 8.26E-28± 4.54E-28 1.35E-27± 2.65E-27 + 6.38E-28± 3.92E-28

F03 1.55E+04± 1.06E+04 = 1.60E+04± 1.04E+04 2.82E+04± 1.53E+04 + 2.22E+04± 1.71E+04

F04 3.88E-09± 1.65E-08 – 3.47E-08± 1.41E-07 1.02E+03± 2.46E+03 = 2.78E-07± 1.02E-06

F05 1.69E+01± 3.90E+01 = 4.28E+01± 1.14E+02 9.61E+01± 1.55E+02 = 1.33E+02± 2.18E+02

F06 1.77E+01± 3.53E+01 = 8.77E-01± 1.67E+00 5.78E+00± 2.10E+01 = 4.78E-01± 1.31E+00

F07 1.29E-02± 9.11E-03 = 1.50E-02± 1.32E-02 1.33E-02± 1.01E-02 = 1.48E-02± 1.36E-02

F08 2.09E+01± 1.39E-01 + 2.02E+01± 3.28E-01 2.09E+01± 1.37E-01 + 2.02E+01± 3.61E-01

F09 0.00E+00± 0.00E+00 = 0.00E+00± 0.00E+00 0.00E+00± 0.00E+00 = 0.00E+00± 0.00E+00

F10 3.53E+01± 5.74E+00 + 2.38E+01± 4.88E+00 3.36E+01± 9.82E+00 + 2.73E+01± 8.69E+00

F11 2.74E+01± 1.57E+00 = 2.71E+01± 1.81E+00 1.69E+01± 3.48E+00 = 1.70E+01± 3.43E+00

F12 4.99E+03± 4.32E+03 + 1.70E+03± 2.09E+03 1.16E+03± 1.88E+03 = 1.50E+03± 2.17E+03

F13 1.87E+00± 1.52E-01 + 1.52E+00± 1.23E-01 2.18E+00± 1.77E-01 + 1.71E+00± 1.08E-01

F14 1.26E+01± 2.21E-01 + 1.22E+01± 3.17E-01 1.27E+01± 2.44E-01 + 1.10E+01± 9.76E-01

F15 3.69E+02± 9.08E+01 = 3.46E+02± 1.16E+02 3.48E+02± 9.31E+01 = 3.50E+02± 7.35E+01

F16 7.20E+01± 5.46E+01 + 7.78E+01± 1.06E+02 9.32E+01± 1.04E+02 + 6.39E+01± 7.30E+01

F17 1.35E+02± 8.02E+01 + 8.72E+01± 5.94E+01 8.17E+01± 8.38E+01 + 8.55E+01± 1.15E+02

F18 8.96E+02± 3.93E+01 = 8.80E+02± 5.27E+01 9.00E+02± 3.37E+01 = 9.02E+02± 3.05E+01

F19 8.89E+02± 4.49E+01 = 8.92E+02± 4.36E+01 9.06E+02± 2.19E+01 – 9.09E+02± 1.59E+01

F20 8.93E+02± 4.12E+01 = 8.92E+02± 4.37E+01 9.01E+02± 3.02E+01 – 9.07E+02± 2.22E+01

F21 5.00E+02± 0.00E+00 = 5.00E+02± 0.00E+00 5.00E+02± 0.00E+00 = 5.00E+02± 0.00E+00

F22 9.10E+02± 1.04E+01 + 9.01E+02± 1.77E+01 9.10E+02± 9.17E+00 + 8.87E+02± 1.80E+01

F23 5.34E+02± 7.89E-05 + 5.50E+02± 7.97E+01 5.42E+02± 5.46E+01 = 5.34E+02± 2.34E-03

F24 2.00E+02± 0.00E+00 = 2.00E+02± 0.00E+00 2.00E+02± 0.00E+00 = 2.00E+02± 0.00E+00

F25 2.12E+02± 1.33E-01 + 2.11E+02± 2.03E-01 2.10E+02± 4.24E-01 = 2.10E+02± 2.04E-01

w/t/l 11/13/1 – 9/14/2 –

Prob JADE-s3 Rcr-JADE-s3 JADE-s4 Rcr-JADE-s4

F01 0.00E+00± 0.00E+00 = 0.00E+00± 0.00E+00 0.00E+00± 0.00E+00 = 0.00E+00± 0.00E+00

F02 4.77E-28± 1.84E-28 + 3.74E-28± 1.19E-28 4.35E-28± 2.60E-28 + 3.78E-28± 1.98E-28

F03 9.45E+03± 7.33E+03 = 1.06E+04± 8.05E+03 1.65E+04± 1.28E+04 = 1.50E+04± 1.29E+04

F04 2.28E-14± 1.34E-13 = 2.89E-12± 1.75E-11 8.29E+02± 2.14E+03 = 6.37E-11± 3.17E-10

F05 3.97E-02± 1.34E-01 = 1.85E-01± 6.42E-01 5.60E+00± 2.77E+01 = 2.04E-01± 8.02E-01

F06 7.08E+00± 2.65E+01 = 7.18E-01± 1.55E+00 2.34E+00± 1.29E+01 = 1.59E-01± 7.89E-01

F07 7.83E-03± 8.86E-03 = 7.63E-03± 7.65E-03 4.83E-03± 5.56E-03 = 5.12E-03± 6.94E-03

F08 2.09E+01± 6.23E-02 + 2.03E+01± 4.46E-01 2.09E+01± 6.14E-02 + 2.04E+01± 4.56E-01

F09 0.00E+00± 0.00E+00 = 0.00E+00± 0.00E+00 0.00E+00± 0.00E+00 = 0.00E+00± 0.00E+00

F10 3.20E+01± 8.31E+00 + 2.28E+01± 5.15E+00 3.13E+01± 8.62E+00 + 2.47E+01± 9.35E+00

F11 2.18E+01± 6.88E+00 = 2.05E+01± 6.83E+00 1.51E+01± 3.32E+00 = 1.60E+01± 3.25E+00

F12 3.76E+03± 4.16E+03 + 2.37E+03± 3.09E+03 1.14E+03± 1.40E+03 = 1.51E+03± 2.77E+03

F13 1.82E+00± 1.57E-01 + 1.55E+00± 1.18E-01 2.16E+00± 1.48E-01 + 1.69E+00± 1.11E-01

F14 1.25E+01± 2.40E-01 + 1.20E+01± 3.41E-01 1.27E+01± 1.98E-01 + 1.12E+01± 1.02E+00

F15 3.54E+02± 9.73E+01 = 3.64E+02± 1.06E+02 3.40E+02± 8.33E+01 = 3.48E+02± 6.46E+01

F16 6.86E+01± 5.47E+01 + 7.88E+01± 1.09E+02 7.57E+01± 8.21E+01 + 5.60E+01± 5.53E+01

F17 1.62E+02± 1.20E+02 + 1.14E+02± 1.15E+02 8.15E+01± 8.72E+01 = 8.75E+01± 1.12E+02

F18 8.88E+02± 4.45E+01 = 8.91E+02± 4.29E+01 9.07E+02± 1.56E+01 = 9.10E+02± 2.20E+00

F19 8.99E+02± 3.35E+01 = 9.06E+02± 2.21E+01 9.07E+02± 1.56E+01 = 9.10E+02± 2.49E+00

F20 8.99E+02± 3.35E+01 – 9.07E+02± 2.21E+01 9.07E+02± 1.56E+01 = 9.10E+02± 2.49E+00

F21 5.00E+02± 0.00E+00 = 5.00E+02± 0.00E+00 5.00E+02± 0.00E+00 = 5.00E+02± 0.00E+00

F22 9.06E+02± 1.19E+01 + 8.92E+02± 1.48E+01 9.00E+02± 8.73E+00 + 8.63E+02± 1.47E+01

F23 5.50E+02± 7.76E+01 = 5.42E+02± 5.70E+01 5.34E+02± 3.51E-04 + 5.34E+02± 3.71E-04

F24 2.00E+02± 0.00E+00 = 2.00E+02± 0.00E+00 2.00E+02± 0.00E+00 = 2.00E+02± 0.00E+00

F25 2.12E+02± 1.05E-01 + 2.10E+02± 3.85E-01 2.09E+02± 1.32E-01 = 2.09E+02± 8.67E-02

w/t/l 10/14/1 – 8/17/0 –

“+”, “–”, and “=” indicate our approach is respectively better than, worse than, or similar to its competitor according to the

Wilcoxon signed-rank test atα = 0.05.
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Table 2: Comparison on the Error Values Between JADE and Its Corresponding Rcr-JADE for All Functions atD = 50.

Prob JADE-s1 Rcr-JADE-s1 JADE-s2 Rcr-JADE-s2

F01 0.00E+00± 0.00E+00 = 0.00E+00± 0.00E+00 0.00E+00± 0.00E+00 = 0.00E+00± 0.00E+00

F02 7.69E-21± 1.50E-20 = 1.09E-20± 2.17E-20 5.18E+03± 8.61E+03 + 5.08E-19± 1.62E-18

F03 1.95E+04± 9.19E+03 = 2.31E+04± 1.06E+04 1.45E+06± 7.01E+06 = 3.26E+04± 1.38E+04

F04 1.12E+01± 1.87E+01 – 2.76E+01± 4.24E+01 1.43E+04± 1.90E+04 + 6.18E+02± 4.21E+03

F05 2.48E+03± 4.87E+02 = 2.50E+03± 4.55E+02 2.65E+03± 5.87E+02 = 2.54E+03± 3.71E+02

F06 3.97E+00± 1.39E+01 = 2.07E+00± 2.01E+00 3.61E+00± 1.53E+01 = 1.28E+00± 1.88E+00

F07 6.78E-03± 1.15E-02 = 8.90E-03± 1.27E-02 1.77E-03± 4.14E-03 = 2.46E-03± 9.37E-03

F08 2.11E+01± 2.71E-01 + 2.03E+01± 5.06E-01 2.11E+01± 2.52E-01 + 2.05E+01± 5.38E-01

F09 0.00E+00± 0.00E+00 = 0.00E+00± 0.00E+00 0.00E+00± 0.00E+00 = 0.00E+00± 0.00E+00

F10 6.57E+01± 1.06E+01 = 6.49E+01± 1.16E+01 5.15E+01± 1.07E+01 + 4.87E+01± 1.29E+01

F11 5.26E+01± 2.44E+00 = 5.30E+01± 2.30E+00 5.28E+01± 8.21E+00 + 4.80E+01± 1.20E+01

F12 1.56E+04± 1.76E+04 + 5.96E+03± 7.43E+03 2.81E+04± 2.67E+04 + 9.10E+03± 1.12E+04

F13 2.65E+00± 1.91E-01 – 2.77E+00± 2.20E-01 2.89E+00± 1.74E-01 – 3.06E+00± 1.72E-01

F14 2.17E+01± 3.24E-01 + 2.14E+01± 3.96E-01 2.19E+01± 9.25E-01 + 2.11E+01± 1.08E+00

F15 3.34E+02± 9.20E+01 = 3.25E+02± 9.54E+01 3.26E+02± 9.43E+01 = 3.04E+02± 1.07E+02

F16 7.55E+01± 7.40E+01 + 5.66E+01± 5.17E+01 9.88E+01± 1.25E+02 + 6.28E+01± 7.38E+01

F17 1.11E+02± 4.96E+01 + 1.11E+02± 6.57E+01 6.60E+01± 4.22E+01 = 7.58E+01± 9.85E+01

F18 9.40E+02± 3.10E+01 = 9.34E+02± 3.64E+01 9.39E+02± 8.35E+00 = 9.36E+02± 2.94E+01

F19 9.40E+02± 2.28E+01 = 9.39E+02± 1.90E+01 9.39E+02± 8.73E+00 – 9.43E+02± 7.45E+00

F20 9.39E+02± 2.27E+01 = 9.41E+02± 1.70E+01 9.39E+02± 9.06E+00 – 9.42E+02± 7.41E+00

F21 5.00E+02± 0.00E+00 = 5.00E+02± 0.00E+00 5.00E+02± 0.00E+00 = 5.00E+02± 0.00E+00

F22 9.48E+02± 9.61E+00 = 9.50E+02± 8.82E+00 9.25E+02± 2.09E+01 + 9.19E+02± 1.31E+01

F23 5.59E+02± 1.04E+02 = 5.46E+02± 4.94E+01 5.39E+02± 5.21E-03 = 5.39E+02± 1.75E-02

F24 2.00E+02± 0.00E+00 = 2.00E+02± 0.00E+00 2.00E+02± 0.00E+00 = 2.00E+02± 0.00E+00

F25 2.14E+02± 8.67E-01 = 2.14E+02± 7.00E-01 2.15E+02± 7.66E-01 = 2.15E+02± 8.85E-01

w/t/l 5/18/2 – 9/13/3 –

Prob JADE-s3 Rcr-JADE-s3 JADE-s4 Rcr-JADE-s4

F01 0.00E+00± 0.00E+00 = 0.00E+00± 0.00E+00 0.00E+00± 0.00E+00 = 0.00E+00± 0.00E+00

F02 1.09E-26± 7.27E-27 = 1.15E-26± 5.27E-27 6.98E+03± 9.70E+03 + 2.14E-26± 1.64E-26

F03 1.70E+04± 1.01E+04 = 1.57E+04± 7.74E+03 3.24E+06± 8.22E+06 = 2.46E+04± 1.35E+04

F04 3.79E+00± 1.70E+01 = 2.97E+00± 1.05E+01 1.15E+04± 1.69E+04 + 8.21E+02± 5.80E+03

F05 1.89E+03± 3.98E+02 + 1.81E+03± 4.43E+02 2.08E+03± 9.91E+02 + 1.74E+03± 3.74E+02

F06 1.12E+00± 1.81E+00 = 1.67E+00± 1.99E+00 3.99E-01± 1.21E+00 = 5.58E-01± 1.40E+00

F07 4.92E-03± 9.15E-03 = 3.20E-03± 5.95E-03 4.38E-03± 7.43E-03 + 1.87E-03± 5.36E-03

F08 2.11E+01± 2.69E-01 + 2.07E+01± 5.33E-01 2.11E+01± 2.72E-01 + 2.07E+01± 5.51E-01

F09 0.00E+00± 0.00E+00 = 0.00E+00± 0.00E+00 0.00E+00± 0.00E+00 = 0.00E+00± 0.00E+00

F10 6.42E+01± 8.91E+00 + 5.61E+01± 9.72E+00 4.90E+01± 1.13E+01 = 5.12E+01± 1.18E+01

F11 5.23E+01± 2.20E+00 = 5.24E+01± 2.27E+00 5.53E+01± 7.90E+00 + 4.32E+01± 1.15E+01

F12 2.09E+04± 2.24E+04 + 8.87E+03± 1.45E+04 3.00E+04± 2.67E+04 + 6.89E+03± 1.15E+04

F13 2.69E+00± 1.90E-01 – 2.86E+00± 1.66E-01 2.94E+00± 1.69E-01 – 3.04E+00± 2.05E-01

F14 2.17E+01± 3.53E-01 + 2.15E+01± 4.86E-01 2.17E+01± 1.03E+00 + 2.08E+01± 1.24E+00

F15 3.46E+02± 8.80E+01 = 3.22E+02± 9.51E+01 3.06E+02± 9.77E+01 = 3.10E+02± 1.04E+02

F16 6.73E+01± 6.99E+01 + 6.27E+01± 7.12E+01 5.21E+01± 5.22E+01 = 5.02E+01± 2.47E+01

F17 1.17E+02± 6.24E+01 + 9.79E+01± 2.67E+01 8.08E+01± 6.91E+01 + 6.33E+01± 7.27E+01

F18 9.33E+02± 3.60E+01 = 9.29E+02± 4.06E+01 9.31E+02± 2.03E+01 = 9.30E+02± 2.78E+01

F19 9.36E+02± 2.30E+01 = 9.38E+02± 2.98E+01 9.29E+02± 2.78E+01 – 9.35E+02± 2.29E+01

F20 9.35E+02± 2.26E+01 = 9.36E+02± 2.97E+01 9.28E+02± 2.77E+01 – 9.35E+02± 2.24E+01

F21 5.00E+02± 0.00E+00 = 5.00E+02± 0.00E+00 5.00E+02± 0.00E+00 = 5.00E+02± 0.00E+00

F22 9.48E+02± 9.49E+00 + 9.44E+02± 1.12E+01 9.21E+02± 2.63E+01 + 9.05E+02± 1.33E+01

F23 5.39E+02± 3.26E-03 = 5.39E+02± 7.48E-03 5.39E+02± 6.38E-03 = 5.39E+02± 8.89E-03

F24 2.00E+02± 0.00E+00 = 2.00E+02± 0.00E+00 2.00E+02± 0.00E+00 = 2.00E+02± 0.00E+00

F25 2.14E+02± 9.13E-01 = 2.14E+02± 6.18E-01 2.14E+02± 9.23E-01 + 2.14E+02± 5.07E-01

w/t/l 8/16/1 – 11/11/3 –

“+”, “–”, and “=” indicate our approach is respectively better than, worse than, or similar to its competitor according to the

Wilcoxon signed-rank test atα = 0.05.

20



Table 3: Direct Comparison on the Error Values Among Different State-of-the-Art DE Variants for All Functions atD = 30.

Prob jDE SaDE EPSDE-c CoDE Rcr-JADE-s4

F01 0.00E+00± 0.00E+00 = 0.00E+00± 0.00E+00 = 0.00E+00± 0.00E+00 = 0.00E+00± 0.00E+00 = 0.00E+00± 0.00E+00

F02 1.22E-05± 2.22E-05 + 1.01E-15± 1.89E-15 + 1.20E-27± 3.88E-27 + 3.57E-14± 8.14E-14 + 3.78E-28± 1.98E-28

F03 1.94E+05± 1.15E+05 + 7.65E+04± 6.50E+04 + 5.99E+04± 2.77E+04 + 1.41E+05± 7.39E+04 + 1.50E+04± 1.29E+04

F04 1.86E-01± 2.33E-01 + 4.25E-02± 2.02E-01 + 2.02E-09± 4.51E-09 + 6.79E-02± 2.87E-01 + 6.37E-11± 3.17E-10

F05 1.06E+03± 4.38E+02 + 6.93E+02± 6.33E+02 + 2.25E+02± 2.38E+02 + 8.27E+02± 4.12E+02 + 2.04E-01± 8.02E-01

F06 2.93E+01± 2.79E+01 + 9.41E-01± 1.84E+00 + 1.59E-01± 2.18E-01 + 3.29E-08± 1.22E-07 + 1.59E-01± 7.89E-01

F07 1.17E-02± 9.90E-03 + 1.68E-02± 1.15E-02 + 9.86E-03± 8.94E-03 = 9.60E-03± 8.84E-03 + 5.12E-03± 6.94E-03

F08 2.09E+01± 5.18E-02 + 2.09E+01± 5.48E-02 + 2.09E+01± 4.14E-02 + 2.09E+01± 4.66E-02 + 2.04E+01± 4.56E-01

F09 0.00E+00± 0.00E+00 = 0.00E+00± 0.00E+00 = 0.00E+00± 0.00E+00 = 0.00E+00± 0.00E+00 = 0.00E+00± 0.00E+00

F10 5.54E+01± 9.44E+00 + 5.99E+01± 1.13E+01 + 3.14E+01± 4.31E+00 + 4.63E+01± 1.03E+01 + 2.47E+01± 9.35E+00

F11 2.85E+01± 1.71E+00 + 2.79E+01± 4.38E+00 + 2.03E+01± 1.20E+01 + 1.10E+01± 2.99E+00 – 1.60E+01± 3.25E+00

F12 1.45E+04± 7.82E+03 + 3.69E+03± 5.80E+03 + 2.41E+03± 2.15E+03 + 1.68E+03± 2.21E+03 = 1.51E+03± 2.77E+03

F13 1.67E+00± 1.54E-01 = 2.64E+00± 1.85E-01 + 3.76E+00± 3.54E+00 + 3.25E+00± 1.16E+00 + 1.69E+00± 1.11E-01

F14 1.30E+01± 2.20E-01 + 1.29E+01± 1.99E-01 + 1.26E+01± 2.40E-01 + 1.23E+01± 4.73E-01 + 1.12E+01± 1.02E+00

F15 3.54E+02± 9.33E+01 = 4.04E+02± 4.02E+01 + 2.15E+02± 1.88E+02 – 4.04E+02± 1.98E+01 + 3.48E+02± 6.46E+01

F16 7.47E+01± 1.12E+01 + 7.89E+01± 9.65E+00 + 9.23E+01± 4.38E+01 + 6.80E+01± 1.33E+01 + 5.60E+01± 5.53E+01

F17 1.33E+02± 1.70E+01 + 1.38E+02± 2.35E+01 + 1.36E+02± 3.66E+01 + 6.58E+01± 1.36E+01 = 8.75E+01± 1.12E+02

F18 9.06E+02± 1.74E+00 – 8.62E+02± 5.56E+01 – 8.21E+02± 4.22E+00 – 8.91E+02± 4.01E+01 – 9.10E+02± 2.20E+00

F19 9.07E+02± 1.75E+00 – 8.55E+02± 5.61E+01 – 8.22E+02± 3.87E+00 – 8.95E+02± 3.57E+01 – 9.10E+02± 2.49E+00

F20 9.07E+02± 1.79E+00 – 8.58E+02± 5.60E+01 – 8.21E+02± 4.66E+00 – 8.96E+02± 3.57E+01 – 9.10E+02± 2.49E+00

F21 5.00E+02± 0.00E+00 = 5.00E+02± 0.00E+00 = 5.00E+02± 0.00E+00 = 5.00E+02± 0.00E+00 = 5.00E+02± 0.00E+00

F22 9.02E+02± 9.14E+00 + 9.15E+02± 1.23E+01 + 8.77E+02± 1.61E+01 + 9.18E+02± 1.23E+01 + 8.63E+02± 1.47E+01

F23 5.34E+02± 2.14E-04 – 5.34E+02± 1.60E-04 = 5.34E+02± 1.76E-02 + 5.34E+02± 4.29E-04 + 5.34E+02± 3.71E-04

F24 2.00E+02± 0.00E+00 = 2.00E+02± 0.00E+00 = 2.00E+02± 0.00E+00 = 2.00E+02± 0.00E+00 = 2.00E+02± 0.00E+00

F25 2.10E+02± 3.33E-01 + 2.10E+02± 3.34E-01 + 2.11E+02± 5.17E-01 + 2.10E+02± 4.11E-01 + 2.09E+02± 2.51E-01

w/t/l 15/6/4 17/5/3 16/5/4 15/6/4 –

“+”, “–”, and “=” indicate our approach is respectively better than, worse than, or similar to its competitor according to the Wilcoxon signed-rank test atα = 0.05.

Table 5: Indirect Comparison on the Error Values Among Different State-of-the-Art DE Variants for All Functions atD = 30.

Prob jDE [35] SaDE [35] JADE [35] EPSDE-c [30] CoDE [35] Rcr-JADE-s4

F01 0.00E+00± 0.00E+00 0.00E+00± 0.00E+00 0.00E+00± 0.00E+00 0.00E+00± 0.00E+00 0.00E+00± 0.00E+00 0.00E+00± 0.00E+00

F02 1.11E-06± 1.96E-06 8.26E-06± 1.65E-05 1.07E-28± 1.00E-28 3.37E-27± 4.73E-27 1.69E-15± 3.95E-15 3.78E-28± 1.98E-28

F03 1.98E+05± 1.10E+05 4.27E+05± 2.08E+05 8.42E+03± 7.26E+03 7.74E+04± 3.77E+04 1.05E+05± 6.25E+04 1.50E+04± 1.29E+04

F04 4.40E-02± 1.26E-01 1.77E+02± 2.67E+02 1.73E-16± 5.43E-16 1.76E-12± 2.97E-12 5.81E-03± 1.38E-02 6.37E-11± 3.17E-10

F05 5.11E+02± 4.40E+02 3.25E+03± 5.90E+02 8.59E-08± 5.23E-07 2.26E+02± 2.61E+02 3.31E+02± 3.44E+02 2.04E-01± 8.02E-01

F06 2.35E+01± 2.50E+01 5.31E+01± 3.25E+01 1.02E+01± 2.96E+01 2.12E-20± 1.13E-19 1.60E-01± 7.85E-01 1.59E-01± 7.89E-01

F07 1.18E-02± 7.78E-03 1.57E-02± 1.38E-02 8.07E-03± 7.42E-03 5.60E-03± 6.11E-03 7.46E-03± 8.55E-03 5.12E-03± 6.94E-03

F08 2.09E+01± 4.86E-02 2.09E+01± 4.95E-02 2.09E+01± 1.68E-01 2.08E+01± 1.31E-01 2.01E+01± 1.41E-01 2.04E+01± 4.56E-01

F09 0.00E+00± 0.00E+00 2.39E-01± 4.33E-01 0.00E+00± 0.00E+00 0.00E+00± 0.00E+00 0.00E+00± 0.00E+00 0.00E+00± 0.00E+00

F10 5.54E+01± 8.46E+00 4.72E+01± 1.01E+01 2.41E+01± 4.61E+00 4.71E+01± 1.52E+01 4.15E+01± 1.16E+01 2.47E+01± 9.35E+00

F11 2.79E+01± 1.61E+00 1.65E+01± 2.42E+00 2.53E+01± 1.65E+00 2.86E+01± 9.61E-01 1.18E+01± 3.40E+00 1.60E+01± 3.25E+00

F12 8.63E+03± 8.31E+03 3.02E+03± 2.33E+03 6.15E+03± 4.79E+03 1.32E+04± 1.35E+04 3.05E+03± 3.80E+03 1.51E+03± 2.77E+03

F13 1.66E+00± 1.35E-01 3.94E+00± 2.81E-01 1.49E+00± 1.09E-01 1.19E+00± 1.24E-01 1.57E+00± 3.27E-01 1.69E+00± 1.11E-01

F14 1.30E+01± 2.00E-01 1.26E+01± 2.83E-01 1.23E+01± 3.11E-01 1.25E+01± 1.64E-01 1.23E+01± 4.81E-01 1.12E+01± 1.02E+00

F15 3.77E+02± 8.02E+01 3.76E+02± 7.83E+01 3.51E+02± 1.28E+02 2.12E+02± 1.98E+01 3.88E+02± 6.85E+01 3.48E+02± 6.46E+01

F16 7.94E+01± 2.96E+01 8.57E+01± 6.94E+01 1.01E+02± 1.24E+02 9.08E+01± 2.98E+01 7.37E+01± 5.13E+01 5.60E+01± 5.53E+01

F17 1.37E+02± 3.80E+01 7.83E+01± 3.76E+01 1.47E+02± 1.33E+02 1.04E+02± 7.27E+01 6.67E+01± 2.12E+01 8.75E+01± 1.12E+02

F18 9.04E+02± 1.08E+01 8.68E+02± 6.23E+01 9.04E+02± 1.03E+00 8.20E+02± 3.35E+00 9.04E+02± 1.04E+00 9.10E+02± 2.20E+00

F19 9.04E+02± 1.11E+00 8.74E+02± 6.22E+01 9.04E+02± 8.40E-01 8.21E+02± 3.35E+00 9.04E+02± 9.42E-01 9.10E+02± 2.49E+00

F20 9.04E+02± 1.10E+00 8.78E+02± 6.03E+01 9.04E+02± 8.47E-01 8.22E+02± 4.17E+00 9.04E+02± 9.01E-01 9.10E+02± 2.49E+00

F21 5.00E+02± 4.80E-13 5.52E+02± 1.82E+02 5.00E+02± 4.67E-13 5.00E+02± 6.64E-14 5.00E+02± 4.88E-13 5.00E+02± 0.00E+00

F22 8.75E+02± 1.91E+01 9.36E+02± 1.83E+01 8.66E+02± 1.91E+01 8.85E+02± 6.82E+01 8.63E+02± 2.43E+01 8.63E+02± 1.47E+01

F23 5.34E+02± 2.77E-04 5.34E+02± 3.57E-03 5.50E+02± 8.05E+01 5.07E+02± 7.26E+00 5.34E+02± 4.12E-04 5.34E+02± 3.71E-04

F24 2.00E+02± 2.85E-14 2.00E+02± 6.20E-13 2.00E+02± 2.85E-14 2.13E+02± 1.52E+00 2.00E+02± 2.85E-14 2.00E+02± 0.00E+00

F25 2.11E+02± 7.32E-01 2.14E+02± 2.00E+00 2.11E+02± 7.92E-01 2.13E+02± 2.55E+00 2.11E+02± 9.02E-01 2.09E+02± 2.51E-01
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Table 7: Comparison on the Error Values Among Different State-of-the-Art EAs for All Functions atD = 30.

Prob GL-25 LEP CMA-ES CLPSO OLPSO-L Rcr-JADE-s4

F01 1.60E-27± 2.11E-27+ 6.24E-06± 9.56E-07 + 1.25E-25± 2.38E-26 + 0.00E+00± 0.00E+00= 0.00E+00± 0.00E+00= 0.00E+00± 0.00E+00

F02 2.87E+01± 5.45E+01 + 4.46E+01± 4.49E+01 + 6.70E-25± 2.45E-25+ 6.91E+01± 2.06E+01 + 1.29E+02± 2.84E+02 + 3.78E-28± 1.98E-28

F03 2.36E+06± 1.11E+06 + 3.30E+06± 1.65E+06 + 5.31E-21± 1.51E-21– 1.39E+07± 2.83E+06 + 6.99E+06± 3.40E+06 + 1.50E+04± 1.29E+04

F04 7.83E+02± 4.58E+02 + 6.18E+03± 3.14E+03 + 4.79E+05± 1.75E+06 + 1.78E+03± 4.56E+02 + 4.53E+02± 4.40E+02+ 6.37E-11± 3.17E-10

F05 2.59E+03± 2.57E+02 + 5.91E+03± 1.19E+03 + 3.54E-10± 7.46E-11– 2.06E+03± 4.00E+02 + 2.73E+03± 1.12E+03 + 2.04E-01± 8.02E-01

F06 2.17E+01± 1.41E+00 + 1.71E+02± 2.90E+02 + 6.38E-01± 1.48E+00= 2.83E+01± 9.68E+00 + 1.60E+01± 4.02E+01 + 1.59E-01± 7.89E-01

F07 3.10E-02± 6.78E-02 + 4.81E-02± 3.77E-02 + 2.15E-03± 3.36E-03– 3.63E-02± 2.93E-02 + 9.59E-01± 8.68E-01 + 5.12E-03± 6.94E-03

F08 2.10E+01± 4.70E-02 + 2.10E+01± 4.91E-02 + 2.03E+01± 5.96E-01– 2.09E+01± 5.11E-02 + 2.10E+01± 6.09E-02 + 2.04E+01± 4.56E-01

F09 2.55E+01± 6.56E+00 + 1.81E-03± 6.18E-04 + 4.01E+02± 1.28E+02 + 0.00E+00± 0.00E+00= 0.00E+00± 0.00E+00= 0.00E+00± 0.00E+00

F10 1.51E+02± 5.34E+01 + 8.23E+01± 2.08E+01 + 4.54E+01± 1.15E+01+ 1.15E+02± 1.56E+01 + 6.88E+01± 1.68E+01 + 2.47E+01± 9.35E+00

F11 3.15E+01± 8.14E+00 + 3.93E+01± 1.21E+00 + 5.89E+00± 2.12E+00– 2.62E+01± 1.51E+00 + 2.93E+01± 4.38E+00 + 1.60E+01± 3.25E+00

F12 8.32E+03± 6.50E+03 + 6.91E+03± 6.63E+03+ 8.31E+03± 1.03E+04 + 3.36E+04± 6.54E+03 + 9.84E+03± 5.22E+03 + 1.51E+03± 2.77E+03

F13 5.17E+00± 4.17E+00 + 2.18E+00± 6.40E-01 + 3.47E+00± 7.17E-01 + 7.01E+00± 7.09E-01 + 1.11E+00± 3.61E-01– 1.69E+00± 1.11E-01

F14 1.30E+01± 2.00E-01 + 1.18E+01± 7.73E-01+ 1.47E+01± 2.84E-01 + 1.29E+01± 1.90E-01 + 1.33E+01± 3.28E-01 + 1.12E+01± 1.02E+00

F15 3.00E+02± 2.94E-02 – 3.45E+02± 7.75E+01 = 5.02E+02± 2.92E+02 + 2.92E+02± 4.54E+01– 2.96E+02± 7.54E+01– 3.48E+02± 6.46E+01

F16 1.01E+02± 8.30E+01+ 1.43E+02± 1.05E+02 + 3.63E+02± 2.47E+02 + 1.98E+02± 3.34E+01 + 1.32E+02± 4.21E+01 + 5.60E+01± 5.53E+01

F17 2.09E+02± 7.79E+00 + 1.21E+02± 6.88E+01+ 4.16E+02± 3.99E+02 + 2.33E+02± 2.97E+01 + 1.61E+02± 4.01E+01 + 8.75E+01± 1.12E+02

F18 9.06E+02± 1.56E+00 – 9.30E+02± 2.07E+01 + 9.06E+02± 1.20E+01 – 9.06E+02± 6.21E-01 – 9.07E+02± 1.41E+00 – 9.10E+02± 2.20E+00

F19 9.07E+02± 2.67E+00 – 9.27E+02± 2.84E+01 + 9.04E+02± 2.35E-01– 9.06E+02± 6.86E-01– 9.07E+02± 1.36E+00 – 9.10E+02± 2.49E+00

F20 9.05E+02± 3.65E+00– 9.33E+02± 1.02E+01 + 9.04E+02± 2.78E-01– 9.06E+02± 6.90E-01 – 9.07E+02± 1.34E+00 – 9.10E+02± 2.49E+00

F21 5.00E+02± 0.00E+00 = 5.32E+02± 1.18E+02 + 5.16E+02± 7.92E+01 = 5.00E+02± 0.00E+00 = 5.19E+02± 2.59E+01 + 5.00E+02± 0.00E+00

F22 9.32E+02± 8.69E+00 + 9.14E+02± 2.78E+01 + 8.25E+02± 1.72E+01– 9.02E+02± 8.88E+00 + 8.91E+02± 1.84E+01 + 8.63E+02± 1.47E+01

F23 5.34E+02± 6.00E-04 = 5.89E+02± 1.71E+02 + 5.44E+02± 5.42E+01 + 5.34E+02± 8.42E-05 = 5.78E+02± 4.52E+01 + 5.34E+02± 3.71E-04

F24 2.00E+02± 0.00E+00= 2.00E+02± 1.09E-04+ 2.00E+02± 0.00E+00= 2.01E+02± 6.48E+00 + 6.99E+02± 2.63E+02 + 2.00E+02± 0.00E+00

F25 2.15E+02± 2.35E+00 + 2.20E+02± 7.58E+00 + 2.14E+04± 3.25E-01 + 2.10E+02± 3.81E-01 + 2.09E+02± 4.21E-01= 2.09E+02± 2.51E-01

w/t/l 18/3/4 24/1/0 13/3/9 17/4/4 17/3/5 –

“+”, “–”, and “=” indicate our approach is respectively better than, worse than, or similar to its competitor according to the Wilcoxon signed-rank test atα = 0.05.

Table 9: Comparison on the Error Values Between SaDE and Its Corresponding Rcr-SaDE for All Functions atD = 30 andD = 50, Respectively.

Prob
D = 30 D = 50

SaDE Rcr-SaDE SaDE Rcr-SaDE

F01 0.00E+00± 0.00E+00 = 0.00E+00± 0.00E+00 0.00E+00± 0.00E+00 = 0.00E+00± 0.00E+00

F02 1.01E-15± 1.89E-15 + 2.03E-16± 4.98E-16 1.33E-08± 2.77E-08 + 6.11E-09± 1.48E-08

F03 7.65E+04± 6.50E+04 + 4.84E+04± 3.17E+04 1.07E+05± 4.52E+04 = 1.14E+05± 5.53E+04

F04 4.25E-02± 2.02E-01 = 4.62E-04± 1.20E-03 3.24E+02± 3.52E+02 + 1.67E+02± 1.56E+02

F05 6.93E+02± 6.33E+02 + 3.72E+02± 3.51E+02 3.49E+03± 5.08E+02 + 3.23E+03± 5.66E+02

F06 9.41E-01± 1.84E+00 = 1.51E+00± 1.95E+00 5.36E+00± 1.42E+01 = 3.15E+00± 2.48E+00

F07 1.68E-02± 1.15E-02 + 1.34E-02± 1.19E-02 4.48E-03± 8.70E-03 = 4.52E-03± 1.03E-02

F08 2.09E+01± 5.48E-02 = 2.09E+01± 5.36E-02 2.11E+01± 4.50E-02 = 2.11E+01± 3.18E-02

F09 0.00E+00± 0.00E+00 = 0.00E+00± 0.00E+00 0.00E+00± 0.00E+00 = 0.00E+00± 0.00E+00

F10 5.99E+01± 1.13E+01 + 4.39E+01± 1.78E+01 1.48E+02± 1.83E+01 + 1.30E+02± 3.72E+01

F11 2.79E+01± 4.38E+00 + 2.21E+01± 8.99E+00 5.73E+01± 2.04E+00 + 5.54E+01± 8.01E+00

F12 3.69E+03± 5.80E+03 = 3.06E+03± 5.27E+03 1.20E+04± 1.44E+04 = 9.11E+03± 7.54E+03

F13 2.64E+00± 1.85E-01 = 2.66E+00± 2.10E-01 5.51E+00± 3.31E-01 = 5.47E+00± 3.67E-01

F14 1.29E+01± 1.99E-01 = 1.29E+01± 1.89E-01 2.25E+01± 2.46E-01 = 2.25E+01± 2.10E-01

F15 4.04E+02± 4.02E+01 = 3.98E+02± 5.53E+01 3.76E+02± 6.57E+01 = 3.80E+02± 6.06E+01

F16 7.89E+01± 9.65E+00 + 6.13E+01± 1.88E+01 9.93E+01± 1.54E+01 + 9.03E+01± 5.07E+01

F17 1.38E+02± 2.35E+01 + 8.63E+01± 4.79E+01 1.97E+02± 1.35E+01 + 1.79E+02± 3.90E+01

F18 8.62E+02± 5.56E+01 = 8.64E+02± 5.49E+01 9.21E+02± 4.58E+01 = 9.29E+02± 3.51E+01

F19 8.55E+02± 5.61E+01 = 8.51E+02± 5.55E+01 9.14E+02± 5.42E+01 = 9.14E+02± 5.21E+01

F20 8.58E+02± 5.60E+01 = 8.51E+02± 5.53E+01 9.24E+02± 4.25E+01 = 9.19E+02± 4.96E+01

F21 5.00E+02± 0.00E+00 = 5.00E+02± 0.00E+00 5.00E+02± 0.00E+00 = 5.00E+02± 0.00E+00

F22 9.15E+02± 1.23E+01 = 9.14E+02± 1.35E+01 9.68E+02± 5.87E+00 + 9.63E+02± 6.72E+00

F23 5.34E+02± 1.60E-04 + 5.34E+02± 1.24E-04 5.39E+02± 4.14E-05 = 5.39E+02± 2.46E-03

F24 2.00E+02± 0.00E+00 = 2.00E+02± 0.00E+00 2.00E+02± 0.00E+00 = 2.00E+02± 0.00E+00

F25 2.10E+02± 3.34E-01 + 2.09E+02± 4.25E-01 2.16E+02± 8.10E-01 + 2.15E+02± 7.70E-01

w/t/l 10/15/0 – 9/16/0 –

“+”, “–”, and “=” indicate our approach is respectively better than, worse than, or similar to its competitor according to the

Wilcoxon signed-rank test atα = 0.05.
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Table 10: Comparison on the Error Values Between EPSDE-j andIts Corresponding Rcr-EPSDE-j for All Functions atD = 30 andD = 50, Respectively.

Prob
D = 30 D = 50

EPSDE-j Rcr-EPSDE-j EPSDE-j Rcr-EPSDE-j

F01 0.00E+00± 0.00E+00 = 0.00E+00± 0.00E+00 0.00E+00± 0.00E+00 = 0.00E+00± 0.00E+00

F02 2.44E-26± 1.30E-26 – 1.52E-24± 4.24E-24 4.41E-08± 2.84E-08 + 1.67E-10± 2.35E-10

F03 3.85E+05± 2.61E+05 + 7.52E+04± 5.63E+04 6.27E+05± 3.20E+05 + 5.86E+05± 3.60E+05

F04 6.54E+03± 6.37E+03 + 5.96E+03± 5.08E+03 2.65E+04± 1.69E+04 – 5.40E+04± 1.60E+04

F05 3.25E+03± 8.23E+02 + 2.12E+03± 7.80E+02 7.44E+03± 1.38E+03 + 6.59E+03± 1.33E+03

F06 5.38E-01± 1.56E+00 = 4.31E-01± 1.76E+00 5.95E-01± 1.18E+00 = 3.92E-01± 1.18E+00

F07 1.43E-02± 1.37E-02 – 2.33E-02± 1.82E-02 1.18E-02± 1.50E-02 = 1.14E-02± 1.55E-02

F08 2.09E+01± 6.36E-02 + 2.09E+01± 4.54E-02 2.11E+01± 3.49E-02 + 2.10E+01± 6.76E-02

F09 0.00E+00± 0.00E+00 = 0.00E+00± 0.00E+00 6.50E+01± 6.34E+00 + 0.00E+00± 0.00E+00

F10 5.20E+01± 1.16E+01 + 4.17E+01± 7.87E+00 1.90E+02± 5.01E+01 + 1.19E+02± 3.17E+01

F11 3.26E+01± 2.78E+00 + 2.94E+01± 1.65E+00 7.15E+01± 1.79E+00 + 5.76E+01± 6.28E+00

F12 3.74E+04± 6.61E+03 + 1.84E+04± 2.41E+03 3.04E+05± 7.11E+04 + 7.11E+04± 1.22E+04

F13 1.99E+00± 2.28E-01 + 1.15E+00± 8.40E-02 6.35E+00± 3.22E-01 + 2.16E+00± 1.61E-01

F14 1.34E+01± 3.02E-01 + 1.30E+01± 1.68E-01 2.28E+01± 7.34E-01 + 2.26E+01± 1.36E-01

F15 2.16E+02± 2.07E+01 + 2.11E+02± 3.14E+01 2.66E+02± 6.36E+01 + 2.03E+02± 3.91E+00

F16 1.69E+02± 1.45E+02 = 1.69E+02± 1.63E+02 1.56E+02± 4.74E+01 + 1.41E+02± 6.35E+01

F17 1.81E+02± 1.02E+02 + 1.41E+02± 1.12E+02 2.22E+02± 1.31E+02 – 2.99E+02± 1.34E+02

F18 8.22E+02± 3.51E+00 – 8.26E+02± 4.06E+00 8.71E+02± 4.65E+01 + 8.53E+02± 5.12E+00

F19 8.25E+02± 2.82E+00 – 8.29E+02± 5.86E+00 8.49E+02± 2.41E+00 – 8.77E+02± 3.67E+01

F20 8.23E+02± 3.55E+00 – 8.28E+02± 5.69E+00 8.46E+02± 2.91E+00 – 8.53E+02± 5.06E+00

F21 8.62E+02± 3.12E+00 + 7.94E+02± 1.55E+02 7.32E+02± 3.20E+00 = 6.92E+02± 1.07E+02

F22 5.12E+02± 8.21E+00 – 5.52E+02± 1.05E+02 5.00E+02± 7.07E-01 = 5.00E+02± 5.67E-01

F23 8.89E+02± 6.18E+01 = 8.73E+02± 4.00E+00 7.40E+02± 3.12E+00 + 6.60E+02± 1.05E+02

F24 2.20E+02± 4.43E+00 – 2.21E+02± 7.14E+00 4.72E+02± 4.10E+02 = 4.37E+02± 4.09E+02

F25 2.10E+02± 3.25E-01 = 2.10E+02± 4.15E-01 2.13E+02± 1.98E+00 – 2.14E+02± 6.58E+00

w/t/l 12/6/7 – 14/6/5 –

“+”, “–”, and “=” indicate our approach is respectively better than, worse than, or similar to its competitor according to the

Wilcoxon signed-rank test atα = 0.05.

Table 12: Comparison on the Error Values Between JADE-s4 andRcr-JADE-s4 for All Functions atD = 30 with NP= 50 andNP= 200, Respectively.

Prob
NP= 50 NP= 200

JADE-s4 Rcr-JADE-s4 JADE-s4 Rcr-JADE-s4

F01 0.00E+00± 0.00E+00 = 0.00E+00± 0.00E+00 0.00E+00± 0.00E+00 = 0.00E+00± 0.00E+00

F02 2.17E+02± 4.31E+02 + 1.48E+01± 1.05E+02 1.33E+03± 2.47E+03 + 1.53E-28± 1.02E-28

F03 2.55E+06± 4.26E+06 + 8.47E+03± 6.05E+03 1.54E+06± 4.02E+06 + 1.81E+03± 2.51E+03

F04 4.80E+02± 1.69E+03 = 1.72E-02± 1.21E-01 2.41E+03± 4.01E+03 + 5.44E-21± 3.81E-20

F05 8.48E+02± 1.16E+03 + 2.19E+02± 2.54E+02 9.71E+01± 4.81E+02 + 5.81E-04± 2.18E-03

F06 1.61E+01± 3.19E+01 + 1.28E+00± 1.88E+00 1.23E-22± 8.69E-22 = 1.19E-26± 3.57E-26

F07 7.93E-03± 5.96E-03 = 1.03E-02± 9.04E-03 7.15E-03± 4.35E-03 + 2.17E-03± 4.21E-03

F08 2.09E+01± 2.51E-01 + 2.04E+01± 3.99E-01 2.09E+01± 5.23E-02 = 2.09E+01± 1.54E-01

F09 0.00E+00± 0.00E+00 = 0.00E+00± 0.00E+00 0.00E+00± 0.00E+00 = 0.00E+00± 0.00E+00

F10 2.75E+01± 6.95E+00 – 3.23E+01± 9.45E+00 3.69E+01± 1.93E+01 + 2.11E+01± 6.50E+00

F11 2.78E+01± 4.37E+00 + 2.36E+01± 4.02E+00 2.81E+01± 5.12E+00 + 1.16E+01± 4.06E+00

F12 5.98E+03± 4.40E+03 + 3.15E+03± 4.44E+03 2.26E+04± 4.90E+03 + 1.00E+04± 1.10E+04

F13 1.18E+00± 1.02E-01 – 1.27E+00± 1.21E-01 2.18E+00± 1.85E-01 – 2.34E+00± 1.83E-01

F14 1.23E+01± 7.64E-01 + 1.19E+01± 8.78E-01 1.28E+01± 2.53E-01 + 1.12E+01± 7.52E-01

F15 3.22E+02± 8.87E+01 = 3.12E+02± 1.12E+02 3.60E+02± 5.71E+01 = 3.58E+02± 6.73E+01

F16 1.31E+02± 1.58E+02 – 1.36E+02± 1.50E+02 5.82E+01± 2.43E+01 + 3.97E+01± 1.42E+01

F17 1.50E+02± 1.37E+02 + 1.25E+02± 1.38E+02 7.62E+01± 6.35E+01 + 4.58E+01± 5.16E+01

F18 9.04E+02± 2.68E+01 – 9.07E+02± 2.76E+01 9.08E+02± 2.05E+00 = 9.08E+02± 1.79E+00

F19 9.07E+02± 2.25E+01 – 9.13E+02± 4.16E+00 9.08E+02± 1.85E+00 = 9.08E+02± 1.70E+00

F20 9.07E+02± 2.21E+01 – 9.14E+02± 4.18E+00 9.08E+02± 1.94E+00 = 9.08E+02± 1.83E+00

F21 5.31E+02± 1.14E+02 = 5.06E+02± 4.24E+01 5.00E+02± 0.00E+00 = 5.00E+02± 0.00E+00

F22 8.96E+02± 2.03E+01 = 9.02E+02± 2.26E+01 8.90E+02± 1.61E+01 + 8.79E+02± 2.59E+01

F23 5.34E+02± 9.86E-03 = 5.34E+02± 1.73E-02 5.34E+02± 2.13E-04 + 5.34E+02± 2.88E-04

F24 2.00E+02± 0.00E+00 = 2.00E+02± 0.00E+00 2.00E+02± 0.00E+00 = 2.00E+02± 0.00E+00

F25 2.10E+02± 6.77E-01 = 2.10E+02± 3.69E-01 2.09E+02± 3.26E-02 = 2.09E+02± 3.76E-02

w/t/l 9/10/6 – 13/11/1 –

“+”, “–”, and “=” indicate our approach is respectively better than, worse than, or similar to its competitor according to the

Wilcoxon signed-rank test atα = 0.05.

23



Table 13: Comparison on the Error Values Between JADE-s4 andRcr-JADE-s4 for All Functions atD = 30 with Different InitialµF Values.

Prob
µF = 0.1 µF = 0.6 µF = 0.9

JADE-s4 Rcr-JADE-s4 JADE-s4 Rcr-JADE-s4 JADE-s4 Rcr-JADE-s4

F01 0.00E+00± 0.00E+00 = 0.00E+00± 0.00E+00 0.00E+00± 0.00E+00 = 0.00E+00± 0.00E+00 0.00E+00± 0.00E+00 = 0.00E+00± 0.00E+00

F02 3.59E-28± 1.99E-28= 4.13E-28± 1.99E-28 1.31E+03± 1.89E+03 + 3.96E-28± 2.34E-28 3.79E+03± 2.14E+03 + 7.33E+02± 1.61E+03

F03 1.70E+05± 1.11E+06 + 1.33E+04± 8.32E+03 4.57E+06± 5.64E+06 + 1.44E+04± 9.71E+03 1.17E+07± 4.83E+06 + 2.72E+06± 5.35E+06

F04 5.44E+02± 2.08E+03 + 1.55E-11± 1.01E-10 1.66E+03± 3.31E+03 + 1.57E+02± 1.11E+03 8.67E+03± 5.22E+03 + 1.76E+03± 3.97E+03

F05 1.12E-01± 2.96E-01 = 3.71E-02± 7.32E-02 8.13E+02± 1.27E+03 + 2.53E+00± 1.49E+01 2.88E+03± 1.30E+03 + 1.41E-01± 3.76E-01

F06 5.97E+00± 2.17E+01 = 6.38E-01± 1.48E+00 6.84E+00± 2.34E+01 = 7.97E-02± 5.64E-01 2.27E+01± 2.31E+01 + 1.59E-01± 7.89E-01

F07 6.31E-03± 5.25E-03= 6.79E-03± 9.82E-03 7.98E-03± 5.46E-03 = 7.04E-03± 7.57E-03 8.03E-03± 5.98E-03 = 7.54E-03± 6.68E-03

F08 2.09E+01± 2.16E-01 + 2.03E+01± 4.31E-01 2.09E+01± 1.44E-01 + 2.03E+01± 4.35E-01 2.09E+01± 2.32E-01 + 2.04E+01± 4.50E-01

F09 0.00E+00± 0.00E+00 = 0.00E+00± 0.00E+00 0.00E+00± 0.00E+00 = 0.00E+00± 0.00E+00 0.00E+00± 0.00E+00 = 0.00E+00± 0.00E+00

F10 2.99E+01± 8.36E+00 = 2.95E+01± 8.86E+00 2.85E+01± 6.16E+00 + 2.34E+01± 6.82E+00 2.95E+01± 1.04E+01 + 2.45E+01± 9.11E+00

F11 2.61E+01± 4.53E+00 + 1.79E+01± 5.60E+00 2.67E+01± 5.69E+00 + 1.99E+01± 6.60E+00 2.80E+01± 4.85E+00 + 1.90E+01± 4.80E+00

F12 3.08E+03± 3.87E+03 + 1.17E+03± 1.76E+03 1.52E+04± 3.91E+03 + 1.21E+04± 8.05E+03 1.83E+04± 3.83E+03– 2.05E+04± 4.52E+03

F13 1.52E+00± 1.02E-01– 1.63E+00± 1.23E-01 1.56E+00± 1.45E-01– 1.73E+00± 1.19E-01 1.63E+00± 1.02E-01– 1.70E+00± 1.19E-01

F14 1.23E+01± 9.00E-01 + 1.12E+01± 7.25E-01 1.26E+01± 5.61E-01 + 1.13E+01± 1.00E+00 1.25E+01± 8.27E-01 + 1.14E+01± 9.32E-01

F15 3.36E+02± 6.31E+01= 3.40E+02± 8.57E+01 3.56E+02± 6.75E+01= 3.66E+02± 8.46E+01 3.12E+02± 1.08E+02– 3.53E+02± 9.81E+01

F16 1.07E+02± 1.35E+02 = 9.17E+01± 1.26E+02 8.59E+01± 1.15E+02 = 7.26E+01± 9.68E+01 6.49E+01± 4.05E+01 + 4.27E+01± 9.01E+00

F17 1.11E+02± 1.18E+02= 1.13E+02± 1.33E+02 1.00E+02± 1.05E+02 + 7.57E+01± 1.03E+02 9.30E+01± 4.64E+01 + 4.78E+01± 2.08E+01

F18 8.94E+02± 4.14E+01 = 8.86E+02± 4.88E+01 9.09E+02± 1.90E+00= 9.10E+02± 1.89E+00 9.11E+02± 1.59E+00 + 9.09E+02± 1.84E+00

F19 8.94E+02± 4.14E+01 = 8.91E+02± 4.60E+01 9.09E+02± 1.98E+00 = 9.09E+02± 1.95E+00 9.10E+02± 1.90E+00 + 9.08E+02± 2.08E+00

F20 8.94E+02± 4.14E+01 = 8.93E+02± 4.44E+01 9.09E+02± 1.87E+00 = 9.09E+02± 2.07E+00 9.10E+02± 1.85E+00 + 9.09E+02± 2.07E+00

F21 5.00E+02± 0.00E+00 = 5.00E+02± 0.00E+00 5.00E+02± 0.00E+00 = 5.00E+02± 0.00E+00 5.00E+02± 0.00E+00 = 5.00E+02± 0.00E+00

F22 8.70E+02± 1.58E+01= 8.71E+02± 1.66E+01 8.86E+02± 4.06E+01 + 8.63E+02± 1.24E+01 9.54E+02± 2.99E+01 + 8.85E+02± 4.05E+01

F23 5.34E+02± 3.53E-04 = 5.34E+02± 1.34E-02 5.34E+02± 3.44E-04 + 5.34E+02± 3.86E-04 5.34E+02± 2.68E-04 = 5.34E+02± 4.11E-04

F24 2.00E+02± 0.00E+00 = 2.00E+02± 0.00E+00 2.00E+02± 0.00E+00 = 2.00E+02± 0.00E+00 2.00E+02± 0.00E+00 = 2.00E+02± 0.00E+00

F25 2.13E+02± 2.30E+00 = 2.09E+02± 5.03E-01 2.09E+02± 3.09E-01 = 2.09E+02± 1.26E-01 2.09E+02± 6.23E-01 = 2.09E+02± 2.33E-01

w/t/l 6/18/1 – 12/12/1 – 15/7/3 –

“+”, “–”, and “=” indicate our approach is respectively better than, worse than, or similar to its competitor according to the Wilcoxon signed-rank test atα = 0.05.

Table 15: Comparison on the Performance of Different DE Variants in Five Real-World Problems.

Prob NFFEs jDE SaDE CoDE JADE-s4 Rcr-JADE-s4

P1
10,000 1.16E+04± 4.60E+03 + 2.80E+02± 1.16E+02 + 1.41E+02± 1.03E+02 + 5.77E+03± 3.11E+03 + 2.93E+00± 3.64E+00

150,000 0.00E+00± 0.00E+00 0.00E+00± 0.00E+00 0.00E+00± 0.00E+00 1.10E+01± 7.76E+01 0.00E+00± 0.00E+00

P2
10,000 2.09E+01± 2.43E+00 + 2.14E+01± 2.18E+00 + 1.86E+01± 2.72E+00 + 2.07E+01± 1.96E+00 + 2.00E+01± 2.54E+00

150,000 2.82E-01± 5.21E-01 5.50E-01± 4.64E-01 9.34E-01± 3.29E+00 7.72E-01± 1.07E+00 3.58E-02± 2.01E-01

P3 150,000 1.32E+00± 9.25E-02 + 1.95E+00± 9.78E-02 + 1.23E+00± 1.62E-01 + 1.21E+00± 1.71E-01 + 9.02E-01± 4.23E-01

P4
10,000 4.89E+02± 1.18E+02 + 3.36E+01± 7.39E+00 + 3.83E+01± 1.46E+01 + 2.60E+02± 6.46E+01 + 8.27E+00± 3.43E+00

150,000 5.87E-07± 2.16E-06 0.00E+00± 0.00E+00 6.86E-14± 3.69E-13 1.53E+00± 1.08E+01 0.00E+00± 0.00E+00

P5 150,000 -2.16E+01± 1.75E-01 = -2.17E+01± 1.40E-01 – -1.84E+01± 1.85E+00 + -1.98E+01± 1.43E+00 + -2.14E+01± 4.49E-01

w/t/l 4/1/0 4/0/1 5/0/0 5/0/0 –

“+”, “–”, and “=” indicate our approach is respectively better than, worse than, or similar to its competitor according to the Wilcoxon signed-rank test atα = 0.05.
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