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Abstract

Differential evolution (DE) is a simple yet powerful evakmary algorithm (EA) for global numerical optimization. olwever,

its performance is significantly influenced by its paranget@&arameter adaptation has been proven to be an efficierfowthe
enhancement of the performance of the DE algorithm. Basdteanalysis of the behavior of the crossover in DE, we find tha
the trial vector is directly related to its binary string timot directly related to the crossover rate. Based on tlsigifation, in this
paper, we propose a crossover rate repair technique forddgatise DE algorithms that are based on successful paresndibe
crossover rate in DE is repaired by its corresponding biséing, i.e. by using the average number of components taken from
the mutant. The average value of the binary string is usedptace the original crossover rate. To verify the effectegs of the
proposed technique, it is combined with an adaptive DE agridADE, which is a highly competitive DE variant. Experims
have been conducted on 25 functions presented in CEC-20@patdion. The results indicate that our proposed crogskate
technique is able to enhance the performance of JADE. Irtiaddcompared with other DE variants and state-of-thé=as, the
improved JADE method obtains better, or at least comparedselts in terms of the quality of final solutions and thevaygence
rate.
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1. Introduction techniques to adaptively choose the parameters for the DE al
gorithm, such as jDE [9], SaDE [10], JADE [11], and so on.

Differential evolution (DE), proposed by Storn and Price inThese adaptive DE variants obtained very promising regults
1995[1, 2], is a simple, efficient, and versatile populati@sed 4o DE literature.

evolutionary algorithm (EA) for the global numerical optira- i ) ,

tion. The advantages are its simple structure, ease ofpseds In this paper, we first analyze the behavior of the_ crossover
and robustness. Due to these advantages, DE has been spperator. Th(_en, WE propose a crossover rate repalr_tecx#zmlqu
cessfully applied in diverse fields, such as data miningepat for the adap_tlve DE algorlt_hm. _The crossover rat(_e in DE is
recognition, digital filter design, etc. [3, 4]. In additiore-  ePaired by its corresponding binary stririgz. by using the
cent studies demonstrate the highly competitive perfocean 2Verage number of components taken from the mutant. As it
provided by DE in constrained optimization problems, multi will be explained in the following sections, we can see that t

objective optimization problems, and other complex proide Crossover rate_ r_epair technique is very sim_ple. _In_ order tp €
More details on the state-of-the-art research within DElpan Valuate the efficiency of our proposed technique, itis coradi

found in two surveys [5] and [6] and the references therein. With an adaptivg DE variant., JADE [11], which is a highly com-
There are three algorithmic parameters in the original BDE alP€litive DE variant. Experiments have been conducted on 25
gorithm, which are i) the population si2¢P; i) the crossover benchmark functions presented in CEC-2005 competitioh [12

rateCR and iii) the scaling factoF. Originally, these param- on real-parameter numerical optimization. In additioe, ino-

eters are user-specified and kept fixed during the run. Howe\R0OSed crossover rate repair technique_ is also incorpq'rat_ed
er, recent studies indicate that the performance of DE ig vert0 SaDE [10] and EPSDE [13]. Experimental results indicate

sensitive to the parameter setting and the choice of thepaest that this technique is able to enhance the performance 0EJAD

rameters is always problem-dependent [7, 8, 9]. In order tg@DE: and EPSDE in the test functionsaé 30 andD = 50.
obtain acceptable results, we need different parametenget Moreover, compared with other DE variants and state-of-the
for different problems at hand. Even for the same problem gart EAs, the improved JADE method obtains better, or at least

ifferent parameters are required at different stages dfitien. comparable, results in terms of the quality of final solutiand
Thus, some researchers investigated the parameter aidaptatthe convergence rate.
The rest of this paper is organized as follows. Section 2
- . _ briefly introduces the original DE algorithm and the related
Corresponding author. Tel: +86-27-67883716. work. In Section 3 we present our proposed crossover rate
Email addressesnenyi ngong@ahoo. com . . . . . .
wygong@ug. edu. cn (Wenyin Gong)zhcai @ug. edu. cn (Zhihua repair technique in detail. In Section 4, we comprehengivel
Cai) evaluate the performance of our approach through diffement
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periments. In this last section, Section 5, we conclude thdw
of this paper.
2. Related Work

In this section, we first briefly introduce the original DE al-

whereCR is the crossover rate anghng is a randomly gen-
erated integer within [ID]. It is worth noting that there
are other crossover operators in DE, such asettonential
crossover [3]. However, in this paper, we only focus on the
binomial crossover mentioned above due to its promising per
formance obtained.

gorithm. Then, the studies on the influence of crossover in DE

are briefly introduced. Finally, the recently proposed didap
DE variants in the literature are surveyed.

2.1. Differential Evolution

DE algorithm is initially proposed to solve numerical opti-
mization problems. Without loss of generality, in this worle
consider the following numerical optimization problem:

F(x), 1)

wherex = [x1, X2, , Xp]", andD is the dimensioni.e.,, the
number of decision variables. Generally, for each variablé
satisfies a boundary constraint, such that:

Minimize x € RP,

Li<x;<Ujj=12---,D. 2
wherel; andU; are respectively the lower bound and upper
bound ofx;.

2.1.1. Initialization
The DE population consists &fP vectors. Initially, the pop-
ulation is generated at random. For example, forittievector
Xi itis initialized as follows:
X.j = Lj+rndreal(Q1)- (Uj - Lj) (3)
wherei = 1,--- ,NP, j = 1,---, D, and rndreal(0L) is a uni-
formly distributed random real number in, (.

2.1.2. Mutation
After initialization, the mutation operation is appliedgen-
erate the mutant vecter for each target vectog in the current
population. There are many mutation strategies availattied
literature [3, 14, 11], the classical one is “DE/rand/1":
Vi =Xy, + F - (X, = Xr) (4)
whereF is the mutation scaling factory, rp,r3 € {1,--- , NP}
are mutually different integers randomly generated, ane
rr #r3# 1.

2.1.3. Crossover
In order to diversify the current population, following mu-
tation, DE employs the crossover operator to produce theé tri
vectoru; betweerx; andv;. The most commonly used operator
is thebinomial or uniform crossover performed on each com-
ponent as follows:
Vij»
Xi.j»

if (rndreal(Q1) < CROr j = jrand)
otherwise

i =

()

2.1.4. Selection

Finally, to keep the population size constant in the follogvi
generations, the selection operation is employed to déterm
whether the trial or the target vector survives to the nexige
eration. In DE, theone-to-one tournament selectimused as

follows:
Xj = {

where f(x) is the objective function to be optimized. For the
sake of clarity, the pseudo-code of DE with “DE/rand/1/bm”
given in Algorithm 1, where rndint(D) returns a uniformly
distributed random integer number between 1 Bnd

ui,
X,

if f(u) < f(x)
otherwise

(6)

Algorithm 1 The DE algorithm with “DE/rand/1/bin”
1: Generate the initial population
2: Evaluate the fitness for each individual
3: while the halting criterion is not satisfietb

4: fori=1toNPdo

5 Select uniform randomly, # rp # rg # i

6: jrand = rndint(1, D)

7 for j=1toD do

8: if rndrea(0, 1) < CRor j is equal t0jrand then
o Uij = Xepj+ F - (X = Xea )

10: else

11: Uij = Xi,j

12: end if

13: end for

14:  end for

15: fori=1toNPdo

16: Evaluate the offspring;

17: if f(u;) is better tharor equal tof (x;) then
18: Replacex; with u;

19: end if

20: end for

21: end while

2.2. Influence of Crossover in DE

The crossover operator, which is designated to enhance the

potential diversity of the population, plays an importasierin

DE. In the DE family of algorithms there are mainly two kinds
of crossover methodsiinomialandexponentia[3]. Between

the two crossover methods, there are two essential diffeen

i) the probability distribution of crossover length; anythie in-
heritance continuity [15]. In the binomial crossover, tekation
between the probability distribution and its crossovez GRis
linear; while in the exponential crossover the relationdalin-

ear [16, 17]. Through exponential crossover the trial vieg#ts



a fraction of the mutant consecutively (in cyclic sense)letiie et al. [22] proposed a self-adaptive DE (SDE) algorithm that e-
inheritance by binomial crossover is non-consecutive.[15] liminates the need for manual tuning of control parametirs.

In the DE literature, there are some studies that have eXSDE, the mutation weighting factéris self-adapted by a muta-
amined the influence of crossover. In [16, 17], Zaharie anation strategy similar to the mutation operator of DE. Noltakh
lyzed the influence of the crossover operator and the cressovand Wang [23] proposed a Randomized Adaptive Differential
rateCRon the behavior of DE. The relation between mutationEvolution (RADE) method, where a simple randomized self-
probability p,, and crossover rat€R is also theoretically an- adaptive scheme was proposed for the mutation weighting fac
alyzed for several variants of crossover in [16, 17]. kiral.  tor F. Daset al.[24] proposed two variants of DE, DERSF and
presented theoretical analysis and comparative studyffef-di DETVSF, that use varying scale factors. They concluded that
ent crossover methods in DE to better understand the role dhose variants outperform the original DE. Teo [25] presédnt
crossover [15]. They also designed two new crossover metho@ dynamic self-adaptive populations DE, where the poprati
s, namely consecutive binomial crossover and non-conisecut size is self-adapting. Through five De Jong’s test functions
exponential crossover. In [15], the authors concludedttiiat they showed that DE with self-adaptive populations produce
choice of the proper crossover method and its associated phighly competitive results. Brest and Maucec [26] propbae
rameters is dependent on the features of the problems. improved DE method, where the population size is gradually

The crossover ra€Ris used to control which and how many reduced. Qiret al.[10] presented the SaDE algorithm, where
components to be mutated in each element of the current pojpoth the mutation strategies and their associated cros&ive
ulation [17]. Low values o€ Rresult in a small number of pa- is adaptively controlled according to their previous ssstel
rameters to be changed in each generation, and hence, to makegerience; the scaling factbris generated for each target vec-
moves to be orthogonal to the current axes. On the other hanthr asF; = N(0.5,0.3), whereN(0.5, 0.3) is a normal distribu-
high values oCR(near 1) cause moves at angles to the search gion with mean value & and standard deviation® Zhang and
pace’s axes [6, 18]. Ronkkdnenal.suggest that for separable Sanderson [11, 27] proposed an adaptive DE variant, namely
problemsCR < 0.2 was appropriate, while for non-separable JADE. In JADE, the parameter€R andF) of DE are updat-
problemsCR > 0.9 was best [19]. In [20], the properties of ed iteratively according to their previous successful exgnee.
the moves with different values @R and their effects on DE's Recently, Ghoslet al. [28] proposed the FIADE algorithm, in
search behavior was studied. Montgomery and Chen analyzedhich bothCR andF are adapted based on the objective val-
the operation of DE at low and high crossover rates in [18]ue of individuals in the DE population. As analyzed in [18]
DE with low values ofCR < 0.1 is able to maintain a highly large values ofCR are able to accelerate the convergence, Li
diverse population throughout its course, especially mgiex et al.presented an improved JADE variant [29], where the pow-
landscapes. On the other hand, DE with high valu€d®taus-  er mean is employed to calculate the mean value to replace the
es rapid convergence but loses the diversity so early [1B& T arithmetic mean used in JADE [11]. In [30, 13], the authors
authors suggest that both low and high value€Bfare ableto  presented an adaptive DE variant with ensemble of parameter
produce effective moves: low values can conduct gradual ansl and mutation strategies. The parameters are initiallgemo
frequently successful exploration; while high values aapaz ~ from fixed pools. During the evolution process, if the triatv
ble of producing rapid improvements in solution quality andtor is worse than its target vector, then they are updated ran

contraction of the search space [20, 18]. domly with new parameter values from the respective pools or
o from the successful combinations stored in the previous gen
2.3. Parameter Adaptation in DE erations. Islanet al. [31] proposed an adaptive DE algorith-

As above-mentioned, there are three parametdiz R m (called MDE pBX). In MDE _pBX, the authors presented a
and F) in DE. The performance of DE is significantly influ- novel mutation strategy (“DE/current-to-gest/1”) and a new
enced by the parameter settings, and the choice of the best paossover strategy (hamelpBX” crossover). In addition, sim-
rameters is difficult and problem-dependent [7, 8]. Theee arilar to the parameter adaptation used in [XARandF are up-
some empirical guidance for the parameter setting in the DElated iteratively according to their previous successtpkei-
literature [2, 7, 3]. However, most of the claims are mutual-ence in MDE pBX.
ly countered and lack sufficient experimental justificasi¢@].

_Therefore, in ord_erto improve the perfprmance of DE and mak%_ Crossover Rate Repair in Adaptive DE

it use more easily, DE researchers investigate the paramete

adaptation techniques to adaptively control the pararmeter As the above literature survey to the adaptive DE variangs, w
DE during the run. notice that there are some algorithms that update the pseesne

In [21], the scaling factoF is controlled by a fitness-based based on their previous successful experience in the lasrge
adaptation, while the crossover rdiR is fixed to 05. Li- ations, such as SaDE [10], JADE [11], MD@BX [31]. The
u and Lampinen [8] proposed a Fuzzy Adaptive DE (FADE),rationale of these parameter adaptation techniques isBk&t
which employs fuzzy logic controllers to adapt the mutationter control parameter values tend to generate individuns t
and crossover control parameters. Begsl. [9] proposed self-  are more likely to survive and thus these values should bg-pro
adapting control parameter settings. Their proposed agpro agated” [11]. In this work, we mainly focus on the adaptive DE
encodes th& andCR parameters into the chromosome and us-algorithm, and try to enhance its performance based on aur pr
es a self-adaptive control mechanism to change them. Salmamosed crossover rate repair technique, which will be ptesen
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in Section 3.2. In addition, combined the crossover ratairep in different adaptive DE variants it may be applied in difiet
method with JADE, the improved JADE variant, RIADE, is  manners. For example, in SaDE [18}{r saves the success-

proposed in Section 3.3. ful CRvalues in the previous few generations (learning period).
While in JADE [11], Scr saves the successidR values only

3.1. Motivations in the last generation. As mention above, in the adaptive DE

3.1.1. Behavior of Binomial Crossover in DE algorithms, SaDE [10], JADE [11], and MDRBX [31] are

The most commonly used crossover operator ibihemial the repr_esentative variants based on successful par;mieter
or uniformcrossover (see (5)) in the DE algorithm. In order to tN€ previous generations. These three algorithms havenebita
analyze the behavior of the binomial crossover, webjdte a ey promising results [10, 11, 31]. However, their perfaroe
binary string generated for each target vesiaas follows: m|g_ht.l.)e influenced by the initial (_:ilstrlbutlon paramet@sg(

the initial mean valugcr and location factogr in JADE).
1, if (rmdreal(Q1) < CROrj = jrand) For example, for JADE we set the initigtr € [0.1, 1.0] with
bij = ) step size by @, and keep the initigle = 0.5'. JADE is used
to minimize the sphere functiorigy in [32]) atD = 30 over 50

Therefore, the binomial crossover of DE in (5) can be reformuindependent runs. The convergence curves and evolutind tre

0, otherwise

lated as of ucgr of JADE are shown in Fig. 1(a) and 1(b), respectively.
ij=bij-vij+(1-bi)) % (8) FromFig. 1(a), it can be seen that JADE with the inifigk =
) . ] 0.8,0.9, 1.0 values obtain similar results. For other initiglg
wherei = 1,.--,NPandj = 1-.-,D. According to (7)  yajues, the results are significantly different. In addifitrom

and (8), we can see that the binary strings stochastically iy 1(p), we see that the optimair value is around @ for the

related toCR however, the trial vectaw; is directly related to  gphere function. However, if the initiakg value in JADE is far
its binary stringb;, but not directly related to its crossover rate away from 08 (e.g, ucr = 0.3), JADE is difficult to converge
CR to the optimalucg value, and hence, its performance is poor.

3.1.2. Adaptive DE Variants based on Successful Parametersaigorithm 3 Procedure of crossover rate repair
In the adaptive DE variants, &R andF; be the associated 1. Generat€CR andF; for each target vectos;

parameters of the target vectar in this context, we give two 2. Generate the mutant vectey by a specific DE mutation
definitions: strategy;

: Get the binary string;:

w

Definition 1 (Successful trial vecto). In DE, if the trial vector

u; produced by its target vectog survives to the next genera- {1 if (mdreal(Q1) < CR Of j = jrand)
Y — Jran
i.]

tion according to(6), we saw; is a successful trial vector. }
0, otherwise
Definition 2 (Successful parameters The parameters GR
and F, for generating the successful trial vector are called ~ 4: Calculate the repaired crossover rag using (9);
successful parameters. 5: Obtain the trial vectou; by (8);

6: Save the successfOR andF; in Scr andSg, respectively;
7

: Update the distribution parameters wihr andSk;

Algorithm 2 Adaptive DEs based on successful parameters
1: Generate the initial populatid?(0) at random;

2: Set the generation counter 1; 3.2. Crossover Rate Repair Technique

3: while The halting criteria are not satisfieid From (7), we know that the successful trial vectpiis di-

4. CalculateCR andF; for each target vector with some rectly related to its binary strinl;, but not directly related to
distributions (such aSaussianCauchy; its original crossover rat€R. In addition, in the adaptive DE

5. Generate trial vector from the parents usingtationand  variants based on successful parameters, the performagle m
crossovey be significantly influenced by the initial distribution pere-

6:  Getthe next populatioR(t + 1) by the DEselectiorop-  ters. Based on these considerations, in this work, we pepos
eration; a crossover rate repair technigue to enhance the adaptive DE

7. Save the successfalR andF; in Scr andSg, respec-  methods that updat@RandF based on successful parameter-
tively; s. The crossover rate is repaired by its corresponding Yinar

8. Update the distribution parameters wigg andSk; string, i.e. by using the average number of components taken

9 tet+l from the mutant. Suppose th@R is the repaired crossover

10: end while rate, it is calculated as

- 21
Based on the above definitions, the pseudo-code of the adap- CR=——F 9

tive DE variants based on successful parameters can be de- D
S_C”bed in Algorlthm 2. Note that in Algorithm 2 (also in Algo 1Since we only focus on repairing the crossover rate in thisytbe initial
rithm 3),Scris used to store the succesgiiRvalues, however, ur =05 is adopted for all experiments.
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whereb; is the binary string calculated in (7),= 1,--- ,NP,
andj =1,---,D. The crossover rate is repaired after its binary By combining our proposed crossover rate repair technique
string is generated in (7) based @R. If the trial vectoru;
is a successful vectoCR will be stored inScr, instead of
storingCR. The procedure of crossover rate repair techniqUgADE is that in R,-JADE the repaired crossover raiR is

in adaptive DE is shown in Algorithm 3. From Algorithm 3 we stored intoScr if it can produce a successful trial vector; while

can see that this technique is very simple without adding anjn JADE the originalCR is saved intdScg. The pseudo-code
additional parameter.

Algorithm 4 R.-JADE: Crossover rate repaired JADE

1: Initialize the populatiorP(0) at random;
2: Setucr = 05, ur =05,A=¢,c=01,p=005t=1;
3: while The halting criterion is not satisfietb

4. Scr=¢,SF = ¢;
5. fori=1toNPdo
6: Generat€CR andF; with (14) and (16), respectively;
7: Produce the mutant vectatr with one of JADE mutation
strategy as described in Appendix A.1;
8: Get the binary string; as stated in Algorithm 3; =
9: Calculate the repaired crossover rate with (9); =
10: for j=1toDdo
11: Ui Zbi’j - Vi +(1_bi,j)'xi,j; &=
12: end for
13:  end for
14: fori=1toNPdo
15: Evaluate the offspring;;
16: if f(u;) is better tharor equal tof (x;) then
17: Update the archivA with the inferior solutionx;;
18: CR e SCR;
19: Fi — Sk;
20: Replacex; with u;;
21: end if
22:  end for
23:  Update theucr andue with (15) and (17), respectively;
24:  t=t+1;
25: end while

3.3. R-JADE: Crossover Rate Repaired JADE

with JADE?, the repaired JADE algorithm is proposed, referred
to as R;-JADE. The only difference between JADE ang R

of Re-JADE is illustrated in Algorithm 4. Modified steps with
respect to JADE are marked with a left arrow=". As an-
alyzed in [27, pp. 52], in general, the overall complexity of
JADE isO(G - NP - D), whereG is the maximal generations.
Since our proposed RJADE does not increase the complex-
ity of JADE at all, the overall complexity of RJADE is al-
soO(G - NP - D). Note that R;-JADE is only an illustration
of combing the crossover rate repair technique with JADE, ou
proposed technique is also able to integrate into othertagap
DE variants based on successful parameters, such as SapE [10
and EPSDE [13].

4. Experimental Results and Analysis

In order to verify the performance of our approach, we
choose 25 benchmark functions presented in CEC-2005 com-
petition [12] on real-parameter optimization as the testesu
The detailed description of these functions can be founi2h
Briefly, they can be categorized into four groups:

Unimodal functions: FO1 - FO5;

e Basic multimodal functions: F06 - F12;

Expanded multimodal functions: F13 - F14;

Hybrid composition functions: F15 - F25.

To compare the results of different algorithms, each fuomcti
is optimized over 50 independent runs. We use the same set of

After the crossover rate is repaired, we now use the repaireihitial random populations to evaluate different algamithin a
JADE to minimize the sphere function Bt= 30. We also set

similar way done in [33]j.e, all of the compared algorithms

the initial ucr € [0.1, 1.0] with step size by @, and keep the are started from the same initial population in each out of 50
initial ur = 0.5. The convergence curves and evolution trenduns. The error valué(x) — f(x*) is recorded for the solution
of ucr of the repaired JADE are respectively shown in Fig. 1(d)x, wherex* is the global minimum of the function. The average
and 1(e). From Fig. 1(e), it is clear that for all initial vakithe
ucr can finally converges to the optimal value aroun8s0in
the sphere function. Compared the convergence rate betwegarametric statistical hypothesis tests: i) the Friednesh (to
JADE and the repaired JADE, Fig. 1(a) and 1(d) indicate thapbtain the final rankings of different algorithms for all fition-
the repaired JADE converges faster than JADE, especiagnwh s); i) Iman-Davenport test (to check the differences betwe
the initial ucr is far away from the optimal value. The reason is all algorithms for all functions); and iii) the paired Wilkon
that saving the repairgdlR is more reasonable than saviag,

since the trial vector iglirectly related to its binary string. In

order to further explain it, we select a multimodal functitre

Ackley function (f1p in [32]) at D = 30, to perform the same
experiments with different initiakcg values. The results are

and standard deviation of the error values over all independ
runs are calculated. The results are compared using three no

signed-rank test at = 0.05 (to compare the significance be-
tween two algorithms in multi-problem and single-problem)
The first two statistical tests and the multi-problem analpy

the Wilcoxon signed-rank test are calculated by the KEEL- sof
ware tool [34]. When the Wilcoxon signed-rank test is applie

plotted in Fig. 2. From Fig. 2 we can also observe the similatto a single problem in all runs, the results are obtained by th
phenomenon like Fig. 1. The crossover rate repair techrigjue OriginPro software, since in the KEEL software the valuss le
also able to improve the performance of JADE with differentthan 50E — 11 have been approximated to 0.

initial ucr vlaues for the Ackley function. Additionally, the
enhanced performance of the repaired JADE algorithm vgb al

be observed in Section 4.

2The original JADE algorithm is briefly described in Appendix More
details can be found in [11, 27].
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Figure 1: Convergence curves (1(a),1(d)), evolution trehdcr (1(b),1(e)) and evolution trend @i (1(c),1(f)) of JADE and R-JADE in sphere function at
D = 30 with different initialucr values. (1(a),1(b),1(c)) for JADE; (1(d),1(e),1(f)) fog,RIADE.
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Average rankings of JADE and Rc;JADE for all functions at D=30 Average ranking of JADE and Rc;JADE for all functions at D=50
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I repaired
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JADE-s1 JADE-s2 JADE-s3 JADE-s4 JADE-s1 JADE-s2 JADE-s3 JADE-s4
Algorithm Algorithm

Figure 3: Average Rankings of JADE and,RIADE variants (Friedman) for all ~ Figure 4: Average rankings of JADE and,RIADE variants (Friedman) for all
functions atD = 30. functions atD = 50.

4.1. Parameter Setting The error values of all JADE anchJADE algorithms are
) _ shown in Tables 1 and 2 for all functionst= 30 andD = 50,
In all experiments, we use the following parameters for JADErespectivel§. All results are averaged over 50 independent run-
and R,-JADE unless a change is mentioned. s. The overall best and the second best results among the eigh

JADE variants are highlighted gray boldface andboldface,

o Dimension of each functiorD = 30 andD = 50; respectively. In addition, according to the Wilcoxon'stje¢ke

e Population sizeNP = 100 [11, 27]; results are summarized as/t/l”, which means that R-JADE
wins inw functions, ties irt functions, and loses ihfunction-
e Initial distribution parametersjucg = 0.5 andur = s, compared with its corresponding JADE. Moreover, the final
0.5[11, 27]; rankings of all JADE variants for all functions &t = 30 and
D = 50 are plotted in Figures 3 and 4, respectively.
e c=01andp=0.05[11, 27]; According to the error values in Tables 1 and 2, frealues

) ] ) . computed by Iman-Daveport test ar®@9E — 01 and 110E -03
Maximal number of fitness function evaluations for al| functions atD = 30 andD = 50, respectively. The re-

(Max-NFFEs): MaxNFFEs =D x 10,000 [12]. sults indicate that there are no significant differenceseen
the compared algorithms for all functionslat= 30. However,
4.2. Comparison Among Different JADE Variants when the dimension is scaled up to 50, the differences are sig

nificant between the compared algorithms for all functions a
a = 0.05. In addition, based on the Wilcoxon'’s test we can see
that in the majority of the test functiong,RIADE performs sig-
nificantly better than its corresponding JADE. For examate,
D = 30 R;-JADE-s3 wins in 10 cases, ties in 14 cases, and on-
ly loses in 1 case, compared with JADE-s3. The only exception
is for R;,-JADE-s1 and JADE-s1 & = 50, both algorithm-
s obtain similar results in the most of functions (18 out of.25
e JADE-s1 and R-JADE-s1: based on “DE/current-to- Rcr-qADE-sl only wi_ns in5 cases, butlosesin 2 ca“ses. Therea-
pbest/1 (without archive)”: son is that for the hlgher_dlmensmnal problems, DE/cutr-ren
to-pbest/1” strategy used in the two algorithms does not provide
e JADE-s2 and R-JADE-s2: based on “DE/rand-tobest/1  Sufficient diversity, and hence, the performance of botthefit
(without archive)”; are poor (see the rankings in Figure 4). The insufficientrdive
ty causes that R-JADE-s1 only slightly improves JADE-s1 for
e JADE-s3 and R-JADE-s3: based on “DE/current-to- higher dimensional problems.
pbest/1 (with archive)”;

At first, we need to evaluate the effectiveness of our proghose
crossover rate repair technique for enhancing the origihBE
algorithm. To address this issue, we compare JADE with R
JADE for all test instances @ = 30 andD = 50. Since
there are four mutation strategies in JADE [11, 27] (see Ap
pendix A.1), there are four JADE and fougRIADE variants
based on each of the four mutation strategies. They are:

w 3Note that we also test all JADE ang,RIADE variants for all functions at
e JADE-s4 and R-JADE-s4: based on “DE/rand-fobest/1  p - 10, Like D = 30 andD = 50, similar results can be observed, thus, we

(with archive)”. omit to present the results Bt= 10 to save the space.
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Figure 5: Average rankings of the state-of-the-art DE vasigFriedman) for ~ Figure 6: Average rankings of the state-of-the-art DE vasigFriedman) for
all functions atD = 30, where the direct comparison is performed. all functions atD = 30, where the indirect comparison is performed.

With respect to the average rankings of all algorithms at:cor Table 6: Ranks Computed by the Wilcoxon Test for State-efArt DE Vari-
ing to the Friedman test, the results are respectively shpwn ants on CEC-2005 Benchmark Functiondat 30, Where the Indirect Com-
. . parison is Performede = the Method in the Row Improves the Method of the
Figures 3 and 4 for all funCt!OnS & = 30_ andD = _50' T_he Column. o = the Method in the Column Improves the Method of the Row.
lower the bar, the better ranking the algorithm obtains ¢t@éar  Upper Diagonal of Level Significance = 0.1, Lower Diagonal Level of Sig-

that R-JADE consistently ranks better than its correspondingpificancee = 0.05.

JADE regardless of the dimensions of the test functions. . @ @ (©) “ ® ®

In general, from the above analysis of the results shown in SLDDEE((lz)) — 1290 ii'(?’o zg'z 62'2 zg'z
Tables 1 - 2 and Figures 3 - 4, we can conclude that our pro- JADE (3 | 1070 | 1530 T 220 500 790
posed crossover rate repair technique is effective anchieoa EPSDE<c (4) | 1840 | 2350 | 131.0 ~ [ 1420 960
hance the performance of JADE. By carefully looking at the CoDE(5) | 1286 | 1835 | 760 | 1110 - | 680
results presented in Figures 3 and 4, we see thaiRDE-s4 Ry-JADE-s4(6) | 180.0 | 20200 | 1520 | 157.0 | 1220 -

obtains the overall best rankings. Therefore, in the folhgy

experiments, we only compare,RIADE-s4 with other algo- _ )
rithms. The four DE variants are jDE [9], SaDE [10], EPSDE-c [30]

and CoDE [35]. Since R-JADE-s4 has been compared with
Table 4 Ranks G ed by the Wil Test for State-ofAit DE Vari JADE in the previous section, we do not compare them again.
able 4: Ranks Computed by the Wilcoxon Test for State-e ari- : : 3 . .
ants on CEC-2005 Benchmark FunctionPat 30. e = the Method in the Row IDEisa self adaptlv_e DE algorlthm, where the para_me@Rs
Improves the Method of the Column.= the Method in the Column Improves  @ndF are self-adaptively controlled during the evolution. la th
the Method of the Row. Upper Diagonal of Level Significamce 0.1, Lower  other three DE algorithms, the ensemble of different moitati

Diagonal Level of Significance = 0.05. strategies is implemented. In addition, in SaDE and EPSDE-c
@ @ ©) “) (©) the parameters are also adaptively updated. While in CoBE th
JDE (1) - 56.0 | 27.0 | 30.00 | 30.0 i
parameters are randomly selected for each strategy in #-spec
SaDE (2) 115.0 - 23.00 84.0 | 42.% . . . .
ErsoEc() | 1630 | 1670 —T 170 ss0 ic pool. In order to make a fair comparison, for DE, SaDE,
CoDE (4) | 14106 890 | 730 — | 620 EPSDE-c, and CoDE, all the parameters are set as the same
Re-JADE-s4 (5) | 180.0 | 167.5 | 132.0 | 146.0 - used in their original literature. All algorithms are evated

for all the functions aD = 30. The error values are shown
in Table 3. Figure 5 shows the average rankings of the consid-
4.3. Comparison With Other DE Variants ered DE algorithms based on the Friedman test. In addition,
In this section, R-JADE-s4 is compared with other state- due to the importance of the multiple-problem statisticedlg-
of-the-art DE variants. Both the direct comparison andrieti SIS [36], we present the results of the multiple-problemcast

comparison are presented to evaluate the performance.of R ON Signed-rank testin Table 4, whew means that the method
JADE-s4. in the row improves the method of the column, art thean-

s that the method in the column improves the method of the
4.3.1. Direct Comparison

First, R:r'JADE'S4 iS_ directly compared with _four DE vari-  47here are two versions of EPSDE in [30] and [13]. We refer tSBE-c
ants, which have obtained competitive results in the liteea  and EPSDE-j for the conference and journal version, resgéet
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row. Upper diagonal of level significanee= 0.1, and lower
diagonal level of significance = 0.05. Furthermore, in order
to compare the convergence rate among different algorithm: ast
some representative convergence graphs of the DE algarithn
are shown in Fig. 7 and 8. Note that the convergence grapt
s show themedianerror performance of the best solution over
the total runs [12]. st
The p-value computed by Iman-Davenport test on the aver:
age error values shown in Table 3 i82E — 03, which states
that there are significant differences on the behavior ot tma-
pared DE algorithms for all the functions @at= 0.05. From Lsp
Table 3, we can observe that the proposgdJRDE-s4 consis- Al
tently provides the best error values in the majority of aditt
cases. g-JADE-s4 significantly outperformsin 157, 16, and
15 functions compared with jDE, SaDE, EPSDE-c, and CoDE 0 625 LEP  CMAES  CLPSO  OLPOS-L Ror-JADE-sd
respectively. Additionally, in 14 out of 25 functionsyRIADE- oot
s4 obtains the best final results compared with other four DE
algorithms. Figure 9: Average rankings of the state-of-the-art EAsda@iman) for all func-
According to the average rankings of all considered DEtions atb = 30.
algorithms based on the Friedman test, Figure 5 shows that
Rcr-JADE-s4 obtains the first ranking, followed by EPSDE-c,

CoDE, SaDE, and jDE. variants for all functions. In general, based on the indiceen-
In Table 4, the multiple-problem Wilcoxon signed-rank testparison with other state-of-the-art DE variants, we cantsae

is applied based on the average error values shown in Table R.-JADE-s4 is still highly competitive.

The results in Table 4 are the positive rarikscomputed by

the WiIcoan signe_d—rank test when the algorithm_in th(_a Wi 4 4 Comparison With State-of-the-Art EAs

compare with one in the column.;RIADE-s4 obtains higher

R* values tharR™ in all cases, which means that,RIADE-s4 In the previous experiments RIADE-s4 is compared with

is better than other compared DE variants for all functions. ~ Other state-of-the-art DE variants in the literature. lis gec-
With respect to the convergence rate, Fig. 7 and 8 show th4lo". it is also compared with other state-of-the-art ndB-D

Re-JADE-s4 converges fastest in most of the functions comEAS: GL-25 [37], LEP [38], CMA-ES [39], CLPSO [40],
pared with other four DE algorithms. and OLPSO-L [41]. GL-25, proposed by Garcia-Martinez

et al. [37], is a hybrid real-coded genetic algorithm based on
_ ) parent-centric crossover operators. In [38], Lee and Yae pr
4.3.2. Indirect Comparison posed the LEP algorithm, which is an improved evolution-
Since there are other DE variants that have conducted expedry programming based on the Lévy probability distribatio
iments on the CEC-2005 benchmark functions, in this sectiorHanseret al.[39] proposed CMA-ES, which is a very efficient
we compare the results ofRIADE-s4 with the reported results evolution strategy for global numerical optimization. Aatly,
of other DE variants on the CEC-2005 benchmark functions athere are several variants of CMA-ES, such as restart CMA-ES
D = 30. R;-JADE-s4 is indirectly compared with jDE, SaDE, proposed in [42]. In this work, we only use its basic version
JADE, ESPDE-c, and CoDE. The results of ]DE, SaDE, JADE for comparison. CLPSO and OLPSO-L are two particle swarm
and CoDE are all obtained from Table I'in [35]. The results ofoptimization (PSO) algorithms, which obtain promisinguiées
EPSDE-c are gotten from Table 2 in [30]. The error values arén the PSO literature. CLPSO, proposed by Liaigl. [40],
reported in Table 5. In the six DE variants, the best and the se updates a particle’s velocity using all other particlestbiical
ond best results are respectively highlighte: gray boldface bestinformation. In OLPSO-L [41], Zhaat al.proposed an or-
andboldface Averaged rankings obtained by each method inthogonal learning strategy to discover more useful infdioma
the Friedman test are shown in Figure 6. Also, the results obetween its historical best experience and its neighbatsoo
the multiple-problem Wilcoxon signed-rank test are tateda best experience. In [41], the authors presented two vesibn
in Table 6. OLPSO,i.e. OLPSO-G (based on global best experience) and
Table 5 shows that in 10 out of 25 cases-BADE-s4 pro- OLPSO-L (based on local best experience). Since OLPSO-L
vides the £ best error values, and in 9 functions it obtains theobtains better results than OLPSO-G, it is selected for @mp
2" pest error values. According to Figure 6, we can see thaison.
Rcr-JADE-s4 gets the first ranking, followed by CoDE, EPSDE- In order to make a fair comparison, for GL-25, LEP, CMA-
¢, JADE, |DE, and SaDE. In addition, Table 6 indicates thatES, CLPSO, and OLPSO-L, all the parameters are set as the
Rcr-JADE-s4 obtains highdR* values tharR™ compared with  same used in their original literature. All algorithms avala-
other five DE variants, which means that RADE-s4 is able ated for all the functions d) = 30 over 50 independent runs.
to provide overall better results than other five compared DHable 7 describes the error values of all compared algosthm
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Table 8: Ranks Computed by the Wilcoxon Test for State-efAt EAs on EPSDE | [13f’ and the modified SaDE and EP.SDE.J IS respec
CEC-2005 Benchmark Functions Bt= 30. e = the Method in the Row Im-  tively referred to as R-SaDE and B-EPSDE-j. It is worth
proves the Method of the Column: = the Method in the Column Improves Noting that the crossover rate repair technique can alsote ¢
the Method of the Row. Upper Diagonal of Level Significaace 0.1, Lower bined with MDE pBX [31]. However, since MDEpBX em-
Diagonal Level of Significance = 0.05. . ;

ployed the similar parameter adaptation method to JADE, we

@) @ 6 @ ® ] © do not verify it again in this work.
GL-25 (1) - 195. 137.5 144.0 156.0 | 35.
LEP (2 1. - 143. 134. 107. 7.00
CMAES 23; '51338(%5 157.0 3—0 121.2 186.8 93.0 4.5.1. Influence to SaDE
CLPSO (4) | 109.0 | 190.5 | 139.0 — | 1215 340 All the parameters are set as used in [10] for both SaDE and
OLPSO-L(5) | 1200 | 1930 | 129.0 | 1545 - | 330 Rc¢-SaDE. The error values of SaDE ang+8aDE are given in
ReJADE'S4(6) | 2180 | 2930 | 2070 | 1970 | 2200 - Table 9 for all functions ab = 30 andD = 50. All results are

averaged over 50 independent runs. The better resultsgire hi
lighted inboldfacecompared between SaDE ang{$aDE for
The average rankings of the considered EAs based on the Friep) = 30 andD = 50, respectively.
man test are shown in Figure 9. In addition, we also presentth With respect toD = 30, the p-value of the multi-problem
results of the multiple-problem Wilcoxon signed-rank t&st  analysis between SaDE angF5aDE by the Wilcoxon signed-
Table 8. rank test is 124E — 03, which leads to rejection of HO at
According to Ivan-Davenporttest, there are significarfedif o = 0.05. It indicates that there are significant differences be-
ences among the compared algorithms {thealue obtained is  tween the two algorithms for all functions. From Table 9, we
2.67E-04). Compared with GL-25, LEP, CLPSO, and OLPSO-see that R-SaDE is significantly better than SaDE in 10 out of
L, Table 7 shows that RJADE-s4 performs significantly better 25 functions. In the rest 15 functions there are no significan
in 18,24,17, and 17 functions. Based on the multiple-problemdifferences between SaDE ang,f8aDE. Additionally, in 15
Wilcoxon test shown in Table 8, the results also confirm thabut of 25 functions, B-SaDE obtains better error values than
Rc¢r-JADE-s4 is significantly better than GL-25, LEP, CLPSO, SaDE.
and OLPSO-L with 95% confidence. Compared with CMA-ES, For all functions atD = 50, there are no significant differ-
Rer-JADE-s4 wins in 13 cases, ties in 3 cases, but loses in 9 cagnces between SaDE ang,f8aDE ata = 0.05 (the p-value
es. And the multiple-problem Wilcoxon test indicates thathb  of the multi-problem analysis by the Wilcoxon signed-raestt
of the two algorithm have no significant differencesat 0.05 is 551E — 02). However, according to Table 9, it can be seen
anda = 0.1. In Table 7, it also shows that;RIADE-s4 ob- that R,-SaDE significantly outperforms SaDE in 9 out of 25
tains the best results in 12 out of 25 cases, and CMA-ES gefsinctions. While there are no functions that SaDE obtaigs si
the best results in 9 out of 25 cases. HoweverJRADE-s4 ob-  nificantly better results compared with,FSaDE. Table 9 also
tains higher positive rank$&{ = 207.0) than that of CMA-ES  shows that in 13 cases,RSaDE is better than SaDE; but only
(R" = 93.0). In addition, from Table 8, we can see that only in 4 functions (F03, FO7, F15, and F18)F5aDE is worse than
Rc-JADE-s4 is able to significantly outperform GL-25, LEP, SaDE.
CLPSO, and OLPSO-L; while there are no significant differ- It is worth pointing out that R-SaDE improves SaDE sig-
ences among CMA-EA, GL-25, LEP, CLPSO, and OLPSO-Lnificantly for all functions ab = 30; while the improvement of
for all test problems ab = 30. Moreover, from Figure 9, itis R -SaDE is not significant dD = 50, according to the multi-
clear that R-JADE-s4 ranks the first, followed by CMA-ES, problem analysis by the Wilcoxon signed-rank test at 0.05.
GL-25, CLPSO, OLPSO-L, and LEP. The reason might be that in(RSaDE the mutation strategy
In summary, according to the results shown in Tables 7 - 8,DE/current-to-rand/1”is selected in the strategy podhisTs-
we can conclude that our proposeg-BADE-s4 is highly com-  trategy, which is not controlled by the crossover operasoa,
petitive to the above-mentioned state-of-the-art EAs. fighe rotation-invariant strategy [14]. As stated in [3, pp. 10b}a-
sults of R,-JADE-s4 are better than, or at least comparable totional invarianceis very important to obtain good performance
those of the state-of-the-art EAs in terms of the qualityhef t for parameter-dependent problems. In the benchmark famcti
final solutions. s presented in CEC-2005 [12], most of them are rotated and
parameter-dependent. Thus, for the rotated probles-a50,
“DE/current-to-rand/1” maybe dominate other three stjigt®
4.5. Study on the Influence to Other Adaptive DE Variants  that are controlled by crossover operator during the eiariut
As a result, the improvement of.RSaDE is decreased for the
In the above sections, our proposed crossover rate repgiroblems aD = 50.
technique is integrated into JADE, and the proposgeJRDE
is compared with other state-of-the-art DE and non-DE algo4.5.2. Influence to EPSDE-
rithms. The results demonstrate the superiority of our aggin. In EPSDE-j [13], if trial vector is better than its target v@¢
Thus, we will be asked: “Can the proposed crossover rate re-
pair technique be used to enhance other adaptive DE algorith SWe do not integrate the crossover rate repair techniqueSR®DE-c [30],

S ba_sed on succe;sful param_eterS?” _TO a_ddress this questiQRce in the original implementation of EPSDE-c the sudckgsarameters
in this section, we integrate this technique into SaDE [1{] a were not used.
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the crossover rate associated with mutation strategy aald sc

. . . . . . Table 11: Comparison on the Error Values Between JADE-s&andADE-s4
ing factor is retained with trial vector which becomes thgéa P

for Functions FO1 - F14 dD = 100.

vector in the next generation. The successful parametaeesal Prob JADEsa Ry -JADE-s4
and strategy are also saved in the archive. Otherwiseaif tri FO1 | 0.00E+00: 0.00E+00 | = || 0.00E+00+ 0.00E+00
vector is worse than its target vector, then the strategypand FO2 | 1.33E+05:508E+04 | + || 3.09E+04x6.25E+04
. s FO3 2.20E-06+ 2.21E-06 = 2.87E-06+ 5.90E-06
rameter values of _the target vector W|I_I be re_mltlallzed:bo- For | 1o9Er05s 8145500 | + || 57355045 9 50E+08
sen from the archive randomly. In this section, our proposed FO5 | 2276403+ 4.36E+02 | = || 2.13E+03+ 4.13E+02
crossover rate repair technique is also used in EPSDE-jhaend FO6 | 213E+01+540E+00 | = || 1.91E+01+ 6.82E+00
repaired EPSDE-] (B-EPSDE'J) is Compared with EPSDE-] Fo7 3.45E+00+ 6.95E-01 | + 1.61E+00+ 1.71E-01
for all functions atD = 30 andD = 50. All parameters are kept FOB | 213E+01£5.38E:02 ) = || 213E+01x3.74E-02
.. . . . F09 5.27E-02+ 1.19E-02 + 4.55E-02+ 2.84E-02
the same as the original literature in [13]. The results,clvhi F10 | 8.56E+01 3.838401 | = || 8.34E+01s 1.32E+01
are averaged over 50 independent runs, are shown in Table 10. F11 | 1.21E+02: 1.70E+01 | + || 7.65E+01+ 2.47E+01
For the functions aD = 30, Table 10 describes that in 13 out F12 | 172E+05+2.60E+05 | + || 1.83E+04+6.76E+04
of 25 functions R-EPSDE-j obtains better error values com- F13 | 128E+0L£591E-01 1 — ) 1.32E+0L: 5.03E-01
. . . .. F14 4.62E+01+ 4.42E-01 = 4.63E+01+ 6.73E-01
pared with those of EPSDE-j. In 12 functions, FEPSDE-j is W oL -
significantly better than EPSDE-j..REPSDE-jloses in 7 func-
“+" “~" and “=" indicate our approach is respectively better than,

tions. In the remaining 6 functions, the differences betwbe
two algorithms are not significant. Thevalue of the multi-
problem analysis between EPSDE-j ang-BRPSDE-j by the
Wilcoxon signed-rank test is.80E — 02. Thus, there are sig-
nificant differences ar = 0.05 between the two algorithms in
all functions atD = 30.

When the dimensions are scaledio= 50, the differences

worse than, or similar to its competitor according to the Wilcoxon
signed-rank test at = 0.05.

JADE-s4 is significantly better than,RIADE-s4. There are
no significant differences between,RIADE-s4 and JADE-s4
in the rest 7 functions. In addition, thgvalue of the multi-
between EPSDE-j and REPSDE-j are also significant in all Problem analysis between JADE-s4 ang-BADE-s4 by the
functions, since the-value is 254E — 02 based on the multi- Wilcoxon signed-rank test is42E—-02, which means that there
problem analysis between the two algorithms by the Wilcoxorf"€ Significant differences at = 0.05 between the two algo-
signed-rank test at = 0.05. From Table 10 it can be seen that fithms for functions FO1 - F14 4p = 100. Thus, according to
in 14 out of 25 functions R-EPSDE-j provides significantly the r_esults in Tablle 11, we can conclude th{it the crossoteer ra
better results. In addition, in the majority of the funcioig ~ "ePair technique is also capable of enhancing the perfarenan
out of 25), R,-EPSDE-j obtain better error values than those of°f JADE on the moderate-dimensional problems.

EPSDE-] Only in 5 functions (F04, F17, F19, F20, and F25), However, it is worth pointing .OUt that_ the pc_)tentlal advan-
EPSDE-j is significantly better than,REPSDE-]. tage of the crossover ra_te repair techn_|que might be dexreas
In general, from the results shown in Tables 9 and 10 and/nen the problem size is large, especially for the largéesca
the above analysis, it confirms that our proposed crossovéloPlems, because the sample mean becomes closer to the real
rate repair technique is also able to enhance both of the pef2€an when the sample size increases. In our future work, we

formance of SaDE and EPSDE-j. Hence, we can except th&yill evaluate the proposed crossover rate repair technigtie

this crossover rate repair technique can be similarly ugefu large-scale problems [43].

the performance enhancement of other adaptive DE approach-

es, which update the crossover r&tR based on its successful 47+ Parameter Study

experience. In the previous experiments, we set the default parameter se
tings originally used in JADE [11, 27]. In [11], parametarcy

on ¢ and p was conducted, and the recommended values are

0 0 "
In order to better understand the performance of our ap—l/C € [5,20] andp € [5%,20%)]. In addition, the study on

proach, in this section, RIADE-s4 is compared with JADE-s4 g;tﬁ]ﬁeg; of th_e mmi‘h g%?/\r/]gxs \Cvaélﬁiz;n:ﬁ%g trf;?]t aenolpl[te'zlt
on the moderate-dimensional problemsat 100. Because 9 Olucr = Hr = 5. 9

functions F15 - F25 are t0o time-consuming, we only Selec]‘unctlons [11]. In this section, we perform the parametedgt

. . . on the population sizB P and the initialur value to investigate
t functions FO1 - F14 for comparisénin [11], the population L
sizeNP = 400 is used for problems & = 100. Therefore, we the enhanced performance of RADE. Note that in this study

also seNP = 400 for both JADE-s4 and R JADE-s4. All oth- we do not try to find the optimal values fofP andug, but to

er parameters are kept unchanged as mentioned in Section 4\./f”fy the improved performance obtained after integgtine

The results are described in Table 11. Table 11 shows that i%rossover rate repairing technique into JADE.

6 out of 14 functions BR-JADE-s4 significantly outperforms
JADE-s4 in terms of the error values. Only in function F13,

4.6. Performance on Moderate-dimensional Problems

4.7.1. Influence of Population Size
To study the influence of the population size to the perfor-
mance of R-JADE and JADE, in this section, RJADE-s4

6Although all functions are originally defined up Bb= 50 in CEC-2005, it
is easy to make some changes to scale theb0100.

14

is compared with JADE-s4 for all functions Bt = 30. The
population sizeNP = 50 andNP = 200 are used. All other



parameters are kept the same as mentioned in Section 4.1. Ttagistical results between the two algorithms by the Witnox
results are tabulated in Table 12. All results are averaged o signed-rank test with all initiglr values are shown in Table 14.
50 independent runs. From Table 13, we can see thatRADE-s4 consistently

When NP = 50, the results in Table 12 shows that in 9 provides the better error values than those of JADE with dif-
out of 25 functions B-JADE-s4 improves JADE-s4 signifi- ferent initial ur values in the majority of test functions.R
cantly in terms of the error values. However, in 6 functionsJADE-s4 obtains better error values in, 14, and 16 out of
(F10, F13, F16, F18, F19 and F20),,RADE-s4 is statistical- 25 functions with the initialir = 0.1, 0.6, and Q9, respective-
ly worse than JADE-s4. In 10 functions, both of them obtaindy. When the initialgr = 0.1, in 6 functions R-JADE-s4 is
similar results. R-JADE-s4 is able to obtain high&®" value  significantly better than JADE-s4. ;RJIADE-s4 only loses in
(1570 > 53.0). According to the multi-problem analysis be- function F13. For the initigkr = 0.6, R;-JADE-s4 provides
tween the two algorithms by the Wilcoxon signed-rank téwt, t significantly better results than JADE-s4 in 12 functionst b
p-value is 520E — 2, which means that the differences betweenonly loses in 1 function. With respect to the initigl = 0.9, in
Rcr-JADE-s4 and JADE-s4 are not significantat 0.05inall 15 out of 25 functions R-JADE-s4 significantly improves the
functions. The reason might be that the small populatiomisiz error values compared with JADE-s4. In three functions (F12
not sufficient to R-JADE-s4 and JADE-s4 in the majority of F13, and F15), JADE-s4 obtains statistically better reshiin
the test functions d = 30. Rcr-JADE-s4.

WhenNP = 200, thep-value of the multi-problem analysis  In addition, Table 14 shows that in all cases-BADE-s4 ob-
between the two algorithms by the Wilcoxon signed-rankigest tains highelR* values, which means thatRIADE-s4 is over-
3.05E - 4, which leads to rejection of HO at= 0.05. Itindi-  all better than JADE-s4 in terms of the error values in allcfun
cates that there are significant differences betwegrl/RDE-  tions based on the multi-problem analysis. Moreover, in the
s4 and JADE-s4 in all functions. In 13 functions, RADE-s4  cases of the initigkr = 0.1,0.2,0.4,0.6,0.7,0.8,and Q9, the d-
is significantly better than JADE-s4 (RIADE-s4 only loses in  ifferences are significant in all functions according toringti-
function F13. In the rest 11 functions, there are not sigaific problem analysis between the two algorithms by the Wilcoxon
differences between the two algorithms. signed-rank test at = 0.05. For the initialur = 0.3, there are

Although there are no significant differences betwegn R significant differences between,RIADE-s4 and JADE-s4 by
JADE-s4 and JADE-s4 withl P = 50 in all functions, however, the Wilcoxon signed-rank test at= 0.1.
in general, the population size does not influence the emuanc In general, from the results in Tables 13 and 14 and the above
performance compared between,-BADE-s4 and JADE-s4. analysis, we can conclude that the proposed crossovereate r
With different population sizeNP = 50,100 and 200), R-  pair technique is consistently capable of improving théqrer
JADE-s4 consistently obtains better results in the majarft mance of the original JADE algorithm with different initia¢
test functions. values.

- 4.8. Real-World Applications
Table 14: Statistical Results Betweeg RADE-s4 and JADE-s4 (R-JADE-s4

vs JADE-s4) by the Wilcoxon Signed-rank Test for All Funatowith Differ- According to benchmark functions we see thgtBADE ob-
ent Initial ¢ Values. TheBoldface andltalic of the p-value Indicate that the  tains highly competitive results with other DE and non-DE al
Differences Are Significant at = 0.05 ando = 0.1, Respectively. gorithms. In this section, RIADE-s4 is also evaluated in 5
HE R"| R | pvalue | wt/l real-world problems to test its capability of solving readld
01| 1730 | 37.0 | 913603 | 6/18/1 problems. RB-JADE-s4 is compared with jDE, SaDE, CoDE,
0.2 146.0 | 25.0 | 6.58E-03 9/14/2 .
03 | 1205 | 415 | 550502 | /1572 and JADE-s4. The five real-world problems are: P1) Cheby-
04 | 1670 | 230 | 231603 | 11131 chev polynomial fitting problemd = 9) [3]; P2) frequen-
05| 1130 | 770 | =202 8/17/0 cy modulation sound parameter identificatidd & 6) [37];
06 | 1380 | 150 | 2.09E-03 | 12/12/1 P3) spread spectrum radar poly-phase code design problem
07 | 1510 | 390 | 223802 | 12121 (D = 20) [44]; P4) systems of linear equations problem

0.8 | 160.0 | 30.0 | 7.11E-03 16/8/1
0.9 | 1610 | 29.0 | 5.99E-03 15/7/3

(D = 10) [37]; and P5) circular antenna array design problem
(D = 12) [45]. In the five problems, P2, P3, and P5 are al-
so appeared in CEC-2011 competition on real-world numkrica
optimization problems [46].

4.7.2. Influence of Initigkr Value For all algorithms we use the same parameter settings as in
In the previous experiments the recommended injtjal= Section 4.3. The MaXNEEFs are 15@00 for all problems.

0.5 value is used. In order to test the influence of differen-All results are averaged over 50 runs. The results are destri

t initial ug values to the enhanced performance gf-BADE, in Table 15. Thantermediateresults are also reported for the

in this section, R-JADE-s4 is compared with JADE-s4 with functions where several algorithms can obtain the globtt op

different initial ur values. The initiajug value is set tqup = mum of these problems. According to the results in Table 15,

{0.1,0.2,0.3,0.4,0.6,0.7,0.8,0.9}. All other parameters do not we see that R-JADE-s4 still provides highly competitive re-

changed as described in Section 4.1. Due to the space limsults compared with other DE variants. It obtains the best re
tation, we only give the results of RJADE-s4 and JADE-s4 sults in 4 (P1 - P4) out of 5 problems. In these four problems,
with initial ur = 0.1,0.6,0.9 in Table 13. In addition, the s- R-JADE-s4 is significantly better than jDE, SaDE, CoDE, and

15



JADE-s4. In P5, R-JADE-s4 is worse than SaDE and jDE, but Dr. C. Li and Mr. Y. Cai for their constructive suggestions to
better than CoDE and JADE-s4. this paper.

5. Conclusions and Future Work A. The JADE Algorithm

With the aim of enhancing the performance of adaptive DE  Since this work is mainly based on the JADE algorithm [11,
algorithms based on successful parameters, in this pager, V27], for the sake of completeness, the original JADE albarit
propose a very simple technique for repairing the crossater s briefly described herein. There are three main contidimsti
according to its corresponding binary string. by using the  in JADE: i) the modified mutation strategies based onphest
average number of components taken from the mutant. Fukector; ii) adaptation of the crossover rate; and iii) adéph
thermore, this crossover rate repair technique does noayld  of the scaling factor.
additional parameter when integrating into adaptive DE-alg
rithms. In order to evaluate the effectiveness of our prefos A 1. Modified Mutation Strategies
technique, it is integrated into two representative adefiiE .
variants,i.e. JADE, SaDE, and EPSDE. Experimental results, In [11] and [27], "the a‘%lthors presented ”four .mod|f|ed
demonstrate that the proposed crossover rate repair tpahni DE/current-to-best/1” and “DE/rand-to-best/1” strateg as
is capable of enhancing the performance of JADE and SaDI':fQHOWS:

Moreover, compared with other state-of-the-art DE and bén-
approaches, one of the improved JADEBADE-s4) obtain-
s bgtter, or at least comparable, results in terms of th_e_tqual Vi =X +Fi- (Xbpest_ X)+Fi- (X, —X,)  (10)
of final solutions and the convergence speed. In addition, ex

tensive experiments on the influence of moderate-dimeakion
problems, different population size, and different ifitia val-
ues indicate that crossover rate repglrtechnlque copﬁystm— Vi=X +Fi (Xbpest_ Xe,) + Fi - (e, — Xey) (11)
hances the performance of the original JADE algorithm.

Ensemble of multiple strategies is able to to improve the per
formance of DE [10, 13, 35, 47], we will try to incorporate the
repaired JADE into multiple-strategy DE variants in ouufigt
work.

Large-scale optimization has been one of the most interest-
ing trends in recent years [43], some DE variants have oédain
promising results (see [48, 49, 50]). Thus, another futire d
rection is that the repaired JADE algorithm will be combined

with cooperative coevolution [51, 52] or other local seasath- o N
niques for the large-scale continuous optimization prolsie Inthe latter two strategies in (12) and (13), an arcl#ivie used
to store the inferior solutions recently explored in thelation-
. ary searchxﬁestrefers to thepbest solution, which is randomly
Funding selected from the top 1@0%6 solutions, withp € (0, 1]. Xi, Xr,,
Thi K | 4 by the National N Iandxgestare chosen from the current populatienX,, is ran-
Hhis work-was partly supporte y the National Natura domly chosen from the union between the archive and current
Science Foundation of China under Grant Nos. 61203307 :
populationsP U A).
61075063, and 61375066, the Fundamental Research Funds
for the Central Universities at China University of Geoscies
(Wuhan) under Grant Nos. CUG130413 and CUG090109, an _
the Research Fund for the Doctoral Program of Higher Educa- In JADE, for each target vectos, the crossover rat€R is

tion under Grant No. 20110145120009. independently generated at each generation:
CR = rndn(ucr, 0.1) (14)

) ) ) and truncated to the interval,[0]. In (14), rndf(ucg, 0.1) is a
The authors would like to thank the Associate Editor andyormg distribution with mean valyeg and standard deviation
the anonymous reviewers for their great comments. They alsg 1 Theycy is initially set to 05 and updated as
thank Dr. Y. Wang to make the source codes of CoDE, CMA-

ES, EPSDE-j, and CLPSO available online. The source codes ucr = (1—-C) - ucr + ¢ - mean(Scr) (15)

of SaDE and EPSDE-c are appreciatively provided by Dr. P. N.

Suganthan. They are also grateful to Dr. J. Brest, Dr. C. Gawherec is a constant in [0L]; mean(-) is the usual arithmetic
cia-Martinez, and Dr. J. He for providing the source coafes mean operation; anficr is the set of all successful crossover
JDE, GL-25, and LEP, respectively. The first author also #san ratesCR in the current generation.
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1) “DE/current-topbest/1 (without archive)”:

2) “DE/rand-topbest/1 (without archive)”:

3) “DE/current-topbest/1 (with archive)”:

Vi=X +Fj- (Xgest_ Xi) + Fi - (Xr, — Xrs) (12)

4) “DE/rand-topbest/1 (with archive)”:

Vi = Xr, + Fi - (Xpog— Xr1) + Fi - (X, — Kry) (13)

é\.z. Adaptation of the Crossover Rate

Acknowledgments



A.3. Adaptation of the Scaling Factor [15]

Similar to the adaptation of the crossover rate, at eachrgenej g
ation, the scaling factdf; is independently calculated for each
target vectok; as follows: 171

Fi = rndg(ur,0.1) (16) 18]

and then truncated to beQlif F; > 1.0 or regenerated F; < 0.
rndg(ur, 0.1) is a random number generated according to thél®l
Cauchy distribution with location parametgt and scale pa-
rameter QL. The location parametes is updated in the fol- 20
lowing manner:
- [21]

ur = (1=c) - ur + c- mean(Sg) a7)
whereSk is the set of all successful mutation factéisin the 27
current generation; and mady) is the Lehmer mean:

ISEl =2 [23]
S =
mean (Sg) = leii,:' (18)

ZiZy Fi [24]
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Table 1: Comparison on the Error Values Between JADE anddtseSponding &-JADE for All Functions aD = 30.

Prob JADE-s1 Rer-JADE-s1 JADE-s2 Rer-JADE-s2
FO1 0.00E+00+ 0.00E+00 | = | 0.00E+00+ 0.00E+00 0.00E+00+ 0.00E+00 | = | 0.00E+00+ 0.00E+00
F02 1.22E-27+ 1.20E-27 + 8.26E-28+ 4.54E-28 1.35E-27+ 2.65E-27 + 6.38E-28+ 3.92E-28
FO3 1.55E+04+ 1.06E+04 | = 1.60E+04+ 1.04E+04 2.82E+04+ 1.53E+04 | + 2.22E+04+ 1.71E+04
F04 3.88E-09+ 1.65E-08 - 3.47E-08+ 1.41E-07 1.02E+03+ 2.46E+03 | = 2.78E-07+ 1.02E-06
FO5 1.69E+01+ 3.90E+01 | = | 4.28E+01+ 1.14E+02 9.61E+01+ 1.55E+02 | = 1.33E+02+ 2.18E+02
FO6 1.77E+01+ 3.53E+01 8.77E-01+ 1.67E+00 5.78E+00+ 2.10E+01 | = 4.78E-01+ 1.31E+00
FO7 1.29E-02+ 9.11E-03 = 1.50E-02+ 1.32E-02 1.33E-02+ 1.01E-02 = 1.48E-02+ 1.36E-02
FO8 2.09E+01+ 1.39E-01 | + 2.02E+01+ 3.28E-01 2.09E+01+ 1.37E-01 | + 2.02E+01+ 3.61E-01
F09 0.00E+00+ 0.00E+00 | = | 0.00E+00+ 0.00E+00 0.00E+00+ 0.00E+00 | = | 0.00E+00+ 0.00E+00
F10 3.53E+01+ 5.74E+00 | + | 2.38E+01+ 4.88E+00 3.36E+01+ 9.82E+00 | + | 2.73E+01+ 8.69E+00
F11 2.74E+01+ 1.57E+00 | = | 2.71E+01x 1.81E+00 1.69E+01+ 3.48E+00 | = 1.70E+01+ 3.43E+00
F12 4.99E+03+ 4.32E+03 | + 1.70E+03+ 2.09E+03 1.16E+03+ 1.88E+03 | = 1.50E+03+ 2.17E+03
F13 1.87E+00+ 1.52E-01 + 1.52E+00+ 1.23E-01 2.18E+00+ 1.77E-01 + 1.71E+00+ 1.08E-01
F14 1.26E+01+ 2.21E-01 | + 1.22E+01+ 3.17E-01 1.27E+01+ 2.44E-01 | + 1.10E+01+ 9.76E-01
F15 3.69E+02+ 9.08E+01 | = 3.46E+02+ 1.16E+02 3.48E+02+ 9.31E+01 | = 3.50E+02+ 7.35E+01
F16 7.20E+01+ 5.46E+01 | + 7.78E+01+ 1.06E+02 9.32E+01+ 1.04E+02 | + 6.39E+01+ 7.30E+01
F17 1.35E+02+ 8.02E+01 | + 8.72E+01+ 5.94E+01 8.17E+01+ 8.38E+01 | + 8.55E+01+ 1.15E+02
F18 8.96E+02+ 3.93E+01 | = | 8.80E+02+ 5.27E+01 9.00E+02+ 3.37E+01 | = | 9.02E+02+ 3.05E+01
F19 8.89E+02+ 4.49E+01 | = | 8.92E+02+ 4.36E+01 9.06E+02+ 2.19E+01 | — | 9.09E+02+ 1.59E+01
F20 8.93E+02+ 4.12E+01 | = | 8.92E+02+ 4.37E+01 9.01E+02+ 3.02E+01 | — | 9.07E+02+ 2.22E+01
F21 5.00E+02+ 0.00E+00 | = | 5.00E+02+ 0.00E+00 5.00E+02+ 0.00E+00 | = | 5.00E+02+ 0.00E+00
F22 9.10E+02+ 1.04E+01 | + 9.01E+02+ 1.77E+01 9.10E+02+ 9.17E+00 | + 8.87E+02+ 1.80E+01
F23 5.34E+02+ 7.89E-05 | + | 5.50E+02+ 7.97E+01 5.42E+02+ 5.46E+01 | = 5.34E+02+ 2.34E-03
F24 2.00E+02+ 0.00E+00 | = | 2.00E+02+ 0.00E+00 2.00E+02+ 0.00E+00 | = | 2.00E+02+ 0.00E+00
F25 2.12E+02+ 1.33E-01 | + 2.11E+02+ 2.03E-01 2.10E+02+ 4.24E-01 | = 2.10E+02+ 2.04E-01
w/t/1 11/13/1 - 9/14/2 -

Prob JADE-s3 Rer-JADE-s3 JADE-s4 R-JADE-s4
FO1 0.00E+00+ 0.00E+00 | = | 0.00E+00+ 0.00E+00 0.00E+00+ 0.00E+00 | = | 0.00E+00+ 0.00E+00
F02 4.77E-28+ 1.84E-28 + 3.74E-28+ 1.19E-28 4.35E-28+ 2.60E-28 + 3.78E-28+ 1.98E-28
FO3 9.45E+03+ 7.33E+03 | = 1.06E+04+ 8.05E+03 1.65E+04+ 1.28E+04 | = 1.50E+04+ 1.29E+04
Fo4 2.28E-14+ 1.34E-13 | = 2.89E-12+ 1.75E-11 8.29E+02+ 2.14E+03 | = 6.37E-11+ 3.17E-10
FO5 3.97E-02+ 1.34E-01 | = 1.85E-01+ 6.42E-01 5.60E+00+ 2.77E+01 | = 2.04E-01+ 8.02E-01
FO6 7.08E+00+ 2.65E+01 7.18E-01+ 1.55E+00 2.34E+00+ 1.29E+01 | = 1.59E-01+ 7.89E-01
FO7 7.83E-03+ 8.86E-03 | = 7.63E-03+ 7.65E-03 4.83E-03+ 5.56E-03 | = 5.12E-03+ 6.94E-03
Fo8 2.09E+01+ 6.23E-02 | + 2.03E+01+ 4.46E-01 2.09E+01+ 6.14E-02 | + 2.04E+01+ 4.56E-01
F09 0.00E+00+ 0.00E+00 | = | 0.00E+00+ 0.00E+00 0.00E+00+ 0.00E+00 | = | 0.00E+00+ 0.00E+00
F10 3.20E+01+ 8.31E+00 | + | 2.28E+01+ 5.15E+00 3.13E+01+ 8.62E+00 | + | 2.47E+01+ 9.35E+00
F11 2.18E+01+ 6.88E+00 | = | 2.05E+01x 6.83E+00 151E+01+ 3.32E+00 | = | 1.60E+01+ 3.25E+00
F12 3.76E+03+ 4.16E+03 | + 2.37E+03+ 3.09E+03 1.14E+03+ 1.40E+03 | = 1.51E+03+ 2.77E+03
F13 1.82E+00+ 1.57E-01 | + 1.55E+00+ 1.18E-01 2.16E+00+ 1.48E-01 | + 1.69E+00+ 1.11E-01
F14 1.25E+01+ 2.40E-01 | + 1.20E+01+ 3.41E-01 1.27E+01+ 1.98E-01 | + | 1.12E+01+ 1.02E+00
F15 3.54E+02+ 9.73E+01 | = | 3.64E+02+ 1.06E+02 || 3.40E+02+ 8.33E+01 | = | 3.48E+02+ 6.46E+01
F16 6.86E+01+ 5.47E+01 | + 7.88E+01+ 1.09E+02 7.57E+01+ 8.21E+01 | + 5.60E+01+ 5.53E+01
F17 1.62E+02+ 1.20E+02 | + 1.14E+02+ 1.15E+02 || 8.15E+01+8.72E+01 | = | 8.75E+01+ 1.12E+02
F18 8.88E+02+ 4.45E+01 | = | 8.91E+02+ 4.29E+01 9.07E+02+ 1.56E+01 | = | 9.10E+02+ 2.20E+00
F19 8.99E+02+ 3.35E+01 | = | 9.06E+02+ 2.21E+01 9.07E+02+ 1.56E+01 | = | 9.10E+02+ 2.49E+00
F20 8.99E+02+ 3.35E+01 | — | 9.07E+02+ 2.21E+01 9.07E+02+ 1.56E+01 | = | 9.10E+02+ 2.49E+00
F21 5.00E+02+ 0.00E+00 | = | 5.00E+02+ 0.00E+00 5.00E+02+ 0.00E+00 | = | 5.00E+02+ 0.00E+00
F22 9.06E+02+ 1.19E+01 | + | 8.92E+02+ 1.48E+01 9.00E+02+ 8.73E+00 | + | 8.63E+02+ 1.47E+01
F23 5.50E+02+ 7.76E+01 | = 5.42E+02+ 5.70E+01 5.34E+02+ 3.51E-04 + 5.34E+02+ 3.71E-04
F24 2.00E+02+ 0.00E+00 | = | 2.00E+02+ 0.00E+00 2.00E+02+ 0.00E+00 | = | 2.00E+02+ 0.00E+00
F25 2.12E+02+ 1.05E-01 2.10E+02+ 3.85E-01 2.09E+02+ 1.32E-01 | = 2.09E+02+ 8.67E-02
w/t/1 10/14/1 - 8/17/0 -

“+", “~" and “=" indicate our approach is respectively better than,rsethan, or similar to its competitor according to the

Wilcoxon signed-rank test at = 0.05.
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Table 2: Comparison on the Error Values Between JADE anddtseSponding &-JADE for All Functions aD = 50.

Prob JADE-s1 R¢-JADE-s1 JADE-s2 Re-JADE-s2
Fo1 0.00E+00+ 0.00E+00 | = | 0.00E+00+ 0.00E+00 0.00E+00+ 0.00E+00 | = | 0.00E+00+ 0.00E+00
F02 7.69E-21+ 1.50E-20 | = 1.09E-20+ 2.17E-20 5.18E+03+ 8.61E+03 | + 5.08E-19+ 1.62E-18
FO3 1.95E+04+ 9.19E+03 | = 2.31E+04+ 1.06E+04 1.45E+06+ 7.01E+06 | = 3.26E+04+ 1.38E+04
Fo4 1.12E+01+ 1.87E+01 2.76E+01+ 4.24E+01 1.43E+04+ 1.90E+04 | + 6.18E+02+ 4.21E+03
FO05 2.48E+03+ 4.87E+02 | = 2.50E+03+ 4.55E+02 2.65E+03+ 5.87E+02 2.54E+03+ 3.71E+02
FO6 3.97E+00+ 1.39E+01 | = | 2.07E+00x 2.01E+00 3.61E+00+ 1.53E+01 | = 1.28E+00+ 1.88E+00
FO7 6.78E-03+ 1.15E-02 | = 8.90E-03+ 1.27E-02 1.77E-03+ 4.14E-03 2.46E-03+ 9.37E-03
FO8 2.11E+01+ 2.71E-01 + 2.03E+01+ 5.06E-01 2.11E+01+ 2.52E-01 + 2.05E+01+ 5.38E-01
F09 0.00E+00+ 0.00E+00 | = | 0.00E+00+ 0.00E+00 0.00E+00+ 0.00E+00 | = | 0.00E+00+ 0.00E+00
F10 6.57E+01+ 1.06E+01 6.49E+01+ 1.16E+01 5.15E+01+ 1.07E+01 | + | 4.87E+01+ 1.29E+01
F11 5.26E+01+ 2.44E+00 | = | 5.30E+01x 2.30E+00 5.28E+01+ 8.21E+00 | + | 4.80E+01+ 1.20E+01
F12 1.56E+04+ 1.76E+04 | + | 5.96E+03+ 7.43E+03 2.81E+04+ 2.67E+04 | + | 9.10E+03+ 1.12E+04
F13 2.65E+00+ 1.91E-01 - 2.77E+00+ 2.20E-01 2.89E+00+ 1.74E-01 3.06E+00+ 1.72E-01
F14 2.17E+01+ 3.24E-01 + 2.14E+01+ 3.96E-01 2.19E+01+ 9.25E-01 + 2.11E+01+ 1.08E+00
F15 3.34E+02+ 9.20E+01 | = | 3.25E+02+ 9.54E+01 3.26E+02+ 9.43E+01 | = | 3.04E+02+ 1.07E+02
F16 7.55E+01+ 7.40E+01 | + 5.66E+01+ 5.17E+01 9.88E+01+ 1.25E+02 | + 6.28E+01+ 7.38E+01
F17 1.11E+02+ 4.96E+01 | + 1.11E+02+ 6.57E+01 6.60E+01+ 4.22E+01 | = 7.58E+01+ 9.85E+01
F18 9.40E+02+ 3.10E+01 | = 9.34E+02+ 3.64E+01 9.39E+02+ 8.35E+00 | = 9.36E+02+ 2.94E+01
F19 9.40E+02+ 2.28E+01 | = | 9.39E+02+ 1.90E+01 9.39E+02+ 8.73E+00 | — | 9.43E+02+ 7.45E+00
F20 9.39E+02+ 2.27E+01 | = | 9.41E+02+ 1.70E+01 9.39E+02+ 9.06E+00 | — | 9.42E+02+ 7.41E+00
F21 5.00E+02+ 0.00E+00 | = | 5.00E+02+ 0.00E+00 5.00E+02+ 0.00E+00 | = | 5.00E+02+ 0.00E+00
F22 9.48E+02+ 9.61E+00 | = | 9.50E+02+ 8.82E+00 9.25E+02+ 2.09E+01 | + | 9.19E+02+ 1.31E+01
F23 5.59E+02+ 1.04E+02 | = 5.46E+02+ 4.94E+01 5.39E+02+ 5.21E-03 = 5.39E+02+ 1.75E-02
F24 2.00E+02+ 0.00E+00 | = | 2.00E+02+ 0.00E+00 2.00E+02+ 0.00E+00 | = | 2.00E+02+ 0.00E+00
F25 2.14E+02+ 8.67E-01 = 2.14E+02+ 7.00E-01 2.15E+02+ 7.66E-01 = 2.15E+02+ 8.85E-01
wy/t/l 5/18/2 - 9/13/3 -

Prob JADE-s3 R¢-JADE-s3 JADE-s4 Rc-JADE-s4
Fo1 0.00E+00+ 0.00E+00 | = | 0.00E+00+ 0.00E+00 0.00E+00+ 0.00E+00 | = | 0.00E+00+ 0.00E+00
FO02 1.09E-26+ 7.27E-27 = 1.15E-26+ 5.27E-27 6.98E+03+ 9.70E+03 | + 2.14E-26+ 1.64E-26
FO3 1.70E+04+ 1.01E+04 | = | 1.57E+04+ 7.74E+03 3.24E+06+ 8.22E+06 | = | 2.46E+04+ 1.35E+04
Fo4 3.79E+00+ 1.70E+01 | = | 2.97E+00+ 1.05E+01 1.15E+04+ 1.69E+04 | + | 8.21E+02+ 5.80E+03
FO5 1.89E+03+ 3.98E+02 | + | 1.81E+03+ 4.43E+02 2.08E+03+ 9.91E+02 | + | 1.74E+03+ 3.74E+02
FO6 1.12E+00+ 1.81E+00 | = 1.67E+00+ 1.99E+00 3.99E-01+ 1.21E+00 | = 5.58E-01+ 1.40E+00
FO7 4.92E-03+ 9.15E-03 | = 3.20E-03+ 5.95E-03 4.38E-03+ 7.43E-03 | + 1.87E-03+ 5.36E-03
FO8 2.11E+01+ 2.69E-01 + 2.07E+01+ 5.33E-01 2.11E+01+ 2.72E-01 + 2.07E+01+ 5.51E-01
F09 0.00E+00+ 0.00E+00 | = | 0.00E+00+ 0.00E+00 0.00E+00+ 0.00E+00 | = | 0.00E+00+ 0.00E+00
F10 6.42E+01+ 8.91E+00 | + | 5.61E+01+ 9.72E+00 || 4.90E+01+1.13E+01 | = | 5.12E+01+ 1.18E+01
F11 5.23E+01+ 2.20E+00 | = | 5.24E+01x 2.27E+00 5.53E+01+ 7.90E+00 | + | 4.32E+01+ 1.15E+01
F12 2.09E+04+ 2.24E+04 | + | 8.87E+03+ 1.45E+04 3.00E+04+ 2.67E+04 | + | 6.89E+03+ 1.15E+04
F13 2.69E+00+ 1.90E-01 - 2.86E+00+ 1.66E-01 2.94E+00+ 1.69E-01 - 3.04E+00+ 2.05E-01
F14 2.17E+01+ 3.53E-01 | + 2.15E+01+ 4.86E-01 2.17E+01+ 1.03E+00 | + | 2.08E+01+ 1.24E+00
F15 3.46E+02+ 8.80E+01 | = 3.22E+02+ 9.51E+01 3.06E+02+ 9.77E+01 | = 3.10E+02+ 1.04E+02
F16 6.73E+01+ 6.99E+01 | + 6.27E+01+ 7.12E+01 5.21E+01+ 5.22E+01 | = 5.02E+01+ 2.47E+01
F17 1.17E+02+ 6.24E+01 | + | 9.79E+01+ 2.67E+01 8.08E+01+ 6.91E+01 | + | 6.33E+01+ 7.27E+01
F18 9.33E+02+ 3.60E+01 | = | 9.29E+02+ 4.06E+01 9.31E+02+ 2.03E+01 | = | 9.30E+02+ 2.78E+01
F19 9.36E+02+ 2.30E+01 | = | 9.38E+02+ 2.98E+01 9.29E+02+ 2.78E+01 | — | 9.35E+02+ 2.29E+01
F20 9.35E+02+ 2.26E+01 | = 9.36E+02+ 2.97E+01 9.28E+02+ 2.77E+01 | — 9.35E+02+ 2.24E+01
F21 5.00E+02+ 0.00E+00 | = | 5.00E+02+ 0.00E+00 5.00E+02+ 0.00E+00 | = | 5.00E+02+ 0.00E+00
F22 9.48E+02+ 9.49E+00 | + 9.44E+02+ 1.12E+01 9.21E+02+ 2.63E+01 | + 9.05E+02+ 1.33E+01
F23 5.39E+02+ 3.26E-03 | = 5.39E+02+ 7.48E-03 5.39E+02+ 6.38E-03 | = 5.39E+02+ 8.89E-03
F24 2.00E+02+ 0.00E+00 2.00E+02+ 0.00E+00 2.00E+02+ 0.00E+00 | = | 2.00E+02+ 0.00E+00
F25 2.14E+02+ 9.13E-01 | = 2.14E+02+ 6.18E-01 2.14E+02+ 9.23E-01 2.14E+02+ 5.07E-01
wyt/l 8/16/1 - 11/11/3 -

“+", “~" and “=" indicate our approach is respectively better than,rseothan, or similar to its competitor according to the

Wilcoxon signed-rank test at = 0.05.
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Table 3: Direct Comparison on the Error Values Among Différtate-of-the-Art DE Variants for All Functions Bt= 30.

Prob jDE SaDE EPSDE-c CoDE Rc-JADE-s4
Fo1 0.00E+00+ 0.00E+00 | = 0.00E+00+ 0.00E+00 | = 0.00E+00+ 0.00E+00 | = 0.00E+00+ 0.00E+00 | = 0.00E+00+ 0.00E+00
F02 1.22E-05+ 2.22E-05 + 1.01E-15+ 1.89E-15 + 1.20E-27+ 3.88E-27 + 3.57E-14+ 8.14E-14 + 3.78E-28+ 1.98E-28
FO3 1.94E+05+ 1.15E+05 | + 7.65E+04+ 6.50E+04 | + 5.99E+04+ 2.77E+04 | + 1.41E+05+ 7.39E+04 | + 1.50E+04+ 1.29E+04
FO4 1.86E-01+ 2.33E-01 + 4.25E-02+ 2.02E-01 + 2.02E-09+ 4.51E-09 + 6.79E-02+ 2.87E-01 + 6.37E-11+ 3.17E-10
FO5 1.06E+03+ 4.38E+02 | + 6.93E+02+ 6.33E+02 | + 2.25E+02+ 2.38E+02 | + 8.27E+02+ 4.12E+02 | + 2.04E-01+ 8.02E-01
FO6 2.93E+01+ 2.79E+01 | + 9.41E-01+ 1.84E+00 + 1.59E-01+ 2.18E-01 + 3.29E-08+ 1.22E-07 + 1.59E-01+ 7.89E-01
FO7 1.17E-02+ 9.90E-03 + 1.68E-02+ 1.15E-02 + 9.86E-03+ 8.94E-03 = 9.60E-03+ 8.84E-03 + 5.12E-03+ 6.94E-03
FO08 2.09E+01+ 5.18E-02 + 2.09E+01+ 5.48E-02 + 2.09E+01+ 4.14E-02 + 2.09E+01+ 4.66E-02 + 2.04E+01+ 4.56E-01
F09 0.00E+00+ 0.00E+00 | = 0.00E+00+ 0.00E+00 | = 0.00E+00+ 0.00E+00 | = 0.00E+00+ 0.00E+00 | = 0.00E+00+ 0.00E+00
F10 5.54E+01+ 9.44E+00 | + 5.99E+01+ 1.13E+01 | + 3.14E+01+ 4.31E+00 | + 4.63E+01+ 1.03E+01 2.47E+01+ 9.35E+00
F11 2.85E+01+ 1.71E+00 | + 2.79E+01+ 4.38E+00 | + 2.03E+01+ 1.20E+01 | + 1.10E+01+ 2.99E+00 1.60E+01+ 3.25E+00
F12 1.45E+04+ 7.82E+03 | + 3.69E+03+ 5.80E+03 | + 2.41E+03+ 2.15E+03 | + 1.68E+03+ 2.21E+03 | = 1.51E+03+ 2.77E+03
F13 1.67E+00+ 1.54E-01 = 2.64E+00+ 1.85E-01 + 3.76E+00+ 3.54E+00 | + 3.25E+00+ 1.16E+00 | + 1.69E+00+ 1.11E-01
F14 1.30E+01+ 2.20E-01 + 1.29E+01+ 1.99E-01 + 1.26E+01+ 2.40E-01 + 1.23E+01+ 4.73E-01 + 1.12E+01+ 1.02E+00
F15 3.54E+02+ 9.33E+01 | = 4.04E+02+ 4.02E+01 | + 2.15E+02+ 1.88E+02 4.04E+02+ 1.98E+01 | + 3.48E+02+ 6.46E+01
F16 7.47E+01+ 1.12E+01 | + 7.89E+01+ 9.65E+00 | + 9.23E+01+ 4.38E+01 | + 6.80E+01+ 1.33E+01 | + 5.60E+01+ 5.53E+01
F17 1.33E+02+ 1.70E+01 | + 1.38E+02+ 2.35E+01 | + 1.36E+02+ 3.66E+01 6.58E+01+ 1.36E+01 | = 8.75E+01+ 1.12E+02
F18 9.06E+02+ 1.74E+00 | — 8.62E+02+ 5.56E+01 | — 8.21E+02+ 4.22E+00 | — 8.91E+02+ 4.01E+01 | — 9.10E+02+ 2.20E+00
F19 9.07E+02+ 1.75E+00 | — 8.55E+02+ 5.61E+01 8.22E+02+ 3.87E+00 8.95E+02+ 3.57E+01 9.10E+02+ 2.49E+00
F20 9.07E+02+ 1.79E+00 | — 8.58E+02+ 5.60E+01 | — 8.21E+02+ 4.66E+00 8.96E+02+ 3.57E+01 9.10E+02+ 2.49E+00
F21 5.00E+02+ 0.00E+00 | = 5.00E+02+ 0.00E+00 | = 5.00E+02+ 0.00E+00 | = 5.00E+02+ 0.00E+00 | = 5.00E+02+ 0.00E+00
F22 9.02E+02+ 9.14E+00 | + 9.15E+02+ 1.23E+01 | + 8.77E+02+ 1.61E+01 | + 9.18E+02+ 1.23E+01 | + 8.63E+02+ 1.47E+01
F23 5.34E+02+ 2.14E-04 | — 5.34E+02+ 1.60E-04 | = 5.34E+02+ 1.76E-02 + 5.34E+02+ 4.29E-04 | + 5.34E+02+ 3.71E-04
F24 2.00E+02+ 0.00E+00 | = 2.00E+02+ 0.00E+00 | = 2.00E+02+ 0.00E+00 | = 2.00E+02+ 0.00E+00 | = 2.00E+02+ 0.00E+00
F25 2.10E+02+ 3.33E-01 + 2.10E+02+ 3.34E-01 + 2.11E+02+ 5.17E-01 + 2.10E+02+ 4.11E-01 + 2.09E+02+ 2.51E-01
w/t/l 15/6/4 17/5/3 16/5/4 15/6/4 -
“+" “~" and “=" indicate our approach is respectively better thanysethan, or similar to its competitor according to the Wilcoxon signed-ranktes= 0.05.
Table 5: Indirect Comparison on the Error Values Among Défe State-of-the-Art DE Variants for All Functions@t= 30.
Prob JDE [35] SaDE [35] JADE [35] EPSDE-c [30] CoDE [35] Rer-JADE-s4
FO1 0.00E+00+ 0.00E+00 | 0.00E+00+ 0.00E+00 | 0.00E+00+ 0.00E+00 | 0.00E+00+ 0.00E+00 | 0.00E+00+ 0.00E+00 | 0.00E+00+ 0.00E+00
F02 1.11E-06+ 1.96E-06 8.26E-06+ 1.65E-05 1.07E-28+ 1.00E-28 3.37E-27+ 4.73E-27 1.69E-15+ 3.95E-15 3.78E-28+ 1.98E-28
FO3 1.98E+05+ 1.10E+05 | 4.27E+05+ 2.08E+05 | 8.42E+03+ 7.26E+03 | 7.74E+04+ 3.77E+04 1.05E+05+ 6.25E+04 | 1.50E+04+ 1.29E+04
FO4 4.40E-02+ 1.26E-01 1.77E+02+ 2.6 7E+02 1.73E-16+ 5.43E-16 1.76E-12+ 2.97E-12 5.81E-03+ 1.38E-02 6.37E-11+ 3.17E-10
FO5 5.11E+02+ 4.40E+02 3.25E+03+ 5.90E+02 8.59E-08+ 5.23E-07 2.26E+02+ 2.61E+02 3.31E+02+ 3.44E+02 2.04E-01+ 8.02E-01
FO6 2.35E+01+ 2.50E+01 | 5.31E+01+ 3.25E+01 | 1.02E+01+ 2.96E+01 2.12E-20+ 1.13E-19 1.60E-01+ 7.85E-01 1.59E-01+ 7.89E-01
FO7 1.18E-02+ 7.78E-03 1.57E-02+ 1.38E-02 8.07E-03+ 7.42E-03 5.60E-03+ 6.11E-03 7.46E-03+ 8.55E-03 5.12E-03+ 6.94E-03
F08 2.09E+01+ 4.86E-02 2.09E+01+ 4.95E-02 2.09E+01+ 1.68E-01 2.08E+01+ 1.31E-01 2.01E+01+ 1.41E-01 2.04E+01+ 4.56E-01
FO9 | 0.00E+00+ 0.00E+00 | 2.39E-01+ 4.33E-01 | 0.00E+00+ 0.00E+00 | 0.00E+00+ 0.00E+00 | 0.00E+00+ 0.00E+00 | 0.00E+00+ 0.00E+00
F10 5.54E+01+ 8.46E+00 4.72E+01+ 1.01E+01 | 2.41E+01+ 4.61E+00 4.71E+01+ 1.52E+01 4.15E+01+ 1.16E+01 2.47E+01+ 9.35E+00
F11 2.79E+01+ 1.61E+00 | 1.65E+01+ 2.42E+00 | 2.53E+01+ 1.65E+00 2.86E+01+ 9.61E-01 1.18E+01+ 3.40E+00 | 1.60E+01+ 3.25E+00
F12 8.63E+03+ 8.31E+03 | 3.02E+03+ 2.33E+03 | 6.15E+03+ 4.79E+03 1.32E+04+ 1.35E+04 | 3.05E+03+ 3.80E+03 | 1.51E+03+ 2.77E+03
F13 1.66E+00+ 1.35E-01 3.94E+00+ 2.81E-01 1.49E+00+ 1.09E-01 1.19E+00+ 1.24E-01 1.57E+00+ 3.27E-01 1.69E+00+ 1.11E-01
F14 1.30E+01+ 2.00E-01 1.26E+01+ 2.83E-01 1.23E+01+ 3.11E-01 1.25E+01+ 1.64E-01 1.23E+01+ 4.81E-01 1.12E+01+ 1.02E+00
F15 3.77E+02+ 8.02E+01 | 3.76E+02+ 7.83E+01 | 3.51E+02+ 1.28E+02 | 2.12E+02+ 1.98E+01 | 3.88E+02+ 6.85E+01 | 3.48E+02+ 6.46E+01
F16 7.94E+01+ 2.96E+01 | 8.57E+01+ 6.94E+01 | 1.01E+02+ 1.24E+02 9.08E+01+ 2.98E+01 | 7.37E+01+ 5.13E+01 | 5.60E+01+ 5.53E+01
F17 1.37E+02+ 3.80E+01 | 7.83E+01+ 3.76E+01 1.47E+02+ 1.33E+02 1.04E+02+ 7.27E+01 6.67E+01+ 2.12E+01 8.75E+01+ 1.12E+02
F18 9.04E+02+ 1.08E+01 | 8.68E+02+ 6.23E+01 9.04E+02+ 1.03E+00 8.20E+02+ 3.35E+00 9.04E+02+ 1.04E+00 9.10E+02+ 2.20E+00
F19 9.04E+02+ 1.11E+00 | 8.74E+02+ 6.22E+01 9.04E+02+ 8.40E-01 8.21E+02+ 3.35E+00 9.04E+02+ 9.42E-01 9.10E+02+ 2.49E+00
F20 9.04E+02+ 1.10E+00 | 8.78E+02+ 6.03E+01 9.04E+02+ 8.47E-01 8.22E+02+ 4.17E+00 9.04E+02+ 9.01E-01 9.10E+02+ 2.49E+00
F21 5.00E+02+ 4.80E-13 5.52E+02+ 1.82E+02 | 5.00E+02+ 4.67E-13 5.00E+02+ 6.64E-14 5.00E+02+ 4.88E-13 5.00E+02+ 0.00E+00
F22 8.75E+02+ 1.91E+01 | 9.36E+02+ 1.83E+01 | 8.66E+02+ 1.91E+01 8.85E+02+ 6.82E+01 | 8.63E+02+ 2.43E+01 | 8.63E+02+ 1.47E+01
F23 5.34E+02+ 2.77E-04 5.34E+02+ 3.57E-03 5.50E+02+ 8.05E+01 | 5.07E+02+ 7.26E+00 5.34E+02+ 4.12E-04 5.34E+02+ 3.71E-04
F24 2.00E+02+ 2.85E-14 2.00E+02+ 6.20E-13 2.00E+02+ 2.85E-14 2.13E+02+ 1.52E+00 | 2.00E+02+ 2.85E-14 2.00E+02+ 0.00E+00
F25 2.11E+02+ 7.32E-01 2.14E+02+ 2.00E+00 2.11E+02+ 7.92E-01 2.13E+02+ 2.55E+00 2.11E+02+ 9.02E-01 2.09E+02+ 2.51E-01
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Table 7: Comparison on the Error Values Among Different&ttthe-Art EAs for All Functions ab = 30.

Prob GL-25 LEP CMA-ES CLPSO OLPSO-L Rer-JADE-s4
Fo1 1.60E-27+ 2.11E-27+ 6.24E-06+ 9.56E-07 + 1.25E-25+ 2.38E-26 + | 0.00E+00+ 0.00E+00= | 0.00E+00+ 0.00E+00= | 0.00E+00+ 0.00E+00
F02 2.87E+01+ 5.45E+01 + | 4.46E+01+ 4.49E+01 + 6.70E-25+ 2.45E-25+ 6.91E+01+ 2.06E+01 + | 1.29E+02+ 2.84E+02 + 3.78E-28+ 1.98E-28
FO3 2.36E+06+ 1.11E+06 + | 3.30E+06+ 1.65E+06 + | 5.31E-21+ 1.51E-21— 1.39E+07+ 2.83E+06 + | 6.99E+06+ 3.40E+06 + | 1.50E+04+ 1.29E+04
Fo4 7.83E+02+ 4.58E+02 + | 6.18E+03+ 3.14E+03 + | 4.79E+05+ 1.75E+06 + | 1.78E+03x+ 4.56E+02 + | 4.53E+02+ 4.40E+02+ 6.37E-11+ 3.17E-10
F05 2.59E+03+ 2.57E+02 + | 5.91E+03+ 1.19E+03 + | 3.54E-10+ 7.46E-11— 2.06E+03+ 4.00E+02 + | 2.73E+03+ 1.12E+03 + | 2.04E-01+ 8.02E-01
FO6 2.17E+01+ 1.41E+00 + 1.71E+02+ 2.90E+02 + 6.38E-01+ 1.48E+00= 2.83E+01+ 9.68E+00 + | 1.60E+01+ 4.02E+01 + 1.59E-01+ 7.89E-01
FO7 3.10E-02+ 6.78E-02 + 4.81E-02+ 3.77E-02 + 2.15E-03+ 3.36E-03— 3.63E-02+ 2.93E-02 + 9.59E-01+ 8.68E-01 + 5.12E-03+ 6.94E-03
Fo8 2.10E+01+ 4.70E-02 + | 2.10E+01+ 4.91E-02 + [ 2.03E+01+ 5.96E-01- 2.09E+01+ 5.11E-02 + | 2.10E+01+ 6.09E-02 + | 2.04E+01+ 4.56E-01
F09 2.55E+01+ 6.56E+00 + | 1.81E-03+ 6.18E-04 + | 4.01E+02+ 1.28E+02 + | 0.00E+00+ 0.00E+00= | 0.00E+00+ 0.00E+00= | 0.00E+00+ 0.00E+00
F10 1.51E+02+ 5.34E+01 + | 8.23E+01+ 2.08E+01 + | 4.54E+01+ 1.15E+01+ 1.15E+02+ 1.56E+01 + | 6.88E+01+ 1.68E+01 + | 2.47E+01+ 9.35E+00
F11 3.15E+01+ 8.14E+00 + | 3.93E+01+ 1.21E+00 + | 5.89E+00+ 2.12E+00- | 2.62E+01+ 1.51E+00 + | 2.93E+01+ 4.38E+00 + | 1.60E+01+ 3.25E+00
F12 8.32E+03+ 6.50E+03 + | 6.91E+03+ 6.63E+03+ | 8.31E+03+ 1.03E+04 + | 3.36E+04+ 6.54E+03 + | 9.84E+03+5.22E+03 + | 1.51E+03+ 2.77E+03
F13 5.17E+00+ 4.17E+00 + | 2.18E+00+ 6.40E-01 + | 3.47E+00+ 7.17E-01+ | 7.01E+00+ 7.09E-01+ | 1.11E+00+ 3.61E-01— 1.69E+00+ 1.11E-01
F14 1.30E+01+ 2.00E-01 + | 1.18E+01+ 7.73E-01+ 1.47E+01+ 2.84E-01 + | 1.29E+01+ 1.90E-01 + | 1.33E+01+ 3.28E-01 + | 1.12E+01+ 1.02E+00
F15 3.00E+02+ 2.94E-02 — 3.45E+02+ 7.75E+01 = | 5.02E+02+ 2.92E+02 + | 2.92E+02+ 4.54E+01— 2.96E+02+ 7.54E+01—- 3.48E+02+ 6.46E+01
F16 1.01E+02+ 8.30E+01+ 1.43E+02+ 1.05E+02 + | 3.63E+02+ 2.47E+02 + | 1.98E+02+ 3.34E+01 + | 1.32E+02+4.21E+01 + | 5.60E+01+ 5.53E+01
F17 2.09E+02+ 7.79E+00 + | 1.21E+02+ 6.88E+01+ | 4.16E+02+ 3.99E+02 + | 2.33E+02+ 2.97E+01 + | 1.61E+02+ 4.01E+01 + | 8.75E+01+ 1.12E+02
F18 9.06E+02+ 1.56E+00 — | 9.30E+02+ 2.07E+01 + | 9.06E+02+ 1.20E+01 — | 9.06E+02+ 6.21E-01— | 9.07E+02+ 1.41E+00 — | 9.10E+02+ 2.20E+00
F19 9.07E+02+ 2.67E+00 — | 9.27E+02+ 2.84E+01 + | 9.04E+02+ 2.35E-01— 9.06E+02+ 6.86E-01— 9.07E+02+ 1.36E+00 — | 9.10E+02+ 2.49E+00
F20 9.05E+02+ 3.65E+00- | 9.33E+02+ 1.02E+01 + | 9.04E+02+ 2.78E-01— 9.06E+02+ 6.90E-01 — | 9.07E+02+ 1.34E+00 — | 9.10E+02+ 2.49E+00
F21 5.00E+02+ 0.00E+00 = | 5.32E+02+ 1.18E+02 + | 5.16E+02+ 7.92E+01 = | 5.00E+02+ 0.00E+00 = | 5.19E+02+ 2.59E+01 + | 5.00E+02+ 0.00E+00
F22 9.32E+02+ 8.69E+00 + | 9.14E+02+ 2.78E+01 + | 8.25E+02+ 1.72E+01— 9.02E+02+ 8.88E+00 + | 8.91E+02+ 1.84E+01 + | 8.63E+02+ 1.47E+01
F23 5.34E+02+ 6.00E-04 = 5.89E+02+ 1.71E+02 + | 5.44E+02+ 5.42E+01 + 5.34E+02+ 8.42E-05 = 5.78E+02+ 4.52E+01 + 5.34E+02+ 3.71E-04
F24 2.00E+02+ 0.00E+00= 2.00E+02+ 1.09E-04+ 2.00E+02+ 0.00E+00= | 2.01E+02+ 6.48E+00 + | 6.99E+02+ 2.63E+02 + | 2.00E+02+ 0.00E+00
F25 2.15E+02+ 2.35E+00 + | 2.20E+02+ 7.58E+00 + | 2.14E+04+ 3.25E-01 + | 2.10E+02+ 3.81E-01+ | 2.09E+02+ 4.21E-01= 2.09E+02+ 2.51E-01
wy/t/l 18/3/4 24/1/0 13/3/9 17/4/4 17/3/5 -

“+" “~" and “=" indicate our approach is respectively better thanyseothan, or similar to its competitor according to the Wilcoxon signed-ratktes= 0.05.

Table 9: Comparison on the Error Values Between SaDE andoite€ponding §-SaDE for All Functions ab = 30 andD = 50, Respectively.

Prob D =30 D =50
SaDE R¢-SaDE SaDE R -SaDE

Fo1 0.00E+00+ 0.00E+00 | = | 0.00E+00+ 0.00E+00 0.00E+00+ 0.00E+00 | = | 0.00E+00+ 0.00E+00
F02 1.01E-15+ 1.89E-15 + 2.03E-16+ 4.98E-16 1.33E-08+ 2.77E-08 + 6.11E-09+ 1.48E-08
FO3 7.65E+04+ 6.50E+04 | + 4.84E+04+ 3.17E+04 1.07E+05+ 4.52E+04 | = 1.14E+05+ 5.53E+04
Fo4 4.25E-02+ 2.02E-01 = 4.62E-04+ 1.20E-03 3.24E+02+ 3.52E+02 | + 1.67E+02+ 1.56E+02
FO5 6.93E+02+ 6.33E+02 | + | 3.72E+02+ 3.51E+02 3.49E+03+ 5.08E+02 | + | 3.23E+03+ 5.66E+02
FO6 9.41E-01+ 1.84E+00 = 1.51E+00+ 1.95E+00 5.36E+00+ 1.42E+01 | = 3.15E+00+ 2.48E+00
FO7 1.68E-02+ 1.15E-02 + 1.34E-02+ 1.19E-02 4.48E-03+ 8.70E-03 = 4.52E-03+ 1.03E-02
FO8 2.09E+01+ 5.48E-02 = 2.09E+01+ 5.36E-02 2.11E+01+ 4.50E-02 2.11E+01+ 3.18E-02
F09 0.00E+00+ 0.00E+00 | = | 0.00E+00+ 0.00E+00 0.00E+00+ 0.00E+00 | = | 0.00E+00+ 0.00E+00
F10 5.99E+01+ 1.13E+01 | + | 4.39E+01+ 1.78E+01 1.48E+02+ 1.83E+01 | + | 1.30E+02+ 3.72E+01
F11 2.79E+01+ 4.38E+00 | + | 2.21E+01+ 8.99E+00 5.73E+01+ 2.04E+00 | + | 5.54E+01+ 8.01E+00
F12 3.69E+03+ 5.80E+03 | = | 3.06E+03x 5.27E+03 1.20E+04+ 1.44E+04 | = | 9.11E+03+ 7.54E+03
F13 2.64E+00+ 1.85E-01 2.66E+00+ 2.10E-01 5.51E+00+ 3.31E-01 5.47E+00+ 3.67E-01
F14 1.29E+01+ 1.99E-01 | = 1.29E+01+ 1.89E-01 2.25E+01+ 2.46E-01 2.25E+01+ 2.10E-01
F15 4.04E+02+ 4.02E+01 | = 3.98E+02+ 5.53E+01 3.76E+02+ 6.57E+01 | = 3.80E+02+ 6.06E+01
F16 7.89E+01+ 9.65E+00 | + 6.13E+01+ 1.88E+01 9.93E+01+ 1.54E+01 | + 9.03E+01+ 5.07E+01
F17 1.38E+02+ 2.35E+01 | + 8.63E+01+ 4.79E+01 1.97E+02+ 1.35E+01 | + 1.79E+02+ 3.90E+01
F18 8.62E+02+ 5.56E+01 | = | 8.64E+02+ 5.49E+01 9.21E+02+ 458E+01 | = | 9.29E+02+ 3.51E+01
F19 8.55E+02+ 5.61E+01 | = | 8.51E+02+ 5.55E+01 9.14E+02+ 5.42E+01 9.14E+02+ 5.21E+01
F20 8.58E+02+ 5.60E+01 | = | 8.51E+02+ 5.53E+01 9.24E+02+ 4.25E+01 | = | 9.19E+02+ 4.96E+01
F21 5.00E+02+ 0.00E+00 | = | 5.00E+02+ 0.00E+00 5.00E+02+ 0.00E+00 | = | 5.00E+02+ 0.00E+00
F22 9.15E+02+ 1.23E+01 | = 9.14E+02+ 1.35E+01 9.68E+02+ 5.87E+00 | + 9.63E+02+ 6.72E+00
F23 5.34E+02+ 1.60E-04 + 5.34E+02+ 1.24E-04 5.39E+02+ 4.14E-05 = 5.39E+02+ 2.46E-03
F24 2.00E+02+ 0.00E+00 | = | 2.00E+02+ 0.00E+00 2.00E+02+ 0.00E+00 | = | 2.00E+02+ 0.00E+00
F25 2.10E+02+ 3.34E-01 | + 2.09E+02+ 4.25E-01 2.16E+02+ 8.10E-01 | + 2.15E+02+ 7.70E-01
w/t/I 10/15/0 - 9/16/0 -

“+", “~" and “=" indicate our approach is respectively better than,rseothan, or similar to its competitor according to the

Wilcoxon signed-rank test at = 0.05.
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Table 10: Comparison on the Error Values Between EPSDE-|tar@orresponding R-EPSDE-j for All Functions ab = 30 andD = 50, Respectively.

Prob

D =30

D =50

EPSDE-j

R.-EPSDE-j

EPSDE-j

R.,-EPSDE-j

FO1
F02
F0O3
FO4
FO5

0.00E+00+ 0.00E+00
2.44E-26+ 1.30E-26
3.85E+05+ 2.61E+05
6.54E+03+ 6.37E+03
3.25E+03+ 8.23E+02

0.00E+00+ 0.00E+00
1.52E-24+ 4.24E-24
7.52E+04+ 5.63E+04
5.96E+03+ 5.08E+03
2.12E+03+ 7.80E+02

0.00E+00+ 0.00E+00
4.41E-08+ 2.84E-08
6.27E+05+ 3.20E+05
2.65E+04+ 1.69E+04
7.44E+03+ 1.38E+03

"

+

0.00E+00+ 0.00E+00
1.67E-10+ 2.35E-10
5.86E+05+ 3.60E+05
5.40E+04+ 1.60E+04
6.59E+03+ 1.33E+03

F06
FO7
F08
F09
F10
F11
F12

5.38E-01+ 1.56E+00
1.43E-02+ 1.37E-02
2.09E+01+ 6.36E-02
0.00E+00+ 0.00E+00
5.20E+01+ 1.16E+01
3.26E+01+ 2.78E+00
3.74E+04+ 6.61E+03

4.31E-01+ 1.76E+00
2.33E-02+ 1.82E-02
2.09E+01+ 4.54E-02
0.00E+00+ 0.00E+00
4.17E+01+ 7.87E+00
2.94E+01+ 1.65E+00
1.84E+04+ 2.41E+03

5.95E-01+ 1.18E+00
1.18E-02+ 1.50E-02
2.11E+01+ 3.49E-02
6.50E+01+ 6.34E+00
1.90E+02+ 5.01E+01
7.15E+01+ 1.79E+00
3.04E+05+ 7.11E+04

3.92E-01+ 1.18E+00
1.14E-02+ 1.55E-02
2.10E+01+ 6.76E-02
0.00E+00+ 0.00E+00
1.19E+02+ 3.17E+01
5.76E+01+ 6.28E+00
7.11E+04+ 1.22E+04

F13
F14

1.99E+00+ 2.28E-01
1.34E+01+ 3.02E-01

1.15E+00+ 8.40E-02
1.30E+01+ 1.68E-01

6.35E+00+ 3.22E-01
2.28E+01+ 7.34E-01

2.16E+00+ 1.61E-01
2.26E+01+ 1.36E-01

F15
F16
F17
F18
F19
F20
F21
F22
F23
F24
F25

2.16E+02+ 2.07E+01
1.69E+02+ 1.45E+02
1.81E+02+ 1.02E+02
8.22E+02+ 3.51E+00
8.25E+02+ 2.82E+00
8.23E+02+ 3.55E+00
8.62E+02+ 3.12E+00
5.12E+02+ 8.21E+00
8.89E+02+ 6.18E+01
2.20E+02+ 4.43E+00
2.10E+02+ 3.25E-01

++ |+ + o+

2.11E+02+ 3.14E+01
1.69E+02+ 1.63E+02
1.41E+02+ 1.12E+02
8.26E+02+ 4.06E+00
8.29E+02+ 5.86E+00
8.28E+02+ 5.69E+00
7.94E+02+ 1.55E+02
5.52E+02+ 1.05E+02
8.73E+02+ 4.00E+00
2.21E+02+ 7.14E+00
2.10E+02+ 4.15E-01

2.66E+02+ 6.36E+01
1.56E+02+ 4.74E+01
2.22E+02+ 1.31E+02
8.71E+02+ 4.65E+01
8.49E+02+ 2.41E+00
8.46E+02+ 2.91E+00
7.32E+02+ 3.20E+00
5.00E+02+ 7.07E-01
7.40E+02+ 3.12E+00
4.72E+02+ 4.10E+02
2.13E+02+ 1.98E+00

+ o+ |+ |+ o+ o+ o+

2.03E+02+ 3.91E+00
1.41E+02+ 6.35E+01
2.99E+02+ 1.34E+02
8.53E+02+ 5.12E+00
8.77E+02+ 3.67E+01
8.53E+02+ 5.06E+00
6.92E+02+ 1.07E+02
5.00E+02+ 5.67E-01
6.60E+02+ 1.05E+02
4.37E+02+ 4.09E+02
2.14E+02+ 6.58E+00

w/t/l

12/6/7

14/6/5

s

Wilcoxon signed-rank test at = 0.05.

Table 12: Comparison on the Error Values Between JADE-sFRapdADE-s4 for All Functions ab = 30 with NP = 50 andN P = 200, Respectively.

, and “=" indicate our approach is respectively better than,rseothan, or similar to its competitor according to the

Prob NP =50 NP =200
JADE-s4 R¢-JADE-s4 JADE-s4 Rer-JADE-s4

Fo1 0.00E+00+ 0.00E+00 | = 0.00E+00+ 0.00E+00 0.00E+00+ 0.00E+00 | = 0.00E+00+ 0.00E+00
F02 2.17E+02+ 4.31E+02 | + 1.48E+01+ 1.05E+02 1.33E+03+ 2.47E+03 | + 1.53E-28+ 1.02E-28
FO3 2.55E+06+ 4.26E+06 | + 8.47E+03+ 6.05E+03 1.54E+06+ 4.02E+06 | + 1.81E+03+ 2.51E+03
F04 4.80E+02+ 1.69E+03 | = 1.72E-02+ 1.21E-01 2.41E+03+ 4.01E+03 | + 5.44E-21+ 3.81E-20
FO5 8.48E+02+ 1.16E+03 | + 2.19E+02+ 2.54E+02 9.71E+01+ 4.81E+02 | + 5.81E-04+ 2.18E-03
FO6 1.61E+01+ 3.19E+01 | + 1.28E+00+ 1.88E+00 1.23E-22+ 8.69E-22 | = 1.19E-26+ 3.57E-26
Fo7 7.93E-03+ 5.96E-03 | = 1.03E-02+ 9.04E-03 7.15E-03+ 4.35E-03 | + 2.17E-03+ 4.21E-03
Fo8 2.09E+01+ 2.51E-01 | + 2.04E+01+ 3.99E-01 2.09E+01+ 5.23E-02 | = 2.09E+01+ 1.54E-01
F09 0.00E+00+ 0.00E+00 | = 0.00E+00+ 0.00E+00 0.00E+00+ 0.00E+00 | = 0.00E+00+ 0.00E+00
F10 2.75E+01+ 6.95E+00 | — 3.23E+01+ 9.45E+00 3.69E+01+ 1.93E+01 | + 2.11E+01+ 6.50E+00
F11 2.78E+01+ 4.37E+00 | + 2.36E+01+ 4.02E+00 2.81E+01+ 5.12E+00 | + 1.16E+01+ 4.06E+00
F12 5.98E+03+ 4.40E+03 | + 3.15E+03+ 4.44E+03 2.26E+04+ 4.90E+03 | + 1.00E+04+ 1.10E+04
F13 1.18E+00+ 1.02E-01 - 1.27E+00+ 1.21E-01 2.18E+00+ 1.85E-01 - 2.34E+00+ 1.83E-01
F14 1.23E+01+ 7.64E-01 + 1.19E+01+ 8.78E-01 1.28E+01+ 2.53E-01 + 1.12E+01+ 7.52E-01
F15 3.22E+02+ 8.87E+01 | = 3.12E+02+ 1.12E+02 3.60E+02+ 5.71E+01 | = 3.58E+02+ 6.73E+01
F16 1.31E+02+ 1.58E+02 | — 1.36E+02+ 1.50E+02 5.82E+01+ 2.43E+01 | + 3.97E+01+ 1.42E+01
F17 1.50E+02+ 1.37E+02 | + 1.25E+02+ 1.38E+02 7.62E+01+ 6.35E+01 | + | 4.58E+01+ 5.16E+01
F18 9.04E+02+ 2.68E+01 | — 9.07E+02+ 2.76E+01 9.08E+02+ 2.05E+00 | = 9.08E+02+ 1.79E+00
F19 9.07E+02+ 2.25E+01 | — 9.13E+02+ 4.16E+00 9.08E+02+ 1.85E+00 | = 9.08E+02+ 1.70E+00
F20 9.07E+02+ 2.21E+01 | — 9.14E+02+ 4.18E+00 9.08E+02+ 1.94E+00 | = 9.08E+02+ 1.83E+00
F21 5.31E+02+ 1.14E+02 | = 5.06E+02+ 4.24E+01 5.00E+02+ 0.00E+00 | = 5.00E+02+ 0.00E+00
F22 8.96E+02+ 2.03E+01 9.02E+02+ 2.26E+01 8.90E+02+ 1.61E+01 | + 8.79E+02+ 2.59E+01
F23 5.34E+02+ 9.86E-03 5.34E+02+ 1.73E-02 5.34E+02+ 2.13E-04 | + 5.34E+02+ 2.88E-04
F24 2.00E+02+ 0.00E+00 | = 2.00E+02+ 0.00E+00 2.00E+02+ 0.00E+00 | = 2.00E+02+ 0.00E+00
F25 2.10E+02+ 6.77E-01 = 2.10E+02+ 3.69E-01 2.09E+02+ 3.26E-02 = 2.09E+02+ 3.76E-02
w/t/l 9/10/6 - 13/11/1 -

“+" “=" and “=" indicate our approach is respectively better than,rseothan, or similar to its competitor according to the

Wilcoxon signed-rank test at = 0.05.
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Table 13: Comparison on the Error Values Between JADE-sARapdADE-s4 for All Functions ab = 30 with Different Initial ug Values.

Prob pr =01 ur =06 ue =09
JADE-s4 Rer-JADE-s4 JADE-s4 Rc-JADE-s4 JADE-s4 Rer-JADE-s4
FO1 0.00E+00+ 0.00E+00 = | 0.00E+00+ 0.00E+00 0.00E+00+ 0.00E+00 = | 0.00E+00+ 0.00E+00 0.00E+00+ 0.00E+00 = | 0.00E+00+ 0.00E+00
F02 3.59E-28+ 1.99E-28= 4.13E-28+ 1.99E-28 1.31E+03+ 1.89E+03 + 3.96E-28+ 2.34E-28 3.79E+03+ 2.14E+03 + | 7.33E+02+ 1.61E+03
FO3 1.70E+05+ 1.11E+06 + | 1.33E+04+ 8.32E+03 4.57E+06+ 5.64E+06 + | 1.44E+04+ 9.71E+03 1.17E+07+ 4.83E+06 + | 2.72E+06+ 5.35E+06
FO4 5.44E+02+ 2.08E+03 + 1.55E-11+ 1.01E-10 1.66E+03+ 3.31E+03 + | 1.57E+02+ 1.11E+03 8.67E+03+ 5.22E+03 + | 1.76E+03+ 3.97E+03
FO5 1.12E-01+ 2.96E-01 = 3.71E-02+ 7.32E-02 8.13E+02+ 1.27E+03 + | 2.53E+00+ 1.49E+01 2.88E+03+ 1.30E+03 + 1.41E-01+ 3.76E-01
FO6 5.97E+00+ 2.17E+01 = 6.38E-01+ 1.48E+00 6.84E+00+ 2.34E+01 = 7.97E-02+ 5.64E-01 2.27E+01+ 2.31E+01 + 1.59E-01+ 7.89E-01
FO7 6.31E-03+ 5.25E-03= 6.79E-03+ 9.82E-03 7.98E-03+ 5.46E-03 = 7.04E-03+ 7.57E-03 8.03E-03+ 5.98E-03 = 7.54E-03+ 6.68E-03
FO08 2.09E+01+ 2.16E-01 + 2.03E+01+ 4.31E-01 2.09E+01+ 1.44E-01 + 2.03E+01+ 4.35E-01 2.09E+01+ 2.32E-01 + 2.04E+01+ 4.50E-01
F09 0.00E+00+ 0.00E+00 = | 0.00E+00+ 0.00E+00 0.00E+00+ 0.00E+00 = | 0.00E+00+ 0.00E+00 0.00E+00+ 0.00E+00 = | 0.00E+00+ 0.00E+00
F10 2.99E+01+ 8.36E+00 = | 2.95E+01+ 8.86E+00 2.85E+01+ 6.16E+00 + | 2.34E+01+ 6.82E+00 2.95E+01+ 1.04E+01 + | 2.45E+01+ 9.11E+00
F11 2.61E+01+ 4.53E+00 + | 1.79E+01+ 5.60E+00 2.67E+01+ 5.69E+00 + | 1.99E+01+ 6.60E+00 2.80E+01+ 4.85E+00 + | 1.90E+01+ 4.80E+00
F12 3.08E+03+ 3.87E+03 + | 1.17E+03+ 1.76E+03 1.52E+04+ 3.91E+03 + | 1.21E+04+ 8.05E+03 1.83E+04+ 3.83E+03— 2.05E+04+ 4.52E+03
F13 1.52E+00+ 1.02E-01— 1.63E+00+ 1.23E-01 1.56E+00+ 1.45E-01— 1.73E+00+ 1.19E-01 1.63E+00+ 1.02E-01— 1.70E+00+ 1.19E-01
F14 1.23E+01+ 9.00E-01 + 1.12E+01+ 7.25E-01 1.26E+01+ 5.61E-01 + | 1.13E+01+ 1.00E+00 1.25E+01+ 8.27E-01 + 1.14E+01+ 9.32E-01
F15 3.36E+02+ 6.31E+01= 3.40E+02+ 8.57E+01 3.56E+02+ 6.75E+01= 3.66E+02+ 8.46E+01 3.12E+02+ 1.08E+02— 3.53E+02+ 9.81E+01
F16 1.07E+02+ 1.35E+02 = | 9.17E+01+ 1.26E+02 8.59E+01+ 1.15E+02 = | 7.26E+01+ 9.68E+01 6.49E+01+ 4.05E+01 + | 4.27E+01+ 9.01E+00
F17 1.11E+02+ 1.18E+02= 1.13E+02+ 1.33E+02 1.00E+02+ 1.05E+02 + | 7.57E+01+ 1.03E+02 9.30E+01+ 4.64E+01 + | 4.78E+01+ 2.08E+01
F18 8.94E+02+ 4.14E+01 = | 8.86E+02+ 4.88E+01 9.09E+02+ 1.90E+00= 9.10E+02+ 1.89E+00 9.11E+02+ 1.59E+00 + | 9.09E+02+ 1.84E+00
F19 8.94E+02+ 4.14E+01 = | 8.91E+02+ 4.60E+01 9.09E+02+ 1.98E+00 = | 9.09E+02+ 1.95E+00 9.10E+02+ 1.90E+00 + | 9.08E+02+ 2.08E+00
F20 8.94E+02+ 4.14E+01 = | 8.93E+02+ 4.44E+01 9.09E+02+ 1.87E+00 = | 9.09E+02+ 2.07E+00 9.10E+02+ 1.85E+00 + | 9.09E+02+ 2.07E+00
F21 5.00E+02+ 0.00E+00 = | 5.00E+02+ 0.00E+00 5.00E+02+ 0.00E+00 = | 5.00E+02+ 0.00E+00 5.00E+02+ 0.00E+00 = | 5.00E+02+ 0.00E+00
F22 8.70E+02+ 1.58E+01= 8.71E+02+ 1.66E+01 8.86E+02+ 4.06E+01 + | 8.63E+02+ 1.24E+01 9.54E+02+ 2.99E+01 + | 8.85E+02+ 4.05E+01
F23 5.34E+02+ 3.53E-04 = 5.34E+02+ 1.34E-02 5.34E+02+ 3.44E-04 + 5.34E+02+ 3.86E-04 5.34E+02+ 2.68E-04 = 5.34E+02+ 4.11E-04
F24 2.00E+02+ 0.00E+00 = | 2.00E+02+ 0.00E+00 2.00E+02+ 0.00E+00 = | 2.00E+02+ 0.00E+00 2.00E+02+ 0.00E+00 = | 2.00E+02+ 0.00E+00
F25 2.13E+02+ 2.30E+00 = | 2.09E+02+ 5.03E-01 2.09E+02+ 3.09E-01 = 2.09E+02+ 1.26E-01 2.09E+02+ 6.23E-01 = 2.09E+02+ 2.33E-01
w/t/1 6/18/1 - 12/12/1 - 15/7/3 -
“+" “~" and “=" indicate our approach is respectively better thanysethan, or similar to its competitor according to the Wilcoxon signed-ranktes= 0.05.
Table 15: Comparison on the Performance of Different DEaras in Five Real-World Problems.
Prob NFFEs jDE SaDE CoDE JADE-s4 Rc-JADE-s4
p1 10,000 1.16E+04+ 4.60E+03 2.80E+02+ 1.16E+02 1.41E+02+ 1.03E+02 5.77E+03+ 3.11E+03 2.93E+00+ 3.64E+00
150,000 [ 0.00E+00+ 0.00E+00 0.00E+00+ 0.00E+00 0.00E+00+ 0.00E+00 1.10E+01+ 7.76E+01 0.00E+00+ 0.00E+00
P2 10,000 | 2.09E+01+ 2.43E+00 2.14E+01+ 2.18E+00 1.86E+01+ 2.72E+00 2.07E+01+ 1.96E+00 2.00E+01+ 2.54E+00
150,000 2.82E-01+ 5.21E-01 5.50E-01+ 4.64E-01 9.34E-01+ 3.29E+00 7.72E-01+ 1.07E+00 3.58E-02+ 2.01E-01
P3 150,000 1.32E+00+ 9.25E-02 1.95E+00+ 9.78E-02 1.23E+00+ 1.62E-01 1.21E+00+ 1.71E-01 9.02E-01+ 4.23E-01
pa 10,000 | 4.89E+02+ 1.18E+02 3.36E+01+ 7.39E+00 3.83E+01+ 1.46E+01 2.60E+02+ 6.46E+01 8.27E+00+ 3.43E+00
150,000 5.87E-07+ 2.16E-06 0.00E+00+ 0.00E+00 6.86E-14+ 3.69E-13 1.53E+00+ 1.08E+01 0.00E+00+ 0.00E+00
P5 150,000 | -2.16E+01+ 1.75E-01 -2.17E+01+ 1.40E-01 -1.84E+01+ 1.85E+00 -1.98E+01+ 1.43E+00 -2.14E+01+ 4.49E-01
w/t/l 4/1/0 4/0/1 5/0/0 5/0/0 -
“+" “~" and “=" indicate our approach is respectively better thanyseothan, or similar to its competitor according to the Wilcoxon signed-rabktes= 0.05.
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