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Abstract

Hybridization with other different algorithms is an intetiag direction for the improvement of differential evaari (DE). In this

paper, a hybrid DE based on the one-step k-means clustesilieg Clustering-based DE (CDE), is presented for the nsicained
global optimization problems. The one-step k-means dimgjeacts as several multi-parent crossover operatorsiliaeuthe

information of the population efficiently, and hence it carhance the performance of DE. To validate the performanaaof
approach, 30 benchmark functions of a wide range of dimessiod diversity complexities are employed. Experimemsuiits

indicate that our approach is effective and efficient. Comgavith other state-of-the-art DE approaches, our apjprpacforms
better, or at least comparably, in terms of the quality offihal solutions and the reduction of the number of fitness tionc
evaluations (NFFESs).
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1. Introduction cases, global optimization problems are non-differetgiab
noisy and simulation-based. Hence the gradient-basedaeth
Without loss of generality, a global minimization problem cannot be used for finding the global minimum of such prob-
can be formalized as a paB,(f) , whereS ¢ RP is a bounded lems. As a result, many researchers have devoted themselves
setonR® andf : S — Ris aD-dimensional real-valued func- in finding some reliable stochastic global optimization et
tion. The problem is to find a poi* € S such thatf(X*) is  ods that do not require any computation of the gradientseof th
a global minimum or$§ [1]. More specifically, it is required to  objective function. In global optimization problems, th@m

find anX* € S such that jor challenge is that an algorithm may be trapped in the local
. optima of the objective function. This issue is particujathal-
VX eS: f(X) < f(X) (1) lenging when the dimension is high and there are numerous

local optima. Recently, using the Evolutionary Computatio

wheref does not need tlo be c;ontinu_ous but it mus_t be boundquC) [2] to solve the global optimization has been very activ
Generally, for each variablg it satisfies a constrained bound- producing different kinds of EC for optimization in the cimt

ary: uous domain, such as genetic algorithms (GAs) [3] - [4], evo-
lution strategy (ES) [5], evolutionary programming (EP) §1,

Global optimization problems are frequently arisen in amo Particle swarm optimization (PSO) [7], differential evoan
every field of engineering design, applied sciences, mddecu (DE) [8], etc.

biology and other scientific applications. Many of thesebpro  Differential evolution (DE) [9] algorithm is a novel evolu-
lems cannot be solved analytically, and consequently,ttagg  tionary algorithm (EA) for global optimization, which mditan

to be addressed by numerical algorithms. Moreover, in mangperator is based on the distribution of solutions in theuap
tion. It won the third place at the first International Contes
on Evolutionary Computation on a real-valued function-test
UThis work was supported in part by the Fund for Outstandingttral suite [10]. DE is a simple yet powerful population-basetkcli
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i<x<u,i=212---,D (2)

. ; : . DE with single scheme. Later on, they suggested ten differ-
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of digital filters, mechanical design optimization, aerdmic ~ Algorithm 1 DE algorithm with DE/rand/1/exp
design and multiprocessor synthesis [10, 11, 12]. Howd®/€r, 1. Generate the initial populatid®

has been shown to have certain weaknesses, especially if the: Evaluate the fitness for each individualfn
global optimum should be located using a limited number of 3: while The halting criterion is not satisfiedb
fithess function evaluations (NFFEs). In addition, DE is@joo 4: fori=1toNPdo

at exploring the search space and locating the region ofafjlob s Select uniform randomly;, # 1, # r3 # i
minimum, but it is slow at exploitation of the solution [13]. 6: jrand = rndint(1, D)

The main contribution of this paper is the hybridizationfet 7 L=0
8
9

one-step k-means clustering with DE, which makes the aaigin Ui =P

DE more effective and efficient. The one-step k-means clus-o: repeat

tering acts as several multi-parent crossover operatarslize 10: U‘j = X}l + F x (X;2 - XE3)

the information of the population efficiently. After incamt- 11 jrand = (jrand + 1) modD

ing the one-step k-means clustering, the hybrid DE approachui2: L=L+1

called Clustering-based DE (CDE), can balance the expborat 13 until rng;[0,1) > CRorL > D

and exploitation in the evolutionary process. The advatag 14: Evaluate the offspring'

of CDE are its simplicity, efficiency and flexibility. To véyi 15: if U'is better tharP' then

the performance of our approach, 30 benchmark functions (in1s: P' = U' {Replace the pareitnmediately
cluding 8 new test functions provided by CEC2005 special ses17: end if

sion [14]) are selected from the literature. Experimergalits  18:  end for
indicate that our approach is effective and efficient. Comga 19: end while
with other state-of-the-art DE approaches, our approach pe
forms better, or at least comparably, in terms ofthe quality

the final solutions and the reduction of the NFFEs. (Max.NFFEg or the precision of a desired solution value to
The remainder of this paper is organized as follows. In Secreach {TR).
tion 2, we briefly introduce the DE algorithm. In additionns® In the original DE algorithm, many schemes have been pro-

improved variants of DE are reviewed. Section 3 briefly deposed [10, 11] that use different learning strategies angfo
scribes the k-means clustering used in this work. Our preghos combination operations in the reproduction stage. In order
approach is presented in detail in Section 4. In Section 5, wé distinguish among its schemes, the notatiBiya/b/c” is
verify our approach through 30 benchmark functions. More-used, where “DE” denotes the Differential Evolutioa; Spec-
over, the experimental results are compared with thoseméso ifies the vector to be mutated (which can be random or the best
state-of-the-art DE approaches. The last section, Se6tigg  vector); ‘0" is the number of difference vectors used; amf “
devoted to conclusions and future work. denotes the crossover scherb@omial or exponential The
exponential crossover scheme is presented in Algorithmdl an
in case of exponential crossover, the crossover probakiiR
2. Differential Evolution regulates how many consecutive mutated genes are copied to
the trial individualU'. Using this notation, the DE strategy de-
DE [9] is a simple EA that creates new candidate solutionsscribed in Algorithm 1 above can be denoted as DE/rand/1/exp
by combining the parent individual and several other irdtivi Other well-known schemes are DE/best/1/exp, DE/randf2/ex

uals of the same population. A candidate replaces the pareahd DE/best/2/exp which can be implemented by (3) - (5), re-
only if it has better fitness. Among DE's advantages areiits si spectively.

ple structure, ease of use, speed and robustness. Due ¢o thes U' = XPesty Fx (X1 - XM (3)
advantages, it has many real-world applications, such &s da _ _ 0o .
mining [15, 16], pattern recognition, digital filter desigreural U'= X+ Fx (X"= X) + F x (X* = X) (4)

network training, etc. [11, 12].

The pseudo-code of DE is shown in Algorithm 1. WhEres
the number of decision variabledPis the population sizés is ~ whereXP®strepresents the best individual in the current gener-
the mutation scaling facto€R is the probability of crossover ation,i, j,h,I,sandt € {1,--- ,D},andi # j #h # | # s # t.
operator,U' is the offspring, rndint(1D) is a uniformly dis-  Again, each of the above algorithms can be configured to use
tributed random integer number between 1 Bpdnd rnd[0,1)  the binomial crossover.
is a uniformly distributed random real number in 1). Many Recently, many researchers are working on the improvement
schemes of creation of a candidate are possible. We use tloé DE, and many variants of DE are presented. Hybridization
DE/rand/1/exp scheme (see lines 6 - 13 of Algorithm 1) dewith other different algorithms is one direction for impesv
scribed in Algorithm 1 (more details on DE/rand/1/exp andment. Fan and Lampinen [17] proposed a new version of DE
other DE schemes can be found in [10] and [11]). which uses an additional mutation operation called trignet

From Algorithm 1, we can see that there are only three conric mutation operation. They showed that the modified DE
trol parameters in this algorithm. These &B, F andCR For  algorithm can outperform the classic DE algorithm for some
the terminal conditions, one can either fix the maximum NFFE$enchmarks and real-world problems. Satral. [18] proposed
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Table 1: The 22 benchmark functions used in our experimestitaly, whereD is the number of variables, “optimal” is the minimum valuetioé function, and
S c RP. A detailed description of all functions can be found in [1].

Test Functlons D S optimal
fo1= 3 X2 30 [-100 100P 0
i= 1
f02= Z % + H %] 30 [-10,10° 0
f03= Z (Z x))? 30 [-10Q 100 0
f04 = max{|x,| 1<i<D} 30 [-100 100P 0
Dfl
f05= ¥ [10004.1 — X2 + (x — 1)] 30 [-30,30]° 0
i=1
D
f06= 3 (1% +0.5]) 30 [-100 100 0
i=1
D
f07 = 3, x* + randon{o, 1) 30 [-1.28 1.28]° 0
i=1
D
f08 = 3 (—x sin(vIx) 30 [-500 500 -418.98288%D
i=1
D
f09= 3 (% - 10 cos(@x) + 10) 30 [-5.12512]° 0
i=1
D D
f10 = —20exp(-0.2 {i .2) —exp( 3 cos(2rx)) + 20+ exp(1) 30 F32 32° 0
i=1
D
f11= 75 z X - 1‘[ cos(¥) +1 30 [-600, 600P 0
fi2 = g 103|r?(7ry.) +3 (- 17+ [1+ 108Gy )] + (o — DP)
=1 b 30 [-50, 50]° 0
+ > u(x, 10,100 4)
i=1
D-1
f13 = Lisir(Grx) + X (% — 1?1 + sinf(Bnxia)] + (Xo — 1P[1 + sirP(2rxp)]}
5 i=1 30 [-50,50]° 0
+2 u(x;. 5,100 4)
=1 —T
f1a=| L+ Z —r 2 [-6553665536P 1
=1 1+Z ] 811)5
f15= Z —z—xl(b o) 4 [-5,5]° 0.003075
ai- b +b,><3+x4 3 B
f16 = 4x - 2 lx4 + X8+ X1 — AE + 4G 2 [-5,5]° -1.0316285
f17= (xz x2 +2 x1 -6+ 10(1 &) cosx + 10 2 [-5,10] x [0,15] 0.398
f18 = [1 + (xl + % + 12(19- 14><1 + 3% — 14z + 6x1 X + 3x3)] 2 [L2.2° 3
x[30 + (2x1 3x2)2(18 - 32x + 12x2 +48x; — 36X Xz + 273)] ’
4
f19=— ,Zlq expl- ,Zlaj(xj pii)?l 3 [0,1]° -3.86
1= 1=
4 D
f20=- _Zlci expl- _Zlaij(xj - pi) 6 [0.1° -3.32
1= ]=
5
f21=- ¥ [(x-a)(x-a)" +c]* 4 [0, 10 -10
i=1
7
122= - 3 [(x-a)(x-a) +a]* 4 [0.10° 10
i=1

a new hybrid algorithm based on a combination of DE and ESDE performs better, or at least comparably, to classic DB-alg
timation of Distribution Algorithm (EDA). This techniquesas  rithm. Kaelo and Ali [21] adopted the attraction-repulsemm-

a probability model to determine promising regions in ordercept of electromagnetism-like algorithm to boost the maiat

to focus the search process on those areas. @obmd [19]  operation of the original DE. Yanef al. [22] proposed a neigh-
employed the two level orthogonal crossover to improve théborhood search based DE. Experimental results showed Ehat D
performance of DE. They showed that the proposed approachith neighborhood search has significant advantages oler ot
performs better than the classical DE in terms of the qualityexisting algorithms on a broad range of different benchmark
speed, and stability of the final solutions. Noman and Ibg [20functions [22]. Wanggt al. [23] proposed a dynamic clustering-
proposed fittest individual refinement, a crossover-baseal| based DE for global optimization, where a hierarchicalteliss
search (LS) method DE to solve the high dimensional probing method is dynamically incorporated in DE. Experimemnts o
lems. They showed that the improved DE method acceleratea8 benchmark problems, including 13 high dimensional func-
the convergence rate for high dimensional benchmark functions, showed that the new method is able to find near optimal
tions. Based on their previous work, Noman and Iba incorsolutions efficiently [23].

porated LS into the classical DE in [13]. They presented an Some other studies focus on adapting DE’s control param-
LS technique to solve this problem by adaptively adjustimg t eters. Liu and Lampinen [24] proposed a fuzzy adaptive DE
length of the search, using a hill-climbing heuristic. Tigh  (FADE) which uses fuzzy logic controllers to adapt the muta-
the experiments, they showed that the proposed new verkion tion and crossover control parameters. Bedsdl [8] proposed
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Table 2: Best Error Values of DE and CDE on All Test FunctioMhere “Mean” Indicates the Mean Best Error Values Found énlthst Generation, “Std Dev”
Stands For the Standard Deviation. “Time” Indicates therage Running Time in Seconds. Hereafter, A Result \Bithdface Means Better Value Found.

DE CDE DE-CDE

F b Max NFFEs Mean Std Dev SR Time (s) Mean Std Dev SR Time(s) t-test
fol 30 150 000 2.01E-17 1.14E-17 50 0.5669 1.07E-28 7.65E-29 50 0.6218 12.51
fo2 30 200000  3.86E-14 9.28E-15 50 1.1814 4.21E-21 1.85E-21 50 1.2611 29.41
fo3 30 500000  5.04E-11 2.46E-11 50 3.1936 1.64E-34 9.18E-34 50 3.4359 14.46
fo4 30 500 000 8.81E-08 2.39E-08 0 28315 6.48E-22 1.18E-21 50 3.1190 26.02
fos5 30 500000  5.15E-22 1.21E-21 50 25813 0 0 50 2.8377 3.00
fo6 30 150 000 0 0 50 0.7424 0 0 50 0.8096 0
fo7 30 300 000 0.0078 0.0017 50 2.2469 0.0013 7.37E-04 50 2.3298 24.62
fos8 30 300 000 0 0 50 21249 0 0 50 2.2004 0
fo9 30 300 000 0 0 50 1.7517 0 0 50 1.8766 0
f10 30 150000  1.21E-09 3.14E-10 50 0.9142 5.28E-15 1.67E-15 50 0.9612 27.24
fi1l 30 200 000 0 0 50 1.3484 0 0 50 1.4278 0
fi2 30 150000  1.46E-18 7.33E-19 50 24140 1.79E-30 1.50E-30 50 2.4234 14.11
f13 30 150000  1.59E-16 6.79E-17 50 22264 9.42E-29 8.40E-29 50 2.2591 16.53
f14 2 10 000 0 0 50 0.0986 0 0 50 0.0983 0
f15 4 40000  1.85E-19 4.00E-19 50 0.1657 1.03E-19 3.12E-19 50 0.1643 1.14
f16 2 10 000 1.28E-14 4.71E-14 50 0.0389 7.99E-16 4.44E-15 50 0.0333 1.79
fi7 2 10 000 1.74E-11 6.58E-11 50 0.0311 4.33E-13 1.46E-12 50 0.0299 1.82
f18 2 10 000 7.08E-15 1.43E-14 50 0.0310 4.69E-15 4.93E-15 50 0.0315 1.11
f19 3 10 000 0 0 50  0.0440 0 0 50 0.0454 0
f20 6 20000  2.92E-12 2.04E-11 50 0.0793 1.40E-14 7.04E-14 50 0.0780 1.01
f21 4 10 000 1.91E-08 3.75E-08 30 0.0377 1.67E-08 3.90E-08 37 0.0362 0.32
f22 4 10000 4.98E-09 2.54E-08 48 0.0346 5.60E-09 1.59E-08 45 0.0360 -0.14
FO1 30 300 000 0 0 50 8.6502 0 0 50 8.6971 0
F02 30 300 000 3.12E-04 1.28E-04 0 8.9969 3.60E-16 3.97E-16 50 9.1859 17.21
FO3 30 300 000 1.03E+06 557411.46 0 9.4954 892897.03  306444.77 0 9.5035 1.54
F04 30 300 000 4.11E-04 1.94E-04 0 89765 4.52E-16 4.93E-16 50 9.1330 14.99
F06 30 300 000 0.0091 0.019 0 10.855 0.0041 0.014 7 10.924 1.39
FO7 30 300000 2.03E-05 1.57E-05 0 8.8908 0.0041 0.0062 32 9.2186 -4.64
FO8 30 300 000 20.95 0.061 0 9.0375 20.93 0.082 0 9.4346 1.33
F09 30 300 000 0 0 50 8.9830 0 0 50 9.0860 0

 The value ot with 49 degrees of freedom is significaniaat 0.05 by two-tailed test.

self-adapting control parameter settings. Salwetaal. [25] pro- Although there are many hybrid DE variants for the improve-

posed a self-adaptive DE (SDE) algorithm which eliminatesment of DE, only a little work studied the hybridization ofist

the need for manual tuning of control parameters. In SDEtering techniques with the DE method [23]. To the best of our

the mutation weighting factoF is self-adapted by a muta- knowledge, the k-means clustering is not used to enhance the

tion strategy similar to the mutation operator of DE. Noktakh performance of DE until date.

and Wang [26] proposed a Randomized Adaptive Differential

Evolution (RADE) method, where a simple randomized self-

adaptive scheme is proposed for the DE scaling fagtoQin 3. K-Means Clustering

and Suganthan [27] proposed a self-adaptive DE algorithm.

The aim of their work was to allow DE to switch between Clustering is a process that organizes a data (pattermtset i

two schemes: “DE/rand/1/bin” and “DE/best/2/bin” and also@ humber of groups (clusters) such that patterns withinstetu

to adapt theF andCR values. The approach performed well are more similar to each other than patterns belonging terelif

on several benchmark pr0b|ems_ <l [28] proposed two ent CIUSterS; in other Words, CIUStering isan importamfm:ue

variants of DE, DERSF and DETVSF, that use varying scaldor discovering the inherent structure in any given pattat

factors. They concluded that those variants outperforrotige Clustering algorithms proposed in the literature can be di-

inal DE. Teo [29] presented a dynamic self-adaptive populavided into two main categories: crisp (or hard) clustering-p

tions DE, where the population size is self-adapting. Baest ~ cedures where each data point belongs to only one cluster, an

Mauéc [30] proposed an improved DE method, where the popfuzzy clustering techniques where every data point beldogs

ulation size is gradually reduced. They concluded thatr thei€very cluster with a specific degree of membership [34].

approach improved efficiency and robustness of DE. There are many clustering algorithms in the literature. The

k-means clustering is employed in this study and shortly de-

Most recently, Rahnamayaet al. [31, 32, 33] proposed a scribed as follows. K-means clustering [34], which is anaite

novel initialization approach which employs oppositicaisbd  tjve hill climbing algorithm, is one of the widely used clasing

learning to generate initial population. Through a compreh  techniques. It consists of the following steps:
sive set of benchmark functions they showed that replatiag t

random initialization with the opposition-based popwatini- 1) Choosek initial cluster centerscy, cy, - - -, ¢ randomly
tialization in DE can accelerate convergence speed. from then points{Xy, Xz, - -+, Xn}.
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Table 3: NFFEs Required to Obtain Accuracy Levels Less ndNA’ Indicates the Accuracy Level is Not Obtained After 5D NFFEs.

E DE CDE DE-CDE
Mean Std Dev SR Mean Std Dev SR t-test

fo1l 30 88638 1050.34 50 56525.82 1107.36 50 148.77
f02 30 129962 1071.12 50 87810.34 1149.11 50 189.73
f03 30 422024 6461.01 50 155326.04 4969.85 50 231.35
fo4 30 NA NA 0 208667.78 5828.96 50 -
fo5 30 345258  12824.57 50 313882.82  12660.44 50 12.31
f06 30 32196 893.27 50 18736.76 1244.05 50 62.14
fo7 30 236198  44694.77 50 36884.36 18150.75 50 29.21
fo8 30 143724 2356.54 50 117509.58 2842.75 50 50.211
f09 30 215304 3557.22 50 188759.70 4420.37 50 33.08
f10 30 137056 1298.53 50 88046.56 1195.64 50 196.32
fi1 30 94812 3647.51 50 59249.90 2548.52 50 56.51
f12 30 80520 1345.28 50 47980.16 1090.73 50 132.85
13 30 95080 1355.41 50 56515.58 1529.94 50 133.41
f14 2 4766 543.46 50 4847.98 575.67 50 -0.73
15 4 10038 775.62 50 9927.02 799.44 50 0.71
16 2 4688 751.49 50 4759.02 694.93 50 -0.49
f17 2 6104 1149.61 50 6103.16 1188.93 50 0.003
18 2 3550 299.14 50 3581.08 257.32 50 -0.55
f19 3 4174 259.36 50 4149.48 263.67 50 0.47
20 6 11094 916.82 50 10963.32 1196.13 50 0.61
f21 4 9704 601.34 50 9655.20 585.99 50 0.41
f22 4 9146 392.38 50 9212.60 565.28 50 -0.68
FO1 30 89600 1097.49 50 59176.46 1114.09 50 137.56
FO02 30 464600 8139.42 50 188492.82 3761.82 50 217.73
FO3 30 NA NA 0 NA NA 0 -
FO4 30 467920 9807.97 50 190753.02 4294.27 50 183.04
FO6 30 357646  10250.37 50 322388.76  13471.89 50 14.73
FO7 30 428790 15032.58 50 227382.08  15566.52 50 59.91
FO08 30 NA NA 0 NA NA 0 -
F0O9 30 207102 4102.98 50 186611.62 4381.94 50 24.14

 The value ot with 49 degrees of freedom is significanieat 0.05 by two-tailed test.

2) Assign pointX;, i = 1,2,---,n to clusterC;j, j
1,2,---,k ifand only if || Xi —¢j lI<Il Xi —cp Il p
1,2,---,k andp # j, where|| X; — ¢; || is the distance

betweenX; andc;. Ties are resolved arbitrarily.

3) Compute new cluster center’s ¢, - - - , ¢, as follows:

1 .
G== > X,i=12-k

nl XiECi

wheren; is the number of elements belonging to cluger

Whena = 1, the measure is known as the Manhattan dis-
tance.

Another distance measure used in clustering algorithnheis t
cosine distance (or vector dot product), which is given by

d

p2'1 (Xi,p : Xj,p)
Xi, Xj e 8
KX = X ®

Although the clustering algorithms are originally used s o
tain suboptimal clusters, recently some researchers dldemt

4) If ¢/ = ¢, Vie{l,2,--- K}, then the process is terminated for global optimization problems, especially for multinedd
andcy, Cp, - -+, ¢ are chosen as the cluster centers. Otherfunction optimization. Wanget al. [23] proposed a dynamic

wise, assign each with ¢/,i = 1,2,---,k, and continue

from step 2).

clustering-based DE for global optimization, where a Irighna
cal clustering method is dynamically incorporated into D&-

The distance measure used in the clustering algorithm isya ve "anietal.[35] combined the sharing technique and a fuzzy clus-
important issue. The most widely used distance measure is t€ng algorithm to improve the performance of GAs in mul-

Euclidean distance, which between any tivdimensional vec-

tors X; andX; is given by

dx%i, Xj) =

The Euclidean distance measure is a special case (when

2) of the Minowsky metric, which is defined as

d 1/a
406 X)) = (D (Xip = Xio") - =X =X 17 (7)
p=1

d
DKo = X2 = X = X1l (6)
p=1

timodal function optimization. Experiments on 4 multimbda
functions indicated their approach showed good performanc
Pelikan and Goldberg [36] used the k-means clustering in EAs
to help the algorithm to separate the two or more complemen-
tary parts of the solution space and to eliminate the problem
of symmetry in combinational optimization. Damavandi and
Safavi-Naeini [37] proposed a hybrid EP based on a density
clustering algorithm to preserve the diversity of the papul
tion. They showed that the hybrid method improved the ro-
bustness of the algorithm for complex multimodal circuit op
timization problems. Lu and Yao [38] incorporated k-means



Table 4: Comparison of DE and CDE for Different PopulationeSHereafter, (#) Indicates the Number of Successful Ransb] Denotes the Averaged NFFEs

Required When the Global Minimum Achieved Before Using thaxivhum Allowed NFFEs

F b NP =50 NP = 200

DE CDE DE CDE
f0I 30  1.89E-4C: 1.82E-40 (50)  7.67E-63 + 9.61E-63 (50) 1.28E-06x 2.43E-07 (0) 6.44E-12 + 3.22E-12 (50)
f02 30  8.23E-3k 4.89E-31(50)  1.61E-45 + 1.46E-45 (50) 2.81E-06+ 3.75E-07 (0) 1.78E-09 + 5.74E-10 (50"
f03 30  2.99E-30: 3.34E-30 (50)  1.43E-57 + 4.62E-57 (50) 3.40E-03+ 8.70E-04 (0) 1.90E-16 + 1.35E-16 (50)'
f04 30  7.83E-18+ 4.64E-18(50)  8.30E-02: 2.20E-01 (35) 3.20E-03+ 3.97E-04 (0) 1.09E-10 + 3.64E-11 (50)'
f05 30  [3.90E+05: 3.62E+04] (50) [3.33E+05 + 1.82E+06] (50)! 4.10E-03+ 7.56E-03 (0) 3.87E-06 + 8.17E-06 (6)'
f06 30 [1.57E+04: 4.96E+02] (50) [9.81E+03 + 6.83E+02] (50)' || [6.52E+04+ 1.28E+03](50) [3.67E+04 = 2.24E+03] (50)'
f07 30  4.05E-03 7.90E-04 (50)  1.30E-03 + 5.13E-04 (50) 1.50E-02+ 3.50E-03 (40)  2.20E-03 + 1.20E-03 (50)"
08 30 [7.91E+04: 1.79E+03] (50) [6.44E+04 + 1.52E+03] (50) || 1.25E-00+ 2.05E-09 (49)  [2.67E+05 = 7.04E+03] (50)
f09 30 [1.25E+05: 2.74E+03] (50) [1.07E+05 + 2.69E+03] (50)' || 5.44E+00+ 1.35E+00 (0)  3.03E+00 = 1.54E+00 (0)'
f10 30  [1.24E+05: 6.49E+03] (50) [7.31E+04 = 1.31E+03] (50)' 3.18E-04+ 3.88E-05 (0) 6.95E-07 + 2.14E-07 (0)!
f11 30  [7.03E+04: 2.25E+03] (50) [4.58E+04 + 1.48E+03] (50) || 4.06E-09+ 4.93E-09 (50)  [1.72E+05 = 6.43E+04] (50)'
f12 30  1.57E-32: 0.00E+00 (50) 1.57E-32 0.00E+00 (50) 8.33E-08+ 2.16E-08 (0) 1.01E-13 + 4.87E-14 (50)'
f13 30  1.35E-32: 0.00E+00 (50) 1.35E-32 0.00E+00 (50) 1.25E-05+ 4.02E-06 (0) 9.09E-12 + 5.39E-12 (50)
14 2 [4.26E+03 2.71E+02] (50) [4.21E+03 « 2.81E+07] (50) 2.61E-07+ 1.23E-06 (40) _ 2.96E-08 = 8.79E-08 (41)
f15 4  956E-09 5.45E-09 (49)  1.32E-09 + 2.17E-10 (50) 1.41E-18+ 1.49E-18 (50) 1.41E-18 1.49E-18 (50)
f16 2 1.85E-18 0.00E+00 (50) 1.85E-18 0.00E+00 (50) 3.25E-08 =+ 3.31E-08 (45) 3.75E-08: 3.45E-08 (42)
f17 2 6.82E-32: 0.00E+00 (50) 6.82E-32 0.00E+00 (50) 2.32E-06 + 3.31E-06 (0) 3.51E-06+ 4.96E-06 (0)
f18 2 4.63E-25: 0.00E+00 (50) 4.63E-25 0.00E+00 (50) 2.35E-12+ 1.60E-12 (50) 2.35E-12 1.60E-12 (50)
f19 3 3.35E-35: 0.00E+00 (50) 3.35E-35 0.00E+00 (50) 4.65E-10+ 2.05E-10 (50)  3.25E-10 =+ 1.88E-10 (50)
20 6  [9.32E+03: 7.22E+02] (50) [9.10E+03 + 6.43E+02] (50) 2.52E-05+ 3.98E-05 (0) 1.68E-05 + 6.32E-06 (0)
21 4  [6.82E+03t 5.69E+02] (50) [6.73E+03 + 1.95E+02] (50) 2.30E-02 + 5.32E-02 (0) 3.81E-02+ 5.85E-02 (0)
22 4 1.34E-0% 1.92E-02 (49)  [6.91E+03 = 1.05E+02] (50)' 3.50E-02+ 1.26E-02 (0) 1.10E-02 + 6.51E-03 (0)
FOI 30 [1.13E+05 1.23E+03] (50) [7.94E+04 = 1.02E+03] (50) || 5.99E-17 1.81E-17 (50)  3.42E-26 + 1.74E-26 (50)
FO2 30  7.16E-1% 9.92E-15(50)  2.52E-28 = 2.08E-28 (50)f 6.02E+00+ 1.28E+00 (0) 9.79E-06 + 4.98E-06 (0)'
FO3 30  6.35E+0% 3.05E+05(0)  6.09E+05 = 2.46E+05 (0) 1.28E+07+ 3.04E+06 (0)  1.31E+06 + 7.64E+05 (0)'
FO4 30  9.34E-15 1.23E-14(50)  3.36E-28 = 3.08E-28 (50)' 7.89E+00+ 2.34E+00 (0) 1.27E-05 + 6.38E-06 (0)f
FO6 30  5.60E-02+3.90E-01(42)  2.72E+00+ 2.90E+00 (22) 1.22E+01+ 6.20E-01 (0) 9.95E+00 = 6.48E-01 (0)'
FO7 30  887E-04=270E-03(45  1.30E-02+ 1.10E-02 (26) 1.10E-01+ 4.20E-02 (0) 8.38E-04 + 2.40E-03 (0)!
FO8 30  2.09E+0% 6.60E-02 (0) 2.04E+01 + 2.60E-01 (0)' 2.09E+01+ 5.10E-02 (0) 2.09E+0% 5.50E-02 (0)
FO9 30 [1.22E+0% 2.50E+03] (50) [1.05E+05 + 2.69E+03] (50) || 1.95E+00 = 1.10E+00 (0) 1.99E+00 1.23E+00 (0)

T The value ot with 49 degrees of freedom is significantsat 0.05 by two-tailed test.

clustering with EDA to break the single Gaussian distrituiti

4, Clustering-based Differential Evolution: CDE

assumption. In addition, they used the rival penalized com-

petitive learning [39] to select the number of clusters gri In order to accelerate the convergence rate and balance the
learning automatically. Experimental results showed that ~€xploration and exploitation of DE, in this study, we attémp
proposed approaches can perform very well when dealing witkP improve DE by integrating the one-step k-means clusgerin
multimodal functions that do not contain too many local op-algorithm. Our proposed DE algorithm is named CDE. The
tima. However, their approach failed to solve the functisita ~ Pseudocode of CDE is described in Algorithm 2, whieisethe
many local optima. Song and Yu [40] incorporated hierarchi-generation countemis theclustering periodNP s the popula-

cal clustering and sharing technique with GA to solve multi-tion size, and rmdint2VNP] is a random integer number from
peak function optimization. Alamét al. [41] combined the [2, VNP]. Compared with the original DE algorithm, three cru-
cultural algorithms and a fuzzy clustering algorithm forlmu cial issues of CDE will be discussed as follows.

timodal function optimization. Zhangt al. [42] adopted the

k-means clustering algorithm to cluster the distributiéthe ~ 4.1. One-step K-Means Clustering

population in the search space at each generation. Thereaft |n this work, one-step k-means clustering is used to enhance
the fuzzy logic was used to adaptively adjust the probabilit the performance of DE. It acts as several multi-parent oness

of mutation and crossover. Experiments conducted on somgperators to utilize the information of the population ééfitly,
benchmark functions and the design of a buck regulator, thesind hence it can balance the exploration and exploitatitimen

showed that the new method not only improves the convergenegolutionary process. The one-step k-means clustering-is d
rate of the GA, but also prevents the solution from becomingcribed as follows.

trapped in a local optimum point. Lingt al. [43] presented

a crowding clustering-based GA for multimodal function op- 1) Choose k individuals as the initial cluster centers
timization. They concluded that their approach is supewor C1,Cp, -+, C randomly from the current population
both standard crowding and deterministic crowding in gitygnt {X1, X2, -+, Xnp}-

quality and precision of multi-optimum search [43]. 2) Assign pointX, i = 1.2.---,NP to clusterC;, |
1,2,k ifand only if | Xi —cj [I<Il Xi —cp Il p
1,2,---,k andp # j, where|| X; — ¢; || is the distance
betweenX; andc;. Ties are resolved arbitrarily.



f 05, D=50

© 2 F06, D=50
10 ‘ 10
10°
l010 |
10° |
-5
_ 10 10t
j=2) [=2)
toz -10 CO/
510 5
] oo
-15 1070
10
DE DE
| | = ==m=5 == =m=5
e o | T~ m=20
m=30 10 m=30
10_25 r _ = — m:40 - - m:40
m=50 m=50
10’30 L L L L 10’30 L L L
0 2 6 8 10 0 2 4 8 10
NFFEs « 10 NFFEs x 10°
(@ (b)
Figure 3: Mean error curves of DE and CDE for functions f05 BA@. (a) f05 D = 50). (b) FO6 D = 50).
10 fos S . 10
10 T T T 10 T T 10 T
- - -DE - - =-DE
5  DEahcSPX '+ DEahcSPX
e e S PR oE | e ODE
e - CDE ——— CDE
10° 1°
" 10°
10
El - - -DE El E
T 10k - DEahcSPX T T 10°
E ‘‘‘‘‘ ODE u% E
108 ——— CDE
10°
107 R 10710
-
10 10 107
0 1 4 5 2 25 3 0 5 10 15
NFFEs X 105 X 105 NFFEs X 10A
(a) (b) (©)
10 Fo4 . F06
10 10
— - -DE - - -DE
' DEahcSPX 10 + DEahcSPX
e - ODE 10 - ODE 1

Error (log)

Error (log)

0 0.5

15 2 25 3
NFFEs 5

(e)

Error (log)

NFFEs 5

®

Figure 4: Mean error curves of DE, DEahcSPX, and CDE for thecsed functions. (a) f05. (b) f08. (c) f10. (d) FO1. (e) F0&.FO06.



Table 5: Comparison of DE and CDE for Different Problem Disienality. The Results Were Obtained Afterx 10000 NFFEs.

D =10

D =50

DE

CDE

DE

CDE

fo1
f02
03
f04
f05
fo6
f07

3.07E-42+ 2.94E-42 (50)
4.36E-23¢ 2.49E-23 (50)
4.12E-27+ 4.04E-27 (50)
9.39E-13+ 5.33E-13 (50)
2.99E-15+ 1.39E-14 (50)
[9.08E+03+ 4.85E+02] (50)
1.49E-03 + 6.00E-04 (50)

7 21E-47 + 1.84E-46 (50)
2.64E-25 + 1.60E-25 (50)°
5.12E-39 + 1.19E-38 (50)
1.61E-15 + 9.02E-16 (50)'
2.05E-18 + 1.28E-17 (50)°
[8.09E+03 + 4.78E+02] (50)"
1.50E-03¢ 6.15E-04 (50)

2.36E-38+ 1.25E-38 (50)
1.46E-21+ 3.07E-22 (50)
3.12E-01+ 9.27E-02 (0)
2.08E-02+ 2.36E-03 (0)
1.25E+01 + 1.18E+00 (0)'

[5.63E+04+ 1.18E+03] (50)
1.54E-02+ 2.87E-03 (0)

2.71E-67 + 3.04E-67 (50)
5.61E-36 + 2.84E-36 (50)
1.20E-12 + 1.48E-12 (50)'
2.27E-08 + 9.36E-08 (42)
1.68E+01+ 1.19E+00 (0)
[2.89E+04 + 1.35E+03] (50)"
1.49E-03 + 7.12E-04 (50)'

fo8
09
f10
f11
f12
f13

[5.23E+04x 1.84E+03] (50)
[8.18E+04+ 2.09E+03] (50)
6.60E-16+ 5.02E-16 (50)
2.71E-04+ 1.91E-03 (44)
4.71E-32+ 0.00E+00 (50)
1.35E-32+ 0.00E+00 (50)

[5.06E+04 = 1.86E+03] (50)
[7.88E+04 + 2.37E+03)] (50)"
5.89E-16 = 0.00E+00 (50)
5.53E-06 + 3.88E-05 (48)
4.71E-32 0.00E+00 (50)
1.35E-32 0.00E+00 (50)

[2.75E+05+ 3.12E+03] (50)
[4.34E+05z 5.14E+03] (50)
7.69E-15+ 0.00E+00 (50)
[2.40E+05z 2.28E+03] (50)
9.42E-33+ 0.00E+00 (50)
1.35E-32+ 0.00E+00 (50)

[2.12E+05 + 554E+03] (50)
[3.50E+05 + 6.38E+03] (50)"
5.89E-16 + 0.00E+00 (50)'
[1.37E+05 + 2.19E+03] (50)!
9.42E-33 (0).00E+00 (50)
1.35E-32 (0).00E+00 (50)

FO1
F02
FO3
FO4
F06
FO7
F08
F09

[7.26E+04: 8.69E+02] (50)
2.60E-22- 3.64E-22 (50)
2.92E-1% 2.95E-11 (50)
3.43E-22: 5.08E-22 (50)
1.48E-14¢ 4.27E-14 (50)
1.76E-0% 5.82E-02 (0)
2.03E+01 + 7.93E-02 (0)

[8.07E+04: 2.15E+03] (50)

[6.63+04 = 8.46E+02] (50)°
4.26E-27 + 1.18E-26 (50)'
2.65E-11 + 1.88E-10 (50)
5.86E-27 + 1.75E-26 (50)
7.23E-18 + 4.41E-17 (50)'
9.52E-02 + 7.93E-02 (9)'
2.04E+01+ 6.90E-02 (0)

[7.73E+04 + 2.82E+03] (50"

[3.40E+05+ 2.32E+03] (50)
5.98E-01+ 1.46E-01 (0)
7.99E+07+ 1.73E+07 (0)
7.89E-01+ 2.67E-01 (0)
1.41E+01 + 1.16E+00 (0)'
1.61E-02+ 7.46E-03 (0)
2.11E+01+ 3.43E-02 (0)

[4.21E+05+ 4.94E+03] (50)

[2.56E+05 + 2.25E+03] (50)
7.24E-11 + 1.36E-10 (50"
5.86E+06 + 1.68E+06 (0)'
9.59E-11 + 1.75E-10 (50
1.80E+01+ 1.10E+00 (0)
3.36E-03 + 6.04E-03 (7)'

2.11E+04 3.33E-02 (0)

[3.50E+05 + 6.75E+03] (50)!

F

D =100

D=

200

DE

CDE

DE

CDE

fo1
f02
fo3
fo4
f05
fo6
f07

6.84E-38+ 1.83E-38 (50)
3.77E-21+ 6.41E-22 (50)
1.42E+02+ 1.94E+01 (0)
7.12E-01+ 3.92E-02 (0)
6.30E+01 = 9.96E-01 (0)'

[1.17E+05+ 1.79E+03] (50)
3.68E-02+ 4.14E-03 (0)

2.27E-74 = 2.38E-74 (50)
6.14E-40 + 2.88E-40 (50)"
7.70E-05 + 4.16E-05 (0)"
1.54E-01 + 1.55E-01 (1)t
7.17E+01= 1.21E+00 (0)
[5.34E+04 + 2.21E+03] (50)"
5.04E-03 + 1.22E-03 (50)

1.64E-37= 3.85E-38 (50)
8.50E-21+ 1.04E-21 (50)
3.90E+03+ 4.29E+02 (0)
6.10E+00+ 1.63E-01 (0)
1.62E+02 + 1.02E+00 (0)'

[2.40E+05z 2.21E+03] (50)
8.61E-02+ 5.06E-03 (0)

2.41E-79 = 1.62E-79 (50)
2.95E-43 + 1.81E-43 (50)'
7.68E+00 + 4.04E+00 (0)'
3.13E+00 + 8.67E-01 (0)!
1.76E+02+ 2.05E+00 (0)
[1.01E+05 + 3.70E+03] (50"
3.42E-02 + 5.86E-03 (0)'

f0o8
f09
f10
f11
fi2
i3

[5.55E+05¢ 7.12E+03] (50)
[8.74E+05: 7.53E+03] (50)
1.56E-14¢ 1.53E-15 (50)
[4.75E+05: 2.52E+03] (50)
4.71E-33: 0.00E+00 (50)
1.35E-32+ 0.00E+00 (50)

[4.05E+05 = 5.12E+03) (50)
[6.60E+05 = 1.63E+04] (50)'
5.80E-16 + 0.00E+00 (50)"
[2.46E+05 = 2.62E+03] (50)"
4.71E-33 0.00E+00 (50)
1.35E-32 0.00E+00 (50)

[1.14E+06= 7.21E+03)] (50)
[1.756E+06+ 8.38E+03] (50)
3.26E-14+ 0.00E+00 (50)
1.11E-16+ 0.00E+00 (50)
2.36E-33= 0.00E+00 (50)
1.35E-32+ 0.00E+00 (50)

[7.89E+05 = 8.70E+03] (50)°
[L.22E+06 + 3.05E+04] (50)°
5.80E-16 + 0.00E+00 (50)'
[4.59E+05 + 2.54E+03] (50)"
2.36E-32 0.00E+00 (50)
1.35E-32 0.00E+00 (50)

" The value ot with 49 degrees of freedom is significantaat 0.05 by two-tailed test.

Algorithm 2 Clustering-based DE: CDE

1: Generate the initial populatiddrandomly

2: Evaluate the fitness for each individualin
3: Initialize the generation countere 1
4: while The halting criterion is not satisfietb

Use DE to update the population (see lines 4 - 18 in Al-

Randomly generatie = rndint[2, VNP]
Adopt the one-step k-means clustering to creaaé-

Choosek parents (the séB) randomly from the popu-

From the combined s& U B, choose&k best solutions
and put them irB’. UpdateP asP = (P\B) U B’

5:
gorithm 1)
6. if t%m== 0then
7.
8
spring (the sef)
9:
lation P
10:
11:  endif
12 t=t+1
13: end while

3) Compute new cluster center’s ¢, - - - , ¢, as follows:

1
¢ == Xi,i=12---,k
i ni szg(::i |

wheren; is the number of elements belonging to clugier

4) Replace each; with ¢/,i = 1,2,---,k, and evaluate these
kindividuals. The process is terminated.

We choose the one-step k-means clustérifay its simplic-

ity and linear time complexity. Other clustering approache
can also be employed as wellNote thatk is generated from
[2, VNP] randomly. Here, the upper bound of the number of
clusters is taken to ba/NP, which is a rule of thumb used by
many investigators in the literature [45].

In our experiment, we also implement the multi-step k-megnstering,
which needs more computational time. However, it does nioighbany im-
portant advantage in our CDE approach. Due to the tight spestections
however, we omit these results in this paper.

2After this paper was submitted, we extended this work by tdgpthe
Fuzzy C-means clustering to improve DE [44]. The proposeBE@pproach
can also obtain the better results than the classical DEitidgo



Table 6: Effect of the Clustering Period on the Performarfce@E.

F D m=2 m=>5 m=15 m=20

fo1 30 1.33E-38 + 2.08E-38 (50) 3.44E-33+ 2.58E-33 (50) 3.77E-26 3.73E-26 (50) 1.35E-24 9.05E-25 (50)
fo2 30 5.51E-29 + 2.14E-29 (50) 2.20E-24+ 9.15E-25 (50) 1.86E-192 9.85E-20 (50) 1.67E-18 6.36E-19 (50)
fo3 30 4.65E-29: 1.26E-28 (50) 5.20E-36 + 1.59E-35 (50) 3.60E-33t 9.54E-33 (50) 1.46E-3% 1.64E-31 (50)
fo4 30 3.49E-0% 3.64E-01 (2) 6.30E-1% 3.32E-16 (50) 2.40E-20 + 1.57E-20 (50) 6.63E-19+ 5.28E-19 (50)
fo5 30 3.19E-01 1.09E+00 (46) [4.71E+0% 1.19E+04] (50) [4.62E+05 + 1.26E+04] (50)  [4.68E+05¢+ 1.18E+04] (50)
fo6 30 [1.43E+04 + 7.60E+02] (50) [1.6E+04+ 8.64E+02] (50) [2.05E+04 1.22E+03] (50)  [2.17E+04 1.38E+03] (50)
foz 30 1.11E-03 + 4.20E-04 (50) 1.18E-03t 5.38E-04 (50) 1.79E-03 9.16E-04 (50) 1.82E-03 8.97E-04 (50)
fo8 30 [1.18E+05+ 2.64E+03] (50)  [1.24E+05+ 2.32E+03] (50)  [1.35E+0% 1.40E+03] (50)  [1.38E+0% 4.55E+03] (50)
fo9 30 [1.89E+05+ 8.88E+03] (50)  [2.07E+05t+ 4.33E+03] (50)  [2.25E+0% 4.16E+03] (50)  [2.30E+0% 3.99E+03] (50)
fi0 30 5.89E-16 + 0.00E+00 (50) 5.89E-16 + 0.00E+00 (50) 4.76E-14+ 1.91E-14 (50) 2.89E-128 1.33E-13 (50)
fi11 30 [7.16E+04 + 1.73E+03] (50)  [8.20E+04+ 2.57E+03] (50)  [1.02E+0% 2.80E+03] (50)  [1.07E+0% 2.66E+03] (50)
fi2 30 1.57E-32 + 0.00E+00 (50) 1.57E-32 + 0.00E+00 (50) 5.32E-28t 3.74E-28 (50) 2.66E-26 2.42E-26 (50)
f13 30 1.35E-32 + 0.00E+00 (50) 1.35E-32 + 0.00E+00 (50) 4.36E-26+ 4.79E-26 (50) 2.19E-24 1.62E-24 (50)
f14 2 [8.46E+03t 3.77E+02] (50)  [8.30E+03 + 5.34E+02] (50)  [8.57E+03t 4.20E+02] (50)  [8.44E+03 4.27E+02] (50)
f15 4 3.23E-18t 2.67E-19 (50) 4.01E-18 3.79E-19 (50) 8.12E-19 + 4.08E-19 (50) 8.12E-19 + 4.08E-19 (50)
f16 2 4.26E-14+ 4.35E-15 (50) 4.15E-14 5.27E-15 (50) 3.52E-14 + 1.61E-14 (50) 3.52E-14 + 1.61E-14 (50)
17 2 1.11E-10: 3.16E-11 (50) 8.92E-11 + 2.21E-11 (50) 8.92E-11 + 2.21E-11 (50) 8.92E-11 + 2.21E-11 (50)
18 2 1.32E-35t 0.00E+00 (50) 1.32E-3% 0.00E+00 (50) 1.32E-3% 0.00E+00 (50) 1.32E-3% 0.00E+00 (50)
f19 3 2.38E-40: 0.00E+00 (50) 2.38E-4@ 0.00E+00 (50) 2.38E-4@ 0.00E+00 (50) 2.38E-4@ 0.00E+00 (50)
f20 6 3.56E-18 + 0.00E+00 (50) 5.68E-14+ 5.65E-15 (50) 2.35E-1% 1.47E-12 (50) 8.97E-14 3.31E-14 (50)
f21 4 3.20E-08 + 4.39E-09 (47) 2.35E-07+ 4.42E-08 (42) 3.23E-0% 3.31E-08 (44) 1.25E-0% 1.66E-08 (45)
f22 4 5.60E-08t 1.64E-09 (48) 1.36E-0% 3.77E-08 (46) 4.56E-08 + 4.60E-09 (48) 1.29E-07 1.33E-08 (47)
FO1 30 [1.29E+05+ 1.74E+03] (50)  [1.47E+05t 1.42E+03] (50)  [1.76E+0% 1.64E+03] (50)  [1.84E+0% 2.22E+03] (50)
FO2 30 5.84E-15 1.35E-14 (50) 1.10E-17 + 1.74E-17 (50) 1.04E-14:+ 8.01E-15 (50) 1.18E-13 8.59E-14 (50)
FO3 30 1.37E+06& 5.39E+05 (0) 1.09E+06& 5.19E+05 (0) 1.07E+0& 5.19E+05 (0) 9.46E+05 + 3.38E+05 (0)
FO4 30 8.66E-15- 2.45E-14 (50) 1.38E-17 + 1.99E-17 (50) 1.32E-14+ 9.83E-15 (50) 1.52E-13 1.10E-13 (50)
FO6 30 4.43E+0@- 2.09E+00 (4) 1.50E-0% 5.81E-01 (10) 1.43E-03 + 4.90E-03 (31) 2.68E-03t 1.59E-02 (29)
FO7 30 1.40E-02 1.12E-02 (8) 7.73E-0% 9.84E-03 (24) 3.65E-02 4.98E-03 (31) 2.66E-03 + 4.69E-03 (36)
FO8 30 2.03E+01 + 1.28E-01 (0) 2.09E+01+ 2.42E-01 (0) 2.09E+0% 5.78E-02 (0) 2.09E+0% 6.17E-02 (0)
FO9 30 [2.01E+05+ 4.06E+03] (50) [2.08E+05t 3.93E+03] (50)  [2.21E+0% 3.53E+03] (50)  [2.25E+0% 3.97E+03] (50)

As mentioned above, the distance metric used in the cluster- e
ing algorithm is a very important issue and for very complex
problems this may lead to anomalous results. In this stuey th
Euclidean distance is used as the distance measure. Moreovghe population-update-algorithm used in this work is samil
the distance measure can be used in decision space or in objes the G3 model in [47, 46]. In the update plan, théest
tive space. Here, unless otherwise mentioned, we calciliate solutions are chosen from the combinedAet B, thereby the
distance in decision space in the following experimentsidn  elite-preservation is ensured.
dition, the influence of the different distance metrics usdtie
one-step k-means method is provided in Section 5.10. More-
over, the effect of using the objective space distance measu 4.3. Clustering Period
described in Section 5.11.

Update plan: From the combined sé&tU B, choosek best
solutions and put them iB’. UpdateP asP = (P\B)UB'.

In order to exploit the search space efficiently, the cluster
ing is performed periodically in our proposed hybrid DE.dlt i
similar to the method used in [37]. The reason for perform-

Ohg the clustering periodically is that DE needs time to exgl
the search place and form clusters. An attempt to perform the
clustering very early will lead to a false identification dfis-

4.2. Population Update

After using one-step k-means clustering to créadéfspring,
the population needs to be updated by them. Deb [46] pr
posed a generic population-based algorithm-generatoefds
parameter optimization, where the optimization task iscid

into four independent plans: i) selection plan, ii) generat o5 [37]. Consequently, it is important to choose a clirsger
plan, iii) replacement plan, and iv) update plan. In lines 8 -narind that is large enough so that DE has time to completely
10 of Algorithm 2, our improvement can also be described withio 1 staple clusters. In our approach an additional pararmet
the population-update-algorithm proposed in [46]. is adopted to control the clustering period. The influenceof
e Selection plan: Choosekindividuals from current popula- is given in Section 5.6.
tion randomly (step 1 in the one-step k-means clustering). It is worth pointing out that the clustering period used inEED
approach is similar to Damavandi’s technique proposedih [3
eCompared with Damavandi’s technique, our approach has two
l%ain differences: i) We don’t use the deterministic methmd t
refine the cluster centers; and ii) We propose a populatien up
date method to update the population after the clustericty te
nique is conducted.
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e Generation plan: Createk offspring (the se®) using the
one-step k-means clustering (steps 2 - 4 in the one-st
k-means clustering).

e Replacement plan: Choosek solutions (the seB) from
current population randomly for replacement.



Table 7: Influence of the Number of Cluster Centers on theoednce of CDE.

k=8

k=10

5.59E-3% 2.40E-31 (50)
7.22E-23 2.95E-23 (50)
4.40E-33 5.65E-33 (50)
4.74E-28 1.40E-19 (50)
[4.65E+05+ 1.4E+04] (50)
[1.74E+04 + 1.33E+03] (50)
8.56E-04 + 4.04E-04 (50)

1.68E-31 + 6.65E-32 (50)
3.27E-23 + 1.07E-23 (50)
9.41E-34 + 9.10E-34 (50)
5.42E-24 9.13E-21 (50)
[4.60E+05: 1.18E+04] (50)
[1.80E+04¢ 1.07E+03] (50)
1.04E-03+ 3.09E-04 (50)

[1.18E+05 3.66E+03] (50)
[2.07E+05 5.62E+03] (50)
4.14E-15 + 0.00E+00 (50)
[8.99E+04 1.99E+03] (50)
3.07E-32 2.17E-32 (50)
1.29E-3@ 8.18E-31 (50)

[1.18E+05 + 1.75E+03] (50)
[2.09E+05 4.19E+03] (50)
4.14E-15 + 0.00E+00 (50)

[8.97E+04 + 4.21E+03] (50)
1.98E-32 + 5.99E-33 (50)
6.25E-31 + 4.84E-31 (50)

[8.77E+03 4.51E+02] (50)
2.06E-19: 4.34E-19 (50)
5.00E-15 v 9.71E-15 (50)
3.12E-1@ 9.82E-10 (50)
7.82E-15: 4.12E-15 (50)
[7.70E+03 3.15E+02] (50)
[1.77E+04= 9.02E+02] (50)
6.72E-09: 7.46E-09 (50)
1.69E-0@ 1.51E-09 (50)

[8.57E+03 3.98E+02] (50)
3.09E-12 4.98E-19 (50)
1.30E-42.36E-14 (50)
1.15E-18@ 3.39E-10 (50)
6.84E-18 4.72E-15 (50)

[7.90E+03 3.11E+02] (50)

[1.78E+04 5.36E+02] (50)
1.06E-08 2.04E-08 (43)
1.30E-09 + 1.87E-09 (50)

F D k=2 k=5

f01 30  6.07E-28: 5.88E-28 (50) 3.73E-3@ 2.51E-30 (50)
f02 30  9.18E-21 4.20E-21 (50) 3.12E-22 1.17E-22 (50)
f03 30  9.54E-30: 9.82E-30 (50) 5.49E-32 6.34E-32 (50)
f04 30  1.49E-21=+ 9.73E-22(50) 4.08E-20x 1.28E-19 (50)
f05 30 [4.63E+05: 1.68E+04] (50) [4.60E+05 + 7.68E+03] (50)
f06 30  [1.85E+04: 7.00E+02] (50)  [1.76E+04 8.47E+02] (50)
f07 30  9.11E-04 6.60E-04 (50) 1.05E-03 3.18E-04 (50)
f08 30 [1.23E+05: 3.37E+03] (50)  [1.20E+05 7.34E+03] (50)
f09 30 [191E+05+ 4.12E+03] (50)  [2.13E+05: 4.36E+03] (50)
f10 30  8.05E-15 2.02E-15(50)  4.14E-15 + 0.00E+00 (50)
f11 30 [9.62E+04: 2.03E+03] (50)  [9.04E+04 1.32E+03] (50)
f12 30  6.97E-3G: 3.69E-30 (50) 8.26E-32 5.98E-32 (50)
f13 30  6.10E-28 3.35E-28 (50) 9.89E-3@ 1.33E-29 (50)
f14 2 [852E+03+557E+02] (50)  [8.61E+03: 6.08E+02] (50)
f15 4 4.12E-19: 5.32E-19 (50)  2.00E-19 + 4.24E-19 (50)
f16 2 9.02E-16+ 2.52E-15 (50) 6.02E-15+ 1.58E-14 (50)
f17 2 7.83E-13+ 1.65E-12(50) 8.87E-12+ 2.71E-11 (50)
f18 2 8.78E-14+ 4.12E-15 (50)  3.91E-15 + 5.05E-15 (50)
f19 3 [7.64E+03+ 298E+02] (50)  [7.74E+03: 1.05E+02] (50)
20 6  [1.75E+03: 5.29E+02] (50) [1.73E+04 = 1.07E+03] (50)
21 4 7.28E-09: 1.61E-08 (45)  5.61E-09 + 5.91E-09 (50)
f22 4 4.02E-09: 7.51E-09 (46) 4.61E-0@ 5.81E-09 (50)
FO1 30 [L.71E+0% 1.00E+03](50)  [1.62E+0% 1.65E+03] (50)
FO2 30  1.25E-1% 8.77E-16 (50) 1.71E-16 1.38E-16 (50)
FO3 30  7.74E+05 + 3.57E+05 (0) 1.04E+06+ 4.01E+05 (0)
FO4 30  1.35E-1% 1.06E-15 (50) 1.84E-16 1.52E-16 (50)
FO6 30  2.35E-03+ 5.97E-03 (10) 4.34E-03+ 2.99E-02 (10)
FO7 30  3.45E-03+ 6.48E-03 (34) 4.68E-03+ 7.29E-03 (33)
FO8 30  2.10E+0% 6.07E-02 (0) 2.09E+02 3.96E-02 (0)
FO9 30 [2.18E+05 2.48E+03] (50)  [2.10E+05 4.08E+03] (50)

[1.59E+05 1.59E+03] (50)
1.08E-16 1.01E-16 (50)
8.44E+05 4.01E+05 (0)
1.16E-16 1.10E-16 (50)
3.59E-03 8.16E-03 (9)
5.16E-03 9.64E-03 (22)
2.08E+0 4.61E-02 (0)

[2.07E+05 2.82E+03] (50)

[1.57E+05 + 1.11E+03] (50)
9.81E-17 + 6.87E-17 (50)
9.79E+05 3.97E+05 (0)
1.01E-16 + 6.94E-17 (50)
5.74E-03 1.08E-01 (8)
6.65E-03 6.87E-03 (30)
2.11E+0% 7.08E-02 (0)
[2.05E+05 + 3.31E+03] (40)

5. Experimental Resultsand Analysis

ried out different experiments using a test suite, which-con
sists of 30 unconstrained single-objective benchmarktfans
with different characteristics chosen from the literatuié of
the functions are minimization problems. f01 - 22 are clmose
from [1]. Since we do not make any changes to these problemgc,)

5.1. Experimental Setup

For CDE, there are four control parameters. Three of them
In order to validate the performance of CDE, we have Car_belong to the original DE algorithm, namely, populationesiz

NP, scaling facto=, and crossover probabilit§R These pa-
rameters are problem dependent [49], and they are studied el
where [49], [24]. Another parameter is the clustering pe&np
which will be discussed later. For all experiments, we use th
llowing parameters unless a change is mentioned.

we only briefly describe them in Table 1. More details can be Population sizeNP = 100;

found in [1]. The rest 8 functions (FO1 - FO4 and FO6 - F09)
are the new test functions provided by the CEC2005 special
session [14]. Functions fO1 - f13 are high-dimensional prob
lems. Functions f01 - f05are unimodal. Function f06 is the
step function, which has one minimum and is discontinuous.
Function fO7 is a noisy quartic function, wheendom|[0,1) is

a uniformly distributed random variable in [0,1). Functsdf8

- f13 are multimodal functions where the number of local min-
ima increases exponentially with the problem dimensioreyTh
appear to be the most difficult class of problems for many op-
timization algorithms. Functions f14 - {23 are low-dimeorsal
functions that have only a few local minima. Functions FO1 -
FO04 are unimodal. Functions FO6 - FO9 are multimodal. Func-
tions FO1 and FO9 are separable, and the remaining 6 fuisction
are non-separable. The shifted and/or rotated featureg mak
these 8 functions are very difficult to solve.

Scaling factorF = 0.5;
Crossover probabilityCR = 0.9;
Clustering periodm = 10;

DE scheme: DE/rand/1/exp (different schemes will be dis-
cussed in Section 5.8);

Value to reach: VTR = 1, except for f07 of VTR = 10%;

Maximum NFFE$: For fol, fo6, f10, f12, and f13,
Max_.NFFEs = 150000; for fO3 - f05, MalNFFEs =
500000; for f02 and f11, MalNFFEs = 200000; For fO7 -
f09, FO1 - FO4, and FO06 - FO9, MaxFFEs = 300000; for
f14, f16 - 19, f21, and f22, MalNFFEs = 10000; for f15,
Max_NFFEs = 40000; and for f20, MaXFFEs = 20000.

3In fact, the generalized Rosenbrock’s function f05 is a imatial function
whenD > 3 [48].
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4The function evaluations required to process the clustatgpare added in

the Maximum NFFEs.



Table 8: Comparison of DE and CDE for Different Schemes.

E DE/rand/1/bin DE/rand/2/exp DE/rand/2/bin
DE CDE DE CDE DE CDE

fol 2.35E-16+ 2.04E-16 2.35E-30 + 2.46E-30" 8.37E-08+ 2.24E-08 1.80E-16 + 1.73E-16" 1.18E+02+ 3.30E+01 3.71E-12 + 2.73E-12"
fo2 1.33E-11+ 6.51E-12 4.37E-22 + 2.38E-22° 4.62E-07+ 7.40E-08 2.04E-12 + 9.24E-13° 1.44E+01+ 3.99E+00 6.98E-09 + 2.85E-09"
f03 4.36E-13¢ 7.77E-13 1.18E-24 + 2.72E-247 1.97E-02+ 5.69E-03 4.59E-26 + 3.72E-267 8.18E+02+ 2.38E+02  2.43E-18 + 4.20E-18"
fo4 9.74E-02 + 1.69E-017 1.62E+00+ 1.19E+00 6.81E-03+ 1.04E-03 7.16E-14 + 3.18E-147 6.59E+00+ 1.02E+00  9.86E-03 + 1.33E-02°
fo5 2.11E-17+ 7.49E-17 3.25E-27 + 1.52E-26" 1.15E-10+ 7.14E-11 3.73E-28 + 9.29E-28" 2.88E+01+ 1.92E+00 1.05E-16 + 1.65E-16"
fo6 [3.47E+04+ 1.44E+03]  [1.9E+04 + 1.02E+03]" [5.91E+04+ 1.53E+03]  [2.77E+04 + 1.53E+03]" 1.25E+02+ 2.79E+01  [3.91E+04 + 2.70E+03]"
f07 4.57E-03 1.29E-03 1.97E-03 + 6.49E-04 1.73E-02+ 2.86E-03 1.28E-03 + 6.83E-04 7.15E-02+ 1.76E-02 3.33E-03 + 1.71E-037
fo8 6.61E+03t 6.56E+02 5.66E+03 + 9.21E+027 2.82E-10+ 2.25E-10 [1.91E+05 + 5.29E+03]" 7.35E+03 + 2.73E+02 7.37E+03+ 2.35E+02
f09 1.27E+02t 2.18E+01 5.55E+01 + 2.45E+01" 1.68E-03+ 2.13E-03 1.13E-06 + 1.83E-06" 2.21E+02+ 1.14E+01  7.75E+01 + 6.62E+017
f10 4.85E-09+ 2.05E-09 3.72E-15 + 1.17E-15" 8.99E-05+ 1.24E-05 3.13E-09 + 1.09E-09" 4.40E+00+ 3.07E-01 5.93E-07 + 2.04E-07"
fi1l [1.51E+05+ 2.75E+03]  [8.85E+04 + 2.39E+03]" 4.74E-07+ 1.63E-06 [1.48E+05 + 4.33E+03]" 1.20E+00+ 6.20E-02 [1.92E+5 + 3.55E+03] "
f12 3.52E-17+ 3.63E-17 2.47E-32 + 2.31E-32" 8.11E-09+ 2.50E-09 3.07E-18 + 2.78E-18" 3.35E+01+ 5.00E+01 6.86E-14 + 5.39E-14"
13 7.70E-15¢ 8.02E-15 7.83E-27 + 3.89E-26" 1.96E-06+ 6.18E-07 3.77E-16 + 2.91E-167 3.69E+03+ 3.75E+03 1.00E-11 + 9.75E-12"
fl4  [7.97E+03+ 2.11E+03] [7.86E+03 + 2.03E+03] 9.13E-13+ 2.55E-12 5.63E-13 + 1.72E-12 2.87E-12+ 8.35E-12 1.17E-12 + 5.51E-12
f15 3.50E-19 + 4.93E-19 3.71E-19+ 4.99E-19 9.27E-19+ 3.12E-19 9.27E-19 3.12E-19 9.89E-19+ 2.04E-19 8.45E-19 + 4.00E-19"
f16 1.20E-15 + 4.35E-15 1.80E-15+ 5.22E-15 3.92E-10+ 4.00E-10 2.24E-10 + 2.58E-10" 3.25E-10+ 5.42E-10 2.52E-10 + 3.08E-10
fi7 3.75E-11+ 1.52E-10 1.48E-11 + 5.12E-11 4.46E-06+ 9.30E-06 3.83E-06 + 6.87E-06 3.07E-06+ 7.58E-06 2.78E-06 + 5.38E-06
f18 6.06E-15+ 4.79E-15 5.08E-15 + 4.93E-15 1.49E-14+ 7.38E-15 1.39E-14 + 6.44E-15 1.57E-14+ 6.15E-15 1.35E-14 + 6.05E-15
f19 1.05E-19+ 0.00E+00 1.05E-19 0.00E+00 5.56E-14+ 4.33E-14 2.94E-14 + 2.75E-14" 3.99E-14+ 4.00E-14 2.32E-14 + 2.30E-14"
f20 7.13E-03t+ 2.85E-02 2.38E-03 + 1.68E-02 2.38E-03+ 1.68E-02 1.38E-07 + 4.69E-07" 1.19E-02+ 3.60E-02 4.98E-07 + 1.18E-06"
f21 9.07E-09 + 2.65E-08 1.05E-08+ 4.39E-08 2.15E-02+ 6.39E-02 1.07E-02 + 2.41E-02 3.50E-02+ 8.73E-02 8.27E-03 + 1.36E-02
f22 1.30E-09+ 4.16E-09 1.21E-09 + 5.69E-09 1.72E-03 + 5.75E-03 3.44E-03+ 1.81E-02 3.81E-03+ 2.38E-02 3.79E-04 + 9.83E-04
FO1 3.33E-29 7.47E-29 2.83E-29 + 7.08E-29 2.62E-19+ 1.03E-19  [2.60E+05 + 3.20E+03]" 7.28E-01+ 2.34E-01 4.13E-26 + 3.15E-26'
F02 2.72E-05¢ 3.79E-05 5.50E-10 + 7.75E-10" 1.32E+01+ 2.78E+00 1.27E-09 + 8.50E-10" 7.65E+03+ 1.11E+03  3.07E-05 + 3.69E-05
FO3 3.80E+05 2.29E+05 2.25E+05 + 1.15E+05° 2.69E+07+ 6.04E+06 1.16E+06 + 6.67E+05" 5.28E+07+ 1.25E+07 4.54E+05 + 2.77E+05"
FO4 3.84E-05: 6.54E-05 7.24E-10 + 1.05E-09" 1.74E+01+ 5.22E+00 1.64E-09 + 1.11E-09° 1.00E+04+ 2.23E+03 3.96E-05 + 4.46E-05
F06 8.62E-02 + 1.70E-017 8.77E-01+ 1.67E+00 9.34E-01+ 4.49E-01 2.08E-07 + 3.55E-07" 4.63E+03+ 2.41E+03  6.26E-01 + 7.72E-01"
Fo7 1.48E-04 + 1.05E-03" 4.09E-03+ 5.21E-03 3.60E-01+ 5.35E-02 1.23E-03 + 3.73E-03" 2.40E+00+ 3.92E-01 1.23E-03 + 3.16E-03"
F08 2.09E+0% 5.30E-02 2.09E+0% 7.38E-02 2.09E+01+ 5.20E-02 2.09E+0% 5.40E-02 2.09E+01+ 5.88E-02 2.09E+0% 6.02E-02
F09 1.28E+02- 2.58E+01 6.99E+01 + 1.71E+01° 2.62E-04+ 3.73E-04 1.77E-07 + 3.43E-07" 2.13E+02+ 1.21E+01 1.80E+02 + 1.18E+01"

T The value ot with 49 degrees of freedom is significantat 0.05 by two-tailed test.

Moreover, in our experiments, each function is optimizedrov 5.3. Comparison between DE and CDE

populations to evaluate different algorithms in a similayw pEg algorithm to show the superiority of CDE. The parameters
done in [13]. All the algorithms are implemented in standardsed for DE and CDE are the same as described in Section 5.1.
C++ and the experiments are done on a P-IV 3.0 GHz maching|| functions are conducted for 50 independent runs. Table 2
with 1.5 GB RAM under WIN-XP platform. shows the best error values of DE and CDE on all test func-
tions. The average and standard deviation of NFFEs are shown
e in Table 3. Note that Table 3 the MaXFFEs for all functions is
Four performance criteria are selected from [14] to evaluat 5o g0 Additionally, some representative convergenapius
the performance of the algorithms. These criteria are 880Ut DE and CDE are shown in Fig. 1.
in [13] and described as follows. From Table 2 we can see that CDE is significantly better
e Error: The error of a solutioiX is defined ag (X)— f(X*), ~ than DE on 11 functions. For eight functions (f06, f08,_f09,
whereX* is the global optimum of the function. The mini- f11, f14, f19, FO1, and F09), both CDE and DE can obtain the
mum error is recorded when the M&FFESs is reached in  global optimum on all 50 runs. For function FO7, DE is signifi-
50 runs and the average and standard deviation of the erréantly better than CDE. However, CDE can reach the VTR (i.e.
values are calculated. f(X) - f(X*) < 1078)in 32 out of 50 runs, but DE can not reach
. ] ) the VTR on all 50 runs. Moreover, from Table 3 it can be seen
e NFFEs. The number of fitness function evaluations {4t when the MaxsNFFEs is extended to 500 000. both CDE
(NFFEs) is also recorded when the VTR is reached. Thenq pg can reach the VTR on all 50 runs, however the NFFEs
average and standard deviation of the NFFEs values aRquired by CDE is nearly half of that required by DE. For the
calculated. other 10 functions, there are no significant difference ketw

ful runs is recorded when the VTR is reached before the&Xcept for f22. For the low-dimensional functions (f14 - Y22
Max_NFFEs condition terminates the trial. the results of CDE do not differ significantly from DE. Thetea

son might be that these functions are easy to solve for both DE

e Convergence graphs: The convergence graphs show the and CDE. Furthermore, the standard deviations of the best er

mean error performance of the total runs, in the respectivgor values obtained by CDE are relative small, which means
experiments. that the solution quality of CDE is stable. In addition, waca
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5.2. Performance Criteria



Table 9: Comparison of DE and CDE With the Self-Adaptive CalrParameter.

F D SaDE SaCDE F D SaDE SaCDE
f0I 30  1.48E-18: 9.28E-10 (50)  3.00E-28 + 3.34E-28 (50) || 16 2  [6.51E+03t 1.07E+02] (50) [6.23E+03 + 8.95E+01] (50)
f02 30  3.16E-15 1.34E-15(50)  1.98E-21+ 1.16E-21(50) || f17 2  [9.42E+03 1.25E+02] (50) [7.84E+03 + 1.04E+02] (50)
f03 30  4.02E-20- 4.89E-20 (50)  1.94E-36+ 4.22E-36 (50) || f18 2  [6.40E+03+8.03E+01] (50)  [6.44E+03+ 5.64E+01] (50)
f04 30  8.01E-1G: 3.49E-10 (50)  5.54E-17 + 1.54E-16 (50) || f19 3 2.03E-14+ 3.62E-15 (50) 2.03E-14 2.68E-15 (50)
f05 30  7.97E-02: 5.64E-01(49)  [4.10E+05 + 9.98E+03] (50) || f20 6 3.50E-02¢ 1.68E-02 (49)  3.61E-12 + 1.19E-13 (50)'
f06 30 [3.01E+04: 1.07E+03](50) [1.96E+04 + 1.13E+03] (50) || f21 4 2.35E-05: 1.06E-06 (32)  8.53E-06 + 9.02E-07 (38)
f07 30  6.21E-03 1.42E-03 (50)  1.66E-03 + 6.89E-04 (50)" || f22 4 5.63E-06+ 1.44E-07 (36)  1.23E-06 + 1.31E-07 (40)
f08 30  [1.53E+05: 3.17E+03] (50) [1.25E+05+ 2.92E+03] (50) || FO1 30  [2.21E+05 2.56E+03] (50) [1.62E+05 + 1.96E+03] (50)
f09 30 [2.49E+05: 5.48E+03] (50) [2.09E+05 + 7.46E+03] (50) || FO2 30  1.30E-09 9.14E-10(50)  8.12E-17 + 1.26E-16 (50)'
f10 30  3.08E-1G- 8.70E-11(50)  7.34E-15+ 2.06E-15(50) || FO3 30  4.76E+05 2.50E+05 (0) 4,56E+05 + 2.33E+05 (0)
fl1 30 [1.39E+05: 3.66E+03] (50) [9.49E+04 + 2.51E+03] (50)' || FO4 30  1.79E-09- 1.68E-09 (50)  1.01E-16 + 1.56E-16 (50)'
fl2 30  4.48E-20: 3.10E-20 (50)  2.12E-30 + 2.20E-30 (50) || FO6 30  6.98E-08 1.40E-07 (42)  1.40E-12 + 2.90E-12 (50)'
f13 30  4.83E-18 3.96E-18 (50)  1.37E-28+ 127E-28(50) || FO7 30  3.84E-03 + 6.98E-03 (36)' 1.14E-02+ 1.02E-02 (13)
fla 2 [9.33E+03+ 4.96E+02] (50)  [9.38E+03 3.76E+02] (50) || FO8 30  2.09E+0% 5.87E-02 (0) 2.08E+01 + 1.95E-02 (0)
f15 4  [3.51E+04: 2.89E+02] (50) [2.26E+04 + 1.98E+02] (50) || FO9 30  [2.37E+05: 5.75E+03] (50) [2.06E+05 + 5.06E+03] (50)

T The value ot with 49 degrees of freedom is significantat 0.05 by two-tailed test.

see that the computational time of CDE is only slightly highe For the low dimensional functions there are no significaft di
than that of DE for the majority of functions. ference between CDE and DE.

Considering the NFFEs required by CDE and DE to reach In summary, according to the results of Table 2 - Table 4,
the VTR, Table 3 clearly shows that for all high dimensionalwe can conclude that i) CDE and DE can provide better results
functions CDE is significantly better than DE, except for FO3using a smaller population size for some functions. ii) Far t
and FO08, in which both CDE and DE fail to reach the VTR majority of functions, CDE is always better than DE. iii) CDE
after 500 000 NFFEs. For the low dimensional functions (f14 provides a faster convergence rate and greater robustoess f
f22), there is no significant difference for CDE and DE. different population size compared with DE.

From Fig. 1 it can be seen that for the high dimensional func-
tions CDE converges faster than DE. However, for the low di- .
mensional functions the difference is not significant. 5.5. Scalability Study

In general, the overall performance of CDE is better that tha

o_f DE for th_e high_dimensional functions. qu the low dimen'the performance of CDE, a scalability study is conducted for
sional functions, since these functions are simple, botrabt o qcaiable functions in the test suit. For functions 013, f

CDE are able to solve these functions, and CDE is slightly betD — 10,50, 100, 200. For FO1 - FO4 and FO6 - FOD, = 10,50,

ter t_han DE. Mor.eover, our proposed CDE can accelerate thSnce these functions are defined upte: 50 dimensions [14].
original DE algorithm and reduce the NFFEs to reach the VTRrq (esults are recorded afterx 10000 NEEEs. All other

for high-dimensional functions significantly. control parameters are unchanged from their values mesdion

in Section 5.1. The results of CDE and DE are given in Ta-
ble 5, and some representative convergence graphs are shown
in Fig. 2.

In [49], the authors concluded that the performance of DE is  From Table 5, the results indicate that CDE outperforms DE
sensitive to the choice of the population size. Increasi®y t for the majority of the test scalable functions at every dime
population size will increase the diversity of possible ®ov sjon. In addition, the higher the problem dimensionalibe t
ments, promoting the exploration of the search space. Hemev petter the performance of CDE obtained. For example, for
the probability to find the correct search direction deasas D = 100 andD = 200, CDE is significantly better than DE
considerably [50]. The influence of population size is inves for 10 out of 13 functions. Both CDE and DE provide the same
tigated in this section. For both CDE and DE, all the parameteresults for functions f12 and f13. Only for one function f05,
settings are the same as mentioned in Section 5.1 only excepE is better than CDE. Moreover, Fig. 2 shows that CDE is
for NP = 50 andNP = 200. The results foNP = 50 and  able to accelerate the convergence rate in general. Howmver
NP = 200 are shown in Table 4. carefully looking at the results in Table 5, we can see that fo

ForNP = 50, CDE is significantly better than DE in 16 func- D = 50, DE is significantly better than CDE for functions f05
tions. However, for three functions (f04, FO6, and FO7), BE i and FO6. FoiD = 100 andD = 200, DE is significantly better
significantly better than CDE. For the rest 11 functionsreéhe than CDE for function f05. With respect to f05 and F06, they
are no significant difference for CDE and DE. For 12 functjons are the generalized Rosenbrock’s function and shifted iRose
CDE can obtain the global optimum on all 50 runs. brock’s function, respectively. CDE converges to the laga

For NP = 200, Table 4 shows that for all the high dimen- tima for the two functions. This might be caused by the fact
sional functions CDE is significantly better than DE, exdept that the small clustering period af = 10 is used, which leads
F08 and F09, where both CDE and DE obtain similar resultsto CDE exploring the search place insufficiently. The inflcen
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In order to study the effect of the problem dimensionality on
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Table 10: Influence of the Different Distance Measure UsetiénOne-step K-Means in the Decision Space.

F D DE CDE CDEcos CDEman

fo1l 30 2.01E-1% 1.14E-17 (50) 1.07E-2& 7.65E-29 (50) 1.68E-31 + 1.40E-31 (50) 2.22E-30+ 1.35E-30 (50)
f02 30 3.86E-14t 9.28E-15 (50) 4.21E-2% 1.85E-21 (50) 4.83E-23 + 1.81E-23 (50} 4.15E-22+ 2.22E-22 (50)
f03 30 5.04E-11% 2.46E-11 (50) 1.64E-34 + 9.18E-34 (50) 8.85E-32+ 1.38E-31 (50) 1.11E-31+ 2.15E-31 (50)
fo4 30 8.81E-08: 2.39E-08 (39) 6.48E-22 1.18E-21 (50) 6.20E-18+ 4.38E-17 (50) 1.88E-22 + 5.75E-22 (50)
fo5 30 5.15E-22+ 1.21E-21 (50) [4.61+E0% 1.28E+04] (50)  [4.06E+05+ 9.85E+03] (50)  [3.96E+05 + 9.84E+03] (50)
f06 30 [3.30E+04: 1.12E+03] (50) [1.87E+04 1.05E+03] (50) [1.75E+04 + 6.57E+02] (50  [1.75E+04+ 8.15E+02] (50)
f07 30 7.84E-03: 1.74E-03 (50) 1.27E-03 + 7.37E-04 (50)* 2.16E-03+ 8.13E-04 (50) 2.63E-03+ 1.09E-03 (50)
fo8 30 [1.59E+05t 1.37E+03] (50) [1.30E+05 + 2.40E+03] (50)° [1.39E+05+ 6.59E+03] (50) [1.38E+05+ 6.09E+03] (50)
f09 30 [2.56E+05t 4.18E+03] (50) [2.17E+0% 4.92E+03] (50)  [2.09E+05+ 1.42E+03] (50) [2.06E+05 + 1.62E+04] (50}
f10 30 1.21E-09 3.14E-10 (50) 5.28E-1% 1.67E-15 (50) 1.51E-15+ 1.57E-15 (50) 1.37E-15 + 1.49E-15 (50)
fi1 30  [1.49E+05t 3.35E+03] (50) [9.42E+04 2.46E+03] (50) [8.38E+04 + 2.25E+03] (50  [8.49E+04+ 2.51E+03] (50)
f12 30 1.46E-18 7.33E-19 (50) 1.79E-3@ 1.50E-30 (50) 1.57E-32 + 0.00E+00 (50) 1.57E-32 + 0.00E+00 (50)
13 30 1.59E-16¢ 6.79E-17 (50) 9.42E-29 8.40E-29 (50) 1.35E-32 + 0.00E+00 (50) 1.37E-32+ 1.39E-33 (50)
f14 2 [8.30E+03 + 4.47E+02] (50) [8.40E+03¢t 4.06E+02] (50) 2.60E-1% 1.70E-14 (50) 5.78E-14 3.91E-13 (50)
f15 4 1.85E-19+ 4.00E-19 (50) 1.03E-19 + 3.12E-19 (50) 2.47E-19+ 4.44E-19 (50) 2.27E-19 4.31E-19 (50)
16 2 1.28E-14+ 4.71E-14 (50) 7.99E-16 4.44E-15 (50) 4.00E-16 + 1.98E-15 (50} 1.60E-15+ 4.22E-15 (50)
17 2 1.74E-11+ 6.58E-11 (50) 4.33E-13 + 1.46E-12 (50) 7.41E-12+ 3.84E-11 (50) 4.10E-11+ 1.83E-10 (50)
18 2 7.08E-15¢+ 1.43E-14 (50) 4.69E-15 + 4.93E-15 (50) 8.02E-15+ 4.30E-15 (50) 7.43E-15% 4.68E-15 (50)
f19 3 [8.90E+03t 3.16E+02] (50) [8.69E+02 2.68E+02] (50) [7.73E+03 + 3.18E+02] (50  [7.84E+03+ 2.75E+02] (50)
f20 6 2.92E-12+ 2.04E-11 (50) 1.40E-14 7.04E-14 (50) [1.75E+04 + 8.65E+02] (50) 2.92E-14+ 1.99E-13 (50)
f21 4 1.91E-08t 3.75E-08 (30) 1.67E-08 + 3.90E-08 (37) 2.78E-08+ 6.89E-08 (28) 3.49E-08 1.44E-07 (35)
f22 4 4.98E-09¢ 2.54E-08 (48) 5.60E-02 1.59E-08 (45) 8.66E-02 5.03E-08 (48) 1.37E-09 + 1.96E-09 (50)
FO1 30 [2.35E+0% 1.78E+03] (50) [1.65E+0% 1.98E+03] (50) [1.41E+05 + 1.47E+03] (50f [1.43E+05+ 1.59E+03] (50)
F02 30 3.12E-04 1.28E-04 (0) 3.60E-16 3.97E-16 (50) 3.61E-19+ 1.06E-18 (50) 3.17E-19 + 4.01E-19 (50)
FO3 30 1.03E+06& 5.57E+05 (0) 8.93E+0& 3.06E+05 (0) 4.68E+05 + 2.41E+05 (0)* 4.79E+05+ 2.33E+05 (0)
FO04 30 4.11E-04 1.94E-04 (0) 4.52E-16 4.93E-16 (50) 5.43E-19+ 1.83E-18 (50) 4.23E-19 + 5.45E-19 (50)
FO06 30 8.90E-0% 1.93E-02 (0) 4.13E-03 + 1.45E-02 (7)¢ 3.99E-01+ 1.21E+00 (45) 2.39E-0% 9.56E-01 (47)
FO7 30 2.03E-05 + 1.57E-05 (0) 4.14E-03+ 6.28E-03 (32) 1.07E-02 1.03E-02 (14) 1.39E-02 1.08E-02 (8)
FO08 30 2.09E+01 + 6.10E-02 (0) 2.09E+01+ 8.21E-02 (0) 2.11E+0% 5.28E-02 (0) 2.11E+0% 5.75E-02 (0)
FO9 30 [2.51E+0% 4.67E+03](50) [2.16E+05 + 4.16E+03] (50  [2.40E+05+ 1.87E+04] (50) [2.32E+05+ 1.54E+04] (50)

It indicates DE is worse than its competitor.

of the clustering period for the two functions is discussethe
following Section 5.6.

search space sufficiently for the higher dimensional proble
and hence the one-step k-means clustering can exploiniafor
tion efficiently.

5.6. Effect of Clustering Period According to the previous experiments given in Section 5.3

In our proposed CDE, only one additional parametés in- - 5-6, the parameten working in the interval [540] could be
cluded. This parameter makes the one-step k-means chgterimore reliable for unknown optimization problems. Highers
perform periodically. In order to investigate the effecnobn  tering period is reasonable for higher dimensional prolem
the performance of CDE, a set of experiments has been pelrlowever, the effect should be studied in more detail by vary-
formed. All other parameters are kept unchanged as meutiond"d the population size and the problem dimensionality Whic
in Section 5.1, and we only modify the clustering period para is beyond the scope of this work. We leave this task for a &utur
etermas follows:m = 2,5, 15, 20. For eachm, we perform 50 study.
independent runs per test functions. The results are peben
in Table 6. From Table 6, it can be seen that a lower clustering-7- Influence of the Number of Cluster Centers
period can achieve faster convergence rate, however thjs ma Inour proposed CDE approach, the number of cluster centers
lead to becoming trapped in a local optimum, e.g. f04, f0&, et kis generated randomly from [2/NP]. In this section we per-
The higher clustering period makes the algorithm more robugorm additional experimentto show the influence of the numbe
but lowers the convergence rate. of cluster centersk is set to 2, 5, 8, and 10 to replace the ran-

As mentioned in Section 5.5, CDE is significantly worse thandom number. The results are shown in Table 7. From Table 7,
DE for the higher dimensional Rosenbrock’s functions (fi a it can be seen that for the majority of functions no signiftcan
F06). This means that CDE with = 10 misleads the search on difference can be found. It indicates thatas a small effect on
these functions. Here, we perform a preliminary experimentthe performance of CDE.
to study the effect ofn on the performance of CDE for the two
functions aD = 50. In these experiments the maximum NFFEsD-8. Effect of Different Schemes
of Max_.NFFEs = 2000 D is used to clearly show the effect  In DE there are more than ten different schemes [9, 10],
of differentmvalues. All the remaining parameters are kept un-and [11]. In [51], Mezura-Montest al. presented an empirical
changed. The convergence graphs of these functions arexshowomparison of some DE schemes to identify which one of them
in Fig. 3. From Fig. 3, we can see that CDE is able to providés more suitable to solve an optimization problem. Différen
better results for higher clustering periad £ 15). The reason schemes are suitable for different problems. In this secti@
might be that higher clustering period makes CDE explore theonduct a set of experiments to show the performance of CDE
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Table 11: Influence of the Distance Measure of Clusteringeri§lon Space and Objective Space.

F D DE CDE CDEobj

f0I 30  2.01E-1% 1.14E-17 (50) T.07E-28 7.65E-29 (50) _ 4.33-34 = 3.07E-34 (50)
f02 30  3.86E-14 9.28E-15 (50) 4.21E-24 1.85E-21 (50)  3.93E-25 + 2.17E-25 (50)
f03 30  5.04E-1k 2.46E-11 (50) 1.64E-34 9.18E-34 (50)  4.98E-35 + 6.38E-35 (50)
f04 30  8.81E-08: 2.39E-08 (0) 6.48E-22 = 1.18E-21 (50) 8.68E-21+ 5.58E-20 (50)
f05 30  5.15E-22: 1.21E-21(50)  [4.61+E05 + 1.28E+04] (50)  [4.71E+05+ 1.41E+04] (50)
f06 30 [3.30E+04: 1.12E+03] (50)  [1.87E+04 1.05E+03] (50) [1.60E+04 + 8.52E+02] (50)
f07 30  7.84E-03 1.74E-03 (50) 1.27E-08 7.37E-04 (50)  8.62E-04 + 3.30E-04 (50)
08 30 [L59E+05: 1.37E+03] (50)  [L.30E+0% 2.40E+03] (50) [L20E+05 £ 2.70E+03] (50)
f09 30 [2.56E+05: 4.18E+03] (50)  [2.17E+0& 4.92E+03] (50) [1.94E+05 + 5.67E+03] (50)
f10 30  1.21E-0% 3.14E-10 (50) 5.28E-15 1.67E-15 (50)  5.89E-16 + 0.00E+00 (50)
f11 30 [1.49E+05: 3.35E+03] (50)  [9.42E+04 2.46E+03] (50) [7.98E+04 + 2.07E+03] (50)
f12 30  1.46E-18 7.33E-19 (50) 1.79E-3@ 1.50E-30 (50)  1.57E-32 + 0.00E+00 (50)
f13 30  1.59E-16+ 6.79E-17 (50) 9.42E-29 8.40E-29 (50)  1.35E-32 + 0.00E+00 (50)
14 2 [8.30E+03 4.47E+02] (50)  [8.40E+0% 4.06E+02] (50) [8.18E+03 £ 4.49E+02] (50)
f15 4  1.85E-19:4.00E-19 (50)  1.03E-19 + 3.12E-19 (50) 1.03E-19 + 3.12E-19 (50)
fie 2 1.28E-14- 4.71E-14 (50)  7.99E-16 + 4.44E-15 (50) 2.20E-15+ 5.81E-15 (50)
17 2 1.74E-11+ 6.58E-11 (50)  4.33E-13 + 1.46E-12 (50) 1.46E-11+ 4.57E-11 (50)
fis 2 7.08E-15+ 1.43E-14 (50) 4.69E-15 4.93E-15 (50)  3.71E-15 + 4.79E-15 (50)
f19 3 [8.90E+03: 3.16E+02] (50)  [8.69E+02 2.68E+02] (50) [8.21E+03 + 2.50E+02] (50)
20 6  2.92E-12: 2.04E-11 (50) 1.40E-14 7.04E-14 (50)  [1.63E+04 + 1.06E+03] (50)
21 4 1.91E-08: 3.75E-08 (30) 1.67E-08 3.90E-08 (37)  1.59E-08 + 9.00E-08 (47)
22 4 4.98E-09 + 2.54E-08 (48) 5.60E-09¢ 1.59E-08 (45) 6.75E-08 4.71E-07 (44)
FOI 30 [2.35E+0% 1.78E+03] (50)  [L.65E+0% 1.08E+03] (50) [LA42E+05 + 1.79+E03] (50)
FO2 30  3.12E-04- 1.28E-04 (0) 3.60E-16 3.97E-16 (50)  2.40E-18 = 3.88E-18 (50)
FO3 30  1.03E+0& 5.57E+05 (0) 8.93E+05 3.06E+05 (0)  6.16E+05 + 2.19E+05 (50)
FO4 30  4.11E-04 1.94E-04 (0) 4.52E-16 4.93E-16 (50)  3.08E-18 + 4.65E-18 (50)
FO6 30  8.90E-03 1.93E-02 (0) 4.13E-03 + 1.45E-02 (7) 6.84E-02+ 1.53E-02 (3)
FO7 30  2.03E-05+ 1.57E-05(0) 4.14E-03+ 6.28E-03 (32) 1.29E-02 9.03E-03 (4)
FO8 30  2.09E+0% 6.10E-02 (0) 2.09E+0% 8.21E-02 (0) 2.06E+01 + 2.90E-01 (0)
FO9 30 [2.51E+05 4.67E+03](50) [2.16E+0% 4.16E+03] (50) [2.02E+05 + 4.16+E03] (50)

for different schemes. Three schemes, namely, DE/rarid/1/b 5.10. Influence of Different Distance Measure

. . . e -step k-means on the performance of CDE, a
Section 5.1. The dimension per function is the same as show&,t of experiments is performed here. The results are shown i

in Table 2. Table 8 gives the results of DE and CDE for therapie 10, where CDEos means the cosine distance measure

three schemes. is used in CDE, and CDEnan denotes the Manhattan distance
According to Table 8, we can see that for the majority of themeasure is used. All parameters are kept unchanged. In addi-

test problems CDE is significantly better than DE, especiall tjon all experiments are conducted for 50 independentfoms

compared to the DE schemes with two difference vectors. Gensach function. It can be seen from Table 10 that the three CDE

erally speaking, the overall results of Table 2, 3, and 8 subypproaches outperformed DE on the majority of the test func-

stantiate our claim that for the majority of the test probdehe  tjons. On 26 functions, CDE is better than DE. CB&s out-

proposed CDE is able to improve the performance of DE foperforms DE on 22 functions. CDEan is also better than DE

different schemes. on 22 out of 30 functions. Generally speaking, the improvame

of CDE is not significantly influenced by the different distan

5.9. Influence of Self-adaptive Parameter Control measure used in the one-step k-means clustering.
As mentioned above, the choice of the control parameteré'll' Effect of Distance in Objective Space

F andCRis sensitive for different problems [49]. In order to  In our previous experiments, the Euclidean distance of the

show that CDE can also improve the self-adaptive DE, in thiclustering is calculated in the decision space. The distaao

section, we adopt the self-adaptive control parametergeeg also be calculated in the objective space, we only need te mod

in [8] to replace the fixedr = 0.5 andCR = 0.9 in the previous ify step 2 of the one-step k-means clustering described ia Se

experiments. All other parameter settings are kept unating tion 4.1 as “Assign poini;, i = 1,2,---,NP to clusterC;,

The results for the self-adaptive DE (SaDE) and self-adapti j=1,2,---,k, ifand onlyif|| f(X;)—f(c;) lI<Il f(X)—f(cp) II,

CDE (SaCDE) are given in Table 9. The results indicate thap = 1,2,--- ,k, andp # j, wheref(X) is the fitness of solution

SaCDE is significantly better than SaDE on 22 out of 30 func-X, and|| f(X;) - f(c;) Il is the distance betwe€ifX;) andf(c;).

tions. Only for one function FO7, SaDE is significantly bette Ties are resolved arbitrarily.”. The CDE using the distaimce

than SaCDE. For the other 7 functions, there is no significanthe objective space is named C@Bj. All other parameters

difference for both SaCDE and SaDE. In general, integraifon are the same as mentioned in Section 5.1. Table 11 shows the

the one-step k-means clustering can improve the perforenancesults of DE, CDE, and CDRabj for all test functions. From

of SaDE. Table 11, we can see that both CDE and Calti outperform
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Table 12: Comparison on the Error values between our appraad \Wang’s approach [23].

E D Wang'’s approach [23] CDE Wang-CDE
NFFEs Mean Std Dev NFFEs Mean Std Dev t-test
fo1 30 150000  1.00E-06 2.00E-06 150 000 1.07E-28 7.65E-29 3.54
fo2 30 200000 0.00E+00  0.00E+00 200 000 4.21E-21 1.85E-21 -16.09
fo3 30 500 000 1.10E-05 1.40E-05 500 000 1.64E-34 9.18E-34 5.56
fo4 30 500000  7.50E-05 7.50E-05 500 000 6.48E-22 1.18E-21 7.07
fo5 30 2000000 1.83E+00  6.83E+00 500000 0.00E+00  0.00E+00 1.89
fo6 30 150000 0.00E+00  0.00E+00 150000 0.00E+00  0.00E+00 0
fo7 30 300 000 4.60E-04 3.60E-04 300 000 1.30E-03 7.37E-04 -7.24
fo8 30 900 000 1.25E+03 5.03E+02 300 000 0.00E+00 0.00E+00 17.57
f0o9 30 500000  1.80E-05 2.30E-05 300000 0.00E+00  0.00E+00 5.53
f10 30 150000  4.70E-05 4.50E-05 150 000 5.28E-15 1.67E-15 27.24
fi1 30 200000 0.00E+00  0.00E+00 200000 0.00E+00  0.00E+00 0
f12 30 150 000 0.00E+00  0.00E+00 150 000 1.79E-30 1.50E-30 -8.44
f13 30 150 000 0.00E+00  0.00E+00 150 000 9.42E-29 8.40E-29 -7.93

 The value ot with 49 degrees of freedom is significanteat 0.05 by two-tailed test.
2 indicates the error value is used based on the reportedsesul

DE on the majority of the test functions. In addition, CDBj ~ same as mentioned in Section 5.1. For DEahcSPX, the number
is slightly better than CDE on 22 functions. However, theeff of parents in SPX sets to g = 3 [13]. For ODE, the jump
should also be studied in more detail by varying the popahati rate J. = 0.3 [32]. The results are given in Table 13. Some
size and the problem dimensionality. We leave this taskor o selected representative convergence graphs are showgn ih. Fi
future work. In summary, the one-step k-means clusterirtg wi From Table 13 and Fig. 4, it can be seen that i) CDE is better
the distance measure in both decision space and objectce sp than DE, DEahcSPX and ODE on 19 out of 30 functions. ii)

can enhance the performance of DE. For three functions (f22, FO3, and FO7), DEahcSPX can obtain
better results compared with DE, ODE and CDE. iii) ODE is
5.12. Comparison with Wang’s Approach [23] able to get better results for 7 functions (f04, f14, and f16 -

. . . f20), however it may lead to be premature, e.g. f05 and FQ6. iv
Since both our approach and Wang’s approach [23] improve DE is able to provide the highest overall number of succéssf

the original DE algorithm with the clustering algorithm, in runs. And v) CDE can converge faster for the majority of the
this section, we compare the results between our approath S f.unctions compared with DE, DEahcSPX, and ODE

Wang’s method. The results are shown in Table 12 on func-
tions fO1 - f13. From Table 12 we can see that on 6 out of 13

functions our approach is significantly better than Wan@'s a g cgnclusion and Future Work
proach. On 4 functions (f02, f07, f12, and f13), our approach
is significantly outperformed by Wang’s method. However, fo
functions f02, f12, and f13, our approach obtains good mean
best results and approximates the global optimum in all 58 ru
for the three functions. For the rest two functions (f06 aht) f
both approaches can obtain the global optimum in all 50 run
In addition, for three functions (f05, f08, and f09) our apgch
provides better mean best values in less NFFEs. In gener
we can conclude that our approach obtains better results th
Wang'’s approach [23] in terms of the quality of the final re-
sults.

In order to make the DE algorithm more effective and more
fficient, the one-step k-means clustering is integratediE

in this paper. The hybrid clustering-based DE (CDE) can bal-
ance the exploration and the exploitation in the evolutigna
Sprocess. It is worth noting that our proposed CDE is also Emp

nd ease to use. CDE adds only one parameter, the clustering
?eﬁodm, to the original DE algorithm.

To evaluate the performance of our presented approach, 30
unconstrained single-objective benchmark functions ifh
ferent characteristics are chosen from the literature. W-co
, i i prehensive set of experiments is conducted in this paper, to
5.13. Comparison with Other DE Hybrids study i) the effect of the one-step k-means clustering oniE;

Finally, we make a comparison with other DE. Since therehe influence of the population size; iii) the effect of thelpr
are many variants of DE, we only compare our approach withem dimensionality; iv) the effect of the clustering periotl
DEahcSPX proposed in [13] and ODE proposed in [32]. Inv) the influence of the number of cluster centers; vi) the mu-
DEahcSPX, a crossover-based adaptive local search aperatitation schemes; vii) the influence of the self-adaptive para
to accelerate DE. The authors concluded that DEahcSPX ougter control on DE; viii) the effect of different distance ane
performs the original DE algorithm in items of convergencesure used in the one-step k-means clustering; ix) the distan
rate in all experimental studies. In ODE, the oppositiosdth measure of clustering in decision space and objective space
learning is used for the population initialization and gatien  and x) comparison with the AHCXLS-based DE (DEahcSPX)
jumping. In this section, we compare our proposed CDE withand the opposition-based DE (ODE). In addition, four cigter
DE, DEahcSPX and ODE. All the parameter settings are thare selected for evaluating the performance of the algosth
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Table 13: Comparison of DE, DEahcSPX, ODE, and CDE on All Festctions.

F D DE DEahcSPX ODE CDE

f0I 30  2.01E-1% 1.14E-17 (50) 6.82E-18 2.68E-18 (50) 5.61E-24 5.24E-24 (50)  1.07E-28 = 7.65E-29 (50)
f02 30  3.86E-14: 9.28E-15 (50) 2.59E-14 6.34E-15 (50) 6.73E-13 2.17E-13 (50)  4.21E-21 + 1.85E-21 (50)
f03 30  5.04E-1k 2.46E-11 (50) 2.65E-12 1.57E-12 (50) 2.95E-08 2.19E-08 (0) 1.64E-34 + 9.18E-34 (50)
f04 30  8.81E-08: 2.39E-08 (0) 2.19E-08 5.17E-09 (0) 2.08E-37 = 2.77E-37 (50) 6.48E-22+ 1.18E-21 (50)
f05 30  5.15E-22 1.21E-21 (50) 3.69E-22 8.56E-22 (50) 2.37E+04 1.50E+00 (0)  [4.61+E05 + 1.28E+04] (50)
f06 30  [3.30E+04: 1.12E+03] (50)  [3.24E+04 1.13E+03] (50)  [2.48E+04 8.83E+02] (50) [1.87E+04 = 1.05E+03] (50)
f07 30  7.84E-03 1.74E-03 (50) 5.84E-03 1.54E-03 (50) 2.04E-03 6.04E-04 (50)  1.27E-03 + 7.37E-04 (50)
08 30 [1.59E+05: 1.37E+03] (50)  [L.59E+0& 1.13E+03] (50)  [L.53E+0& 5.98E+03] (50) [L.30E+05 = 2.40E+03] (50)
f09 30 [2.56E+05: 4.18E+03] (50)  [2.56E+0% 6.29E+03] (50)  [2.32E+0& 1.17E+04] (50)  [2.17E+05 + 4.92E+03] (50)
f10 30  1.21E-0% 3.14E-10 (50) 7.16E-1@ 1.74E-10 (50) 9.50E-13 3.34E-13 (50)  5.28E-15 + 1.67E-15 (50)
f11 30  [1.49E+05: 3.35E+03] (50)  [1.45E+0% 3.28E+03] (50)  [1.20+EO0& 6.81E+03] (50)  [9.42E+04 + 2.46E+03] (50)
f12 30  1.46E-18 7.33E-19 (50) 4.15E-19 2.60E-19 (50) 8.14E-25 8.63E-25 (50)  1.79E-30 + 1.50E-30 (50)
f13 30  1.59E-16: 6.79E-17 (50) 6.04E-1Z 2.78E-17 (50) 5.99E-2% 9.39E-21 (50)  9.42E-29 + 8.40E-29 (50)
14 2  [8.30E+03: 4.47E+02] (50)  [8.14E+0& 6.37E+02] (50) [7.73E+03 = 5.92E+07] (50) _ [8.40E+03= 4.06E+02] (50)
f15 4 1.85E-19: 4.00E-19 (50) 3.50E-19 4.93E-19 (50) 7.21E-19 4.98E-19 (50)  1.03E-19 + 3.12E-19 (50)
fie 2 1.28E-14+ 4.71E-14 (50) 2.60E-15 9.24E-15 (50)  [8.20E+03 + 4.89E+02] (50)  7.99E-16+ 4.44E-15 (50)
17 2 1.74E-11+ 6.58E-11 (50) 3.49E-1% 1.43E-10 (50)  1.49E-13 = 2.72E-13 (50) 4.33E-13+ 1.46E-12 (50)
fis 2 7.08E-15+ 1.43E-14 (50) 8.30E-15 1.95E-14 (50)  2.93E-15 = 4.72E-15 (50) 4.69E-15¢ 4.93E-15 (50)
f19 3 [8.90E+03:3.16E+02] (50)  [8.76E+0% 3.25E+02] (50) [7.88E+03 + 2.53E+02] (50)  [8.69E-+03= 2.68E+02] (50)
20 6  2.92E-12: 2.04E-11 (50) 9.40E-14 3.23E-13 (50)  5.95E-15 = 1.26E-14 (50) 1.40E-14+ 7.04E-14 (50)
21 4 1.91E-08: 3.75E-08 (30) 1.90E-08 5.48E-08 (37) 2.50E-06 6.43E-06 (26)  1.67E-08 + 3.90E-08 (37)
22 4 4.98E-09 2.54E-08 (48)  2.16E-09 + 3.29E-09 (48) 7.21E-08+ 9.99E-08 (28) 5.60E-02 1.59E-08 (45)
FOI 30 [2.35E+05 1.78E+03] (50)  [2.32E+0& 1.80E+03] (50)  [L.86E+0& 2.72E+04] (50) [L65E+05 + 1.98E+03] (50)
FO2 30  3.12E-04- 1.28E-04 (0) 3.96E-05 1.64E-05 (0) 5.52E-02 3.64E-03 (0) 3.60E-16 = 3.97E-16 (50)
FO3 30  1.03E+0& 5.57E+05(0)  7.35E+05 + 3.70E+05 (0) 2.57E+06+ 1.04E+06 (0) 8.93E+05 3.06E+05 (0)
FO4 30  4.11E-04 1.94E-04 (0) 5.25E-08 2.62E-05 (0) 6.89E-03 4.52E-03 (0) 4,52E-16 + 4.93E-16 (50)
FO6 30  8.90E-03 1.93E-02 (0) 2.76E-02 5.64E-02 (0) 1.89E+0% 9.97E+00 (0) 4.13E-03 + 1.45E-02 (7)
FO7 30  2.03E-05 1.57E-05 (0) 1.85E-06 + 1.63E-06 (0) 3.94E-03+ 9.50E-03 (42) 4.14E-03 6.28E-03 (32)
FO8 30  2.09E+0% 6.10E-02 (0) 2.10E+0% 4.46E-02 (0) 2.10E+02 4.00E-02 (0) 2.09E+02 8.21E-02 (0)
FO9 30 [2.51E+0% 4.67E+03](50) [2.51E+0& 3.73E+03] (50)  [2.70E+0& 9.40E+03] (50) [2.16E+05 = 4.16E+03] (50)

The experimental results indicate that by integrating efdhe-
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putation 10 (6) (2006) 646—657.
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step k-means clustering in DE, our proposed CDE can enhance
the performance of DE in terms of the quality of the final re-
sults and the reduction of NFFEs to approach the global opti-
mum. In addition, experiments conducted on different papul
tion size, dimensionality, various mutation schemes, aid s[4l
adaptive parameter control also show that CDE is more effec-
tive and efficient than DE. Moreover, compared with DEahc- [5)
SPX and ODE, two highly competitive variants of DE, CDE is
able to obtain better performance for the majority of the tes (6
functions in terms of all four performance criteria usedtiist
paper. [7]
One additional parameter, clustering periodis included
in CDE. In this work, some preliminary experiments have been
performed to verify its effect on the performance of CDE. um o
future work, the effect will be studied in more detail by viay
the population size and the problem dimensionality. In tholalj
we believe that some other clustering algorithms and otiser d
tance measures can also be used in CDE. Furthermore, another
possible direction is applying the one-step k-means metibod [10]
other EC algorithms, such as GAs, PSO, etc. 1]
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