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Abstract

Hybridization with other different algorithms is an interesting direction for the improvement of differential evolution (DE). In this
paper, a hybrid DE based on the one-step k-means clustering,called Clustering-based DE (CDE), is presented for the unconstrained
global optimization problems. The one-step k-means clustering acts as several multi-parent crossover operators to utilize the
information of the population efficiently, and hence it can enhance the performance of DE. To validate the performance ofour
approach, 30 benchmark functions of a wide range of dimensions and diversity complexities are employed. Experimental results
indicate that our approach is effective and efficient. Compared with other state-of-the-art DE approaches, our approach performs
better, or at least comparably, in terms of the quality of thefinal solutions and the reduction of the number of fitness function
evaluations (NFFEs).
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1. Introduction

Without loss of generality, a global minimization problem
can be formalized as a pair (S, f ) , whereS ⊆ RD is a bounded
set onRD and f : S → R is aD-dimensional real-valued func-
tion. The problem is to find a pointX∗ ∈ S such thatf (X∗) is
a global minimum onS [1]. More specifically, it is required to
find anX∗ ∈ S such that

∀X ∈ S : f (X∗) ≤ f (X) (1)

wheref does not need to be continuous but it must be bounded.
Generally, for each variablexi it satisfies a constrained bound-
ary:

l i ≤ xi ≤ ui , i = 1, 2, · · · ,D (2)

Global optimization problems are frequently arisen in almost
every field of engineering design, applied sciences, molecular
biology and other scientific applications. Many of these prob-
lems cannot be solved analytically, and consequently, theyhave
to be addressed by numerical algorithms. Moreover, in many
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cases, global optimization problems are non-differentiable,
noisy and simulation-based. Hence the gradient-based methods
cannot be used for finding the global minimum of such prob-
lems. As a result, many researchers have devoted themselves
in finding some reliable stochastic global optimization meth-
ods that do not require any computation of the gradients of the
objective function. In global optimization problems, the ma-
jor challenge is that an algorithm may be trapped in the local
optima of the objective function. This issue is particularly chal-
lenging when the dimension is high and there are numerous
local optima. Recently, using the Evolutionary Computation
(EC) [2] to solve the global optimization has been very active,
producing different kinds of EC for optimization in the contin-
uous domain, such as genetic algorithms (GAs) [3] - [4], evo-
lution strategy (ES) [5], evolutionary programming (EP) [1, 6],
particle swarm optimization (PSO) [7], differential evolution
(DE) [8], etc.

Differential evolution (DE) [9] algorithm is a novel evolu-
tionary algorithm (EA) for global optimization, which mutation
operator is based on the distribution of solutions in the popula-
tion. It won the third place at the first International Contest
on Evolutionary Computation on a real-valued function test-
suite [10]. DE is a simple yet powerful population-based, direct
search algorithm with the generation-and-test feature forglob-
ally optimizing functions using real-valued parameters. Among
DE’s advantages are its simple structure, ease of use, speedand
robustness. Price & Storn [9] gave the working principle of
DE with single scheme. Later on, they suggested ten differ-
ent schemes of DE [10, 11]. DE has been successfully applied
to a whole host of engineering problems including the design
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of digital filters, mechanical design optimization, aerodynamic
design and multiprocessor synthesis [10, 11, 12]. However,DE
has been shown to have certain weaknesses, especially if the
global optimum should be located using a limited number of
fitness function evaluations (NFFEs). In addition, DE is good
at exploring the search space and locating the region of global
minimum, but it is slow at exploitation of the solution [13].

The main contribution of this paper is the hybridization of the
one-step k-means clustering with DE, which makes the original
DE more effective and efficient. The one-step k-means clus-
tering acts as several multi-parent crossover operators toutilize
the information of the population efficiently. After incorporat-
ing the one-step k-means clustering, the hybrid DE approach,
called Clustering-based DE (CDE), can balance the exploration
and exploitation in the evolutionary process. The advantages
of CDE are its simplicity, efficiency and flexibility. To verify
the performance of our approach, 30 benchmark functions (in-
cluding 8 new test functions provided by CEC2005 special ses-
sion [14]) are selected from the literature. Experimental results
indicate that our approach is effective and efficient. Compared
with other state-of-the-art DE approaches, our approach per-
forms better, or at least comparably, in terms ofthe qualityof
the final solutions and the reduction of the NFFEs.

The remainder of this paper is organized as follows. In Sec-
tion 2, we briefly introduce the DE algorithm. In addition, some
improved variants of DE are reviewed. Section 3 briefly de-
scribes the k-means clustering used in this work. Our proposed
approach is presented in detail in Section 4. In Section 5, we
verify our approach through 30 benchmark functions. More-
over, the experimental results are compared with those of some
state-of-the-art DE approaches. The last section, Section6, is
devoted to conclusions and future work.

2. Differential Evolution

DE [9] is a simple EA that creates new candidate solutions
by combining the parent individual and several other individ-
uals of the same population. A candidate replaces the parent
only if it has better fitness. Among DE’s advantages are its sim-
ple structure, ease of use, speed and robustness. Due to these
advantages, it has many real-world applications, such as data
mining [15, 16], pattern recognition, digital filter design, neural
network training, etc. [11, 12].

The pseudo-code of DE is shown in Algorithm 1. WhereD is
the number of decision variables,NP is the population size,F is
the mutation scaling factor,CR is the probability of crossover
operator,U i is the offspring, rndint(1,D) is a uniformly dis-
tributed random integer number between 1 andD, and rndj [0, 1)
is a uniformly distributed random real number in [0, 1). Many
schemes of creation of a candidate are possible. We use the
DE/rand/1/exp scheme (see lines 6 - 13 of Algorithm 1) de-
scribed in Algorithm 1 (more details on DE/rand/1/exp and
other DE schemes can be found in [10] and [11]).

From Algorithm 1, we can see that there are only three con-
trol parameters in this algorithm. These areNP, F andCR. For
the terminal conditions, one can either fix the maximum NFFEs

Algorithm 1 DE algorithm with DE/rand/1/exp
1: Generate the initial populationP
2: Evaluate the fitness for each individual inP
3: while The halting criterion is not satisfieddo
4: for i = 1 to NP do
5: Select uniform randomlyr1 , r2 , r3 , i
6: jrand = rndint(1,D)
7: L = 0
8: U i

= Pi

9: repeat
10: U i

j = Xr1
j + F × (Xr2

j − Xr3
j )

11: jrand = ( jrand + 1) modD
12: L = L + 1
13: until rndj [0, 1) > CRor L > D
14: Evaluate the offspringU i

15: if U i is better thanPi then
16: Pi

= U i {Replace the parentimmediately}
17: end if
18: end for
19: end while

(Max NFFEs) or the precision of a desired solution value to
reach (VTR).

In the original DE algorithm, many schemes have been pro-
posed [10, 11] that use different learning strategies and/or re-
combination operations in the reproduction stage. In order
to distinguish among its schemes, the notation “DE/a/b/c” is
used, where “DE” denotes the Differential Evolution; “a” spec-
ifies the vector to be mutated (which can be random or the best
vector); “b” is the number of difference vectors used; and “c”
denotes the crossover scheme,binomial or exponential. The
exponential crossover scheme is presented in Algorithm 1 and
in case of exponential crossover, the crossover probability CR
regulates how many consecutive mutated genes are copied to
the trial individualU i . Using this notation, the DE strategy de-
scribed in Algorithm 1 above can be denoted as DE/rand/1/exp.
Other well-known schemes are DE/best/1/exp, DE/rand/2/exp,
and DE/best/2/exp which can be implemented by (3) - (5), re-
spectively.

U i
= Xbest

+ F × (X j − Xh) (3)

U i
= X j

+ F × (Xh − Xl) + F × (Xs− Xt) (4)

U i
= Xbest

+ F × (X j − Xh) + F × (Xl − Xs) (5)

whereXbest represents the best individual in the current gener-
ation, i, j, h, l, s andt ∈ {1, · · · ,D}, andi , j , h , l , s , t.
Again, each of the above algorithms can be configured to use
the binomial crossover.

Recently, many researchers are working on the improvement
of DE, and many variants of DE are presented. Hybridization
with other different algorithms is one direction for improve-
ment. Fan and Lampinen [17] proposed a new version of DE
which uses an additional mutation operation called trigonomet-
ric mutation operation. They showed that the modified DE
algorithm can outperform the classic DE algorithm for some
benchmarks and real-world problems. Sunet al. [18] proposed
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Table 1: The 22 benchmark functions used in our experimentalstudy, whereD is the number of variables, “optimal” is the minimum value ofthe function, and
S ⊆ RD. A detailed description of all functions can be found in [1].

Test Functions D S optimal

f01=
D
∑

i=1
x2

i 30 [−100, 100]D 0

f02=
D
∑

i=1
|xi | +

D
∏

i=1
|xi | 30 [−10, 10]D 0

f03=
D
∑

i=1
(

i
∑

j=1
x j )2 30 [−100, 100]D 0

f04= max
i
{|xi |,1 ≤ i ≤ D} 30 [−100, 100]D 0

f05=
D−1
∑

i=1
[100(xi+1 − x2

i )2
+ (xi − 1)2] 30 [−30, 30]D 0

f06=
D
∑

i=1
(⌊xi + 0.5⌋)2 30 [−100, 100]D 0

f07=
D
∑

i=1
x4

i + random[0,1) 30 [−1.28, 1.28]D 0

f08=
D
∑

i=1
(−xi sin(

√
|xi |)) 30 [−500, 500]D -418.982887×D

f09=
D
∑

i=1
(x2

i − 10 cos(2πxi ) + 10) 30 [−5.12, 5.12]D 0

f10= −20 exp(−0.2

√

1
D

D
∑

i=1
x2

i ) − exp(1
D

D
∑

i=1
cos(2πxi )) + 20+ exp(1) 30 [−32, 32]D 0

f11= 1
4000

D
∑

i=1
x2

i −
D
∏

i=1
cos(xi√

i
) + 1 30 [−600, 600]D 0

f12 =
π
D {10 sin2(πyi ) +

D−1
∑

i=1
(yi − 1)2 · [1 + 10 sin2(πyi+1)] + (yD − 1)2}

+

D
∑

i=1
u(xi ,10, 100,4)

30 [−50, 50]D 0

f13 =
1
10{sin2(3πx1) +

D−1
∑

i=1
(xi − 1)2[1 + sin2(3πxi+1)] + (xD − 1)2[1 + sin2(2πxD)]}

+

D
∑

i=1
u(xi ,5, 100,4)

30 [−50, 50]D 0

f14=

























1
500 +

25
∑

j=1

1

j+
2
∑

i=1
(xi−ai j )6

























−1

2 [−65.536, 65.536]D 1

f15=
11
∑

i=1

[

ai −
x1(b2

i +bi x2)

b2
i +bi x3+x4

]2

4 [−5, 5]D 0.003075

f16= 4x2
1 − 2.1x4

1 +
1
3 x6

1 + x1x2 − 4x2
2 + 4x4

2 2 [−5, 5]D -1.0316285
f17= (x2 − 5.1

4π2
x2

1 +
5
π

x1 − 6)2 + 10(1− 1
8π ) cosx1 + 10 2 [−5,10]× [0,15] 0.398

f18 = [1 + (x1 + x2 + 1)2(19− 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2)]
×[30+ (2x1 − 3x2)2(18− 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2)]

2 [−2, 2]D 3

f19= −
4
∑

i=1
ci exp[−

D
∑

j=1
ai j (x j − pi j )2] 3 [0,1]D -3.86

f20= −
4
∑

i=1
ci exp[−

D
∑

j=1
ai j (x j − pi j )2] 6 [0,1]D -3.32

f21= −
5
∑

i=1
[(x− ai )(x− ai)T

+ ci ]−1 4 [0, 10]D -10

f22= −
7
∑

i=1
[(x− ai )(x− ai)T

+ ci ]−1 4 [0, 10]D -10

a new hybrid algorithm based on a combination of DE and Es-
timation of Distribution Algorithm (EDA). This technique uses
a probability model to determine promising regions in order
to focus the search process on those areas. Gonget al. [19]
employed the two level orthogonal crossover to improve the
performance of DE. They showed that the proposed approach
performs better than the classical DE in terms of the quality,
speed, and stability of the final solutions. Noman and Iba [20]
proposed fittest individual refinement, a crossover-based local
search (LS) method DE to solve the high dimensional prob-
lems. They showed that the improved DE method accelerates
the convergence rate for high dimensional benchmark func-
tions. Based on their previous work, Noman and Iba incor-
porated LS into the classical DE in [13]. They presented an
LS technique to solve this problem by adaptively adjusting the
length of the search, using a hill-climbing heuristic. Through
the experiments, they showed that the proposed new version of

DE performs better, or at least comparably, to classic DE algo-
rithm. Kaelo and Ali [21] adopted the attraction-repulsioncon-
cept of electromagnetism-like algorithm to boost the mutation
operation of the original DE. Yanget al. [22] proposed a neigh-
borhood search based DE. Experimental results showed that DE
with neighborhood search has significant advantages over other
existing algorithms on a broad range of different benchmark
functions [22]. Wanget al. [23] proposed a dynamic clustering-
based DE for global optimization, where a hierarchical cluster-
ing method is dynamically incorporated in DE. Experiments on
28 benchmark problems, including 13 high dimensional func-
tions, showed that the new method is able to find near optimal
solutions efficiently [23].

Some other studies focus on adapting DE’s control param-
eters. Liu and Lampinen [24] proposed a fuzzy adaptive DE
(FADE) which uses fuzzy logic controllers to adapt the muta-
tion and crossover control parameters. Brestet al. [8] proposed
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Table 2: Best Error Values of DE and CDE on All Test Functions,Where “Mean” Indicates the Mean Best Error Values Found in the Last Generation, “Std Dev”
Stands For the Standard Deviation. “Time” Indicates the Average Running Time in Seconds. Hereafter, A Result WithBoldface Means Better Value Found.

F D Max NFFEs
DE CDE DE-CDE

Mean Std Dev SR Time (s) Mean Std Dev SR Time (s) t-test

f01 30 150 000 2.01E-17 1.14E-17 50 0.5669 1.07E-28 7.65E-29 50 0.6218 12.51†

f02 30 200 000 3.86E-14 9.28E-15 50 1.1814 4.21E-21 1.85E-21 50 1.2611 29.41†

f03 30 500 000 5.04E-11 2.46E-11 50 3.1936 1.64E-34 9.18E-34 50 3.4359 14.46†

f04 30 500 000 8.81E-08 2.39E-08 0 2.8315 6.48E-22 1.18E-21 50 3.1190 26.02†

f05 30 500 000 5.15E-22 1.21E-21 50 2.5813 0 0 50 2.8377 3.00†

f06 30 150 000 0 0 50 0.7424 0 0 50 0.8096 0
f07 30 300 000 0.0078 0.0017 50 2.2469 0.0013 7.37E-04 50 2.3298 24.62†

f08 30 300 000 0 0 50 2.1249 0 0 50 2.2004 0
f09 30 300 000 0 0 50 1.7517 0 0 50 1.8766 0
f10 30 150 000 1.21E-09 3.14E-10 50 0.9142 5.28E-15 1.67E-15 50 0.9612 27.24†

f11 30 200 000 0 0 50 1.3484 0 0 50 1.4278 0
f12 30 150 000 1.46E-18 7.33E-19 50 2.4140 1.79E-30 1.50E-30 50 2.4234 14.11†

f13 30 150 000 1.59E-16 6.79E-17 50 2.2264 9.42E-29 8.40E-29 50 2.2591 16.53†

f14 2 10 000 0 0 50 0.0986 0 0 50 0.0983 0
f15 4 40 000 1.85E-19 4.00E-19 50 0.1657 1.03E-19 3.12E-19 50 0.1643 1.14
f16 2 10 000 1.28E-14 4.71E-14 50 0.0389 7.99E-16 4.44E-15 50 0.0333 1.79
f17 2 10 000 1.74E-11 6.58E-11 50 0.0311 4.33E-13 1.46E-12 50 0.0299 1.82
f18 2 10 000 7.08E-15 1.43E-14 50 0.0310 4.69E-15 4.93E-15 50 0.0315 1.11
f19 3 10 000 0 0 50 0.0440 0 0 50 0.0454 0
f20 6 20 000 2.92E-12 2.04E-11 50 0.0793 1.40E-14 7.04E-14 50 0.0780 1.01
f21 4 10 000 1.91E-08 3.75E-08 30 0.0377 1.67E-08 3.90E-08 37 0.0362 0.32
f22 4 10 000 4.98E-09 2.54E-08 48 0.0346 5.60E-09 1.59E-08 45 0.0360 -0.14

F01 30 300 000 0 0 50 8.6502 0 0 50 8.6971 0
F02 30 300 000 3.12E-04 1.28E-04 0 8.9969 3.60E-16 3.97E-16 50 9.1859 17.21†

F03 30 300 000 1.03E+06 557411.46 0 9.4954 892897.03 306444.77 0 9.5035 1.54
F04 30 300 000 4.11E-04 1.94E-04 0 8.9765 4.52E-16 4.93E-16 50 9.1330 14.99†

F06 30 300 000 0.0091 0.019 0 10.855 0.0041 0.014 7 10.924 1.39
F07 30 300 000 2.03E-05 1.57E-05 0 8.8908 0.0041 0.0062 32 9.2186 -4.64†

F08 30 300 000 20.95 0.061 0 9.0375 20.93 0.082 0 9.4346 1.33
F09 30 300 000 0 0 50 8.9830 0 0 50 9.0860 0

† The value oft with 49 degrees of freedom is significant atα = 0.05 by two-tailed test.

self-adapting control parameter settings. Salmanet al. [25] pro-
posed a self-adaptive DE (SDE) algorithm which eliminates
the need for manual tuning of control parameters. In SDE,
the mutation weighting factorF is self-adapted by a muta-
tion strategy similar to the mutation operator of DE. Nobakhti
and Wang [26] proposed a Randomized Adaptive Differential
Evolution (RADE) method, where a simple randomized self-
adaptive scheme is proposed for the DE scaling factorF. Qin
and Suganthan [27] proposed a self-adaptive DE algorithm.
The aim of their work was to allow DE to switch between
two schemes: “DE/rand/1/bin” and “DE/best/2/bin” and also
to adapt theF andCR values. The approach performed well
on several benchmark problems. Daset al. [28] proposed two
variants of DE, DERSF and DETVSF, that use varying scale
factors. They concluded that those variants outperform theorig-
inal DE. Teo [29] presented a dynamic self-adaptive popula-
tions DE, where the population size is self-adapting. Brestand
Mauěc [30] proposed an improved DE method, where the pop-
ulation size is gradually reduced. They concluded that their
approach improved efficiency and robustness of DE.

Most recently, Rahnamayanet al. [31, 32, 33] proposed a
novel initialization approach which employs opposition-based
learning to generate initial population. Through a comprehen-
sive set of benchmark functions they showed that replacing the
random initialization with the opposition-based population ini-
tialization in DE can accelerate convergence speed.

Although there are many hybrid DE variants for the improve-
ment of DE, only a little work studied the hybridization of clus-
tering techniques with the DE method [23]. To the best of our
knowledge, the k-means clustering is not used to enhance the
performance of DE until date.

3. K-Means Clustering

Clustering is a process that organizes a data (pattern) set into
a number of groups (clusters) such that patterns within a cluster
are more similar to each other than patterns belonging to differ-
ent clusters; in other words, clustering is an important technique
for discovering the inherent structure in any given patternset.

Clustering algorithms proposed in the literature can be di-
vided into two main categories: crisp (or hard) clustering pro-
cedures where each data point belongs to only one cluster, and
fuzzy clustering techniques where every data point belongsto
every cluster with a specific degree of membership [34].

There are many clustering algorithms in the literature. The
k-means clustering is employed in this study and shortly de-
scribed as follows. K-means clustering [34], which is an itera-
tive hill climbing algorithm, is one of the widely used clustering
techniques. It consists of the following steps:

1) Choosek initial cluster centersc1, c2, · · · , ck randomly
from then points{X1,X2, · · · ,Xn}.
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Figure 1: Mean error curves of DE and CDE for selected functions. (a) f01. (b) f03. (c) f09. (d) f12. (e) f18. (f) f22. (g) F01. (h) F06.
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Figure 2: Mean error curves of DE and CDE for selected functions at different dimensions. (a) f02 (D = 10). (b) f04 (D = 50). (c) f09 (D = 200). (d) f12 (D = 100).
(e) F04 (D = 50). (f) F09 (D = 50).
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Table 3: NFFEs Required to Obtain Accuracy Levels Less Thanǫ. “NA” Indicates the Accuracy Level is Not Obtained After 500000 NFFEs.

F D
DE CDE DE-CDE

Mean Std Dev SR Mean Std Dev SR t-test

f01 30 88638 1050.34 50 56525.82 1107.36 50 148.77†

f02 30 129962 1071.12 50 87810.34 1149.11 50 189.73†

f03 30 422024 6461.01 50 155326.04 4969.85 50 231.35†

f04 30 NA NA 0 208667.78 5828.96 50 –
f05 30 345258 12824.57 50 313882.82 12660.44 50 12.31†

f06 30 32196 893.27 50 18736.76 1244.05 50 62.14†

f07 30 236198 44694.77 50 36884.36 18150.75 50 29.21†

f08 30 143724 2356.54 50 117509.58 2842.75 50 50.21†

f09 30 215304 3557.22 50 188759.70 4420.37 50 33.08†

f10 30 137056 1298.53 50 88046.56 1195.64 50 196.32†

f11 30 94812 3647.51 50 59249.90 2548.52 50 56.51†

f12 30 80520 1345.28 50 47980.16 1090.73 50 132.85†

f13 30 95080 1355.41 50 56515.58 1529.94 50 133.41†

f14 2 4766 543.46 50 4847.98 575.67 50 -0.73
f15 4 10038 775.62 50 9927.02 799.44 50 0.71
f16 2 4688 751.49 50 4759.02 694.93 50 -0.49
f17 2 6104 1149.61 50 6103.16 1188.93 50 0.003
f18 2 3550 299.14 50 3581.08 257.32 50 -0.55
f19 3 4174 259.36 50 4149.48 263.67 50 0.47
f20 6 11094 916.82 50 10963.32 1196.13 50 0.61
f21 4 9704 601.34 50 9655.20 585.99 50 0.41
f22 4 9146 392.38 50 9212.60 565.28 50 -0.68

F01 30 89600 1097.49 50 59176.46 1114.09 50 137.56†

F02 30 464600 8139.42 50 188492.82 3761.82 50 217.73†

F03 30 NA NA 0 NA NA 0 –
F04 30 467920 9807.97 50 190753.02 4294.27 50 183.04†

F06 30 357646 10250.37 50 322388.76 13471.89 50 14.73†

F07 30 428790 15032.58 50 227382.08 15566.52 50 59.91†

F08 30 NA NA 0 NA NA 0 –
F09 30 207102 4102.98 50 186611.62 4381.94 50 24.14†

† The value oft with 49 degrees of freedom is significant atα = 0.05 by two-tailed test.

2) Assign point Xi , i = 1, 2, · · · , n to cluster C j , j =
1, 2, · · · , k, if and only if ‖ Xi − c j ‖≤‖ Xi − cp ‖ p =
1, 2, · · · , k, and p , j, where‖ Xi − c j ‖ is the distance
betweenXi andc j . Ties are resolved arbitrarily.

3) Compute new cluster centersc′1, c
′
2, · · · , c

′
k as follows:

c′i =
1
ni

∑

X j∈Ci

X j , i = 1, 2, · · · , k

whereni is the number of elements belonging to clusterCi .

4) If c′i = ci , ∀i ∈ {1, 2, · · · , k}, then the process is terminated
andc1, c2, · · · , ck are chosen as the cluster centers. Other-
wise, assign eachci with c′i , i = 1, 2, · · · , k, and continue
from step 2).

The distance measure used in the clustering algorithm is a very
important issue. The most widely used distance measure is the
Euclidean distance, which between any twod-dimensional vec-
torsXi andX j is given by

d(Xi,X j) =

√

√

√ d
∑

p=1

(Xi,p − X j,p)2
=‖ Xi − X j ‖ . (6)

The Euclidean distance measure is a special case (whenα =

2) of the Minowsky metric, which is defined as

dα(Xi ,X j) =
( d
∑

p=1

(|Xi,p − X j,p|)α
)1/α

=‖ Xi − X j ‖α . (7)

Whenα = 1, the measure is known as the Manhattan dis-
tance.

Another distance measure used in clustering algorithms is the
cosine distance (or vector dot product), which is given by

〈Xi ,X j〉 =

d
∑

p=1
(Xi,p · X j,p)

‖ Xi ‖ · ‖ X j ‖
. (8)

Although the clustering algorithms are originally used to ob-
tain suboptimal clusters, recently some researchers adoptthem
for global optimization problems, especially for multimodal
function optimization. Wanget al. [23] proposed a dynamic
clustering-based DE for global optimization, where a hierarchi-
cal clustering method is dynamically incorporated into DE.Im-
raniet al.[35] combined the sharing technique and a fuzzy clus-
tering algorithm to improve the performance of GAs in mul-
timodal function optimization. Experiments on 4 multimodal
functions indicated their approach showed good performance.
Pelikan and Goldberg [36] used the k-means clustering in EAs
to help the algorithm to separate the two or more complemen-
tary parts of the solution space and to eliminate the problem
of symmetry in combinational optimization. Damavandi and
Safavi-Naeini [37] proposed a hybrid EP based on a density
clustering algorithm to preserve the diversity of the popula-
tion. They showed that the hybrid method improved the ro-
bustness of the algorithm for complex multimodal circuit op-
timization problems. Lu and Yao [38] incorporated k-means
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Table 4: Comparison of DE and CDE for Different Population Size, Hereafter, (#) Indicates the Number of Successful Runs,[a± b] Denotes the Averaged NFFEs
Required When the Global Minimum Achieved Before Using the Maximum Allowed NFFEs

F D
NP= 50 NP= 200

DE CDE DE CDE
f01 30 1.89E-40± 1.82E-40 (50) 7.67E-63 ± 9.61E-63 (50)† 1.28E-06± 2.43E-07 (0) 6.44E-12 ± 3.22E-12 (50)†

f02 30 8.23E-31± 4.89E-31 (50) 1.61E-45 ± 1.46E-45 (50)† 2.81E-06± 3.75E-07 (0) 1.78E-09 ± 5.74E-10 (50)†

f03 30 2.99E-30± 3.34E-30 (50) 1.43E-57 ± 4.62E-57 (50)† 3.40E-03± 8.70E-04 (0) 1.90E-16 ± 1.35E-16 (50)†

f04 30 7.83E-18 ± 4.64E-18 (50)† 8.30E-02± 2.20E-01 (35) 3.20E-03± 3.97E-04 (0) 1.09E-10 ± 3.64E-11 (50)†

f05 30 [3.90E+05± 3.62E+04] (50) [3.33E+05 ± 1.82E+06] (50)† 4.10E-03± 7.56E-03 (0) 3.87E-06 ± 8.17E-06 (6)†

f06 30 [1.57E+04± 4.96E+02] (50) [9.81E+03 ± 6.83E+02] (50)† [6.52E+04± 1.28E+03] (50) [3.67E+04 ± 2.24E+03] (50)†

f07 30 4.05E-03± 7.90E-04 (50) 1.30E-03 ± 5.13E-04 (50)† 1.50E-02± 3.50E-03 (40) 2.20E-03 ± 1.20E-03 (50)†

f08 30 [7.91E+04± 1.79E+03] (50) [6.44E+04 ± 1.52E+03] (50)† 1.25E-09± 2.05E-09 (49) [2.67E+05 ± 7.04E+03] (50)†

f09 30 [1.25E+05± 2.74E+03] (50) [1.07E+05 ± 2.69E+03] (50)† 5.44E+00± 1.35E+00 (0) 3.03E+00 ± 1.54E+00 (0)†

f10 30 [1.24E+05± 6.49E+03] (50) [7.31E+04 ± 1.31E+03] (50)† 3.18E-04± 3.88E-05 (0) 6.95E-07 ± 2.14E-07 (0)†

f11 30 [7.03E+04± 2.25E+03] (50) [4.58E+04 ± 1.48E+03] (50)† 4.06E-09± 4.93E-09 (50) [1.72E+05 ± 6.43E+04] (50)†

f12 30 1.57E-32± 0.00E+00 (50) 1.57E-32± 0.00E+00 (50) 8.33E-08± 2.16E-08 (0) 1.01E-13 ± 4.87E-14 (50)†

f13 30 1.35E-32± 0.00E+00 (50) 1.35E-32± 0.00E+00 (50) 1.25E-05± 4.02E-06 (0) 9.09E-12 ± 5.39E-12 (50)†

f14 2 [4.26E+03± 2.71E+02] (50) [4.21E+03 ± 2.81E+02] (50) 2.61E-07± 1.23E-06 (40) 2.96E-08 ± 8.79E-08 (41)
f15 4 9.56E-09± 5.45E-09 (49) 1.32E-09 ± 2.17E-10 (50) 1.41E-18± 1.49E-18 (50) 1.41E-18± 1.49E-18 (50)
f16 2 1.85E-18± 0.00E+00 (50) 1.85E-18± 0.00E+00 (50) 3.25E-08 ± 3.31E-08 (45) 3.75E-08± 3.45E-08 (42)
f17 2 6.82E-32± 0.00E+00 (50) 6.82E-32± 0.00E+00 (50) 2.32E-06 ± 3.31E-06 (0) 3.51E-06± 4.96E-06 (0)
f18 2 4.63E-25± 0.00E+00 (50) 4.63E-25± 0.00E+00 (50) 2.35E-12± 1.60E-12 (50) 2.35E-12± 1.60E-12 (50)
f19 3 3.35E-35± 0.00E+00 (50) 3.35E-35± 0.00E+00 (50) 4.65E-10± 2.05E-10 (50) 3.25E-10 ± 1.88E-10 (50)
f20 6 [9.32E+03± 7.22E+02] (50) [9.10E+03 ± 6.43E+02] (50) 2.52E-05± 3.98E-05 (0) 1.68E-05 ± 6.32E-06 (0)
f21 4 [6.82E+03± 5.69E+02] (50) [6.73E+03 ± 1.95E+02] (50) 2.30E-02 ± 5.32E-02 (0) 3.81E-02± 5.85E-02 (0)
f22 4 1.34E-01± 1.92E-02 (49) [6.91E+03 ± 1.05E+02] (50)† 3.50E-02± 1.26E-02 (0) 1.10E-02 ± 6.51E-03 (0)
F01 30 [1.13E+05± 1.23E+03] (50) [7.94E+04 ± 1.02E+03] (50)† 5.99E-17± 1.81E-17 (50) 3.42E-26 ± 1.74E-26 (50)†

F02 30 7.16E-15± 9.92E-15 (50) 2.52E-28 ± 2.08E-28 (50)† 6.02E+00± 1.28E+00 (0) 9.79E-06 ± 4.98E-06 (0)†

F03 30 6.35E+05± 3.05E+05 (0) 6.09E+05 ± 2.46E+05 (0) 1.28E+07± 3.04E+06 (0) 1.31E+06 ± 7.64E+05 (0)†

F04 30 9.34E-15± 1.23E-14 (50) 3.36E-28 ± 3.08E-28 (50)† 7.89E+00± 2.34E+00 (0) 1.27E-05 ± 6.38E-06 (0)†

F06 30 5.60E-02 ± 3.90E-01 (42)† 2.72E+00± 2.90E+00 (22) 1.22E+01± 6.20E-01 (0) 9.95E+00 ± 6.48E-01 (0)†

F07 30 8.87E-04 ± 2.70E-03 (45)† 1.30E-02± 1.10E-02 (26) 1.10E-01± 4.20E-02 (0) 8.38E-04 ± 2.40E-03 (0)†

F08 30 2.09E+01± 6.60E-02 (0) 2.04E+01 ± 2.60E-01 (0)† 2.09E+01± 5.10E-02 (0) 2.09E+01± 5.50E-02 (0)
F09 30 [1.22E+05± 2.59E+03] (50) [1.05E+05 ± 2.69E+03] (50)† 1.95E+00 ± 1.10E+00 (0) 1.99E+00± 1.23E+00 (0)

† The value oft with 49 degrees of freedom is significant atα = 0.05 by two-tailed test.

clustering with EDA to break the single Gaussian distribution
assumption. In addition, they used the rival penalized com-
petitive learning [39] to select the number of clusters during
learning automatically. Experimental results showed thatthe
proposed approaches can perform very well when dealing with
multimodal functions that do not contain too many local op-
tima. However, their approach failed to solve the functionswith
many local optima. Song and Yu [40] incorporated hierarchi-
cal clustering and sharing technique with GA to solve multi-
peak function optimization. Alamiet al. [41] combined the
cultural algorithms and a fuzzy clustering algorithm for mul-
timodal function optimization. Zhanget al. [42] adopted the
k-means clustering algorithm to cluster the distribution of the
population in the search space at each generation. Thereafter,
the fuzzy logic was used to adaptively adjust the probability
of mutation and crossover. Experiments conducted on some
benchmark functions and the design of a buck regulator, they
showed that the new method not only improves the convergence
rate of the GA, but also prevents the solution from becoming
trapped in a local optimum point. Linget al. [43] presented
a crowding clustering-based GA for multimodal function op-
timization. They concluded that their approach is superiorto
both standard crowding and deterministic crowding in quantity,
quality and precision of multi-optimum search [43].

4. Clustering-based Differential Evolution: CDE

In order to accelerate the convergence rate and balance the
exploration and exploitation of DE, in this study, we attempt
to improve DE by integrating the one-step k-means clustering
algorithm. Our proposed DE algorithm is named CDE. The
pseudocode of CDE is described in Algorithm 2, wheret is the
generation counter,m is theclustering period, NP is the popula-
tion size, and rndint[2,

√
NP] is a random integer number from

[2,
√

NP]. Compared with the original DE algorithm, three cru-
cial issues of CDE will be discussed as follows.

4.1. One-step K-Means Clustering

In this work, one-step k-means clustering is used to enhance
the performance of DE. It acts as several multi-parent crossover
operators to utilize the information of the population efficiently,
and hence it can balance the exploration and exploitation inthe
evolutionary process. The one-step k-means clustering is de-
scribed as follows.

1) Choose k individuals as the initial cluster centers
c1, c2, · · · , ck randomly from the current population
{X1,X2, · · · ,XNP}.

2) Assign pointXi , i = 1, 2, · · · ,NP to clusterC j , j =
1, 2, · · · , k, if and only if ‖ Xi − c j ‖≤‖ Xi − cp ‖ p =
1, 2, · · · , k, and p , j, where‖ Xi − c j ‖ is the distance
betweenXi andc j . Ties are resolved arbitrarily.
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Figure 3: Mean error curves of DE and CDE for functions f05 andF06. (a) f05 (D = 50). (b) F06 (D = 50).
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Figure 4: Mean error curves of DE, DEahcSPX, and CDE for the selected functions. (a) f05. (b) f08. (c) f10. (d) F01. (e) F04.(f) F06.
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Table 5: Comparison of DE and CDE for Different Problem Dimensionality. The Results Were Obtained AfterD × 10000 NFFEs.

F
D = 10 D = 50

DE CDE DE CDE
f01 3.07E-42± 2.94E-42 (50) 7.21E-47 ± 1.84E-46 (50)† 2.36E-38± 1.25E-38 (50) 2.71E-67 ± 3.04E-67 (50)†

f02 4.36E-23± 2.49E-23 (50) 2.64E-25 ± 1.60E-25 (50)† 1.46E-21± 3.07E-22 (50) 5.61E-36 ± 2.84E-36 (50)†

f03 4.12E-27± 4.04E-27 (50) 5.12E-39 ± 1.19E-38 (50)† 3.12E-01± 9.27E-02 (0) 1.20E-12 ± 1.48E-12 (50)†

f04 9.39E-13± 5.33E-13 (50) 1.61E-15 ± 9.02E-16 (50)† 2.08E-02± 2.36E-03 (0) 2.27E-08 ± 9.36E-08 (42)†

f05 2.99E-15± 1.39E-14 (50) 2.05E-18 ± 1.28E-17 (50)† 1.25E+01 ± 1.18E+00 (0)† 1.68E+01± 1.19E+00 (0)
f06 [9.08E+03± 4.85E+02] (50) [8.09E+03 ± 4.78E+02] (50)† [5.63E+04± 1.18E+03] (50) [2.89E+04 ± 1.35E+03] (50)†

f07 1.49E-03 ± 6.00E-04 (50) 1.50E-03± 6.15E-04 (50) 1.54E-02± 2.87E-03 (0) 1.49E-03 ± 7.12E-04 (50)†

f08 [5.23E+04± 1.84E+03] (50) [5.06E+04 ± 1.86E+03] (50) [2.75E+05± 3.12E+03] (50) [2.12E+05 ± 5.54E+03] (50)†

f09 [8.18E+04± 2.09E+03] (50) [7.88E+04 ± 2.37E+03] (50)† [4.34E+05± 5.14E+03] (50) [3.50E+05 ± 6.38E+03] (50)†

f10 6.60E-16± 5.02E-16 (50) 5.89E-16 ± 0.00E+00 (50) 7.69E-15± 0.00E+00 (50) 5.89E-16 ± 0.00E+00 (50)†

f11 2.71E-04± 1.91E-03 (44) 5.53E-06 ± 3.88E-05 (48) [2.40E+05± 2.28E+03] (50) [1.37E+05 ± 2.19E+03] (50)†

f12 4.71E-32± 0.00E+00 (50) 4.71E-32± 0.00E+00 (50) 9.42E-33± 0.00E+00 (50) 9.42E-33 (0).00E+00 (50)
f13 1.35E-32± 0.00E+00 (50) 1.35E-32± 0.00E+00 (50) 1.35E-32± 0.00E+00 (50) 1.35E-32 (0).00E+00 (50)
F01 [7.26E+04± 8.69E+02] (50) [6.63+04 ± 8.46E+02] (50)† [3.40E+05± 2.32E+03] (50) [2.56E+05 ± 2.25E+03] (50)†

F02 2.60E-22± 3.64E-22 (50) 4.26E-27 ± 1.18E-26 (50)† 5.98E-01± 1.46E-01 (0) 7.24E-11 ± 1.36E-10 (50)†

F03 2.92E-11± 2.95E-11 (50) 2.65E-11 ± 1.88E-10 (50) 7.99E+07± 1.73E+07 (0) 5.86E+06 ± 1.68E+06 (0)†

F04 3.43E-22± 5.08E-22 (50) 5.86E-27 ± 1.75E-26 (50)† 7.89E-01± 2.67E-01 (0) 9.59E-11 ± 1.75E-10 (50)†

F06 1.48E-14± 4.27E-14 (50) 7.23E-18 ± 4.41E-17 (50)† 1.41E+01 ± 1.16E+00 (0)† 1.80E+01± 1.10E+00 (0)
F07 1.76E-01± 5.82E-02 (0) 9.52E-02 ± 7.93E-02 (9)† 1.61E-02± 7.46E-03 (0) 3.36E-03 ± 6.04E-03 (7)†

F08 2.03E+01 ± 7.93E-02 (0) 2.04E+01± 6.90E-02 (0) 2.11E+01± 3.43E-02 (0) 2.11E+01± 3.33E-02 (0)
F09 [8.07E+04± 2.15E+03] (50) [7.73E+04 ± 2.82E+03] (50)† [4.21E+05± 4.94E+03] (50) [3.50E+05 ± 6.75E+03] (50)†

F
D = 100 D = 200

DE CDE DE CDE
f01 6.84E-38± 1.83E-38 (50) 2.27E-74 ± 2.38E-74 (50)† 1.64E-37± 3.85E-38 (50) 2.41E-79 ± 1.62E-79 (50)†

f02 3.77E-21± 6.41E-22 (50) 6.14E-40 ± 2.88E-40 (50)† 8.50E-21± 1.04E-21 (50) 2.95E-43 ± 1.81E-43 (50)†

f03 1.42E+02± 1.94E+01 (0) 7.70E-05 ± 4.16E-05 (0)† 3.90E+03± 4.29E+02 (0) 7.68E+00 ± 4.04E+00 (0)†

f04 7.12E-01± 3.92E-02 (0) 1.54E-01 ± 1.55E-01 (1)† 6.10E+00± 1.63E-01 (0) 3.13E+00 ± 8.67E-01 (0)†

f05 6.30E+01 ± 9.96E-01 (0)† 7.17E+01± 1.21E+00 (0) 1.62E+02 ± 1.02E+00 (0)† 1.76E+02± 2.05E+00 (0)
f06 [1.17E+05± 1.79E+03] (50) [5.34E+04 ± 2.21E+03] (50)† [2.40E+05± 2.21E+03] (50) [1.01E+05 ± 3.70E+03] (50)†

f07 3.68E-02± 4.14E-03 (0) 5.04E-03 ± 1.22E-03 (50)† 8.61E-02± 5.06E-03 (0) 3.42E-02 ± 5.86E-03 (0)†

f08 [5.55E+05± 7.12E+03] (50) [4.05E+05 ± 5.12E+03] (50)† [1.14E+06± 7.21E+03] (50) [7.89E+05 ± 8.70E+03] (50)†

f09 [8.74E+05± 7.53E+03] (50) [6.60E+05 ± 1.63E+04] (50)† [1.756E+06± 8.38E+03] (50) [1.22E+06 ± 3.05E+04] (50)†

f10 1.56E-14± 1.53E-15 (50) 5.89E-16 ± 0.00E+00 (50)† 3.26E-14± 0.00E+00 (50) 5.89E-16 ± 0.00E+00 (50)†

f11 [4.75E+05± 2.52E+03] (50) [2.46E+05 ± 2.62E+03] (50)† 1.11E-16± 0.00E+00 (50) [4.59E+05 ± 2.54E+03] (50)†

f12 4.71E-33± 0.00E+00 (50) 4.71E-33± 0.00E+00 (50) 2.36E-33± 0.00E+00 (50) 2.36E-33± 0.00E+00 (50)
f13 1.35E-32± 0.00E+00 (50) 1.35E-32± 0.00E+00 (50) 1.35E-32± 0.00E+00 (50) 1.35E-32± 0.00E+00 (50)

† The value oft with 49 degrees of freedom is significant atα = 0.05 by two-tailed test.

Algorithm 2 Clustering-based DE: CDE
1: Generate the initial populationP randomly
2: Evaluate the fitness for each individual inP
3: Initialize the generation countert = 1
4: while The halting criterion is not satisfieddo
5: Use DE to update the population (see lines 4 - 18 in Al-

gorithm 1)
6: if t%m== 0 then
7: Randomly generatek = rndint[2,

√
NP]

8: Adopt the one-step k-means clustering to createk off-
spring (the setA)

9: Choosek parents (the setB) randomly from the popu-
lation P

10: From the combined setA∪ B, choosek best solutions
and put them inB′. UpdateP asP = (P\B) ∪ B′

11: end if
12: t = t + 1
13: end while

3) Compute new cluster centersc′1, c
′
2, · · · , c

′
k as follows:

c′i =
1
ni

∑

X j∈Ci

X j, i = 1, 2, · · · , k

whereni is the number of elements belonging to clusterCi .

4) Replace eachci with c′i , i = 1, 2, · · · , k, and evaluate these
k individuals. The process is terminated.

We choose the one-step k-means clustering1 for its simplic-
ity and linear time complexity. Other clustering approaches
can also be employed as well2. Note thatk is generated from
[2,
√

NP] randomly. Here, the upper bound of the number of
clusters is taken to be

√
NP, which is a rule of thumb used by

many investigators in the literature [45].

1In our experiment, we also implement the multi-step k-meansclustering,
which needs more computational time. However, it does not bring any im-
portant advantage in our CDE approach. Due to the tight spacerestrictions
however, we omit these results in this paper.

2After this paper was submitted, we extended this work by adopting the
Fuzzy C-means clustering to improve DE [44]. The proposed FCDE approach
can also obtain the better results than the classical DE algorithm.
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Table 6: Effect of the Clustering Period on the Performance of CDE.

F D m= 2 m= 5 m= 15 m= 20

f01 30 1.33E-38 ± 2.08E-38 (50) 3.44E-33± 2.58E-33 (50) 3.77E-26± 3.73E-26 (50) 1.35E-24± 9.05E-25 (50)
f02 30 5.51E-29 ± 2.14E-29 (50) 2.20E-24± 9.15E-25 (50) 1.86E-19± 9.85E-20 (50) 1.67E-18± 6.36E-19 (50)
f03 30 4.65E-29± 1.26E-28 (50) 5.20E-36 ± 1.59E-35 (50) 3.60E-33± 9.54E-33 (50) 1.46E-31± 1.64E-31 (50)
f04 30 3.49E-01± 3.64E-01 (2) 6.30E-17± 3.32E-16 (50) 2.40E-20 ± 1.57E-20 (50) 6.63E-19± 5.28E-19 (50)
f05 30 3.19E-01± 1.09E+00 (46) [4.71E+05± 1.19E+04] (50) [4.62E+05 ± 1.26E+04] (50) [4.68E+05± 1.18E+04] (50)
f06 30 [1.43E+04 ± 7.60E+02] (50) [1.6E+04± 8.64E+02] (50) [2.05E+04± 1.22E+03] (50) [2.17E+04± 1.38E+03] (50)
f07 30 1.11E-03 ± 4.20E-04 (50) 1.18E-03± 5.38E-04 (50) 1.79E-03± 9.16E-04 (50) 1.82E-03± 8.97E-04 (50)

f08 30 [1.18E+05 ± 2.64E+03] (50) [1.24E+05± 2.32E+03] (50) [1.35E+05± 1.40E+03] (50) [1.38E+05± 4.55E+03] (50)
f09 30 [1.89E+05 ± 8.88E+03] (50) [2.07E+05± 4.33E+03] (50) [2.25E+05± 4.16E+03] (50) [2.30E+05± 3.99E+03] (50)
f10 30 5.89E-16 ± 0.00E+00 (50) 5.89E-16 ± 0.00E+00 (50) 4.76E-14± 1.91E-14 (50) 2.89E-13± 1.33E-13 (50)
f11 30 [7.16E+04 ± 1.73E+03] (50) [8.20E+04± 2.57E+03] (50) [1.02E+05± 2.80E+03] (50) [1.07E+05± 2.66E+03] (50)
f12 30 1.57E-32 ± 0.00E+00 (50) 1.57E-32 ± 0.00E+00 (50) 5.32E-28± 3.74E-28 (50) 2.66E-26± 2.42E-26 (50)
f13 30 1.35E-32 ± 0.00E+00 (50) 1.35E-32 ± 0.00E+00 (50) 4.36E-26± 4.79E-26 (50) 2.19E-24± 1.62E-24 (50)

f14 2 [8.46E+03± 3.77E+02] (50) [8.30E+03 ± 5.34E+02] (50) [8.57E+03± 4.20E+02] (50) [8.44E+03± 4.27E+02] (50)
f15 4 3.23E-18± 2.67E-19 (50) 4.01E-18± 3.79E-19 (50) 8.12E-19 ± 4.08E-19 (50) 8.12E-19 ± 4.08E-19 (50)
f16 2 4.26E-14± 4.35E-15 (50) 4.15E-14± 5.27E-15 (50) 3.52E-14 ± 1.61E-14 (50) 3.52E-14 ± 1.61E-14 (50)
f17 2 1.11E-10± 3.16E-11 (50) 8.92E-11 ± 2.21E-11 (50) 8.92E-11 ± 2.21E-11 (50) 8.92E-11 ± 2.21E-11 (50)
f18 2 1.32E-35± 0.00E+00 (50) 1.32E-35± 0.00E+00 (50) 1.32E-35± 0.00E+00 (50) 1.32E-35± 0.00E+00 (50)
f19 3 2.38E-40± 0.00E+00 (50) 2.38E-40± 0.00E+00 (50) 2.38E-40± 0.00E+00 (50) 2.38E-40± 0.00E+00 (50)
f20 6 3.56E-18 ± 0.00E+00 (50) 5.68E-14± 5.65E-15 (50) 2.35E-11± 1.47E-12 (50) 8.97E-14± 3.31E-14 (50)
f21 4 3.20E-08 ± 4.39E-09 (47) 2.35E-07± 4.42E-08 (42) 3.23E-07± 3.31E-08 (44) 1.25E-07± 1.66E-08 (45)
f22 4 5.60E-08± 1.64E-09 (48) 1.36E-07± 3.77E-08 (46) 4.56E-08 ± 4.60E-09 (48) 1.29E-07± 1.33E-08 (47)

F01 30 [1.29E+05 ± 1.74E+03] (50) [1.47E+05± 1.42E+03] (50) [1.76E+05± 1.64E+03] (50) [1.84E+05± 2.22E+03] (50)
F02 30 5.84E-15± 1.35E-14 (50) 1.10E-17 ± 1.74E-17 (50) 1.04E-14± 8.01E-15 (50) 1.18E-13± 8.59E-14 (50)
F03 30 1.37E+06± 5.39E+05 (0) 1.09E+06± 5.19E+05 (0) 1.07E+06± 5.19E+05 (0) 9.46E+05 ± 3.38E+05 (0)
F04 30 8.66E-15± 2.45E-14 (50) 1.38E-17 ± 1.99E-17 (50) 1.32E-14± 9.83E-15 (50) 1.52E-13± 1.10E-13 (50)
F06 30 4.43E+00± 2.09E+00 (4) 1.50E-01± 5.81E-01 (10) 1.43E-03 ± 4.90E-03 (31) 2.68E-03± 1.59E-02 (29)
F07 30 1.40E-02± 1.12E-02 (8) 7.73E-03± 9.84E-03 (24) 3.65E-03± 4.98E-03 (31) 2.66E-03 ± 4.69E-03 (36)
F08 30 2.03E+01 ± 1.28E-01 (0) 2.09E+01± 2.42E-01 (0) 2.09E+01± 5.78E-02 (0) 2.09E+01± 6.17E-02 (0)
F09 30 [2.01E+05 ± 4.06E+03] (50) [2.08E+05± 3.93E+03] (50) [2.21E+05± 3.53E+03] (50) [2.25E+05± 3.97E+03] (50)

As mentioned above, the distance metric used in the cluster-
ing algorithm is a very important issue and for very complex
problems this may lead to anomalous results. In this study the
Euclidean distance is used as the distance measure. Moreover,
the distance measure can be used in decision space or in objec-
tive space. Here, unless otherwise mentioned, we calculatethe
distance in decision space in the following experiments. Inad-
dition, the influence of the different distance metrics usedin the
one-step k-means method is provided in Section 5.10. More-
over, the effect of using the objective space distance measure is
described in Section 5.11.

4.2. Population Update
After using one-step k-means clustering to createk offspring,

the population needs to be updated by them. Deb [46] pro-
posed a generic population-based algorithm-generator forreal-
parameter optimization, where the optimization task is divided
into four independent plans: i) selection plan, ii) generation
plan, iii) replacement plan, and iv) update plan. In lines 8 -
10 of Algorithm 2, our improvement can also be described with
the population-update-algorithm proposed in [46].

• Selection plan: Choosek individuals from current popula-
tion randomly (step 1 in the one-step k-means clustering).

• Generation plan: Createk offspring (the setA) using the
one-step k-means clustering (steps 2 - 4 in the one-step
k-means clustering).

• Replacement plan: Choosek solutions (the setB) from
current population randomly for replacement.

• Update plan: From the combined setA∪B, choosek best
solutions and put them inB′. UpdateP asP = (P\B)∪ B′.

The population-update-algorithm used in this work is similar
to the G3 model in [47, 46]. In the update plan, thek best
solutions are chosen from the combined setA∪ B, thereby the
elite-preservation is ensured.

4.3. Clustering Period

In order to exploit the search space efficiently, the cluster-
ing is performed periodically in our proposed hybrid DE. It is
similar to the method used in [37]. The reason for perform-
ing the clustering periodically is that DE needs time to explore
the search place and form clusters. An attempt to perform the
clustering very early will lead to a false identification of clus-
ters [37]. Consequently, it is important to choose a clustering
period that is large enough so that DE has time to completely
form stable clusters. In our approach an additional parameterm
is adopted to control the clustering period. The influence ofm
is given in Section 5.6.

It is worth pointing out that the clustering period used in CDE
approach is similar to Damavandi’s technique proposed in [37].
Compared with Damavandi’s technique, our approach has two
main differences: i) We don’t use the deterministic method to
refine the cluster centers; and ii) We propose a population up-
date method to update the population after the clustering tech-
nique is conducted.
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Table 7: Influence of the Number of Cluster Centers on the Performance of CDE.

F D k = 2 k = 5 k = 8 k = 10

f01 30 6.07E-28± 5.88E-28 (50) 3.73E-30± 2.51E-30 (50) 5.59E-31± 2.40E-31 (50) 1.68E-31 ± 6.65E-32 (50)
f02 30 9.18E-21± 4.20E-21 (50) 3.12E-22± 1.17E-22 (50) 7.22E-23± 2.95E-23 (50) 3.27E-23 ± 1.07E-23 (50)
f03 30 9.54E-30± 9.82E-30 (50) 5.49E-32± 6.34E-32 (50) 4.40E-33± 5.65E-33 (50) 9.41E-34 ± 9.10E-34 (50)
f04 30 1.49E-21 ± 9.73E-22 (50) 4.08E-20± 1.28E-19 (50) 4.74E-20± 1.40E-19 (50) 5.42E-21± 9.13E-21 (50)
f05 30 [4.63E+05± 1.68E+04] (50) [4.60E+05 ± 7.68E+03] (50) [4.65E+05± 1.4E+04] (50) [4.60E+05± 1.18E+04] (50)
f06 30 [1.85E+04± 7.00E+02] (50) [1.76E+04± 8.47E+02] (50) [1.74E+04 ± 1.33E+03] (50) [1.80E+04± 1.07E+03] (50)
f07 30 9.11E-04± 6.60E-04 (50) 1.05E-03± 3.18E-04 (50) 8.56E-04 ± 4.04E-04 (50) 1.04E-03± 3.09E-04 (50)

f08 30 [1.23E+05± 3.37E+03] (50) [1.20E+05± 7.34E+03] (50) [1.18E+05± 3.66E+03] (50) [1.18E+05 ± 1.75E+03] (50)
f09 30 [1.91E+05 ± 4.12E+03] (50) [2.13E+05± 4.36E+03] (50) [2.07E+05± 5.62E+03] (50) [2.09E+05± 4.19E+03] (50)
f10 30 8.05E-15± 2.02E-15 (50) 4.14E-15 ± 0.00E+00 (50) 4.14E-15 ± 0.00E+00 (50) 4.14E-15 ± 0.00E+00 (50)
f11 30 [9.62E+04± 2.03E+03] (50) [9.04E+04± 1.32E+03] (50) [8.99E+04± 1.99E+03] (50) [8.97E+04 ± 4.21E+03] (50)
f12 30 6.97E-30± 3.69E-30 (50) 8.26E-32± 5.98E-32 (50) 3.07E-32± 2.17E-32 (50) 1.98E-32 ± 5.99E-33 (50)
f13 30 6.10E-28± 3.35E-28 (50) 9.89E-30± 1.33E-29 (50) 1.29E-30± 8.18E-31 (50) 6.25E-31 ± 4.84E-31 (50)

f14 2 [8.52E+03 ± 5.57E+02] (50) [8.61E+03± 6.08E+02] (50) [8.77E+03± 4.51E+02] (50) [8.57E+03± 3.98E+02] (50)
f15 4 4.12E-19± 5.32E-19 (50) 2.00E-19 ± 4.24E-19 (50) 2.06E-19± 4.34E-19 (50) 3.09E-19± 4.98E-19 (50)
f16 2 9.02E-16 ± 2.52E-15 (50) 6.02E-15± 1.58E-14 (50) 5.00E-15 v 9.71E-15 (50) 1.30E-14± 2.36E-14 (50)
f17 2 7.83E-13 ± 1.65E-12 (50) 8.87E-12± 2.71E-11 (50) 3.12E-10± 9.82E-10 (50) 1.15E-10± 3.39E-10 (50)
f18 2 8.78E-14± 4.12E-15 (50) 3.91E-15 ± 5.05E-15 (50) 7.82E-15± 4.12E-15 (50) 6.84E-15± 4.72E-15 (50)
f19 3 [7.64E+03 ± 2.98E+02] (50) [7.74E+03± 1.05E+02] (50) [7.70E+03± 3.15E+02] (50) [7.90E+03± 3.11E+02] (50)
f20 6 [1.75E+03± 5.29E+02] (50) [1.73E+04 ± 1.07E+03] (50) [1.77E+04± 9.02E+02] (50) [1.78E+04± 5.36E+02] (50)
f21 4 7.28E-09± 1.61E-08 (45) 5.61E-09 ± 5.91E-09 (50) 6.72E-09± 7.46E-09 (50) 1.06E-08± 2.04E-08 (43)
f22 4 4.02E-09± 7.51E-09 (46) 4.61E-09± 5.81E-09 (50) 1.69E-09± 1.51E-09 (50) 1.30E-09 ± 1.87E-09 (50)

F01 30 [1.71E+05± 1.00E+03] (50) [1.62E+05± 1.65E+03] (50) [1.59E+05± 1.59E+03] (50) [1.57E+05 ± 1.11E+03] (50)
F02 30 1.25E-15± 8.77E-16 (50) 1.71E-16± 1.38E-16 (50) 1.08E-16± 1.01E-16 (50) 9.81E-17 ± 6.87E-17 (50)
F03 30 7.74E+05 ± 3.57E+05 (0) 1.04E+06± 4.01E+05 (0) 8.44E+05± 4.01E+05 (0) 9.79E+05± 3.97E+05 (0)
F04 30 1.35E-15± 1.06E-15 (50) 1.84E-16± 1.52E-16 (50) 1.16E-16± 1.10E-16 (50) 1.01E-16 ± 6.94E-17 (50)
F06 30 2.35E-03 ± 5.97E-03 (10) 4.34E-03± 2.99E-02 (10) 3.59E-03± 8.16E-03 (9) 5.74E-03± 1.08E-01 (8)
F07 30 3.45E-03 ± 6.48E-03 (34) 4.68E-03± 7.29E-03 (33) 5.16E-03± 9.64E-03 (22) 6.65E-03± 6.87E-03 (30)
F08 30 2.10E+01± 6.07E-02 (0) 2.09E+01± 3.96E-02 (0) 2.08E+01± 4.61E-02 (0) 2.11E+01± 7.08E-02 (0)
F09 30 [2.18E+05± 2.48E+03] (50) [2.10E+05± 4.08E+03] (50) [2.07E+05± 2.82E+03] (50) [2.05E+05 ± 3.31E+03] (40)

5. Experimental Results and Analysis

In order to validate the performance of CDE, we have car-
ried out different experiments using a test suite, which con-
sists of 30 unconstrained single-objective benchmark functions
with different characteristics chosen from the literature. All of
the functions are minimization problems. f01 - f22 are chosen
from [1]. Since we do not make any changes to these problems,
we only briefly describe them in Table 1. More details can be
found in [1]. The rest 8 functions (F01 - F04 and F06 - F09)
are the new test functions provided by the CEC2005 special
session [14]. Functions f01 - f13 are high-dimensional prob-
lems. Functions f01 - f053 are unimodal. Function f06 is the
step function, which has one minimum and is discontinuous.
Function f07 is a noisy quartic function, whererandom[0,1) is
a uniformly distributed random variable in [0,1). Functions f08
- f13 are multimodal functions where the number of local min-
ima increases exponentially with the problem dimension. They
appear to be the most difficult class of problems for many op-
timization algorithms. Functions f14 - f23 are low-dimensional
functions that have only a few local minima. Functions F01 -
F04 are unimodal. Functions F06 - F09 are multimodal. Func-
tions F01 and F09 are separable, and the remaining 6 functions
are non-separable. The shifted and/or rotated features make
these 8 functions are very difficult to solve.

3In fact, the generalized Rosenbrock’s function f05 is a multimodal function
whenD > 3 [48].

5.1. Experimental Setup

For CDE, there are four control parameters. Three of them
belong to the original DE algorithm, namely, population size
NP, scaling factorF, and crossover probabilityCR. These pa-
rameters are problem dependent [49], and they are studied else-
where [49], [24]. Another parameter is the clustering period m,
which will be discussed later. For all experiments, we use the
following parameters unless a change is mentioned.

• Population size:NP= 100;

• Scaling factor:F = 0.5;

• Crossover probability:CR= 0.9;

• Clustering period:m= 10;

• DE scheme: DE/rand/1/exp (different schemes will be dis-
cussed in Section 5.8);

• Value to reach: VTR = 10−8, except for f07 of VTR = 10−2;

• Maximum NFFEs4: For f01, f06, f10, f12, and f13,
Max NFFEs = 150000; for f03 - f05, MaxNFFEs =
500000; for f02 and f11, MaxNFFEs = 200000; For f07 -
f09, F01 - F04, and F06 - F09, MaxNFFEs = 300000; for
f14, f16 - f19, f21, and f22, MaxNFFEs = 10000; for f15,
Max NFFEs = 40000; and for f20, MaxNFFEs = 20000.

4The function evaluations required to process the cluster points are added in
the Maximum NFFEs.
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Table 8: Comparison of DE and CDE for Different Schemes.

F
DE/rand/1/bin DE/rand/2/exp DE/rand/2/bin

DE CDE DE CDE DE CDE
f01 2.35E-16± 2.04E-16 2.35E-30 ± 2.46E-30† 8.37E-08± 2.24E-08 1.80E-16 ± 1.73E-16† 1.18E+02± 3.30E+01 3.71E-12 ± 2.73E-12†

f02 1.33E-11± 6.51E-12 4.37E-22 ± 2.38E-22† 4.62E-07± 7.40E-08 2.04E-12 ± 9.24E-13† 1.44E+01± 3.99E+00 6.98E-09 ± 2.85E-09†

f03 4.36E-13± 7.77E-13 1.18E-24 ± 2.72E-24† 1.97E-02± 5.69E-03 4.59E-26 ± 3.72E-26† 8.18E+02± 2.38E+02 2.43E-18 ± 4.20E-18†

f04 9.74E-02 ± 1.69E-01† 1.62E+00± 1.19E+00 6.81E-03± 1.04E-03 7.16E-14 ± 3.18E-14† 6.59E+00± 1.02E+00 9.86E-03 ± 1.33E-02†

f05 2.11E-17± 7.49E-17 3.25E-27 ± 1.52E-26† 1.15E-10± 7.14E-11 3.73E-28 ± 9.29E-28† 2.88E+01± 1.92E+00 1.05E-16 ± 1.65E-16†

f06 [3.47E+04± 1.44E+03] [1.9E+04 ± 1.02E+03]† [5.91E+04± 1.53E+03] [2.77E+04 ± 1.53E+03]† 1.25E+02± 2.79E+01 [3.91E+04 ± 2.70E+03]†

f07 4.57E-03± 1.29E-03 1.97E-03 ± 6.49E-04† 1.73E-02± 2.86E-03 1.28E-03 ± 6.83E-04† 7.15E-02± 1.76E-02 3.33E-03 ± 1.71E-03†

f08 6.61E+03± 6.56E+02 5.66E+03 ± 9.21E+02† 2.82E-10± 2.25E-10 [1.91E+05 ± 5.29E+03]† 7.35E+03 ± 2.73E+02 7.37E+03± 2.35E+02
f09 1.27E+02± 2.18E+01 5.55E+01 ± 2.45E+01† 1.68E-03± 2.13E-03 1.13E-06 ± 1.83E-06† 2.21E+02± 1.14E+01 7.75E+01 ± 6.62E+01†

f10 4.85E-09± 2.05E-09 3.72E-15 ± 1.17E-15† 8.99E-05± 1.24E-05 3.13E-09 ± 1.09E-09† 4.40E+00± 3.07E-01 5.93E-07 ± 2.04E-07†

f11 [1.51E+05± 2.75E+03] [8.85E+04 ± 2.39E+03]† 4.74E-07± 1.63E-06 [1.48E+05 ± 4.33E+03]† 1.20E+00± 6.20E-02 [1.92E+5 ± 3.55E+03]†

f12 3.52E-17± 3.63E-17 2.47E-32 ± 2.31E-32† 8.11E-09± 2.50E-09 3.07E-18 ± 2.78E-18† 3.35E+01± 5.00E+01 6.86E-14 ± 5.39E-14†

f13 7.70E-15± 8.02E-15 7.83E-27 ± 3.89E-26† 1.96E-06± 6.18E-07 3.77E-16 ± 2.91E-16† 3.69E+03± 3.75E+03 1.00E-11 ± 9.75E-12†

f14 [7.97E+03± 2.11E+03] [7.86E+03 ± 2.03E+03] 9.13E-13± 2.55E-12 5.63E-13 ± 1.72E-12 2.87E-12± 8.35E-12 1.17E-12 ± 5.51E-12
f15 3.50E-19 ± 4.93E-19 3.71E-19± 4.99E-19 9.27E-19± 3.12E-19 9.27E-19± 3.12E-19 9.89E-19± 2.04E-19 8.45E-19 ± 4.00E-19†

f16 1.20E-15 ± 4.35E-15 1.80E-15± 5.22E-15 3.92E-10± 4.00E-10 2.24E-10 ± 2.58E-10† 3.25E-10± 5.42E-10 2.52E-10 ± 3.08E-10
f17 3.75E-11± 1.52E-10 1.48E-11 ± 5.12E-11 4.46E-06± 9.30E-06 3.83E-06 ± 6.87E-06 3.07E-06± 7.58E-06 2.78E-06 ± 5.38E-06
f18 6.06E-15± 4.79E-15 5.08E-15 ± 4.93E-15 1.49E-14± 7.38E-15 1.39E-14 ± 6.44E-15 1.57E-14± 6.15E-15 1.35E-14 ± 6.05E-15
f19 1.05E-19± 0.00E+00 1.05E-19± 0.00E+00 5.56E-14± 4.33E-14 2.94E-14 ± 2.75E-14† 3.99E-14± 4.00E-14 2.32E-14 ± 2.30E-14†

f20 7.13E-03± 2.85E-02 2.38E-03 ± 1.68E-02 2.38E-03± 1.68E-02 1.38E-07 ± 4.69E-07† 1.19E-02± 3.60E-02 4.98E-07 ± 1.18E-06†

f21 9.07E-09 ± 2.65E-08 1.05E-08± 4.39E-08 2.15E-02± 6.39E-02 1.07E-02 ± 2.41E-02 3.50E-02± 8.73E-02 8.27E-03 ± 1.36E-02
f22 1.30E-09± 4.16E-09 1.21E-09 ± 5.69E-09 1.72E-03 ± 5.75E-03 3.44E-03± 1.81E-02 3.81E-03± 2.38E-02 3.79E-04 ± 9.83E-04
F01 3.33E-29± 7.47E-29 2.83E-29 ± 7.08E-29 2.62E-19± 1.03E-19 [2.60E+05 ± 3.20E+03]† 7.28E-01± 2.34E-01 4.13E-26 ± 3.15E-26†

F02 2.72E-05± 3.79E-05 5.50E-10 ± 7.75E-10† 1.32E+01± 2.78E+00 1.27E-09 ± 8.50E-10† 7.65E+03± 1.11E+03 3.07E-05 ± 3.69E-05†

F03 3.80E+05± 2.29E+05 2.25E+05 ± 1.15E+05† 2.69E+07± 6.04E+06 1.16E+06 ± 6.67E+05† 5.28E+07± 1.25E+07 4.54E+05 ± 2.77E+05†

F04 3.84E-05± 6.54E-05 7.24E-10 ± 1.05E-09† 1.74E+01± 5.22E+00 1.64E-09 ± 1.11E-09† 1.00E+04± 2.23E+03 3.96E-05 ± 4.46E-05†

F06 8.62E-02 ± 1.70E-01† 8.77E-01± 1.67E+00 9.34E-01± 4.49E-01 2.08E-07 ± 3.55E-07† 4.63E+03± 2.41E+03 6.26E-01 ± 7.72E-01†

F07 1.48E-04 ± 1.05E-03† 4.09E-03± 5.21E-03 3.60E-01± 5.35E-02 1.23E-03 ± 3.73E-03† 2.40E+00± 3.92E-01 1.23E-03 ± 3.16E-03†

F08 2.09E+01± 5.30E-02 2.09E+01± 7.38E-02 2.09E+01± 5.20E-02 2.09E+01± 5.40E-02 2.09E+01± 5.88E-02 2.09E+01± 6.02E-02
F09 1.28E+02± 2.58E+01 6.99E+01 ± 1.71E+01† 2.62E-04± 3.73E-04 1.77E-07 ± 3.43E-07† 2.13E+02± 1.21E+01 1.80E+02 ± 1.18E+01†

† The value oft with 49 degrees of freedom is significant atα = 0.05 by two-tailed test.

Moreover, in our experiments, each function is optimized over
50 independent runs. We also use the same set of initial random
populations to evaluate different algorithms in a similar way
done in [13]. All the algorithms are implemented in standard
C++ and the experiments are done on a P-IV 3.0 GHz machine
with 1.5 GB RAM under WIN-XP platform.

5.2. Performance Criteria
Four performance criteria are selected from [14] to evaluate

the performance of the algorithms. These criteria are also used
in [13] and described as follows.

• Error: The error of a solutionX is defined asf (X)− f (X∗),
whereX∗ is the global optimum of the function. The mini-
mum error is recorded when the MaxNFFEs is reached in
50 runs and the average and standard deviation of the error
values are calculated.

• NFFEs: The number of fitness function evaluations
(NFFEs) is also recorded when the VTR is reached. The
average and standard deviation of the NFFEs values are
calculated.

• Number of successful runs (SR): The number of success-
ful runs is recorded when the VTR is reached before the
Max NFFEs condition terminates the trial.

• Convergence graphs: The convergence graphs show the
mean error performance of the total runs, in the respective
experiments.

5.3. Comparison between DE and CDE

In this section, we compare our approach with the original
DE algorithm to show the superiority of CDE. The parameters
used for DE and CDE are the same as described in Section 5.1.
All functions are conducted for 50 independent runs. Table 2
shows the best error values of DE and CDE on all test func-
tions. The average and standard deviation of NFFEs are shown
in Table 3. Note that Table 3 the MaxNFFEs for all functions is
500 000. Additionally, some representative convergence graphs
of DE and CDE are shown in Fig. 1.

From Table 2 we can see that CDE is significantly better
than DE on 11 functions. For eight functions (f06, f08, f09,
f11, f14, f19, F01, and F09), both CDE and DE can obtain the
global optimum on all 50 runs. For function F07, DE is signifi-
cantly better than CDE. However, CDE can reach the VTR (i.e.
f (X)− f (X∗) < 10−8) in 32 out of 50 runs, but DE can not reach
the VTR on all 50 runs. Moreover, from Table 3 it can be seen
that when the MaxNFFEs is extended to 500 000, both CDE
and DE can reach the VTR on all 50 runs, however the NFFEs
required by CDE is nearly half of that required by DE. For the
other 10 functions, there are no significant difference between
CDE and DE. CDE is slightly better than DE on these functions
except for f22. For the low-dimensional functions (f14 - f22),
the results of CDE do not differ significantly from DE. The rea-
son might be that these functions are easy to solve for both DE
and CDE. Furthermore, the standard deviations of the best er-
ror values obtained by CDE are relative small, which means
that the solution quality of CDE is stable. In addition, we can
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Table 9: Comparison of DE and CDE With the Self-Adaptive Control Parameter.

F D SaDE SaCDE F D SaDE SaCDE
f01 30 1.48E-18± 9.28E-19 (50) 3.00E-28 ± 3.34E-28 (50)† f16 2 [6.51E+03± 1.07E+02] (50) [6.23E+03 ± 8.95E+01] (50)
f02 30 3.16E-15± 1.34E-15 (50) 1.98E-21 ± 1.16E-21 (50)† f17 2 [9.42E+03± 1.25E+02] (50) [7.84E+03 ± 1.04E+02] (50)†

f03 30 4.02E-20± 4.89E-20 (50) 1.94E-36 ± 4.22E-36 (50)† f18 2 [6.40E+03 ± 8.03E+01] (50) [6.44E+03± 5.64E+01] (50)
f04 30 8.01E-10± 3.49E-10 (50) 5.54E-17 ± 1.54E-16 (50)† f19 3 2.03E-14± 3.62E-15 (50) 2.03E-14± 2.68E-15 (50)
f05 30 7.97E-02± 5.64E-01 (49) [4.10E+05 ± 9.98E+03] (50)† f20 6 3.50E-02± 1.68E-02 (49) 3.61E-12 ± 1.19E-13 (50)†

f06 30 [3.01E+04± 1.07E+03] (50) [1.96E+04 ± 1.13E+03] (50)† f21 4 2.35E-05± 1.06E-06 (32) 8.53E-06 ± 9.02E-07 (38)
f07 30 6.21E-03± 1.42E-03 (50) 1.66E-03 ± 6.89E-04 (50)† f22 4 5.63E-06± 1.44E-07 (36) 1.23E-06 ± 1.31E-07 (40)
f08 30 [1.53E+05± 3.17E+03] (50) [1.25E+05 ± 2.92E+03] (50)† F01 30 [2.21E+05± 2.56E+03] (50) [1.62E+05 ± 1.96E+03] (50)†

f09 30 [2.49E+05± 5.48E+03] (50) [2.09E+05 ± 7.46E+03] (50)† F02 30 1.30E-09± 9.14E-10 (50) 8.12E-17 ± 1.26E-16 (50)†

f10 30 3.08E-10± 8.70E-11 (50) 7.34E-15 ± 2.06E-15 (50)† F03 30 4.76E+05± 2.50E+05 (0) 4.56E+05 ± 2.33E+05 (0)
f11 30 [1.39E+05± 3.66E+03] (50) [9.49E+04 ± 2.51E+03] (50)† F04 30 1.79E-09± 1.68E-09 (50) 1.01E-16 ± 1.56E-16 (50)†

f12 30 4.48E-20± 3.10E-20 (50) 2.12E-30 ± 2.20E-30 (50)† F06 30 6.98E-08± 1.40E-07 (42) 1.40E-12 ± 2.90E-12 (50)†

f13 30 4.83E-18± 3.96E-18 (50) 1.37E-28 ± 1.27E-28 (50)† F07 30 3.84E-03 ± 6.98E-03 (36)† 1.14E-02± 1.02E-02 (13)
f14 2 [9.33E+03 ± 4.96E+02] (50) [9.38E+03± 3.76E+02] (50) F08 30 2.09E+01± 5.87E-02 (0) 2.08E+01 ± 1.95E-02 (0)†

f15 4 [3.51E+04± 2.89E+02] (50) [2.26E+04 ± 1.98E+02] (50)† F09 30 [2.37E+05± 5.75E+03] (50) [2.06E+05 ± 5.06E+03] (50)†

† The value oft with 49 degrees of freedom is significant atα = 0.05 by two-tailed test.

see that the computational time of CDE is only slightly higher
than that of DE for the majority of functions.

Considering the NFFEs required by CDE and DE to reach
the VTR, Table 3 clearly shows that for all high dimensional
functions CDE is significantly better than DE, except for F03
and F08, in which both CDE and DE fail to reach the VTR
after 500 000 NFFEs. For the low dimensional functions (f14 -
f22), there is no significant difference for CDE and DE.

From Fig. 1 it can be seen that for the high dimensional func-
tions CDE converges faster than DE. However, for the low di-
mensional functions the difference is not significant.

In general, the overall performance of CDE is better than that
of DE for the high dimensional functions. For the low dimen-
sional functions, since these functions are simple, both DEand
CDE are able to solve these functions, and CDE is slightly bet-
ter than DE. Moreover, our proposed CDE can accelerate the
original DE algorithm and reduce the NFFEs to reach the VTR
for high-dimensional functions significantly.

5.4. Influence of Population Size

In [49], the authors concluded that the performance of DE is
sensitive to the choice of the population size. Increasing the
population size will increase the diversity of possible move-
ments, promoting the exploration of the search space. However,
the probability to find the correct search direction decreases
considerably [50]. The influence of population size is inves-
tigated in this section. For both CDE and DE, all the parameter
settings are the same as mentioned in Section 5.1 only except
for NP = 50 andNP = 200. The results forNP = 50 and
NP= 200 are shown in Table 4.

ForNP= 50, CDE is significantly better than DE in 16 func-
tions. However, for three functions (f04, F06, and F07), DE is
significantly better than CDE. For the rest 11 functions, there
are no significant difference for CDE and DE. For 12 functions,
CDE can obtain the global optimum on all 50 runs.

For NP = 200, Table 4 shows that for all the high dimen-
sional functions CDE is significantly better than DE, exceptfor
F08 and F09, where both CDE and DE obtain similar results.

For the low dimensional functions there are no significant dif-
ference between CDE and DE.

In summary, according to the results of Table 2 - Table 4,
we can conclude that i) CDE and DE can provide better results
using a smaller population size for some functions. ii) For the
majority of functions, CDE is always better than DE. iii) CDE
provides a faster convergence rate and greater robustness for
different population size compared with DE.

5.5. Scalability Study

In order to study the effect of the problem dimensionality on
the performance of CDE, a scalability study is conducted for
the scalable functions in the test suit. For functions f01 - f13,
D = 10, 50, 100, 200. For F01 - F04 and F06 - F09,D = 10, 50,
since these functions are defined up toD = 50 dimensions [14].
The results are recorded afterD × 10000 NFFEs. All other
control parameters are unchanged from their values mentioned
in Section 5.1. The results of CDE and DE are given in Ta-
ble 5, and some representative convergence graphs are shown
in Fig. 2.

From Table 5, the results indicate that CDE outperforms DE
for the majority of the test scalable functions at every dimen-
sion. In addition, the higher the problem dimensionality, the
better the performance of CDE obtained. For example, for
D = 100 andD = 200, CDE is significantly better than DE
for 10 out of 13 functions. Both CDE and DE provide the same
results for functions f12 and f13. Only for one function f05,
DE is better than CDE. Moreover, Fig. 2 shows that CDE is
able to accelerate the convergence rate in general. However, by
carefully looking at the results in Table 5, we can see that for
D = 50, DE is significantly better than CDE for functions f05
and F06. ForD = 100 andD = 200, DE is significantly better
than CDE for function f05. With respect to f05 and F06, they
are the generalized Rosenbrock’s function and shifted Rosen-
brock’s function, respectively. CDE converges to the localop-
tima for the two functions. This might be caused by the fact
that the small clustering period ofm = 10 is used, which leads
to CDE exploring the search place insufficiently. The influence
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Table 10: Influence of the Different Distance Measure Used inthe One-step K-Means in the Decision Space.

F D DE CDE CDEcos CDEman
f01 30 2.01E-17± 1.14E-17 (50) 1.07E-28± 7.65E-29 (50)‡ 1.68E-31 ± 1.40E-31 (50)‡ 2.22E-30± 1.35E-30 (50)‡

f02 30 3.86E-14± 9.28E-15 (50) 4.21E-21± 1.85E-21 (50)‡ 4.83E-23 ± 1.81E-23 (50)‡ 4.15E-22± 2.22E-22 (50)‡

f03 30 5.04E-11± 2.46E-11 (50) 1.64E-34 ± 9.18E-34 (50)‡ 8.85E-32± 1.38E-31 (50)‡ 1.11E-31± 2.15E-31 (50)‡

f04 30 8.81E-08± 2.39E-08 (39) 6.48E-22± 1.18E-21 (50)‡ 6.20E-18± 4.38E-17 (50)‡ 1.88E-22 ± 5.75E-22 (50)‡

f05 30 5.15E-22± 1.21E-21 (50) [4.61+E05± 1.28E+04] (50)‡ [4.06E+05± 9.85E+03] (50)‡ [3.96E+05 ± 9.84E+03] (50)‡

f06 30 [3.30E+04± 1.12E+03] (50) [1.87E+04± 1.05E+03] (50)‡ [1.75E+04 ± 6.57E+02] (50)‡ [1.75E+04± 8.15E+02] (50)‡

f07 30 7.84E-03± 1.74E-03 (50) 1.27E-03 ± 7.37E-04 (50)‡ 2.16E-03± 8.13E-04 (50)‡ 2.63E-03± 1.09E-03 (50)‡

f08 30 [1.59E+05± 1.37E+03] (50) [1.30E+05 ± 2.40E+03] (50)‡ [1.39E+05± 6.59E+03] (50)‡ [1.38E+05± 6.09E+03] (50)‡

f09 30 [2.56E+05± 4.18E+03] (50) [2.17E+05± 4.92E+03] (50)‡ [2.09E+05± 1.42E+03] (50)‡ [2.06E+05 ± 1.62E+04] (50)‡

f10 30 1.21E-09± 3.14E-10 (50) 5.28E-15± 1.67E-15 (50)‡ 1.51E-15± 1.57E-15 (50)‡ 1.37E-15 ± 1.49E-15 (50)‡

f11 30 [1.49E+05± 3.35E+03] (50) [9.42E+04± 2.46E+03] (50)‡ [8.38E+04 ± 2.25E+03] (50)‡ [8.49E+04± 2.51E+03] (50)‡

f12 30 1.46E-18± 7.33E-19 (50) 1.79E-30± 1.50E-30 (50)‡ 1.57E-32 ± 0.00E+00 (50)‡ 1.57E-32 ± 0.00E+00 (50)‡

f13 30 1.59E-16± 6.79E-17 (50) 9.42E-29± 8.40E-29 (50)‡ 1.35E-32 ± 0.00E+00 (50)‡ 1.37E-32± 1.39E-33 (50)‡

f14 2 [8.30E+03 ± 4.47E+02] (50) [8.40E+03± 4.06E+02] (50) 2.60E-15± 1.70E-14 (50) 5.78E-14± 3.91E-13 (50)
f15 4 1.85E-19± 4.00E-19 (50) 1.03E-19 ± 3.12E-19 (50)‡ 2.47E-19± 4.44E-19 (50) 2.27E-19± 4.31E-19 (50)
f16 2 1.28E-14± 4.71E-14 (50) 7.99E-16± 4.44E-15 (50)‡ 4.00E-16 ± 1.98E-15 (50)‡ 1.60E-15± 4.22E-15 (50)‡

f17 2 1.74E-11± 6.58E-11 (50) 4.33E-13 ± 1.46E-12 (50)‡ 7.41E-12± 3.84E-11 (50)‡ 4.10E-11± 1.83E-10 (50)
f18 2 7.08E-15± 1.43E-14 (50) 4.69E-15 ± 4.93E-15 (50)‡ 8.02E-15± 4.30E-15 (50) 7.43E-15± 4.68E-15 (50)
f19 3 [8.90E+03± 3.16E+02] (50) [8.69E+03± 2.68E+02] (50)‡ [7.73E+03 ± 3.18E+02] (50)‡ [7.84E+03± 2.75E+02] (50)‡

f20 6 2.92E-12± 2.04E-11 (50) 1.40E-14± 7.04E-14 (50)‡ [1.75E+04 ± 8.65E+02] (50)‡ 2.92E-14± 1.99E-13 (50)‡

f21 4 1.91E-08± 3.75E-08 (30) 1.67E-08 ± 3.90E-08 (37)‡ 2.78E-08± 6.89E-08 (28) 3.49E-08± 1.44E-07 (35)
f22 4 4.98E-09± 2.54E-08 (48) 5.60E-09± 1.59E-08 (45) 8.66E-09± 5.03E-08 (48) 1.37E-09 ± 1.96E-09 (50)‡

F01 30 [2.35E+05± 1.78E+03] (50) [1.65E+05± 1.98E+03] (50)‡ [1.41E+05 ± 1.47E+03] (50)‡ [1.43E+05± 1.59E+03] (50)‡

F02 30 3.12E-04± 1.28E-04 (0) 3.60E-16± 3.97E-16 (50)‡ 3.61E-19± 1.06E-18 (50)‡ 3.17E-19 ± 4.01E-19 (50)‡

F03 30 1.03E+06± 5.57E+05 (0) 8.93E+05± 3.06E+05 (0)‡ 4.68E+05 ± 2.41E+05 (0)‡ 4.79E+05± 2.33E+05 (0)‡

F04 30 4.11E-04± 1.94E-04 (0) 4.52E-16± 4.93E-16 (50)‡ 5.43E-19± 1.83E-18 (50)‡ 4.23E-19 ± 5.45E-19 (50)‡

F06 30 8.90E-03± 1.93E-02 (0) 4.13E-03 ± 1.45E-02 (7)‡ 3.99E-01± 1.21E+00 (45) 2.39E-01± 9.56E-01 (47)
F07 30 2.03E-05 ± 1.57E-05 (0) 4.14E-03± 6.28E-03 (32) 1.07E-02± 1.03E-02 (14) 1.39E-02± 1.08E-02 (8)
F08 30 2.09E+01 ± 6.10E-02 (0) 2.09E+01± 8.21E-02 (0) 2.11E+01± 5.28E-02 (0) 2.11E+01± 5.75E-02 (0)
F09 30 [2.51E+05± 4.67E+03] (50) [2.16E+05 ± 4.16E+03] (50)‡ [2.40E+05± 1.87E+04] (50)‡ [2.32E+05± 1.54E+04] (50)‡

‡ It indicates DE is worse than its competitor.

of the clustering period for the two functions is discussed in the
following Section 5.6.

5.6. Effect of Clustering Period

In our proposed CDE, only one additional parameterm is in-
cluded. This parameter makes the one-step k-means clustering
perform periodically. In order to investigate the effect ofm on
the performance of CDE, a set of experiments has been per-
formed. All other parameters are kept unchanged as mentioned
in Section 5.1, and we only modify the clustering period param-
eterm as follows:m = 2, 5, 15, 20. For eachm, we perform 50
independent runs per test functions. The results are presented
in Table 6. From Table 6, it can be seen that a lower clustering
period can achieve faster convergence rate, however this may
lead to becoming trapped in a local optimum, e.g. f04, f05, etc.
The higher clustering period makes the algorithm more robust
but lowers the convergence rate.

As mentioned in Section 5.5, CDE is significantly worse than
DE for the higher dimensional Rosenbrock’s functions (f05 and
F06). This means that CDE withm= 10 misleads the search on
these functions. Here, we perform a preliminary experiments
to study the effect ofm on the performance of CDE for the two
functions atD = 50. In these experiments the maximum NFFEs
of Max NFFEs = 20000× D is used to clearly show the effect
of differentmvalues. All the remaining parameters are kept un-
changed. The convergence graphs of these functions are shown
in Fig. 3. From Fig. 3, we can see that CDE is able to provide
better results for higher clustering period (m≥ 15). The reason
might be that higher clustering period makes CDE explore the

search space sufficiently for the higher dimensional problems,
and hence the one-step k-means clustering can exploit informa-
tion efficiently.

According to the previous experiments given in Section 5.3
- 5.6, the parameterm working in the interval [5, 40] could be
more reliable for unknown optimization problems. Higher clus-
tering period is reasonable for higher dimensional problems.
However, the effect should be studied in more detail by vary-
ing the population size and the problem dimensionality which
is beyond the scope of this work. We leave this task for a future
study.

5.7. Influence of the Number of Cluster Centers

In our proposed CDE approach, the number of cluster centers
k is generated randomly from [2,

√
NP]. In this section we per-

form additional experiment to show the influence of the number
of cluster centers.k is set to 2, 5, 8, and 10 to replace the ran-
dom number. The results are shown in Table 7. From Table 7,
it can be seen that for the majority of functions no significant
difference can be found. It indicates thatk has a small effect on
the performance of CDE.

5.8. Effect of Different Schemes

In DE there are more than ten different schemes [9, 10],
and [11]. In [51], Mezura-Monteset al. presented an empirical
comparison of some DE schemes to identify which one of them
is more suitable to solve an optimization problem. Different
schemes are suitable for different problems. In this section, we
conduct a set of experiments to show the performance of CDE
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Table 11: Influence of the Distance Measure of Clustering in Decision Space and Objective Space.

F D DE CDE CDEobj
f01 30 2.01E-17± 1.14E-17 (50) 1.07E-28± 7.65E-29 (50) 4.33E-34 ± 3.07E-34 (50)
f02 30 3.86E-14± 9.28E-15 (50) 4.21E-21± 1.85E-21 (50) 3.93E-25 ± 2.17E-25 (50)
f03 30 5.04E-11± 2.46E-11 (50) 1.64E-34± 9.18E-34 (50) 4.98E-35 ± 6.38E-35 (50)
f04 30 8.81E-08± 2.39E-08 (0) 6.48E-22 ± 1.18E-21 (50) 8.68E-21± 5.58E-20 (50)
f05 30 5.15E-22± 1.21E-21 (50) [4.61+E05 ± 1.28E+04] (50) [4.71E+05± 1.41E+04] (50)
f06 30 [3.30E+04± 1.12E+03] (50) [1.87E+04± 1.05E+03] (50) [1.60E+04 ± 8.52E+02] (50)
f07 30 7.84E-03± 1.74E-03 (50) 1.27E-03± 7.37E-04 (50) 8.62E-04 ± 3.30E-04 (50)
f08 30 [1.59E+05± 1.37E+03] (50) [1.30E+05± 2.40E+03] (50) [1.20E+05 ± 2.70E+03] (50)
f09 30 [2.56E+05± 4.18E+03] (50) [2.17E+05± 4.92E+03] (50) [1.94E+05 ± 5.67E+03] (50)
f10 30 1.21E-09± 3.14E-10 (50) 5.28E-15± 1.67E-15 (50) 5.89E-16 ± 0.00E+00 (50)
f11 30 [1.49E+05± 3.35E+03] (50) [9.42E+04± 2.46E+03] (50) [7.98E+04 ± 2.07E+03] (50)
f12 30 1.46E-18± 7.33E-19 (50) 1.79E-30± 1.50E-30 (50) 1.57E-32 ± 0.00E+00 (50)
f13 30 1.59E-16± 6.79E-17 (50) 9.42E-29± 8.40E-29 (50) 1.35E-32 ± 0.00E+00 (50)
f14 2 [8.30E+03± 4.47E+02] (50) [8.40E+03± 4.06E+02] (50) [8.18E+03 ± 4.49E+02] (50)
f15 4 1.85E-19± 4.00E-19 (50) 1.03E-19 ± 3.12E-19 (50) 1.03E-19 ± 3.12E-19 (50)
f16 2 1.28E-14± 4.71E-14 (50) 7.99E-16 ± 4.44E-15 (50) 2.20E-15± 5.81E-15 (50)
f17 2 1.74E-11± 6.58E-11 (50) 4.33E-13 ± 1.46E-12 (50) 1.46E-11± 4.57E-11 (50)
f18 2 7.08E-15± 1.43E-14 (50) 4.69E-15± 4.93E-15 (50) 3.71E-15 ± 4.79E-15 (50)
f19 3 [8.90E+03± 3.16E+02] (50) [8.69E+03± 2.68E+02] (50) [8.21E+03 ± 2.50E+02] (50)
f20 6 2.92E-12± 2.04E-11 (50) 1.40E-14± 7.04E-14 (50) [1.63E+04 ± 1.06E+03] (50)
f21 4 1.91E-08± 3.75E-08 (30) 1.67E-08± 3.90E-08 (37) 1.59E-08 ± 9.00E-08 (47)
f22 4 4.98E-09 ± 2.54E-08 (48) 5.60E-09± 1.59E-08 (45) 6.75E-08± 4.71E-07 (44)
F01 30 [2.35E+05± 1.78E+03] (50) [1.65E+05± 1.98E+03] (50) [1.42E+05 ± 1.79+E03] (50)
F02 30 3.12E-04± 1.28E-04 (0) 3.60E-16± 3.97E-16 (50) 2.40E-18 ± 3.88E-18 (50)
F03 30 1.03E+06± 5.57E+05 (0) 8.93E+05± 3.06E+05 (0) 6.16E+05 ± 2.19E+05 (50)
F04 30 4.11E-04± 1.94E-04 (0) 4.52E-16± 4.93E-16 (50) 3.08E-18 ± 4.65E-18 (50)
F06 30 8.90E-03± 1.93E-02 (0) 4.13E-03 ± 1.45E-02 (7) 6.84E-02± 1.53E-02 (3)
F07 30 2.03E-05 ± 1.57E-05 (0) 4.14E-03± 6.28E-03 (32) 1.29E-02± 9.03E-03 (4)
F08 30 2.09E+01± 6.10E-02 (0) 2.09E+01± 8.21E-02 (0) 2.06E+01 ± 2.90E-01 (0)
F09 30 [2.51E+05± 4.67E+03] (50) [2.16E+05± 4.16E+03] (50) [2.02E+05 ± 4.16+E03] (50)

for different schemes. Three schemes, namely, DE/rand/1/bin,
DE/rand/2/exp, and DE/ran/2/bin are chosen in these experi-
ments. All remaining parameters are the same as mentioned in
Section 5.1. The dimension per function is the same as shown
in Table 2. Table 8 gives the results of DE and CDE for the
three schemes.

According to Table 8, we can see that for the majority of the
test problems CDE is significantly better than DE, especially
compared to the DE schemes with two difference vectors. Gen-
erally speaking, the overall results of Table 2, 3, and 8 sub-
stantiate our claim that for the majority of the test problems the
proposed CDE is able to improve the performance of DE for
different schemes.

5.9. Influence of Self-adaptive Parameter Control

As mentioned above, the choice of the control parameters
F andCR is sensitive for different problems [49]. In order to
show that CDE can also improve the self-adaptive DE, in this
section, we adopt the self-adaptive control parameter proposed
in [8] to replace the fixedF = 0.5 andCR= 0.9 in the previous
experiments. All other parameter settings are kept unchanged.
The results for the self-adaptive DE (SaDE) and self-adaptive
CDE (SaCDE) are given in Table 9. The results indicate that
SaCDE is significantly better than SaDE on 22 out of 30 func-
tions. Only for one function F07, SaDE is significantly better
than SaCDE. For the other 7 functions, there is no significant
difference for both SaCDE and SaDE. In general, integrationof
the one-step k-means clustering can improve the performance
of SaDE.

5.10. Influence of Different Distance Measure

In order to test the influence of different distance measure
used in the one-step k-means on the performance of CDE, a
set of experiments is performed here. The results are shown in
Table 10, where CDEcos means the cosine distance measure
is used in CDE, and CDEman denotes the Manhattan distance
measure is used. All parameters are kept unchanged. In addi-
tion, all experiments are conducted for 50 independent runsfor
each function. It can be seen from Table 10 that the three CDE
approaches outperformed DE on the majority of the test func-
tions. On 26 functions, CDE is better than DE. CDEcos out-
performs DE on 22 functions. CDEman is also better than DE
on 22 out of 30 functions. Generally speaking, the improvement
of CDE is not significantly influenced by the different distance
measure used in the one-step k-means clustering.

5.11. Effect of Distance in Objective Space

In our previous experiments, the Euclidean distance of the
clustering is calculated in the decision space. The distance can
also be calculated in the objective space, we only need to mod-
ify step 2 of the one-step k-means clustering described in Sec-
tion 4.1 as “Assign pointXi , i = 1, 2, · · · ,NP to clusterC j ,
j = 1, 2, · · · , k, if and only if ‖ f (Xi)− f (c j) ‖≤‖ f (Xi)− f (cp) ‖,
p = 1, 2, · · · , k, andp , j, wheref (X) is the fitness of solution
X, and‖ f (Xi)− f (c j) ‖ is the distance betweenf (Xi) and f (c j).
Ties are resolved arbitrarily.”. The CDE using the distancein
the objective space is named CDEobj. All other parameters
are the same as mentioned in Section 5.1. Table 11 shows the
results of DE, CDE, and CDEobj for all test functions. From
Table 11, we can see that both CDE and CDEobj outperform
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Table 12: Comparison on the Error values between our approach and Wang’s approach [23].

F D
Wang’s approach [23] CDE Wang-CDE

NFFEs Mean Std Dev NFFEs Mean Std Dev t-test

f01 30 150 000 1.00E-06 2.00E-06 150 000 1.07E-28 7.65E-29 3.54†

f02 30 200 000 0.00E+00 0.00E+00 200 000 4.21E-21 1.85E-21 -16.09†

f03 30 500 000 1.10E-05 1.40E-05 500 000 1.64E-34 9.18E-34 5.56†

f04 30 500 000 7.50E-05 7.50E-05 500 000 6.48E-22 1.18E-21 7.07†

f05 30 2 000 000 1.83E+00 6.83E+00 500 000 0.00E+00 0.00E+00 1.89†

f06 30 150 000 0.00E+00 0.00E+00 150 000 0.00E+00 0.00E+00 0
f07 30 300 000 4.60E-04 3.60E-04 300 000 1.30E-03 7.37E-04 -7.24†

f08 30 900 000 1.25E+03a 5.03E+02 300 000 0.00E+00 0.00E+00 17.57†

f09 30 500 000 1.80E-05 2.30E-05 300 000 0.00E+00 0.00E+00 5.53†

f10 30 150 000 4.70E-05 4.50E-05 150 000 5.28E-15 1.67E-15 27.24†

f11 30 200 000 0.00E+00 0.00E+00 200 000 0.00E+00 0.00E+00 0
f12 30 150 000 0.00E+00 0.00E+00 150 000 1.79E-30 1.50E-30 -8.44†

f13 30 150 000 0.00E+00 0.00E+00 150 000 9.42E-29 8.40E-29 -7.93†

† The value oft with 49 degrees of freedom is significant atα = 0.05 by two-tailed test.
a indicates the error value is used based on the reported results.

DE on the majority of the test functions. In addition, CDEobj
is slightly better than CDE on 22 functions. However, the effect
should also be studied in more detail by varying the population
size and the problem dimensionality. We leave this task for our
future work. In summary, the one-step k-means clustering with
the distance measure in both decision space and objective space
can enhance the performance of DE.

5.12. Comparison with Wang’s Approach [23]

Since both our approach and Wang’s approach [23] improved
the original DE algorithm with the clustering algorithm, in
this section, we compare the results between our approach and
Wang’s method. The results are shown in Table 12 on func-
tions f01 - f13. From Table 12 we can see that on 6 out of 13
functions our approach is significantly better than Wang’s ap-
proach. On 4 functions (f02, f07, f12, and f13), our approach
is significantly outperformed by Wang’s method. However, for
functions f02, f12, and f13, our approach obtains good mean
best results and approximates the global optimum in all 50 runs
for the three functions. For the rest two functions (f06 and f11)
both approaches can obtain the global optimum in all 50 runs.
In addition, for three functions (f05, f08, and f09) our approach
provides better mean best values in less NFFEs. In general,
we can conclude that our approach obtains better results than
Wang’s approach [23] in terms of the quality of the final re-
sults.

5.13. Comparison with Other DE Hybrids

Finally, we make a comparison with other DE. Since there
are many variants of DE, we only compare our approach with
DEahcSPX proposed in [13] and ODE proposed in [32]. In
DEahcSPX, a crossover-based adaptive local search operation
to accelerate DE. The authors concluded that DEahcSPX out-
performs the original DE algorithm in items of convergence
rate in all experimental studies. In ODE, the opposition-based
learning is used for the population initialization and generation
jumping. In this section, we compare our proposed CDE with
DE, DEahcSPX and ODE. All the parameter settings are the

same as mentioned in Section 5.1. For DEahcSPX, the number
of parents in SPX sets to benp = 3 [13]. For ODE, the jump
rate Jr = 0.3 [32]. The results are given in Table 13. Some
selected representative convergence graphs are shown in Fig. 4.
From Table 13 and Fig. 4, it can be seen that i) CDE is better
than DE, DEahcSPX and ODE on 19 out of 30 functions. ii)
For three functions (f22, F03, and F07), DEahcSPX can obtain
better results compared with DE, ODE and CDE. iii) ODE is
able to get better results for 7 functions (f04, f14, and f16 -
f20), however it may lead to be premature, e.g. f05 and F06. iv)
CDE is able to provide the highest overall number of successful
runs. And v) CDE can converge faster for the majority of the
test functions compared with DE, DEahcSPX, and ODE.

6. Conclusion and Future Work

In order to make the DE algorithm more effective and more
efficient, the one-step k-means clustering is integrated into DE
in this paper. The hybrid clustering-based DE (CDE) can bal-
ance the exploration and the exploitation in the evolutionary
process. It is worth noting that our proposed CDE is also simple
and ease to use. CDE adds only one parameter, the clustering
periodm, to the original DE algorithm.

To evaluate the performance of our presented approach, 30
unconstrained single-objective benchmark functions withdif-
ferent characteristics are chosen from the literature. A com-
prehensive set of experiments is conducted in this paper, to
study i) the effect of the one-step k-means clustering on DE;ii)
the influence of the population size; iii) the effect of the prob-
lem dimensionality; iv) the effect of the clustering periodm;
v) the influence of the number of cluster centers; vi) the mu-
tation schemes; vii) the influence of the self-adaptive param-
eter control on DE; viii) the effect of different distance mea-
sure used in the one-step k-means clustering; ix) the distance
measure of clustering in decision space and objective space;
and x) comparison with the AHCXLS-based DE (DEahcSPX)
and the opposition-based DE (ODE). In addition, four criteria
are selected for evaluating the performance of the algorithms.
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Table 13: Comparison of DE, DEahcSPX, ODE, and CDE on All TestFunctions.

F D DE DEahcSPX ODE CDE
f01 30 2.01E-17± 1.14E-17 (50) 6.82E-18± 2.68E-18 (50) 5.61E-24± 5.24E-24 (50) 1.07E-28 ± 7.65E-29 (50)
f02 30 3.86E-14± 9.28E-15 (50) 2.59E-14± 6.34E-15 (50) 6.73E-13± 2.17E-13 (50) 4.21E-21 ± 1.85E-21 (50)
f03 30 5.04E-11± 2.46E-11 (50) 2.65E-12± 1.57E-12 (50) 2.95E-08± 2.19E-08 (0) 1.64E-34 ± 9.18E-34 (50)
f04 30 8.81E-08± 2.39E-08 (0) 2.19E-08± 5.17E-09 (0) 2.08E-37 ± 2.77E-37 (50) 6.48E-22± 1.18E-21 (50)
f05 30 5.15E-22± 1.21E-21 (50) 3.69E-22± 8.56E-22 (50) 2.37E+01± 1.50E+00 (0) [4.61+E05 ± 1.28E+04] (50)
f06 30 [3.30E+04± 1.12E+03] (50) [3.24E+04± 1.13E+03] (50) [2.48E+04± 8.83E+02] (50) [1.87E+04 ± 1.05E+03] (50)
f07 30 7.84E-03± 1.74E-03 (50) 5.84E-03± 1.54E-03 (50) 2.04E-03± 6.04E-04 (50) 1.27E-03 ± 7.37E-04 (50)
f08 30 [1.59E+05± 1.37E+03] (50) [1.59E+05± 1.13E+03] (50) [1.53E+05± 5.98E+03] (50) [1.30E+05 ± 2.40E+03] (50)
f09 30 [2.56E+05± 4.18E+03] (50) [2.56E+05± 6.29E+03] (50) [2.32E+05± 1.17E+04] (50) [2.17E+05 ± 4.92E+03] (50)
f10 30 1.21E-09± 3.14E-10 (50) 7.16E-10± 1.74E-10 (50) 9.50E-13± 3.34E-13 (50) 5.28E-15 ± 1.67E-15 (50)
f11 30 [1.49E+05± 3.35E+03] (50) [1.45E+05± 3.28E+03] (50) [1.20+E05± 6.81E+03] (50) [9.42E+04 ± 2.46E+03] (50)
f12 30 1.46E-18± 7.33E-19 (50) 4.15E-19± 2.60E-19 (50) 8.14E-25± 8.63E-25 (50) 1.79E-30 ± 1.50E-30 (50)
f13 30 1.59E-16± 6.79E-17 (50) 6.04E-17± 2.78E-17 (50) 5.99E-21± 9.39E-21 (50) 9.42E-29 ± 8.40E-29 (50)
f14 2 [8.30E+03± 4.47E+02] (50) [8.14E+03± 6.37E+02] (50) [7.73E+03 ± 5.92E+02] (50) [8.40E+03± 4.06E+02] (50)
f15 4 1.85E-19± 4.00E-19 (50) 3.50E-19± 4.93E-19 (50) 7.21E-19± 4.98E-19 (50) 1.03E-19 ± 3.12E-19 (50)
f16 2 1.28E-14± 4.71E-14 (50) 2.60E-15± 9.24E-15 (50) [8.20E+03 ± 4.89E+02] (50) 7.99E-16± 4.44E-15 (50)
f17 2 1.74E-11± 6.58E-11 (50) 3.49E-11± 1.43E-10 (50) 1.49E-13 ± 2.72E-13 (50) 4.33E-13± 1.46E-12 (50)
f18 2 7.08E-15± 1.43E-14 (50) 8.30E-15± 1.95E-14 (50) 2.93E-15 ± 4.72E-15 (50) 4.69E-15± 4.93E-15 (50)
f19 3 [8.90E+03± 3.16E+02] (50) [8.76E+03± 3.25E+02] (50) [7.88E+03 ± 2.53E+02] (50) [8.69E+03± 2.68E+02] (50)
f20 6 2.92E-12± 2.04E-11 (50) 9.40E-14± 3.23E-13 (50) 5.95E-15 ± 1.26E-14 (50) 1.40E-14± 7.04E-14 (50)
f21 4 1.91E-08± 3.75E-08 (30) 1.90E-08± 5.48E-08 (37) 2.50E-06± 6.43E-06 (26) 1.67E-08 ± 3.90E-08 (37)
f22 4 4.98E-09± 2.54E-08 (48) 2.16E-09 ± 3.29E-09 (48) 7.21E-08± 9.99E-08 (28) 5.60E-09± 1.59E-08 (45)
F01 30 [2.35E+05± 1.78E+03] (50) [2.32E+05± 1.89E+03] (50) [1.86E+05± 2.72E+04] (50) [1.65E+05 ± 1.98E+03] (50)
F02 30 3.12E-04± 1.28E-04 (0) 3.96E-05± 1.64E-05 (0) 5.52E-03± 3.64E-03 (0) 3.60E-16 ± 3.97E-16 (50)
F03 30 1.03E+06± 5.57E+05 (0) 7.35E+05 ± 3.70E+05 (0) 2.57E+06± 1.04E+06 (0) 8.93E+05± 3.06E+05 (0)
F04 30 4.11E-04± 1.94E-04 (0) 5.25E-05± 2.62E-05 (0) 6.89E-03± 4.52E-03 (0) 4.52E-16 ± 4.93E-16 (50)
F06 30 8.90E-03± 1.93E-02 (0) 2.76E-02± 5.64E-02 (0) 1.89E+01± 9.97E+00 (0) 4.13E-03 ± 1.45E-02 (7)
F07 30 2.03E-05± 1.57E-05 (0) 1.85E-06 ± 1.63E-06 (0) 3.94E-03± 9.50E-03 (42) 4.14E-03± 6.28E-03 (32)
F08 30 2.09E+01± 6.10E-02 (0) 2.10E+01± 4.46E-02 (0) 2.10E+01± 4.00E-02 (0) 2.09E+01± 8.21E-02 (0)
F09 30 [2.51E+05± 4.67E+03] (50) [2.51E+05± 3.73E+03] (50) [2.70E+05± 9.40E+03] (50) [2.16E+05 ± 4.16E+03] (50)

The experimental results indicate that by integrating of the one-
step k-means clustering in DE, our proposed CDE can enhance
the performance of DE in terms of the quality of the final re-
sults and the reduction of NFFEs to approach the global opti-
mum. In addition, experiments conducted on different popula-
tion size, dimensionality, various mutation schemes, and self-
adaptive parameter control also show that CDE is more effec-
tive and efficient than DE. Moreover, compared with DEahc-
SPX and ODE, two highly competitive variants of DE, CDE is
able to obtain better performance for the majority of the test
functions in terms of all four performance criteria used in this
paper.

One additional parameter, clustering periodm, is included
in CDE. In this work, some preliminary experiments have been
performed to verify its effect on the performance of CDE. In our
future work, the effect will be studied in more detail by varying
the population size and the problem dimensionality. In addition,
we believe that some other clustering algorithms and other dis-
tance measures can also be used in CDE. Furthermore, another
possible direction is applying the one-step k-means methodto
other EC algorithms, such as GAs, PSO, etc.

Acknowledgment

The authors would like to thank the anonymous reviewers for
their constructive suggestions on this work.

References

[1] X. Yao, Y. Liu, G. Lin, Evolutionary programming made faster, IEEE
Transations on Evolutionary Computation 3 (2) (1999) 82–102.
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