
Enhancing the performance of differential evolution using orthogonal design

method

Wenyin Gong a,1, Zhihua Cai a Liangxiao Jiang a

aSchool of Computer Science,

China University of Geosciences, Wuhan 430074, P. R. China

Abstract

Differential Evolution (DE) is a simple and efficient global optimization algorithm. It has been successfully applied to solve a wide range of

real-world optimization problems. However, DE has been shown to have certain weaknesses, especially if the global optimum should be located

using a limited number of function evaluations (NFEs). In this paper, we incorporate the orthogonal design method into DE to accelerate its

convergence rate. The orthogonal design method is not only to be used to generate the initial population, but also to be applied to design

the crossover operator. In addition, two models of DE method are investigated. Moreover, the self-adaptive parameter control is employed to

avoid tuning the parameters of DE. Experiments have been conducted on 25 problems of diverse complexities. And the results indicate that

our approach is able to find the optimal or close-to-optimal solutions in all cases. Compared with other state-of-the-art evolutionary algorithms

(EAs), our approach performs better, or at least comparably, in terms of the quality and stability of the final solutions.
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1. Introduction

Over the last few decades, evolutionary algorithms (EAs)

have received much attention regarding their potential as global

optimization techniques [1]. Inspired from the mechanisms of

natural evolution and survival of the fittest, EAs utilize a col-

lective learning process of a population of individuals. Descen-

dants of individuals are generated using randomized operations

such as mutation and recombination. Mutation corresponds to

an erroneous self-replication of individuals, while recombina-

tion exchanges information between two or more existing indi-

viduals. According to a fitness measure, the selection process

favors better individuals to reproduce more often than those

that are relatively worse.

Global optimization problems arise in almost every field of

science, engineering, and business. Many of these problems

cannot be solved analytically, and consequently, they have to

be addressed by numerical algorithms. A global minimization

problem can be formalized as a pair (S, f) , where S ⊆ Rn is

a bounded set on Rn and f : S → R is an n-dimensional real-

valued function. The problem is to find a point Xmin ∈ S such
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that f(Xmin) is a global minimum on S. More specifically,

it is required to find an Xmin ∈ S such that

∀X ∈ S : f(Xmin) ≤ f(X) (1)

where f does not need to be continuous but it must be bounded

li ≤ xi ≤ ui, i = 1, 2, · · · , n (2)

In global optimization problems, the major challenge is that

an algorithm may be trapped in the local optima of the objec-

tive function. This issue is particularly challenging when the

dimension is high and there are numerous local optima. Re-

cently, using the EAs to solve the global optimization has been

very active, producing different kinds of EAs for optimization

in the continuous domain [3] - [9].

Differential evolution (DE) [10] algorithm is a novel evolu-

tionary algorithm for faster optimization, which mutation oper-

ator is based on the distribution of solutions in the population.

And DE has won the third place at the first International Contest

on Evolutionary Computation on a real-valued function test-

suite [11]. DE is a simple yet powerful population based, direct

search algorithm with the generation-and-test feature for glob-

ally optimizing functions using real valued parameters. Among

the DE’s advantages are its simple structure, ease of use, speed

and robustness. Price & Storn [10] gave the working principle

of DE with single scheme. Later on, they suggested ten dif-
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ferent schemes of DE [11]. It has been successfully used in

solving single-objective optimization problems. However, DE

has been shown to have certain weaknesses, especially if the

global optimum should be located using a limited number of

function evaluations (NFEs). In addition, although DE is par-

ticularly simple to work with, having only a few control pa-

rameters, choice of these parameters is often critical for the

performance of DE [12], [7].

To remedy these defects of the DE technique mentioned

above, in this paper, an improve version of DE, namely or-

thogonal based DE (ODE), is presented to solve the global op-

timization problems. Our approach combines several features

of previous EAs in a unique manner. It is characterized by

a) employing the orthogonal design method with quantization

technique to generate the initial population, b) nesting the or-

thogonal design method in crossover operator to enhance the

ability of local search, c) adopting the self-adaptive parameter

control method to avoid tuning the parameters of DE, and d)

presenting a new model of DE to accelerate the convergence

rate. The advantages of ODE are its simplicity, efficiency, and

flexibility. It is shown empirically that ODE has high perfor-

mance in solving benchmark functions. It can find the optimal

or close-to-optimal solutions in all cases. Compared with other

state-of-the-art EAs, our approach performs better, or at least

comparably, in terms of the quality and stability of the final

solutions.

The rest of this paper is organized as follows. In section 2,

we briefly introduce the DE method. Section 3 describes the

orthogonal design method used in EAs. Our proposed approach

is presented in detail in section 4. In Section 5, we test our algo-

rithm through 25 benchmark problems. In addition, the exper-

iment results are compared with those of some state-of-the-art

EAs. The last section, section 6, is devoted to conclusions and

future work.

2. A brief introduction to DE

DE algorithm [10] is a simple evolutionary algorithm that

creates new candidate solutions by combining the parent indi-

vidual and several other individuals of the same population. A

candidate replaces the parent only if it has better fitness. This

is a rather greedy selection scheme that often outperforms tra-

ditional EAs. Unlike GA that uses binary coding to represent

problem parameters, DE is a simple yet powerful population

based, direct search algorithm with the generation-and-test fea-

ture for globally optimizing functions using real valued param-

eters. It has been successfully used in solving single-objective

optimization problems. Among the DE’s advantages are its sim-

ple structure, ease of use, speed and robustness. Due to these

advantages, it has got many real-world applications, such as

data mining [13], [14], pattern recognition, digital filter design,

neural network training, etc. [15].

The DE algorithm in pseudo-code is shown in Algorithm 1.

Where n is the number of decision variables, NP is the size of

the parent population P , F is the mutation weighting factor, CR
is the probability of crossover operator, U i is the offspring, Ci

is the i-th member of the offspring population C, rndint(1, n)
is a uniformly random integer number between 1 and n, and

rndj [0, 1) is a uniformly random real number in [0, 1). Many

variants of creation of a candidate are possible. We use the

DE scheme DE/rand/1/exp (see lines 6 and 13 of Algorithm 1)

described in Algorithm 1 (more details on DE/rand/1/exp and

other DE schemes can be found in [11]).

Algorithm 1 DE algorithm with DE/rand/1/exp: model1

1: Generate the initial population P
2: Evaluate the fitness for each individual in P
3: while The halting criterion is not satisfied do

4: for i = 1 to NP do

5: Select uniform randomly r1 6= r2 6= r3 6= i
6: jrand = rndint(1, n)
7: L = 0
8: U i = P i

9: repeat

10: U i
j = P r1

j + F × (P r2

j − P r3

j )
11: jrand = (jrand + 1) mod n
12: L = L + 1
13: until rndj [0, 1) > CR or L > n
14: Evaluate the offspring U i

15: Ci = U i

16: end for

17: for i = 1 to NP do

18: if Ci is better than P i then

19: P i = Ci

20: end if

21: end for

22: end while

Recently, many researchers are working the improvement of

DE, and many variants of DE are presented. Hybridization with

other different algorithms is one direction for improvement. Fan

and Lampinen [16] proposed a new version of DE which uses

an additional mutation operation called trigonometric mutation

operation. They showed that the modified DE algorithm can

outperform the classic DE algorithm for some benchmarks and

real-world problems. Sun et al. [17] proposed a new hybrid

algorithm based on a combination of DE and estimation of

distribution algorithm. This technique uses a probability model

to determine promising regions in order to focus the search

process on those areas. Gong et al. [18] employed the two level

orthogonal crossover to improve the performance of DE. They

show that the proposed approach performs better the classical

DE in terms of the quality, speed, and stability of the final

solutions. Noman and Iba [7] incorporated local search (LS)

into the classical DE. They present a LS technique to solve this

problem by adaptively adjusting the length of the search, using

a hill-climbing heuristic. Through the experiments, they show

that the proposed new version of DE performs better, or at least

comparably, to classic DE algorithm.

Some other studies focus on the adaptive parameter control

of DE. Liu and Lampinen [20] proposed a fuzzy adaptive dif-

ferential evolution (FADE) which uses fuzzy logic controllers

to adapt the mutation and crossover control parameters. Brest
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et al. [5] proposed self-adapting control parameter settings.

Salman et al. [21] proposed a self-adaptive DE (SDE) algo-

rithm which eliminates the need for manual tuning of control

parameters. In SDE, the mutation weighting factor F is self-

adapted by a mutation strategy similar to the mutation opera-

tor of DE. Nobakhti and Wang [22] proposed a Randomised

Adaptive Differential Evolution (RADE) method, which uses

a simple randomised self-adaptive scheme is proposed for the

DE mutation weighting factor F .

Most recently, Rahnamayan et al. [8], [9] proposed a novel

initialization approach which employs opposition-based learn-

ing to generate initial population. Through a comprehensive set

of benchmark functions they show that replacing the random

initialization with the opposition-based population initialization

in DE can accelerate convergence speed.

3. Orthogonal design method in EAs

Orthogonal design method [23] with both orthogonal array

(OA) and factor analysis (such as the statistical optimal method)

is developed to sample a small, but representative set of combi-

nations for experimentation to obtain good combinations. OA

is a fractional factorial array of numbers arranged in rows and

columns, where each row represents the levels of factors in

each combination, and each column represents a specific fac-

tor that can be changed from each combination. It can assure

a balanced comparison of levels of any factor. The term “main

effect” designates the effect on response variables that one can

trace to a design parameter. The array is called orthogonal be-

cause all columns can be evaluated independently of one an-

other, and the main effect of one factor does not bother the

estimation of the main effect of another factor.

In a discrete single objective optimization problem, when

there are N factors (variables) and each factor has Q levels,

the search space consists of QN combinations of levels. When

N and Q are large, it may not be possible to do all QN exper-

iments to obtain optimal solutions. Therefore, it is desirable to

sample a small, but representative set of combinations for ex-

perimentation, and based on the sample, the optimal may be

estimated. The orthogonal design was developed for the pur-

pose [23]. The selected combinations are scattered uniformly

over the space of all possible combinations QN . And the or-

thogonal design is an important tool for robust design. Robust

design is an engineering methodology for optimizing the prod-

uct and process conditions which are minimally sensitive to the

causes of variation, and which produce high-quality products

with low development and manufacturing costs.

Recently, some researchers combined EAs with the orthog-

onal design method to solve optimization problems [18], [24] -

[32]. Zhang and Leung [24] proposed incorporating orthogonal

design method into the GA to solve the multimedia multicast

routing problems, so that the resulting algorithm would be more

robust and statistically sound. Leung and Wang [25] designed

a GA called the orthogonal GA with quantization (OGA/Q)

for global numerical optimization with continuous variables.

They developed a quantization technique to complement the

orthogonal design, so that the resulting methodology would en-

hance GAs for optimization with continuous variables. Ho and

Chen [26] proposed an efficient EA with a novel orthogonal

array crossover for obtaining the optimal solution to the polyg-

onal approximation problem. Tsai et al. [30] presented a hybrid

Taguchi-genetic algorithm for global numerical optimization,

where the Taguchi method involving a two-level orthogonal ar-

ray and a signal-to-noise-ratio is inserted between the crossover

and mutation operations of a traditional GA. Gong et al. [18] in-

corporated the two level orthogonal crossover into DE method

to solve the optimization problems. Wang et al. [32] combined

EA with the orthogonal crossover operator that is the same as

presented in [25] to constrained optimization problems. They

show that their approach not only quickly converges to optimal

or near-optimal solutions, but also displays a very high perfor-

mance compared with another two state-of-the-art techniques.

More recently, orthogonal design has been generalized to deal

with multi-objective optimization problems [27], [29] and [31].

4. Our proposed approach

Inspired by the ideas from the orthogonal design method suc-

cessfully used in EAs ([18], [24] - [32]), in this work, we pro-

pose an improved version of DE algorithm to solve global opti-

mization problems, where our approach integrates established

techniques in existing EA’s in a single unique algorithm. Our

proposed DE algorithm is named ODE. Six crucial procedures

of ODE will be discussed as follows.

4.1. A new model of DE

As described in Algorithm 1, we can see that if the off-

spring is better than its parent, the offspring is not accepted

immediately (see lines 17 and 21). In this work, we propose a

new model of DE, namely model2 (the Algorithm 1 is named

model1). The difference between model1 and model2 is that

in model2 when the offspring is better than its parent, it is

copied into the current population immediately. In this man-

ner, the accepted offspring may be selected among the three

solutions (r1, r2, r3) and contribute to create better offspring.

Hence, it can accelerate the convergence rate. The new model

is described in Algorithm 2.

Algorithm 2 The new model of DE algorithm: model2

1: Generate the initial population P
2: Evaluate the fitness for each individual in P
3: while The halting criterion is not satisfied do

4: for i = 1 to NP do

5: Select uniform randomly r1 6= r2 6= r3 6= i
6: Generate the offspring U i using DE/rand/1/exp

7: Evaluate the offspring U i

8: if U i is better than P i then

9: P i = U i {Replace the parent immediately}
10: end if

11: end for

12: end while
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4.2. Orthogonal initial population

Before solving an optimization problem, we usually have no

information about the location of the global minimum. It is de-

sirable that an algorithm starts to explore those points that are

scattered evenly in the decision space. In our presented manner,

the algorithm can evenly scan the feasible solution space once

to locate good points for further exploration in subsequent iter-

ations. As the algorithm iterates and improves the population of

points, some points may move closer to the global minimum.

In order to generate a uniformly distributed initial population,

in this work we apply the quantization technique and the or-

thogonal design method to generate this initial population.

4.2.1. Design of the orthogonal array

To design an orthogonal array (OA), in this research, we use

LR(QC) to denote the OA with different level Q, where Q is

odd and use R = QJ to indicate the number of the rows of

OA, where J is a positive integer fulfilling

C =
QJ − 1

Q − 1
(3)

C denotes the number of the columns of OA in the above

equation. The OA needs to find a proper J and Q to satisfy

minimize : R = QJ

subject to : C =
QJ − 1

Q − 1
≥ n (4)

R ≥ NP

where n is the number of the variables, NP is the size of the

evolutionary population. In this study, we adopt the algorithm

described in [25] to construct an OA. In particular, we use

L(R, C) to indicate the OA; and ai,j to denote the level of the

jth factor in the ith combination in L(R, C). If C > n, we

delete the last C −n columns to get an OA with n factors. The

algorithm to generate the OA is described in Algorithm 3.

4.2.2. Quantization

For one decision variable Xj with the boundary [lj, uj ], we

quantize the domain into Q levels αj
1, α

j
2, · · · , αj

Q, where the

design parameter Q is odd and αi is given by

αj
k = lj + (k − 1)(

uj − lj
Q − 1

), 1 ≤ k ≤ Q (5)

In other words, the domain [lj , uj] is quantized Q−1 fractions,

and any two successive levels are same as each other.

4.2.3. Generation of Initial Population

After constructing a proper OA and quantizing the domain

of each decision variable, we can generate the orthogonal pop-

ulation (OP) which can scatter uniformly over the feasible so-

lution space. The algorithm for generating the OP is described

in Algorithm 4, where OPi,j is the j-th variable of the i-th in-

dividual of OP, n is the number of variables, and eval is the

current NFEs.

Algorithm 3 Construction of orthogonal array

1: /* Construct the basic columns */

2: for k = 1 to J do

3: j = Qk−1−1
Q−1 + 1

4: for i = 1 to R do

5: ai,j = ⌊ i−1
QJ−k ⌋ mod Q

6: end for

7: end for

8: /* Construct the nonbasic columns */

9: for k = 2 to J do

10: j = Qk−1−1
Q−1 + 1

11: for s = 1 to j − 1 do

12: for t = 1 to Q − 1 do

13: for i = 1 to R do

14: ai,(j+(s−1)(Q−1)+t) = (ai,s × t + ai,j) mod Q
15: end for

16: end for

17: end for

18: end for

19: Increment ai,j by one for all i ∈ [1, R] and j ∈ [1, C]

Algorithm 4 Construction of initial population

1: /* Construction of orthogonal population (OP) */

2: eval = 0
3: for i = 1 to R do

4: for j = 1 to n do

5: k = ai,j

6: OPi,j = αj
k

7: end for

8: Evaluate OPi and eval++

9: end for

10: /* Construction of initial population */

11: Sort the OP
12: Select the best NP solution from OP to generate the initial

population

4.3. Orthogonal crossover operator

In order to balance the exploration and exploitation, in our

work we use the new crossover based on the orthogonal de-

sign and quantization technique as the local search operator

to enhance the exploitation ability. The orthogonal crossover

operator is original proposed in [25]; and it is also adopted

in [32]. The orthogonal crossover operator acts on two parents.

It quantizes the solution space defined by these parents into a

finite number of points, and then applies orthogonal design to

select a small, but representative sample of points as the poten-

tial offspring. The brief description of the operator is shown in

Algorithm 5 (more details can be found in [25] and [32]).

4.4. Self-adaptive parameter control

As mentioned above, one difficulty in the use of DE arises in

that the choice of its parameters is mainly based on empirical

evidence and practical experience. However, the performance

of DE is very sensitive to the choice of these parameters [5].
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Algorithm 5 The orthogonal crossover operator

1: Input: Parameters Q1 and C1
2: Select the smallest J1 fulfilling (Q1J1−1)/(Q1−1) ≥ C1
3: Randomly select two solutions from the population

4: Quantize the domain formed by the two solutions

5: Randomly generate C1 − 1 integers k1, · · · , kC1−1, such

that 1 < k1 < · · · < kC1−1 < n
6: Apply LR1(Q1C1) to generate R1 potential offspring

7: Select the best solution B from R1 offspring

8: Output: The best solution B

In order to avoid tuning the parameters of CR and F , in this

work, a self-adaptive parameter control technique is adopted.

The technique is similar to the method proposed in [5], where

the self-adaptive parameter control is implemented in the indi-

vidual level. The parameters CRi and F i are encoded in each

individual P i. Moreover, in our proposed technique each indi-

vidual contains an accepting flag f i, if the offspring U i gener-

ated by the parent P i is accepted, f i = 1; otherwise, f i = 0.

Our proposed self-adaptive parameter control technique is in-

troduced as follows

F i =







rnd[0.1, 1], rnd[0, 1] < τ1 and f i == 0

F i, otherwise
(6)

CRi =







N(0.9, 0.05), rnd[0, 1] < τ2 and f i == 0

CRi, otherwise
(7)

where rnd[a, b] is the uniform random variable between a and

b. N(0.9, 0.05) is a normal distribution. τ1 and τ2 indicate

probabilities to adjust factors F i and CRi.

The rationale behind using a normal distribution N(0.9, 0.05)
for CRi is that N(0.9, 0.05) will generate values in the range

of [0.9 − 3 × 0.05, 0.9 + 3 × 0.05] which gives more proba-

bility to values surrounding 0.9. When CRi > 1.0, reset it to

1.0. The reason for preferring values surrounding 0.9 is that

CRi = 0.9 can obtain good results for many problems [19].

The main difference between our proposed self-adaptive pa-

rameter control technique and the method proposed in [5] is

that in our technique the accepting flag f i is encoded in each

individual. The reason is that if f i == 1 means the parent can

generate a good offspring with its factors F i and CRi, hence

these factors can be used in the next generation. In this man-

ner, our approach can enhance the ability of the self-adaptive

parameter control. To verify this improvement, we will make

addition experiments to compare our method with the method

used in [5] in the next section 5.6.

4.5. Handling the boundary constraint of variables

After using the DE/rand/1/exp scheme to generate a new

solution, if one or more of the variables in the new solution are

outside their boundaries, i.e. xi /∈ [li, ui], the following repair

rule is applied:

xi =







li + rndi[0, 1]× (ui − li) if xi < li

ui − rndi[0, 1]× (ui − li) if xi > ui

(8)

where rndi[0, 1] is the uniform random variable from [0,1] in

each dimension i.

4.6. Main procedure of ODE

For the global optimization problems, the proposed ODE

works similar to the model2 described in Algorithm 2. The dif-

ferences are: i) the initial population of ODE is generated using

Algorithm 4, ii) the orthogonal crossover operator is employed

to enhance the local search ability; and iii) the factors CRi and

F i are calculated self-adaptively. The main procedure is intro-

duced in Algorithm 6.

Algorithm 6 Main procedure of our approach: ODE-model2

1: Generate the initial population P using Algorithm 4

2: Generate the OA for orthogonal crossover

3: while The halting criterion is not satisfied do

4: for i = 1 to NP do

5: Select uniform randomly r1 6= r2 6= r3 6= i
6: Calculate F i and CRi as shown in Eqn. (6) and

Eqn. (7)

7: Generate the offspring U i using DE/rand/1/exp

8: Evaluate the offspring U i

9: if U i is better than P i then

10: P i = U i {Replace the parent immediately}
11: end if

12: end for

13: Adopt the orthogonal crossover to generate an offspring

B (see Algorithm 5)

14: Randomly select a solution A from the population P
15: if B is better than A then

16: A = B
17: end if

18: end while

5. Experiments

In order to validate the performance of ODE, we have carried

out different experiments using the test suit described in Table 1.

The test suite consists of 25 unconstrained single-objective

benchmark functions with different characteristics chosen from

the literature. All of the functions are minimization problems.

A more detailed description of each function is given in [2] and

[25], where the functions were divided into three classes: func-

tions with no local minima, many local minima, and a few local

minima. If the number of test problems were smaller, it would

be very difficult to make a general conclusion. Using a test set

which is too small also has the potential risk that the algorithm

is biased (optimized) toward the chosen set of problems. Such

bias might not be useful for other problems of interest.

Functions f01 −f13, f24 and f25 are high-dimensional prob-

lems. Functions f01 − f05 are unimodal. Function f06 is the
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Table 1

The 25 benchmark functions used in our experimental study, where n is the number of variables, “optimal” is the minimum value of the function, and

S ⊆ Rn. A detail description of all functions can be found in [2] and [25].

Test Functions n S optimal

f01 =
n
∑

i=1

x2
i 30 [−100, 100]n 0

f02 =
n
∑

i=1

|xi| +
n
∏

i=1

|xi| 30 [−10, 10]n 0

f03 =

n
∑

i=1

(

i
∑

j=1

xj)
2 30 [−100, 100]n 0

f04 = max
i

{|xi|, 1 ≤ i ≤ n} 30 [−100, 100]n 0

f05 =

n−1
∑

i=1

[100(xi+1 − x2
i )2 + (xi − 1)2] 30 [−30, 30]n 0

f06 =
∑

n−1

i=1
(⌊xi + 0.5⌋)2 30 [−100, 100]n 0

f07 =

n
∑

i=1

x4
i + random[0, 1) 30 [−1.28, 1.28]n 0

f08 =

n
∑

i=1

(−xi sin(
√

|xi|)) 30 [−500, 500]n -12569.48662

f09 =

n
∑

i=1

(x2
i − 10 cos(2πxi) + 10) 30 [−5.12, 5.12]n 0

f10 = −20 exp(−0.2

√

1
n

n
∑

i=1

x2
i
) − exp( 1

n

n
∑

i=1

cos(2πxi)) + 20 + exp(1) 30 [−32, 32]n 0

f11 = 1
4000

n
∑

i=1

x2
i −

n
∏

i=1

cos(
xi√

i
) + 1 30 [−600, 600]n 0

f12 =
π

n
{10 sin2(πyi) +

n−1
∑

i=1

(yi − 1)2 · [1 + 10 sin2(πyi+1)] + (yn − 1)2}

+

n
∑

i=1

u(xi, 10, 100, 4)

30 [−50, 50]n 0

f13 =
1

10
{sin2(3πx1) +

n−1
∑

i=1

(xi − 1)2[1 + sin2(3πxi+1)] + (xn − 1)2[1 + sin2(2πxn)]}

+

n
∑

i=1

u(xi, 5, 100, 4)

30 [−50, 50]n 0

f14 =

[

1
500 +

25
∑

j=1

1

j+
2
∑

i=1
(xi−aij)6

]−1

2 [−65.536, 65.536]n 0.998

f15 =
11
∑

i=1

[

ai −
x1(b2

i
+bix2)

b2
i
+bix3+x4

]2

4 [−5, 5]n 0.003075

f16 = 4x2
1 − 2.1x4

1 + 1
3x6

1 + x1x2 − 4x2
2 + 4x4

2 2 [−5, 5]n -1.0316285

f17 = (x2 − 5.1
4π2 x2

1 + 5
π

x1 − 6)2 + 10(1 − 1
8π

) cos x1 + 10 2 [−5, 10] × [0, 15] 0.398

f18 = [1 + (x1 + x2 + 1)
2
(19 − 14x1 + 3x

2
1 − 14x2 + 6x1x2 + 3x

2
2)]

×[30 + (2x1 − 3x2)
2(18 − 32x1 + 12x

2
1 + 48x2 − 36x1x2 + 27x

2
2)]

2 [0, 1]n 3

f19 = −

4
∑

i=1

ci exp[−

n
∑

j=1

aij(xj − pij)2] 3 [0, 1]n -3.86

f20 = −

4
∑

i=1

ci exp[−

n
∑

j=1

aij(xj − pij)2] 6 [0, 1]n -3.32

f21 = −

5
∑

i=1

[(x − ai)(x − ai)
T + ci]

−1 4 [0, 10]n -10.1532

f22 = −
7

∑

i=1

[(x − ai)(x − ai)
T + ci]

−1 4 [0, 10]n -10.40294

f23 = −

10
∑

i=1

[(x − ai)(x − ai)
T + ci]

−1 4 [0, 10]n -10.53641

f24 = −
n
∑

i=1

sin xi sin20 (
i×x2

i
π

) 100 [0, π]n -99.2784

f25 = 1
n

n
∑

i=1

(x4
i − 16x2

i + 5xi) 100 [−5, 5]n -78.33636
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Table 2

Comparison with ODE/2, ODE/1, DE/1 and DE/2 on f01 − f25. A result in Boldface indicates that a better result obtained, hereinafter.

F
Number of successful runs Mean NFEs of successful runs Mean time of successful runs (in s)

ODE/1 ODE/2 DE/1 DE/2 ODE/1 ODE/2 DE/1 DE/2 ODE/1 ODE/2 DE/1 DE/2

f01 50 50 50 50 45,758 35,235 67,066 53,548 0.61438 0.37002 0.74070 0.30656

f02 50 50 50 50 49,370 36,914 67,006 45,912 0.76460 0.49724 0.93606 0.39628

f03 50 50 50 50 120,197 95,520 203,232 144,076 2.04940 1.15154 5.44628 1.52286

f04 50 50 50 50 144,562 126,731 292,802 189,680 1.97096 1.16576 3.24654 1.55036

f05 50 50 50 49 249,288 232,171 264,804 236,808 3.04561 1.58274 2.58126 1.55169

f06 50 50 50 50 26,559 20,051 39,106 30,286 0.51590 0.34658 0.53066 0.25436

f07 50 50 18 46 87,545 83,072 393,190 328,491 1.51686 1.11970 6.29418 4.21772

f08 50 50 50 50 50,880 42,346 116,952 955,90 0.89660 0.61996 1.67410 0.98034

f09 50 50 50 50 68,967 63,763 208,942 168,732 0.99896 0.67624 2.50854 1.29378

f10 50 50 50 50 48,200 36,802 68,136 53,784 0.81238 0.50188 0.94564 0.45938

f11 50 50 50 50 44,269 34,010 66,618 51,602 0.76216 0.48592 0.88414 0.46190

f12 50 50 50 50 31,139 23,648 47,790 36,290 1.11812 0.76506 1.46412 0.89940

f13 50 50 50 50 43,807 33,409 67,020 50,236 1.42348 0.97246 1.93056 1.18938

f14 50 50 50 50 3,707 3,383 4,186 3,702 0.07462 0.05970 0.06934 0.04788

f15 50 50 50 50 1,163 1,124 1,144 946 0.02562 0.02064 0.00878 0.00464

f16 50 50 50 50 1,179 1,016 1,154 998 0.02246 0.01818 0.00722 0.00248

f17 50 50 50 50 1,744 1,584 1,688 1,356 0.02316 0.01840 0.01064 0.00312

f18 50 50 50 50 1,896 1,621 1,928 1,556 0.02750 0.02056 0.01278 0.00532

f19 50 50 50 50 1,192 946 1,132 1,038 0.02186 0.01938 0.00784 0.00378

f20 50 50 50 50 5,244 4,059 5,354 14,504 0.06447 0.03842 0.04780 0.07564

f21 50 50 50 50 7,132 5,473 7,234 5,918 0.06756 0.03648 0.05742 0.02374

f22 50 50 50 50 6,263 5,053 6,258 5,066 0.06064 0.03726 0.04842 0.02062

f23 50 50 50 50 6,355 4,782 6,352 5,184 0.06408 0.03592 0.05156 0.02432

f24 0 0 0 0 – – – – – – – –

f25 50 50 50 50 52,085 47,940 171,053 120,130 5.14173 4.16752 5.63183 3.27023

Σ 1,200 1,200 1,168 1,195 1,098,501 940,653 2,110,147 1,645,433 22.08311 14.72756 35.13641 18.56578

step function which has one minimum and is discontinuous.

Function f07 is a noisy quadratic function. Functions f08−f13,

f24 and f25 are multimodal functions where the number of lo-

cal minima increases exponentially with the problem dimen-

sion [2], [25]. For f24 as an example, if the solution is to be

accurate up to two decimal places, there are (π/0.01)100 =
5.19× 10249 possible points in the feasible solution space, and

there are 100! = 9.33×10157 local minima. Functions f14−f23

are low-dimensional functions which have only a few local

minima.

5.1. Experimental setup

For all problems, we used the following parameters 2 :

– Population size: NP = 100;

– Parameters of orthogonal initial population: To generate a

minimal OA, we use J = 2, if n > 11, Q = n−1; otherwise,

Q = 11;

– Parameters of orthogonal crossover: Q1 = 3, C1 = 4. Con-

sequently, J1 can be found to be 2;

– τ1 = τ2 = 0.1.

2 For ODE, we have chosen a reasonable set of value and have not made

any effort in finding the best parameter settings. We leave this task for a

future study.

– Halting criterion: When the maximum of NFEs (Max eval)
is reached, the execution of the algorithm is stopped. And

the Max eval is different for different problems.

All the algorithms are implemented in C++ and the exper-

iments are done on a P-IV 3.0 GHz machine with 512 MB

RAM under WIN-XP platform. For each function 50 indepen-

dent runs with different random seeds are taken. It is worth to

note that since the initial population of ODE is generated by

Algorithm 4, for the same function the initial population is the

same for all 50 runs.

5.2. Comparison of ODE/2 with ODE/1, DE/1 and DE/2

The focus of this subsection was to compare the perfor-

mance of the proposed model2 of DE with the original model1.

Moreover, the performance of orthogonal design method used

in DE is also verified. Where ODE/2 is introduced in Algo-

rithm 6. ODE/1 is similar to ODE/2, the only difference is that

in ODE/1 the offspring is not accepted immediately (see Al-

gorithm 1). For DE/1 and DE/2, the orthogonal initial popula-

tion and orthogonal crossover operator are not used. Note that

the self-adaptive parameter control method is still adopted for

DE/1 and DE/2. For each DE 50 independent runs with differ-

ent random seeds are taken and the number of successful runs

(out of 50 runs), mean NFEs and execution time of success-

7



Table 3

Comparison of the quality of the final results between ODE/2 and DE/2 on f01 − f25.

F Max eval
MNFEs Mean Best Std

Optimal
ODE/2 DE/2 ODE/2 DE/2 ODE/2 DE/2

f01 150,000 150,000 150,000 2.06E-23 1.64E-18 1.83E-23 5.29E-18 0

f02 200,000 200,000 200,000 1.43E-18 2.97E-15 8.11E-19 5.78E-15 0

f03 500,000 500,000 500,000 5.25E-27 3.53E-20 9.66E-27 3.53E-20 0

f04 500,000 500,000 500,000 2.72E-15 9.73E-10 9.30E-15 5.00E-10 0

f05 500,000 428,776 494,788 0 2.55E-29 0 1.15E-28 0

f06 150,000 22,640 30,454 0 0 0 0 0

f07 300,000 300,000 300,000 0.00145 0.00598 4.20E-04 0.00125 0

f08 300,000 90,381 167,324 -12569.48662 -12569.48662 0 0 -12596.48662

f09 300,000 127,666 247,626 0 0 0 0 0

f10 150,000 150,000 150,000 4.67E-13 3.19E-10 1.86E-13 1.10E-10 0

f11 200,000 109,853 138,236 0 0 0 0 0

f12 150,000 150,000 150,000 6.73E-26 4.99E-20 9.27E-26 3.68E-20 0

f13 150,000 150,000 150,000 4.37E-24 4.42E-18 3.67E-24 4.66E-18 0

f14 10,000 9,552 9,796 0.998 0.998 0 7.92E-15 0.998

f15 150,000 32,430 34,484 3.08E-04 3.08E-04 0 0 0.0003075

f16 10,000 10,000 10,000 -1.03163 -1.03163 0 9.16E-14 -1.0316825

f17 10,000 10,000 10,000 0.39789 0.39789 2.01E-10 6.35E-11 0.39789

f18 10,000 10,000 10,000 3 3 0 1.34E-14 3

f19 10,000 10,000 10,000 -3.86278 -3.86278 2.68E-15 2.68E-15 -3.86

f20 20,000 20,000 20,000 -3.322 -3.31962 1.13E-12 0.01681 -3.32

f21 10,000 10,000 10,000 -10.1532 -10.1532 1.04E-06 1.29E-05 -10.1532

f22 10,000 10,000 10,000 -10.40294 -10.40294 2.49E-08 5.84E-08 -10.40294

f23 10,000 10,000 10,000 -10.53641 -10.53641 2.35E-08 5.80E-08 -10.53641

f24 500,000 500,000 500,000 -97.93352 -80.61412 0.35098 0.80576 -99.2784

f25 500,000 272,188 500,000 -78.33233 -78.33233 0 4.29E-14 -78.33236

ful runs are recorded. For a particular problem and a particular

algorithm, a run is said to be a successful run if the best ob-

jective function value found in that run lies within 0.5%, i.e.

|f(Xbest) − f(Xoptimal)| ≤ 0.005, accuracy of the best know

objective function value of that problem. The maximal NFEs

(Max eval) are also fixed to be 500,000 for all DEs. The re-

sults are list in Table 2. From this table it can be observed that

except function f24 both ODE/1 and ODE/2 solve all problems

in all 50 runs. For function f07, DE/1 and DE/2 can not solve

this problem in all 50 runs. For function f05, DE/2 traps in the

local optima once. In 20 test functions the mean NFEs of suc-

cessful runs required by ODE/2 are the least among ODE/1,

DE/1 and DE/2. Moreover, the overall mean NFEs of 24 func-

tions required by ODE/2 are least. For DE/2, it requires the

least mean NFEs of successful runs in 4 functions. With re-

spect to the mean time of successful runs, DE/2 requires the

least time in 16 functions whereas ODE/2 requires least time

in 8 functions.

Compared the performance of model1 with model2 (i.e.

ODE/1 vs. ODE/2 and DE/1 vs. DE/2), ODE/2 (DE/2) is bet-

ter than ODE/1 ( DE/1) in terms of the three criteria above-

mentioned.

To verify the performance of orthogonal design method used

in DE, from table 2 we can see that ODE/1 (ODE/2) is better

than DE/1 (DE/2) in terms of the overall mean NFEs. However,

the mean time required by ODE/1 and ODE/2 are more than

DE/1 and DE/2. The reason is that in our implementation the

OA is generated in each run. As mentioned above for ODE the

initial population is same in each run, so in order to reduce the

time-consuming we need not to generate the OA in each run.

Because we focus on enhancing the robust and accelerating the

convergence rate of DE in this work, the time-consuming of

construction of OA is not considered.

In view of the above discussions we conclude that i) the

performance of model2 is better than that of model1; ii) the

orthogonal design method can enhance the performance of DE;

iii) our proposed ODE/2 outperforms ODE/1, DE/1 and DE/2

in terms of the overall performance. Hence in the following

experiments we only consider ODE/2 and DE/2.

5.3. Comparison of the quality of the final results between

ODE/2 and DE/2

In this experiment, we compare the quality of the final re-

sults obtained by ODE/2 and DE/2. We set the parameters as

described in the subsection 5.1. In order to compare the quality

of the solutions found by ODE/2 and DE/2, we list: i) the mean

NFEs (“MNFEs”), ii) the mean best function value (“Mean

Best”), and iii) the standard deviation of the function values

(“Std”). The mean results of 50 independent runs are summa-

rized in Table 3. Furthermore, some representative graphs com-

paring the convergence characteristics of ODE/2 with DE/2 are

shown in Fig. 1.
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From Table 3, we see that the mean function values found by

ODE/2 are equal or close to the optimal ones, and the standard

deviations of the function values are relatively small. These

results indicate that ODE/2 can find optimal or close-to-optimal

solutions, and its solution quality is quite stable.

Moreover, Table 3 compares the results between ODE/2 and

DE/2 to show the performance of the orthogonal design method.

Recall that DE/2 is the same as ODE/2, except that it uses ran-

dom sampling instead of orthogonal sampling. From this table

it can be observed that ODE/2 obtain better or the same results

compared with DE/2 in terms of mean NFEs, mean function

values and the standard deviation of function values. In 8 func-

tions ODE/2 requires less function evaluations than DE/2. In

addition, ODE/2 gives smaller mean function values than DE/2

in 12 functions. Furthermore, ODE/2 obtains smaller standard

deviations of function values than DE/2 in 18 functions. Also,

from Fig. 1 we can see that the convergence rate of ODE/2

is faster than DE/2, especially for the high-dimensional prob-

lems. These results demonstrate that orthogonal design method

used in DE can effectively enhance the performance of DE. In

addition, from Fig. 1 it can be seen that the best solution of

the initial population of ODE/2 is closer to the global optimum

(e.g. f08, f19 and f25) after using the orthogonal initial popu-

lation, and hence, it can be further explored in the subsequent

iterations.

5.4. Comparison of ODE/2 with FEP and CEP

In the experiment, we compare the performance of ODE/2

with FEP and CEP. The mean results of 50 independent runs are

summarized in Table 4. Results for the FEP and CEP algorithms

are taken from [2].

From Table 4, it is clear to see that ODE/2 obtains better re-

sults on the 23 benchmark functions than FEP and CEP. ODE/2

gives smaller mean function values than FEP and CEP, and

hence its mean solution quality is better. In addition, ODE/2 is

able to obtain smaller standard deviations of function values, it

means that the solution quality of ODE/2 is more stable than

FEP and CEP. Moreover, in 7 functions ODE/2 requires less

mean NFEs.

5.5. Comparison of ODE/2 with OGA/Q, HTGA, LEA and

HTGA/T

In this subsection the performance of ODE/2 is compared

with four EAs (OGA/Q [25], HTGA [30], LEA [6], and

HTGA/T [6]), which also incorporate the experiment design

method into EAs. The four algorithms are briefly described as

follows.

– The orthogonal genetic algorithm with quantization

(OGA/Q) [25]: OGA/Q uses an orthogonal design to gen-

erate the initial population. And the orthogonal design was

used to construct a crossover operator.

– The hybrid Taguchi-genetic algorithm (HTGA) [30]: HTGA

combines the Taguchi method into a genetic algorithm. The

Taguchi method is a robust experimental design approach

that uses both the orthogonal design method and the SNR.

– The level-set evolution and Latin squares based EA

(LEA) [6]: LEA combines the level-set evolution and Latin

squares with EA. The Latin squares were used to generate

the initial population and to design the crossover operator.

– HTGA without the Taguchi method (HTGA/T) [6]: HTGA/T

is the same as HTGA, only expect the Taguchi method is

removed from HTGA.

The mean results of 50 independent runs are summarized in

Table 5. Results for the OGA/Q, HTGA, LEA and HTGA/T

algorithms are taken from [25], [30], [6] and [6], represen-

tatively. From this table it can be seen that each of ODE/2,

OGA/Q, HTGA and LEA is able to find the optimal or close-

to-optimal solution with small standard deviations for these

13 functions. HTGA/T performs worst among the five algo-

rithms. It can not find the optimal solutions for all 13 func-

tions. And the standard deviations of HTGA/T are larger than

ODE/2, OGA/Q, HTGA and LEA. For five functions (f08, f12,

f13, f24 and f25), ODE/2 can provide the better mean function

values than OGA/Q, HTGA, LEA and HTGA/T. In addition,

the mean NFEs required by ODE/2 are smaller than them for

the five functions. ODE/2 performs a little better than OGA/Q

and LEA, especially for the functions with many local minima.

ODE/2 performs worse than HTGA for eight out of 13 func-

tions. Note that the number of generations used by HTGA was

much smaller than 1000 and the solutions could not be further

improved by more generations. Thus, although the mean num-

ber of function evaluations used by HTGA is smaller than that

used by ODE/2, ODE/2 has the stronger ability to find better

solutions than HTGA for higher dimensional problems. These

results also indicate the Taguchi method can effectively im-

prove the performance of the genetic algorithm, especially for

30 or lower dimensional problems [6]. For example, for func-

tions f24 and f25, which are 100-dimensional problems, ODE/2

can provide better results with smaller mean NFEs than HTGA.

Moreover, ODE/2 performs remarkably better than HTGA/T,

where the Taguchi method is removed from HTGA.

5.6. The accepting flag for self-adaptive DE

In the experiment, we test the performance of the accept-

ing flag for self-adaptive DE. To verify the performance of

the accepting flag, the accepting flag is removed from ODE/2,

and the resulting algorithm, denoted as ODE/2/a, is executed

to compare with ODE/2. The mean results of 50 independent

runs are summarized in Table 6 for eight selected respective

functions (f01, f05, f08, f13, f19, f21, f24 and f25).

From Table 6 it can be observed that ODE/2 is a little better

than ODE/2/a in terms of the mean NFEs, mean best function

values and the standard deviations of function values. These

results indicate that the accept flag encoded in each individual

can improve the performance of DE.
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Fig. 1. Convergence curves of ODE/2 and DE/2 algorithm for selected functions. X axis represents number of function evaluations (NFEs) and Y axis represents

function values.
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Table 4

Comparison of the performance of ODE/2 with FEP and CEP on f01 − f23.

F
MNFEs Mean Best Std

ODE/2 FEP CEP ODE/2 FEP CEP ODE/2 FEP CEP

f01 150,000 150,000 150,000 2.06E-23 5.70E-4 2.20E-4 1.83E-23 1.30E-4 5.90E-4

f02 200,000 200,000 200,000 1.43E-18 8.10E-3 2.60E-3 8.11E-19 7.70E-4 1.70E-4

f03 500,000 500,000 500,000 5.25E-27 1.60E-2 5.00E-2 9.66E-27 1.40E-2 6.60E-2

f04 500,000 500,000 500,000 2.72E-15 0.3 2.0 9.30E-15 0.5 1.2

f05 428,776 2,000,000 2,000,000 0 5.06 6.17 0 5.87 13.61

f06 22,640 150,000 150,000 0 0 577.76 0 0 1125.76

f07 300,000 300,000 300,000 0.00145 0.00760 0.01800 4.20E-04 2.60E-3 6.40E-3

f08 90,381 900,000 900,000 -12569.48662 -12554.5 -7917.1 0 52.6 634.5

f09 127,666 500,000 500,000 0 4.60E-2 89.0 0 1.20E-2 23.1

f10 150,000 150,000 150,000 4.67E-13 1.80E-2 9.2 1.86E-13 2.1E-3 2.8

f11 109,853 200,000 200,000 0 1.60E-2 8.60E-2 0 2.20E-2 0.12

f12 150,000 150,000 150,000 6.73E-26 9.20E-6 1.76 9.27E-26 3.60E-6 2.4

f13 150,000 150,000 150,000 4.37E-24 1.60E-4 1.4 3.67E-24 7.30E-5 3.7

f14 9,552 10,000 10,000 0.998 1.22 1.66 0 0.56 1.19

f15 32,430 400,000 400,000 3.08E-04 5.00E-4 4.70E-4 0 3.20E-4 3.00E-4

f16 10,000 10,000 10,000 -1.03163 -1.03 -1.03 0 4.90E-7 4.90E-7

f17 10,000 10,000 10,000 0.39789 0.398 0.398 2.01E-10 1.50E-7 1.50E-7

f18 10,000 10,000 10,000 3.00 3.02 3.00 0 0.11 0

f19 10,000 10,000 10,000 -3.86278 -3.86 -3.86 2.68E-15 1.40E-5 1.40E-2

f20 20,000 20,000 20,000 -3.322 -3.27 -3.28 1.13E-12 5.90E-2 5.80E-2

f21 10,000 10,000 10,000 -10.1532 -5.52 -6.86 1.04E-06 1.59 2.67

f22 10,000 10,000 10,000 -10.40294 -5.52 -8.27 2.49E-08 2.12 2.95

f23 10,000 10,000 10,000 -10.53641 -6.57 -9.10 2.35E-08 3.14 2.92

5.7. Discussions of the experimental results

The comparison results in Table 2- 6 can be summarized as

follows.

– The proposed model2 of DE is better than the original model1

in terms of the average NFEs and average execution time.

Model2 can reduce the computational complexity and accel-

erate the convergence rate.

– The orthogonal design method can enhance the performance

of DE. It can remarkably accelerate the convergence rate for

the high-dimensional problems.

– Our approach, ODE/2, can obtain optimal or close-to-optimal

solutions with small standard deviations for all the 25 test

functions.

– ODE/2 performs better than CEP, FEP, and HTGA/T. In ad-

dition, it performs a little better than OGA/Q and LEA, es-

pecially for the functions with many local minima. More-

over, ODE/2 can find better solutions than HTGA on 100-

dimensional problems f24 and f25.

– The accept flag encoded in each individual can improve the

performance of DE.

6. Conclusions

In this paper, we have presented a improved DE algorithm to

solve the global optimization problems with continuous vari-

ables. We combine the orthogonal design method into DE to ac-

celerate its convergence rate. Moreover, an improved model of

Table 6

Comparison of ODE/2 with ODE/2/a on eight functions.

F
MNFEs Mean Best Std

ODE/2 ODE/2/a ODE/2 ODE/2/a ODE/2 ODE/2/a

f01 150,000 150,000 2.06E-23 1.15E-22 1.83E-23 5.36E-23

f05 428,776 431,359 0 0 0 0

f08 90,381 92,371 -12569.49 -12569.49 0 0

f13 150,000 150,000 4.37E-24 1.18E-23 3.67E-24 1.45E-24

f19 10,000 10,000 -3.86278 -3.86278 2.68E-15 2.80E-15

f21 10,000 10,000 -10.1532 -10.1532 1.04E-06 1.95E-6

f24 500,000 500,000 -97.93352 -97.85130 0.1510 0.2658

f25 272,188 273,955 -78.33233 -78.33233 0 0

DE is proposed to reduce the computational complexity of the

original DE. To avoid tuning the factors of DE, the self-adaptive

parameter control technique is adopted in our approach. We ex-

ecuted the proposed algorithm to solve 25 benchmark problems

with high or low dimensions, where some of these problems

have numerous local minima. The computational experiments

show that the proposed ODE/2 can find optimal or close-to-

optimal solutions, solutions, and it is more competitive than

almost all of the compared algorithms for these test problems.

Our future work consists on investigating the effect of differ-

ent parameter settings on the performance of our approach, and

adding a diversity mechanism in ODE to solve the constrained

optimization problems.
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Table 5

Comparison of ODE/2 with OGA/Q, HTGA, LEA and HTGA/T.

F Algorithms MNFEs Mean Best Std F Algorithms MNFEs Mean Best Std

ODE/2 100,000 2.241E-16 8.918E-18 ODE/2 150,000 4.670E-13 1.860E-13

OGA/Q 112,559 0 0 OGA/Q 112,421 4.440E-16 3.989E-17

f01 HTGA 20,844 0 0 f10 HTGA 16,632 0 0

LEA 110,674 4.727E-16 6.218E-17 LEA 105,926 3.274E-16 3.0OlE-17

HTGA/T 153,109 0.079182 0.055237 HTGA/T 183,107 0.07235 0.09174

ODE/2 100,000 8.120E-16 7.326E-17 ODE/2 109,853 0 0

OGA/Q 112,612 0 0 OGA/Q 134,000 0 0

f02 HTGA 14,285 0 0 f11 HTGA 20,999 0 0

LEA 110,031 4.247E-19 4.236E-19 LEA 130,498 6.104E-16 2.513E-17

HTGA/T 163,372 0.07153 0.08218 HTGA/T 200,125 0.02998 0.03897

ODE/2 100,000 5.3965E-12 5.366E-14 ODE/2 50,000 2.996E-7 7.203E-7

OGA/Q 112,576 0 0 OGA/Q 134,556 6.019E-6 1.159E-6

f03 HTGA 26,469 0 0 f12 HTGA 66,457 1.000E-6 0

LEA 110,604 6.783E-18 5.429E-18 LEA 132,642 2.482E-6 2.276E-6

HTGA/T 166,108 0.06164 0.05216 HTGA/T 200,125 0.02998 0.03897

ODE/2 100,000 1.9561E-7 1.3306E-7 ODE/2 50,000 6.962E-6 3.586E-6

OGA/Q 112,893 0 0 OGA/Q 134,143 1.869E-4 2.615E-5

f04 HTGA 21,261 0 0 f13 HTGA 59,003 1.000E-4 0

LEA 111,105 2.683E-16 6.257E-17 LEA 130,213 1.734E-4 1.205E-4

HTGA/T 166,572 0.02407 0.04195 HTGA/T 200,356 0.04487 0.04326

ODE/2 100,000 2.384E-3 3.326E-4 ODE/2 150,000 -94.27 2.248E-3

OGA/Q 112,652 6.301E-3 4.069E-4 OGA/Q 302,773 -92.83 2.626E-2

f07 HTGA 20,844 1.000E-3 0 f24 HTGA 265,693 -92.83 0

LEA 111,093 5.136E-3 4.432E-4 LEA 289,863 -93.01 0.02314

HTGA/T 160,804 0.081563 0.07335 HTGA/T 316,235 -74.2280 0.06117

ODE/2 90,381 -12569.48662 0 ODE/2 200,000 -78.332 1.059E-5

OGA/Q 302,166 -12569.4537 6.447E-4 OGA/Q 245,930 -78.300 6.288E-3

f08 HTGA 163,468 -12569.4600 0 f25 HTGA 216,535 -78.303 0

LEA 287,365 -12569.4542 4.831E-4 LEA 243,895 -78.310 6.127E-3

HTGA/T 293,204 -10117.1532 5.3528 HTGA/T 326,136 -50.4200 5.02819

ODE/2 127,666 0 0

OGA/Q 224,710 0 0

f09 HTGA 16,267 0 0

LEA 223,803 2.103E-18 3.359E-18

HTGA/T 257,251 0.055346 O.O641
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