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Biogeography-based optimization (BBO) is a new biogeography inspired algorithm for glo-
bal optimization. There are some open research questions that need to be addressed for
BBO. In this paper, we extend the original BBO and present a real-coded BBO approach,
referred to as RCBBO, for the global optimization problems in the continuous domain. Fur-
thermore, in order to improve the diversity of the population and enhance the exploration
ability of RCBBO, the mutation operator is integrated into RCBBO. Experiments have been
conducted on 23 benchmark problems of a wide range of dimensions and diverse complex-
ities. The results indicate the good performance of the proposed RCBBO method. Moreover,
experimental results also show that the mutation operator can improve the performance of
RCBBO effectively.
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1. Introduction

The global optimization problems frequently arise in almost every field of engineering design, applied sciences, molecular
biology and other scientific applications. Without loss of generality, the unconstrained continuous global minimization prob-
lem can be formalized as a pair (S, f), where S#RD is a bounded set on RD and f : S ! R is a D-dimensional real-valued func-
tion. The problem is to find a point X* 2 S such that f(X*) is the global minimum on S [1]. More specifically, it is required to
find an X* 2 S such that

8X 2 S : f ðX�Þ 6 f ðXÞ; ð1Þ
where f does not need to be continuous but it must be bounded.

The major challenge of the global continuous optimization is that the problems to be optimized may have many local
optima. This issue is particularly challenging when the dimension is high. During the last few decades, Evolutionary algo-
rithms (EAs) [2] have been proposed for solving the global continuous optimization problems. There are many different
EAs for global optimization in continuous domain, such as genetic algorithms (GAs) [3], evolution strategy (ES) [4], evolu-
tionary programming (EP) [1], particle swarm optimization (PSO) [5], differential evolution (DE) [6], and so on.

Biogeography-based optimization (BBO), proposed by Simon [7], is a new global optimization algorithm based on the bio-
geography theory, which is the study of the geographical distribution of biological organisms. The BBO approach has a way of
sharing information between solutions. This feature is like other biology-based algorithms, such as GAs and PSO. However,
BBO also has some features that are unique among biology-based algorithms, for example it maintains its set of solutions
from one iteration to the next one, relying on migration to probabilistically adapt those solutions [7]. In the original BBO
algorithm, it adopts a vector of integers to represent a solution to some problems. Simon compared BBO with seven
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state-of-the-art EAs over 14 benchmark functions and a real-world sensor selection problem. The results demonstrated the
good performance of BBO. Since BBO is a new global optimization algorithm, there are some open research questions that
need to be addressed, such as modifying the BBOmethod so that it could be used to directly optimize functions of continuous
variables [7]. In addition, with the probabilistic migration BBO can make the good solutions share more information with the
poor ones. Meanwhile, it can prevent the good solutions from being destroyed during the evolution. Thus, it can utilize the
information of current population efficiently. However, the migration operator lacks the exploration ability and cannot im-
prove the diversity of the population.

The aims of this paper are twofold: (i) we propose an extension of the original BBO algorithm (RCBBO), where each indi-
vidual is directly encoded by floating point for the global continuous optimization problems; and (ii) the mutation operator
is integrated into RCBBO to enhance its exploration ability and to improve the diversity of the population. Experiments have
been conducted on 23 benchmark problems of a wide range of dimensions and diverse complexities. The results indicate the
good performance of the proposed RCBBOmethod. Moreover, experimental results also show that the mutation operator can
improve the performance of RCBBO effectively. Additionally, we combine the RCBBOwith the selection rule of EP (RCBBO-EP)
and compare it with some well-known EP variants. The results indicate that RCBBO-EP is better than, or highly competitively
to, its competitors.

The remainder of this paper is organized as follows. In Section 2, the original BBO algorithm is briefly introduced. Some
mutation operators used in this work are described in Section 3. Section 4 presents our proposed RCBBO approach in detail.
This is followed by the performance verification of the proposed approach over 23 benchmark functions in Section 5. The last
Section 6, is devoted to the conclusions and future work.

2. Biogeography-based optimization: BBO

BBO [7] is a new biogeography inspired global optimization algorithm, which is similar to the island model-based GAs [8].
Each individual is considered as a ‘‘habitat” with a habitat suitability index (HSI) to measure the individual. The variables of
the individual that characterize habitability are called suitability index variables (SIVs). In BBO, each individual has its own
immigration rate k and emigration rate l. The immigration rate and emigration rate are functions of the number of species in
the habitat. They can be calculated as follows:

kk ¼ I 1� k
n

� �
; ð2Þ

lk ¼ E
k
n

� �
; ð3Þ

where I is the maximum possible immigration rate; E is the maximum possible emigration rate; k is the number of species of
the kth individual; and n is the maximum number of species. Note that Eqs. (2) and (3) are just one method for calculating k
and l, there are other different options to assign them based on different species models [7].

In BBO, there are two main operators, i.e., migration and mutation. Suppose that we have a global optimization problem
and a population of candidate individuals. The individual is represented by a D-dimensional integer vector (SIV). The pop-
ulation consists of NP = n parameter vectors Xi, i = 1,. . ., NP. One option for implementing the migration operator and the
mutation operator can be described in Algorithms 1 and 2, respectively. Where rndreal (0,1) is a uniformly distributed ran-
dom real number in (0,1) and Xi(j) is the jth SIV of the solution Xi. mi is the mutation rate that is calculated as:

mi ¼ mmax 1� Pi

Pmax

� �
; ð4Þ

where mmax is an user-defined parameter, and Pmax = arg max Pi, i = 1,. . ., NP. With the migration operator BBO can share the
information between solutions. Additionally, the mutation operator tends to increase the diversity of the population. More
details about the two operators can be found in [7] and in the Matlab code [9].

Algorithm 1 (Habitat migration).

1: for i = 1 to NP
2: Select Xi with probability /ki
3: if rndreal (0,1) < ki then
4: for j = 1 to NP do
5: Select Xj with probability /lj

6: if rndreal (0,1) < lj then
7: Randomly select an SIV r from Xj

8: Replace a random SIV in Xi with r
9: end if
10: end for
11: end if
12: end for
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Algorithm 2 (Habitat mutation).

1: for i = 1 to NP
2: Compute the probability Pi
3: Select SIV Xi(j) with probability /Pi
4: if rndreal (0,1) <mi then
5: Replace Xi(j) with a randomly generated SIV
6: end if
7: end for

According to the introduction of BBO, we can see that themigration operator is able to efficiently share the information be-
tween solutions. However, itmay lack the exploration ability, because of the randommutation of BBO as shown in Algorithm2.

3. Mutation operator

Mutation operator is frequently used in EAs [1,10–12]. Especially, the mutation operator is the main operator in the Evolu-
tionaryProgramming (EP) algorithm[1]. In EP, thenewoffspring are obtainedby giving aperturbation to theoriginal individual.
This means all offspring for the next generation are generated in the neighborhood of current solutions. Thus, EP is able to im-
prove the quality of solutions through a mutation strategy. There are many mutation operators in EP, for example, Gaussian
mutation [1], Cauchy mutation [1], Lévy mutation [12], exponential mutation [13], t mutation [14], mixed mutation strategy
[15], and so on. In this section, we will briefly introduce Gaussian mutation, Cauchy mutation, and Lévy mutation, which will
be used in thiswork. The reasons for choosing these threemutation operators are based on three considerations: First, the three
operators arewidelyandsuccessfullyused inEP. Second, they canbeeasilyused for the real-codedvariables. Third, themutation
operatorsofEP is capable ofperformingeither local searchor global searchdependingon the step size; especially in theearly and
middle stages of the evolution, themutationoperators can enhance the exploration and improve thediversity of thepopulation.

3.1. Gaussian mutation

The formula for the probability density function of the Gaussian distribution [16] is

fl;r2 ðxÞ ¼ 1
r

ffiffiffiffiffiffiffi
2p

p e�
ðx�lÞ2
2r2 ; ð5Þ

where l is the mean and r2 is the variance. To indicate that a real-valued random variable Y is normally distributed with
mean l and variance r2 P 0, we write

Y � Nðl;r2Þ:
Then the Gaussian mutation with l = 0 and r = 1 can be described as

X0
iðjÞ ¼ XiðjÞ þ Njð0; 1Þ; ð6Þ

where Xi(j) is the jth decision variable of individual Xi and Nj (0,1) indicates that the random number is generated anew for
each value of j.

3.2. Cauchy mutation

The Cauchy distribution [1,16] has the probability density function

ftðxÞ ¼ 1
p

t
t2 þ x2

; ð7Þ

where x 2 R and t > 0 is a scale parameter. To indicate that a real-valued random variable Y is Cauchy distributed with t > 0,
we write

Y � dðtÞ:
The Cauchy mutation [1] with t = 1 can be described as

X0
iðjÞ ¼ XiðjÞ þ djð1Þ; ð8Þ

where dj(1) indicates that the random number is generated anew for each value of j.

3.3. Lévy mutation

Lévy distribution [17], like the Gaussian distribution and the Cauchy distribution, is stable and has probability density
function that is analytically expressible. The Lévy distribution can be formulized as
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La;c ¼ 1
p

Z 1

0
e�cq

a
cosðqyÞdq; ð9Þ

where y 2 R, c > 0 is the scaling factor, and 0 < a < 2 controls the shape of the distribution. The Lévy mutation [12] with c = 1
and a = 0.8 can be described as

X0
iðjÞ ¼ XiðjÞ þ Ljð0:8Þ; ð10Þ

where Lj(0.8) indicates that the random number is generated anew for each value of j.

4. Real-coded BBO: RCBBO

Inspired by the ideas of real-coded EAs [18,19] and the mutation operators successfully used in EP [1,12], in this study, we
propose a real-coded BBO approach, called RCBBO, for the global optimization problems in the continuous domain. In RCBBO,
each individual is represented by a D-dimensional real parameter vector. Moreover, the mutation operator is integrated into
RCBBO to enhance its exploration ability and to improve the diversity of the population. The pseudocode of RCBBO is de-
scribed in Algorithm 3, where t is the generation counter and NP is the population size.

Algorithm 3 (Real-coded BBO: RCBBO).

1: Generate the initial population P randomly
2: Evaluate the fitness (HSI) for each individual in P
3: Initialize the generation counter t = 1
4: while The halting criterion is not satisfied do
5: Sort the population from best to worst
6: For each individual, map the HSI to the number of species
7: Calculate the immigration rate ki and the emigration rate li for each individual Xi

8: Modify the population with the migration operator shown in Algorithm 1
9: Update the probability for each individual
10: Mutate the population with the mutation operator, which will be shown in Algorithm 4
11: Evaluate the population
12: t = t + 1
13: end while

4.1. Individual representation and initialization

In RCBBO, each individual Xi = (Xi(1),. . .,Xi(D)) is a real-coded vector. The individual is initialized as

XiðjÞ ¼ lj þ rndrealð0; 1Þ � ðuj � ljÞ; ð11Þ
where i = 1,. . ., NP, j = 1,. . ., D, uj and lj is the upper bound and lower bound of Xi (j), respectively.

4.2. Mutation with mutation operator

In order to enhance the exploration ability of BBO, the mutation operator is integrated into BBO to replace the randomly
generated SIV shown in Algorithm 2. The modified mutation operator is described in Algorithm 4, where Xi(j) is the jth deci-
sion variable of individual Xi. The mutation operator in Algorithm 4might be the Gaussian mutation, the Cauchy mutation, or
the Lévy mutation mentioned in Section 3.

Algorithm 4 (Modified habitat mutation).

1: for i = 1 to NP do
2: Compute the probability Pi
3: Select SIV Xi(j) with probability /Pi
4: if rndreal (0,1) <mi then
5: Update Xi(j) with a mutation operator
6: end if
7: end for
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4.3. Handling the boundary constraints

In order to keep the solution of bound-constrained problems feasible, those trial parameters that violate boundary con-
straints should be reflected back from the bound by the amount of violation. This method is also used in [20].

XiðjÞ ¼
2� lj � XiðjÞ if XiðjÞ < lj;

2� uj � XiðjÞ if XiðjÞ > uj:

�
ð12Þ

4.4. Differences among our approach, BBO, and EP

With regard to the differences among our approach, the original BBO algorithm, and the EP algorithm, we can see that:

� Compared with BBO, there are two main differences: (i) Our approach is encoded by the floating point, while BBO is
encoded by the integer point; (ii) since the floating point is used in our approach, the real mutation operator in EAs
can be easily adopted in RCBBO, and hence, the exploration ability can be enhanced.

� Compare with EP, the migration operator is used in RCBBO, it can utilize the population information effectively. In addi-
tion, the modified habitat mutation shown in Algorithm 4 can balance the exploration and the exploitation of RCBBO.

5. Experimental results and analysis

To evaluate the performance of the proposed RCBBO algorithm, 23 benchmark functions from [1] are employed. These
functions have be widely used in the literature [21,22]. The benchmark functions are given in Table 1, where D is the number
of variables, ‘‘optimal” is the minimum value of the function, and S # RD. A more detailed description of these functions can
be found in [1], where the functions were divided into three categories: unimodal functions, multimodal functions with
many local minima, and multimodal functions with a few local minima. In addition, four rotated functions (F03, F07, F08,
and F10) are chosen from CEC’05 test functions [23].

Table 1
Benchmark functions used in our experimental study. More details of all functions can be found in [1].

Test functions n S Optimal

f01 ¼ Pn
i¼1x

2
i

30 [�100,100]n 0

f02 ¼ Pn
i¼1jxij þ

Qn
i¼1jxij 30 [�10,10]n 0

f03 ¼ Pn
i¼1

Pi
j¼1xj

� �2 30 [�100,100]n 0

f04 = maxi{—xi—,1 6 i 6 n} 30 [�100,100]n 0

f05 ¼ Pn�1
i¼1 ½100ðxiþ1 � x2i Þ2 þ ðxi � 1Þ2� 30 [�30,30]n 0

f06 ¼ Pn�1
i¼1 ðbxi þ 0:5cÞ2 30 [�100,100]n 0

f07 ¼ Pn
i¼1x

4
i þ random½0;1Þ 30 [�1.28,1.28]n 0

f08 ¼ Pn
i¼1 �xi sin

ffiffiffiffiffiffiffijxij
p� �� �

30 [�500,500]n �12569.48662

f09 ¼ Pn
i¼1ðx2i � 10 cosð2pxiÞ þ 10Þ 30 [�5.12,5.12]n 0

f10 ¼ �20 exp �0:2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i¼1x

2
i

q� �
� exp 1

n

Pn
i¼1 cosð2pxiÞ

� 	þ 20þ expð1Þ 30 [�32,32]n 0

f11 ¼ 1
4000

Pn
i¼1x

2
i �

Qn
i¼1 cos

xiffi
i

p
� �

þ 1 30 [�600,600]n 0

f12 ¼ p
n f10 sin2ðpyiÞ þ

Pn�1
i¼1 ðyi � 1Þ2 � ½1þ 10 sin2ðpyiþ1Þ� þ ðyn � 1Þ2g þPn

i¼1uðxi;10;100;4Þ 30 [�50,50]n 0

f13 ¼ 1
10 fsin2ð3px1Þ þ

Pn�1
i¼1 ðxi � 1Þ2½1þ sin2ð3pxiþ1Þ� þ ðxn � 1Þ2½1þ sin2ð2pxnÞ�g þ

Pn
i¼1uðxi;5;100;4Þ 30 [�50,50]n 0

f14 ¼ 1
500 þ

P25
j¼1

1
jþ
P2

i¼1
ðxi�aijÞ6


 ��1 2 [�65.536,65.536]n 0.998

f15 ¼ P11
i¼1 ai � x1ðb2i þbix2Þ

b2i þbix3þx4


 �2 4 [�5,5]n 0.003075

f16 ¼ 4x21 � 2:1x41 þ 1
3 x

6
1 þ x1x2 � 4x22 þ 4x42 2 [�5,5]n �1.0316285

f17 ¼ ðx2 � 5:1
4p2 x21 þ 5

p x1 � 6Þ2 þ 10 1� 1
8p

� 	
cos x1 þ 10 2 [�5,10] � [0,15] 0.398

f18 ¼ ½1þ ðx1 þ x2 þ 1Þ2ð19� 14x1 þ 3x21 � 14x2 þ 6x1x2 þ 3x22Þ� � ½30þ ð2x1 � 3x2Þ2ð18� 32x1 þ 12x21
þ48x2 � 36x1x2 þ 27x22Þ�

2 [0,1]n 3

f19 ¼ �P4
i¼1ci exp �Pn

j¼1aijðxj � pijÞ2
h i

3 [0,1]n �3.86

f20 ¼ �P4
i¼1ci exp �Pn

j¼1aijðxj � pijÞ2
h i

6 [0,1]n �3.32

f21 ¼ �P5
i¼1½ðx� aiÞðx� aiÞT þ ci��1 4 [0,10]n �10.1532

f22 ¼ �P7
i¼1½ðx� aiÞðx� aiÞT þ ci��1 4 [0,10]n �10.4029

f23 ¼ �P10
i¼1½ðx� aiÞðx� aiÞT þ ci��1 4 [0,10]n �10.5364
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Functions f01–f13 are high-dimensional problems. Functions f01–f05 are unimodal. Function f06 is the step function,
which has one minimum and is discontinuous. Function f07 is a noisy quartic function, where random [0,1) is a uniformly
distributed random variable in [0,1). Functions f08–f13 are multimodal functions where the number of local minima in-
creases exponentially with the problem dimension. They appear to be the most difficult class of problems for many optimi-
zation algorithms. Functions f14–f23 are low-dimensional functions that have only a few local minima.

5.1. Experimental setup

For RCBBO, we have chosen a reasonable set of value and have not made any effort in finding the best parameter settings.
For all experiments, we use the following parameters unless a change is mentioned.

� population size: NP = 100;
� habitat modification probability = 1;
� mutation probability: mmax = 0.005;
� maximum Number of Fitness Function Evaluations (Max_NFFEs): For f01, f06, f10, f12, and f13, Max_NFFEs = 150,000; for
f03–f05, Max_NFFEs = 500,000; for f02 and f11, Max_NFFEs = 200,000; For f07–f09, Max_NFFEs = 300,000; for f14, f16–
f19, f21, and f22, Max_NFFEs = 10,000; for f15, Max_NFFEs = 40,000; and for f20, Max_NFFEs = 20,000.

Moreover, in our experiments, each function is optimized over 50 independent runs. We also use the same set of initial
random populations to evaluate different algorithms. All the algorithms are implemented in standard C++. The source code
can be obtained from the first author upon request.

In this work, in order to show the improvement of the exploration ability with the mutation operator, three mutation
operators described in Section 3 are adopted. In the experiments, RCBBO-G means RCBBO with Gaussian mutation;
RCBBO-C is RCBBO with Cauchy mutation; and RCBBO-L indicates RCBBO with Lévy mutation. The BBO method also uses
the real-coded representation. However, the mutation of BBO is shown in Algorithm 2.

5.2. Unimodal functions

For unimodal functions, the average results of 50 independent runs are summarized in Table 2. Fig. 1 shows the progress
of the mean best errors1 found by the four algorithms over 50 runs for the selected functions. It is obvious that RCBBO (RCBBO-
G, RCBBO-C, and RCBBO-L) performs significantly better than BBO consistently for f01–f06 (6 out of 7 functions). For function
f07, the quartic function, all approaches can obtain similar results. Moreover, from Fig. 1 we can see that RCBBO converges faster
than BBO due to its better exploration ability. The results shown in Table 2 and Fig. 1 indicate that the mutation operator can
improve the exploration ability effectively for the unimodal functions.

5.3. Multimodal functions with many local minima

For multimodal functions with many local minima, they are often regarded as being difficult to optimize [1]. For these
functions, the final results are much more important since they reflect the algorithm’s ability to escape from the poor local
optima and locate a good near-global optimum [21]. Table 2 summarizes the average results of 50 independent runs for the
selected functions. It is apparent that all RCBBO approaches perform significantly better than BBO in terms of the final results
for all six functions. This is also clearly reflected by the t-test.2 Fig. 1 shows the mean best error curves for these functions. It
can be seen that RCBBO displays a faster convergence rate than BBO when they are run for a longer time. The reason might be
that the mutation operator can explore the search space and improve the diversity of the population more sufficiently, and
hence it can escape the local minima and approach the near-global optimum.

5.4. Multimodal functions with a few local minima

For the functions with a few local minima, i.e., f14–f23, the major difference compared with functions f08–f13 is that
functions f14–f23 appear to be simpler than f08–f13 due to their low dimensionalities and a smaller number of local minima
[1]. The experimental results are given in Table 2 and Fig. 1 for functions f14–f23. It is interesting that quite different results
have be observed for these functions compared with functions with many local minima (f08–f14). For nine (f14 and f16–f23)
out of 10 functions, there are not significant difference between the RCBBO approaches and BBO. Only for function f15,
RCBBO with Gaussian mutation, RCBBO-C, is significant better than BBO in terms of the final result. For two functions
(i.e., f14 and f23), BBO slightly outperforms the RCBBO approaches.

1 The error of a solution X is defined as f(X) � f(X*), where X* is the global optimum of the function.
2 The paired t-test determines whether two paired sets differ from each other in a significant way under the assumptions that the paired differences are

independent and identically normally distributed [24].
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5.5. Rotated functions

With respect to the rotated functions (F03, F07, F08, and F10), all of these functions are tested at D = 10 with
Max_NFFEs = 100,000. The results are shown in Table 2. From Table 2, it can be seen that BBO is significantly outperformed
by RCBBO-G, RCBBO-C, and RCBBO-L on three out of four functions. For function F08, all of the four algorithms obtains the
similar results.

5.6. Comparison with EP variants

Since the BBO migration operator is combined with the mutation operator mainly used in the EP algorithm, in this sec-
tion, we compare our approach with some EP variants, i.e., MSEP [15], FEP [1], and CEP [1]. To make a fair comparison with
these EP methods, RCBBO shown in Algorithm 3 is combined with the EP selection rule, hence, our approach is referred to as
RCBBO with EP selection (RCBBO-EP). All parameters are kept unchanged as described in Section 5.1. In RCBBO-EP, the
Gaussian mutation is used as the illustration. The tournament size q = 10 for selection as used in [1,15]. The Max_NFFEs
for each function are used as listed in the third columns of Table 2, only except for function f15, where Max_NFFEs = 400,000
[1,15]. The results are shown in Table 3. For MSEP, the results are obtained from [15], except for f05, we omitted the result,
since the Max_NFFEs = 150,000 are used in [15]. For FEP and CEP, the results are obtained from [1]. Note that for functions
f05, f08, and f09, the Max_NFFEs used in RCBBO-EP are less than those of FEP and CEP.

With respect to MSEP, RCBBO-EP is significantly better than MSEP on 10 out of 21 functions. For functions f21, f22, and
f23, RCBBO-EP is outperformed by MSEP. RCBBO-EP gets stuck in the local minima in several runs for these functions. The
reason might be that the Gaussian mutation in RCBBO-EP is still suffered by these problems like CEP. The problem may be
remedied using the mixed mutation strategy as proposed in MSEP. For the rest 8 functions, there are no significant differ-
ences between these two algorithms. From Table 3, we can also see that on the majority of the high-dimensional problems,
RCBBO-EP is significantly better than MSEP (9 out of 10). This is confirmed the efficient population utilization of the migra-
tion operator of BBO.

Compared with FEP and CEP, on 21 out of 23 functions RCBBO-EP is significantly better than FEP. Only for two functions
f06 and f19, there are no significant differences between RCBBO-EP and FEP. The similar conclusion can be drawn about the
results between RCBBO-EP and CEP, RCBBO-EP is significantly better than CEP on the majority of the functions (21 out of 23).

Table 2
Comparison of the experimental results, averaged over 50 independent runs, of BBO, RCBBO-G, RCBBO-C, and RCBBO-L for all of the test functions. ‘‘Mean”
indicates the mean best error values found in the last generation, ‘‘Std Dev” stands for the standard deviation. t-test tests BBO against other algorithms,
respectively. Hereafter, a result with Boldface means better value found.

F D Max_NFFEs BBO
Mean (Std Dev)

RCBBO-G
Mean (Std Dev)

RCBBO-C
Mean (Std Dev)

RCBBO-L
Mean (Std Dev)

f01 30 150,000 8.86E�01 (3.26E�01) 1.39E�03 (5.50E�04)a 2.11E�03 (7.41E�04)a 1.63E�03 (6.60E�04)a

f02 30 200,000 2.42E�01 (4.58E�02) 7.99E�02 (1.44E�02)a 9.15E�02 (1.51E�02)a 8.04E�02 (1.42E�02)a

f03 30 500,000 4.16E+02 (2.02E+02) 2.27E+01 (1.03E+01)a 3.90E+01 (1.91E+01)a 4.80E+01 (2.19E+01)a

f04 30 500,000 7.76E�01 (1.72E�01) 3.09E�02 (7.27E�03)a 3.02E�02 (5.29E�03)a 2.68E�02 (5.09E�03)a

f05 30 500,000 9.14E+01 (3.78E+01) 5.54E+01 (3.52E+01)a 6.45E+01 (3.43E+01)a 5.27E+01 (3.91E+01)a

f06 30 150,000 2.80E�01 (5.36E�01) 0.00E+00 (0.00E+00)a 0.00E+00 (0.00E+00)a 0.00E+00 (0.00E+00)a

f07 30 300,000 1.90E�02 (7.29E�03) 1.75E�02 (6.43E�03) 1.95E�02 (6.96E�03) 1.87E�02 (5.11E�03)
f08 30 300,000 �12569.0 (1.65E�01) �12569.5 (2.20E�05)a �12569.5 (2.65E�05)a �12569.5 (1.93E�05)a

f09 30 300,000 8.50E�02 (3.42E�02) 2.62E�02 (9.76E�03)a 3.39E�02 (1.51E�02)a 2.77E�02 (1.02E�02)a

f10 30 150,000 3.48E�01 (7.06E�02) 2.51E�02 (5.51E�03)a 3.34E�02 (6.15E�03)a 2.89E�02 (5.15E�03)a

f11 30 300,000 4.82E�01 (1.27E�01) 8.49E�02 (5.44E�02)a 3.57E�02 (3.78E�02)a 2.99E�02 (3.20E�02)a

f12 30 150,000 5.29E�03 (5.21E�03) 3.28E�05 (3.33E�05)a 5.21E�05 (5.69E�05)a 2.73E�05 (2.49E�05)a

f13 30 150,000 1.42E�01 (5.14E�02) 3.72E�04 (4.63E�04)a 6.96E�04 (1.02E�03)a 5.84E�04 (8.82E�04)a

f14 2 10,000 0.998013 (2.74E�05) 0.998017 (5.23E�05) 0.998086 (4.56E�04) 0.998069 (4.46E�04)
f15 4 100,000 9.00E�04 (2.68E�04) 7.86E�04 (1.80E�04)a 1.17E�03 (2.28E�03) 1.17E�03 (2.78E�03)
f16 2 10,000 �1.03095 (1.09E�03) �1.03101 (9.01E�04) �1.03110 (7.90E�04) �1.03112 (5.88E�04)
f17 2 10,000 0.398327 (4.26E�04) 0.398414 (6.77E�04) 0.398470 (1.06E�03) 0.398289 (5.52E�04)
f18 2 10,000 3.007858 (9.57E�03) 3.009504 (1.12E�02) 3.008666 (1.15E�02) 3.006942 (1.02E�02)
f19 4 10,000 �3.86253 (2.62E�04) �3.86248 (3.65E�04) �3.86254 (2.74E�04) �3.86247 (4.67E�04)
f20 6 20,000 �3.30741 (3.90E�02) �3.31691 (2.36E�02) �3.30748 (3.90E�02) �3.31228 (3.26E�02)
f21 4 10,000 �4.49193 (3.34E+00) �5.51341 (3.35E+00) �4.61873 (3.32E+00) �5.61985 (3.45E+00)
f22 4 10,000 �6.73583 (3.40E+00) �6.80022 (3.52E+00) �6.86903 (3.51E+00) �7.06758 (3.48E+00)
f23 4 10,000 �7.80261 (3.29E+00) �7.28480 (3.38E+00) �7.25011 (3.47E+00) �7.46472 (3.49E+00)
F03 10 100,000 6.19E+05 (4.31E+05) 5.30E+05 (4.20E+05)a 5.41E+05 (2.83E+05)a 2.97E+05 (1.19E+05)a

F07 10 100,000 1.70E+00 (8.86E�01) 1.00E+00 (6.41E�01)a 9.25E�01 (1.32E�01)a 5.88E�01 (3.44E�01)a

F08 10 100,000 2.04E+01 (6.65E�02) 2.03E+01 (9.71E�02) 2.03E+01 (9.11E�02) 2.03E+01 (1.08E�01)
F10 10 100,000 9.81E+00 (1.77E+00) 5.91E+00 (1.87E+00)a 7.04E+00 (1.85E+00)a 6.02E+00 (2.35E+00)a

a The value of t with 49 degrees of freedom is significant at a = 0.05 by two-tailed test.
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In summary, when the migration operator of BBO is combined with the mutation operator and the selection rule of EP,
RCBBO-EP is better than, or highly competitively to, MSEP, FEP, and CEP on the test functions. The migration operator is able
to efficiently utilize the information of current population. The mutation operator can improve the diversity and enhance the
exploration in the early and middle stages of the evolution. In addition, the selection rule of EP can also improve the perfor-
mance of RCBBO when comparing the results between Tables 3 and 2.
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Fig. 1. Mean best error curves of BBO, RCBBO-G, RCBBO-C, and RCBBO-L for the selected functions. (a) f01. (b) f03. (c) f08. (d) f11. (e) f18. (f) f21.
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6. Conclusions and future work

In this paper, we extend the original BBO algorithm and propose a real-coded BBO method, where each individual (hab-
itat) is represented by the real parameter vector. In order to improve the exploration ability and the diversity of the popu-
lation, the mutation operator is integrated into the habitat mutation. In addition, three mutation operators (i.e., Gaussian
mutation, Cauchy mutation, and Lévy mutation), which have been widely used in EP, are chosen to verify the enhancement
of the exploration ability and the improvement of the diversity of the population.

To evaluate the performance of our RCBBO approach, 27 benchmark functions of a wide range dimensions and diverse
complexities are selected from the literature. The results are compared with BBO, which does not use the mutation operators
in EP. Experimental results show that (i) our proposed real-coded BBO approach can obtain good performance for the global
continuous optimization problems, and (ii) the mutation operator is able to improve the exploration ability and the diversity
effectively, especially for the high-dimensional problems. It is worth noting that we do not compare the performance of the
three selected mutation operators, because it is out of the goals of this paper. Moreover, RCBBO-EP is compared with MSEP,
FEP, and CEP. The results indicate that RCBBO-EP is better than, or highly competitive to, these three approaches.

Since the habitat migration operator described in Algorithm 1 can utilize the information of current population efficiently,
it can be hybrid with other EAs to design more robust hybrid meta-heuristic algorithms. Our future will consist on hybrid-
izing BBO with other EAs for the global optimization problems.
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