
ODE: A Fast And Robust Differential Evolution Based

on Orthogonal Design

Wenyin Gong1, Zhihua Cai1,2 and Charles Ling2

1 School of Computer Science

China University of Geosciences, Wuhan 430074, P. R. China

cug11100304@yahoo.com.cn
2 Dept. of computer science

The University of Western Ontario London,Ontario,N6A 5B7,Canada

Abstract. In searching for optimal solutions, Differential Evolution (DE), a type

of genetic algorithms, has been shown powerful. However, DE has been shown to

have certain weaknesses, such as slow convergence. In this paper, we propose an

improved differential evolution based on orthogonal design, and we call it ODE

(Orthogonal Differential Evolution). ODE makes DE faster and more robust. It

uses a novel and robust crossover based on orthogonal design and generates an

optimal offspring by a statistical optimal method. A new selection strategy is ap-

plied to decrease the number of generations and make the algorithm converge

faster. We evaluate ODE to solve twelve benchmark function optimization prob-

lems with a large number of local minima. Simulations indicate that ODE is able

to find the near-optimal solutions in all cases. Compared to other state-of-the-art

evolutionary algorithms, ODE performs significantly better in terms of the qual-

ity, speed, and stability of the final solutions.

1 Introduction

In the last two decades, evolutionary algorithms (including genetic algorithms, evo-

lution strategies, evolutionary programming, and genetic programming) have received

much attention regarding their potential as global optimization techniques [1]. Inspired

from the mechanisms of natural evolution and survival of the fittest, evolutionary al-

gorithms (EAs) utilize a collective learning process of a population of individuals. De-

scendants of individuals are generated using randomized operations such as mutation

and recombination. Mutation corresponds to an erroneous self-replication of individu-

als, while recombination exchanges information between two or more existing individ-

uals. According to a fitness measure, the selection process favors better individuals to

reproduce more often than those that are relatively worse.

Differential evolution (DE) [2] is an improved version of Genetic Algorithm (GA)

for faster optimization, which has won the third place at the 1st International Contest

on Evolutionary Computation on a real-valued function test-suite. DE is the best ge-

netic algorithm approach. Unlike simple GA that uses binary coding for representing

problem parameters, DE is a simple yet powerful population based, direct search algo-

rithm with the generation-and-test feature for globally optimizing functions using real

valued parameters. The DE’s advantages are its simple structure, ease of use, speed and

robustness. Price & Storn [2] gave the working principle of DE with single strategy.

Later on, they suggested ten different strategies of DE [10]. A strategy that works out

to be the best for a given problem may not work well when applied for a different prob-

lem. What’s more, the strategy and key parameters to be adopted for a problem are to

be determined by trial & error. The main difficulty with the DE technique, however,

appears to lie in the slowing down of convergence as the region of global minimum is

approaching.

Orthogonal design method [9] with both orthogonal array (OA) and factor analysis

(such as the statistical optimal method) is developed to sample a small, but represen-

tative set of combinations for experimentation to obtain good combinations. OA is a

fractional factorial array of numbers arranged in rows and columns, where each row

represents the levels of factors in each combination, and each column represents a spe-

cific factor that can be changed from each combination. It can assure a balanced com-

parison of levels of any factor. The term “main effect” designates the effect on response

variables that one can trace to a design parameter. The array is called orthogonal be-

cause all columns can be evaluated independently of one another, and the main effect

of one factor does not bother the estimation of the main effect of another factor.

Recently, some researchers applied the orthogonal design method incorporated with

EAs to solve optimization problems. Leung and Wang [5] incorporated orthogonal de-

sign in genetic algorithm for numerical optimization problems found such method was

more robust and statistically sound. This method was also adopted by other researchers

[6], [7] and [8] to solve optimization problems. Numerical results demonstrated that

these techniques had a significantly better performance than the traditional EAs on the

problems studied, and the resulting algorithm can be more robust and statistically sound.

In this paper, an improved version of the differential evolution based on the orthog-

onal design (ODE) is presented to make the DE faster and more robust. Orthogonal

design method is nested in crossover operator with the statistical optimal method to se-

lect better genes as offspring, and consequently, enhances the performance of the CDE.

Both orthogonal crossover and DE/rand/1/exp are used in the ODE. By combining with

two crossover operators, faster convergence and better solutions are obtained. More-

over, the ODE can remedy the main defect of the DE technique mentioned above with

the orthogonal crossover operator. The advantages of ODE are its simplicity, efficiency,

and flexibility. It is shown empirically that ODE has high performance in solving bench-

mark functions comprising many parameters, as compared with some existing EAs.

The rest of this paper is organized as follows. Section 2 briefly describes function

optimization problem and some properties of the orthogonal design method. Section 3

presents the proposed ODE. In Section 4, we test our algorithm through twelve bench-

mark functions to the test proposed algorithm. This is followed by discussions and

analysis of the optimization experiments for the ODE in Section 5. The last section,

Section 6, is devoted to conclusions and future studies.

2 Preliminary

2.1 Problem Definition

A global minimization problem can be formalized as a pair (S, f) , where S ⊆ Rn is

a bounded set on Rn and f : S → R is an n-dimensional real-valued function. The

problem is to find a point Xmin ∈ S such that f(Xmin) is a global minimum on S. More

specifically, it is required to find an Xmin ∈ S such that

∀X ∈ S : f(Xmin) ≤ f(X) (1)

where f does not need to be continuous but it must be bounded

li ≤ xi ≤ ui, i = 1, 2, · · · , n (2)

2.2 Orthogonal Design

In a discrete single objective optimization problem, when there are N factors (vari-

ables) and each factor has Q levels, the search space consists of QN combinations of

levels. When N and Q are large, it may not be possible to do all QN experiments to

obtain optimal solutions. Therefore, it is desirable to sample a small, but representa-

tive set of combinations for experimentation, and based on the sample, the optimal may

be estimated. The orthogonal design was developed for the purpose [9]. The selected

combinations are scattered uniformly over the space of all possible combinations QN .

And the orthogonal design is an important tool for robust design. Robust design is an

engineering methodology for optimizing the product and process conditions which are

minimally sensitive to the causes of variation, and which produce high-quality products

with low development and manufacturing costs.

In general, the orthogonal array LM (QN) has the following properties.

1. For the factor in any column, every level occurs equal times.

2. For the two factors in any two columns, every combination of two levels occurs

equal times to represent the experiments.

3. Any two experiments are not the same, so their results cannot be compared directly.

4. If any two columns of an orthogonal array are swapped, the resulting array is still

an orthogonal array.

5. If some columns are taken away from an orthogonal array, the resulting array is still

an orthogonal array with a smaller number of factors.

3 ODE: Orthogonal DE

In order to get rapid convergence as the region of global minimum, make it easy to

manipulate and get better solutions, we modify the CDE. The enhancements of the

ODE are as follows:

3.1 Orthogonal Crossover Operator

3.1.1 Design of the orthogonal array To design a minimal orthogonal array, in this

research, we use the two level orthogonal array L2J (22J
−1), R = 2J denotes the number

of the rows of orthogonal array and C = 2J −1 denotes the number of the columns. The

orthogonal array needs to find a proper J to satisfy

Minimize: R = 2J

s.t.: C = 2J − 1 ≥ N
(3)

where N is the number of the variables. In this study, we adopt the algorithm described

in Ref. [5] to construct an orthogonal array. In particular, we use L(R, C) to indicate the

orthogonal array; and a(i, j) denotes the level of the jth factor in the ith combination in

L(R, C).

3.1.2 Generation of the orthogonal sub-population After constructing a proper or-

thogonal array, we select two parents randomly, X1 = (x11, x12, · · · , x1N) and X2 =

(x21, x22, · · · , x2N), to generate the orthogonal sub-population O(R, N) for two level

orthogonal crossover as follows

Algorithm 1: Generation of the orthogonal sub-population O(R, N)

for i = 1 to R
for j = 1 to N

k = a(i, j)
if k == 1 then

O(i, j) = x1j

End if

if k == 2 then

O(i, j) = x2j

End if

End for

End for

Note: Because the number of the columns of the orthogonal array C ≥ N , if C > N we

delete the last C − N columns to get an orthogonal array with N factors in algorithm

1. The remainder of the orthogonal array is still an orthogonal array because of the fifth

property of the orthogonal design.

3.1.3 Statistical optimal method From the third property of the orthogonal design we

know that any two experimental results cannot be compared directly. We adopt the sta-

tistical optimal method [9] in order to generate a better offspring, which is similar to the

method adopted in Ref. [8], from the orthogonal sub-population O(R, N). Calculation

of the value of the kth level of the jth factor E(j, k) is

E(j, k) =
X

a(i,j)=k

Xi.f (4)

where Xi.f is the fitness of the individual Xi. For each factor, we select the level with

the minimal E(j, k) as the component of the offspring X ′.

Algorithm 2: Generation of the offspring with statistical optimal method

for j = 1 to N

for i = 1 to R

k = a(i, j)

if k == 1 then

E(j, 1)+ = Xi.f

End if

if k == 2 then

E(j, 2)+ = Xi.f

End if

End for

End for

for j = 1 to N

if E(j, 1) < E(j, 2) then

x′

j = x1j

End if

if E(j, 1) ≥ E(j, 2) then

x′

j = x2j

End if

End for

3.2 Decision variable fraction strategy

If the dimension of the variable is higher, it needs to design a larger orthogonal array

to satisfy C ≥ N . For example, if N = 100, the smallest J is 7, and R = 128. When

we use the two level orthogonal crossover, it needs to evaluate the fitness function 128

times to generate an offspring. Therefore, each pair of parents should produce too many

potential offspring. In order to avoid a large number of function evaluations during

selection, we use the decision variable fraction strategy to divide the variables into

groups, which is a small design parameter, and each group with the same number of

components is treated as one factor. Consequently, the corresponding orthogonal array

has a small number of combinations, and hence a small number of potential offspring

are generated.

3.3 Simplifying the Scaling Factor

The scaling factor F is generated uniform randomly from F ∈ (0, 1] in the proposed

ODE to make it simple and easy to use.

3.4 Handling the Constraint of the Variables

When we adopt the DE/rand/1/exp strategy to generate a point X , if some dimension

values of the point beyond the constraint of the variables, xi /∈ [li, ui], we use the

following rules to adjust it:

xi =

li + Ui(0, 1) × (ui − li) if xi < li
ui − Ui(0, 1) × (ui − li) if xi > ui

(5)

where Ui(0, 1) is the uniform random variable from [0,1] in each dimension i.

3.5 Orthogonal DE

The evolutionary process of the ODE is similar to GAs. It is described as follows.

Algorithm 3: Algorithm of the Orthogonal DE

• Generate the initial population randomly and calculate the fitness of each individ-

ual;

• Find the best and the worst individuals in the current population;

• Construct a proper orthogonal array;

• While the halting criterion is not satisfied Do

· For each individual in the population, execute DE/rand/1/exp strategy to gen-

erate a new population;

· Find the best and the worst individuals in the new population;

· Select two different individuals, X1 and X2, randomly from the new popula-

tion;

· Execute algorithm 1 and algorithm 2 to generate a child X ′;

· if f(X ′) < f(Xworst) then

Xworst = X ′;

· End if

· Report the results;

• Do

Note: In algorithm 3, the halting criterion is that the maximal number of fitness function

evaluations is reached or |f(Xbest) − f(Xworst)| < ε.

4 Simulations

4.1 Experimental Setup

For all experiments in ODE, we used the following parameters:

Population size: M = 100;

Number of fitness function evaluations: NFFE = 100,000;

Probability of crossover: CR = 0.9;

Number of decision variable fractions: if N > 15, then F = 2, else F = N
Halting precision: ε = 1 × 10−30. This halting criterion used is to make the algo-

rithm stop earlier when the results satisfy the precision of the problems.

To assess the efficiency of the proposed ODE approach, we also test the functions

in CDE, which does not use the orthogonal design, with DE/rand/1/exp strategy. And

for all experiments in CDE, we used the parameters mentioned above only expect for

the number of fitness function evaluations, which is different for different problems.

4.2 Benchmark Functions

In order to test the performance of our method twelve benchmark functions (f01 − f12)

were used. All of the functions are minimization problems. Where functions f01 − f07

are from f01−f07 in Ref. [5]; functions f08−f10 are from f09, f12, f13 in Ref. [5]; and

functions f11, f12 are from f22, f23 in Ref. [4]. For functions f01−f06 and f09, f10, the

dimension of variables is 30; for functions f07, f08, the dimension of variables is 100;

and the dimension of variables for functions f11, f12 is 4. Functions f01 − f08 are high-

dimensional and multimodal problems with many local minima. Functions f09, f10 are

high-dimensional and unimodal problems. Also function f09 is a noisy quartic func-

tion, where random [0,1) is a uniformly distributed random variable in [0,1). Functions

f11, f12 are low-dimensional and multimodal problems with few local minima; and

they are difficult to find the global minima on each run for many algorithms [4]. The

test functions are described as follows.

f01 =
N

∑

i=1

(−xi sin(
√

|xi|))

f02 =

N
∑

i=1

(x2
i − 10 cos(2πxi) + 10)

f03 = −20 exp(−0.2

√

√

√

√

1

N

N
∑

i=1

x2
i) − exp(

1

N

N
∑

i=1

cos(2πxi)) + 20 + exp(1)

f04 =
1

4000

N
∑

i=1

x2
i −

N
∏

i=1

cos(
xi√

i
) + 1

f05 = π

N
{10 sin2(πyi) +

N−1
P

i=1

(yi − 1)2 · [1 + 10 sin2(πyi+1)] + (yN − 1)2}

+
N
P

i=1

u(xi, 10, 100, 4)

where yi = 1 + 1
4 (xi + 1)

and

u(xi, a, k, m) =

k(xi − a)m, xi > a

0, −a ≤ xi ≤ a

k(−xi − a)m, xi < a

f06 = 1
10
{sin2(3πx1) +

N−1
P

i=1

(xi − 1)2[1 + sin2(3πxi+1)] + (xN − 1)2[1 + sin2(2πxN)]}

+
N
P

i=1

u(xi, 5, 100, 4)

f07 = −
N

∑

i=1

sin(xi) sin20(
i × x2

i

π
)

f08 =
1

N

N
∑

i=1

(x4
i − 16x2

t + 5xi)

f09 =

N
∑

i=1

x4
i + random[0, 1)

f10 =

N
∑

i=1

|xi| +
N
∏

i=1

|xi|

f11,12 = −
m

∑

i=1

[(x − ai)(x − ai)
T + ci]

−1

where for function f11, m = 7; for function f12, m = 10. The coefficients are not

described here.

4.3 Experimental Results

Table 1 shows the results compared with OGA/Q [5] and CDE. Table 2 shows the results

compared with FEP [4] and CDE. Where all results have been averaged over 50 inde-

pendent trails on each test function in standard C++ and recorded: 1) the mean number

of fitness function evaluations (MFFE), 2) the mean function value (Mean Best), and 3)

the standard deviation of the functions (Std. Dev.). Some of the convergence results of

the test functions compared with ODE and CDE are shown in Fig. 1.

Table 1. Comparison with ODE, CDE and OGA/Q on functions f01 − f10 over 50 independent runs. A result in Boldface

indicates that a better result or the global optimum (or best known solution) was reached. Where “Optimal” in column 11

indicates the global optimum (or best known solution), similarly hereinafter.

F
MFFE Mean Best Std. Dev.

Optimal
ODE CDE OGA/Q ODE CDE OGA/Q ODE CDE OGA/Q

f01 47,980 72,100 302,166 -12569.5 -12569.5 -12569.4537 0 0 6.4∗10−4 -12569.5

f02 36,430 159,600 224,710 0 0 0 0 0 0 0

f03 57,850 206,300 112,421 5.9∗10−15 4.9∗10−15 4.4∗10−16 0 1.4∗10−15 4.0∗10−17 0

f04 51,970 119,600 134,000 0 0 0 0 0 0 0

f05 100,000 100,000 134,556 1.4∗10−16 5.2∗10−15 6.0∗10−6 7.3∗10−17 1.6∗10−15 1.2∗10−6 0

f06 99,850 100,000 134,143 4.1∗10−19 6.6∗10−13 1.9∗10−4 2.8∗10−19 3.5∗10−13 2.6∗10−5 0

f07 98,570 100,000 302,773 -97.211 -59.30467 -92.83 0.3 0.830304 2.6∗10−2 -99.2784

f08 98,570 100,000 245,930 -78.33233 -78.3254 -78.30 3.0∗10−6 0.001458 6.3∗10−3 -78.3324

f09 100,000 100,000 112,652 6.6∗10−4 0.01647 6.3∗10−3 3.8∗10−4 0.004207 4.1∗10−4 0

f10 100,000 100,000 112,612 0 1.7∗10−8 0 0 3.1∗10−9 0 0

Table 2. Comparison with ODE, CDE and FEP on functions f11, f12 over 50 independent runs. A result in Boldface

indicates that a better result or the global optimum (or best known solution) was reached.

F
MFFE Mean Best Std. Dev.

Optimal
ODE CDE FEP ODE CDE FEP ODE CDE FEP

f11 6,640 7,100 10,000 -10.4029 -10.40285 -5.52 0 1.246∗10−7 2.12 -10.4029

f12 7,030 7,900 10,000 -10.5364 -10.53638 -6.57 0 6.576∗10−9 3.14 -10.5364

5 Experimental Discussions and Analysis

From table 1, table 2 and Fig. 1, we can get following conclusions.

– The proposed ODE can find optimal or close-to-optimal solutions and gave the

smallest MFFE for all functions compared with the OGA/Q, CDE and FEP.

– For functions f01−f04 and f10−f12, the proposed ODE can find the global optimal

solutions on each run. Hence, the “Std. Dev.” of these functions are zero.

– For six functions (f01 and f05 − f09), the ODE can obtain a better “Mean Best”

solutions than the OGA/Q.

– Both the ODE and OGA/Q can give the same optimal or close-to-optimal solutions

in three functions (f02, f04 and f10).

– Only except for the function f07, the ODE gave a worse “Std. Dev.” than the

OGA/Q. However, it can give smaller standard deviations of function values in

six functions (f01, f03, f05, f06, f08 and f09) than the OGA/Q and in the remaining

three functions (f02, f04 and f10), both of them are 0. Hence, the proposed ODE

has a more stable solution quality.

– The ODE found similar standard deviations of function values as the CDE for three

functions (f01, f02 and f04), both of them are 0. And for the remaining nine func-

tions, ODE was able to obtain smaller standard deviations of function values than

the CDE. Therefore, ODE has a more stable solution quality than the CDE.

– The ODE found a better or a similar “Mean Best” solution in eleven functions

compared with the CDE, only expect for the function f03, the CDE is slightly better

than ODE.

– The proposed ODE requires fewer mean numbers of function evaluations than the

OGA/Q, CDE and FEP and, hence, the proposed ODE has a lower computational

time requirement.

– From Fig. 1, we can see that the ODE can get faster convergence than that of the

CDE. Especially, for some functions (such as f05, f09 and f10), the proposed ODE

can find the close-to-optimal solutions at the beginning of the iteration. The rea-

son is that the two level orthogonal crossover operator with the statistical optimal

method can exploit the optimum offspring.

– Compared with the FEP for functions f11 and f12, the performance of the ODE is

significantly better than the FEP in terms of the MFFE, Mean Best and Std. Dev.

These results in table 1, table 2 and Fig. 1 indicate that the proposed ODE can, in

general, give better mean solution quality, faster convergence speed and more stable

solution quality than the OGA/Q, CDE and FEP. Thereore, ODE can be more robust

and statistically sounder.

6 Conclusion and Future Work

A fast and robust DE (ODE) based on the orthogonal design is proposed in this paper;

and then it is used to solve the global numerical optimization problems with continuous

variables. The ODE combines the conventional DE (CDE), which is simple and effi-

cient, with the orthogonal design, which can exploit the optimum offspring. Orthogonal

design method is nested in crossover operator to select better genes as offspring, and

consequently, enhances the performance of the CDE. Both orthogonal crossover and

DE/rand/1/exp are used in the ODE. By combining two crossover operators, faster con-

vergence and better solutions are obtained. The statistical optimal method is incorpo-

rated in the two level orthogonal crossover operation to select the better genes to achieve

crossover, and consequently enhance the genetic algorithm. Moreover, decision variable

fraction strategy is applied to decrease the number of the orthogonal design combina-

tions and make the algorithm converge faster. Therefore, the proposed ODE possesses

the merits of global exploration, fast convergence, robustness, and statistical sound-

ness. We executed the proposed algorithm to solve twelve benchmark problems with

high or low dimensions, where some of these problems have numerous local minima.

The computational experiments show that the proposed ODE can find optimal or close-

to-optimal solutions, and it is more robust than the compared techniques (OGA/Q, CDE

and FEP). It is, therefore, concluded that the proposed ODE is a promising technique

in performing global optimization for practical applications. Furthermore, the ODE can

have faster convergence speed than the CDE. Our future work consists on adding to a

diversity mechanism to handle the constraints to solve the global constrained optimiza-

tion problems.

Acknowledgment

The authors would like to thank Professor Y. W. Leung for his constructive advices.

This work is supported by the Humanities Base Project of Hubei Province under Grant

No. 2004B0011 and the Natural Science Foundation of Hubei Province under Grant

No. 2003ABA043.

References

1. T. Bäck and H.-P. Schwefel: An overview of evolutionary algorithms for parameter optimiza-

tion. Evolutionary Computation. 1 (1993) 1–23

2. R. Storn and K. Price: Differential evolution–A simple and efficient heuristic for global opti-

mization over continuous spaces. Journal of Global Optimization. 11 (1997) 341–359

3. Guo Tao and Kang Li-shan: A new Evolutionary Algorithm for Function Optimization. Wuhan

University Journal of Nature Sciences. 4 (1999) 409–414

4. Xin Yao, Yong Liu, and Guangming Lin: Evolutionary Programming Made Faster. IEEE

Transactions on Evolutionary Computation. 3 (1999) 82–102

5. Y. W. Leung and Y. Wang: An Orthogonal Genetic Algorithm with Quantization for Global

Numerical Optimization. IEEE Transactions on Evolutionary Computation, 5 (2001) 41–53

6. Ding C. M, Zhang C. S. and Liu G. Z: Orthogonal Experimental Genetic Algorithms and Its

Application in Function Optimization (in Chinese). Systems Engineering and Electronics, 10

(1997) 57–60

7. SHI Kui-fan, DONG Ji-wen, LI Jin-ping, et al: Orthogonal Genetic Algorithm (in Chinese).

ACTA ELECTRONICA SINICA, 10 (2002) 1501–1504

8. ZENG San-You, WEI Wei, KANG Li-Shan, et al: A Multi-Objective Evolutionary Algorithm

Based on Orthogonal Design (in Chinese). Chinese Journal of Computers, 28 (2005) 1153–

1162

9. K. T. Fang and C. X. Ma: Orthogonal and Uniform Design (in Chinese). Science Press, (2001)

10. K. Price and R. Storn: Home Page of Differential Evolution. Available:

http://www.ICSI.Berkeley.edu/˜storn/code.html. (2003)

0 1 2 3 4 5 6 7 8

x 10
4

−13000

−12000

−11000

−10000

−9000

−8000

−7000

−6000

−5000

−4000

evaluation

fi
tn

e
s
s

Problem: f 01

CDE

ODE

0 0.5 1 1.5 2 2.5

x 10
5

0

2

4

6

8

10

12

14

16

18

20

evaluation

fi
tn

e
s
s

Problem: f 03

CDE

ODE

0 2 4 6 8 10 12

x 10
4

0

10

20

30

40

50

60

70

80

evaluation

fi
tn

e
s
s

Problem: f 05

CDE

ODE

0 2 4 6 8 10

x 10
4

0

2

4

6

8

10

12
x 10

7

evaluation

fi
tn

e
s
s

Problem: f 06

CDE

ODE

0 2 4 6 8 10

x 10
4

−80

−70

−60

−50

−40

−30

−20

evaluation

fi
tn

e
s
s

Problem: f 08

CDE

ODE

0 2 4 6 8 10 12

x 10
4

0

1

2

3

4

5

6

7

8

9

10

evaluation

fi
tn

e
s
s

Problem: f 09

CDE

ODE

0 2 4 6 8 10 12

x 10
4

0

5

10

15

20

25

30

35

40

evaluation

fi
tn

e
s
s

Problem: f 10

CDE

ODE

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−11

−10

−9

−8

−7

−6

−5

−4

−3

−2

evaluation

fi
tn

e
s
s

Problem: f 12

CDE

ODE

Fig. 1. Comparison with ODE and CDE on some convergence results of the test functions.

